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Abstract. In the Naming Game, individuals or agents exchange pairwise local 
information in order to communicate about objects in a common environment. 
The goal of the game is to reach a consensus about naming these objects. In 
this paper we extend the classical naming game with a globally shared 
memory accessible by all agents. Although the extended naming game is non-
deterministic in its word selection, we show that consensus towards a common 
vocabulary is reached in diverse network topologies. More importantly, we 
show the qualitative and quantitative influence of the external source of 
information, i.e. the shared memory, on the consensus dynamics. 

1. Introduction 
The natural emergence of a common language among individuals remains a phenomenon 
yet to be explained. However, a deeper understanding of the evolutionary processes of 
language formation is indispensable for developing autonomous multi-agent systems 
where each agent can potentially have different origins and where no knowledge about 
the language used in an open-ended environment is provided. To put in a question: How 
can these agents build a common language through local agreements and reach a 
consensus about the meaning of their vocabulary on a global scale?  

A promising model for a deeper understanding of the common language 
phenomenon is the naming game [Steels 1998]. It describes a model in which individuals 
can reach a consensus on how to name different objects. All individuals (or agents) exist 
in the same environment, sense the same set of objects, and are able to invent or create 
words for these objects. An interaction between two agents is a word transmission from 
one agent (the speaker) to a second agent (the hearer), with a resulting outcome (usually 
success or failure). The goal of the game is to reach, after a number of interactions, an 
agreement among the agents about the object-word association used for a single object 
[De Vylder and Tuyls 2006]. Interestingly, a self-organized vocabulary or even a 
common language with syntactic and semantic levels can be built using such simple 
local communication process [Steels 1996]. The naming game is therefore a microscopic 
model for the interaction dynamics among autonomous agents that communicate without 
any centralized control [Baronchelli et al. 2008]. Such distributed model could be used to 
understand how large populations reach an agreement with respect to the usage of a 



  

certain word, how new language constructs are established, how rumors and opinions 
spread, how words propagate in social networks, and even to provide a basis to an 
emergent communication system where symbol grounding and intentionality are natural 
outcomes from a particular system dynamics [Steels et al. 2007]. 

Besides its application in modeling the language formation process for 
individuals, agents or robots (in particular in the field of Artificial Intelligence), the 
naming game is of relevance to understand the consensus dynamics of collaborative 
tagging systems of web sites like delicious and flickr [Marlow et al. 2006] that have 
become increasingly popular in recent years. The users of such sites can attach keywords 
or tags to provide information (e.g., favorite sites on the Internet). In a recent study 
[Golder and Huberman 2005], it is shown how collaborative tagging can lead to both 
regularities regarding users’ activities, tag frequency and keyword usage, and stabilities 
concerning relative proportions between tags for a given URL and strings that define the 
location of programs or files in the Internet. Although it is potentially possible to have a 
constantly increasing number of tags, these findings indicate convergence to a name 
descriptor (the collection of tags) and concept (the contents in the location itself). 

Different variants of naming games played by humans can help to overcome one 
of the most challenging problems for search engines: Image labeling. The ESP game 
[Ahn and Dabbish 2004] aims to use humans’ perceptual abilities in order to create 
valuable output in the process of image labeling. Two players are shown the same image 
but they are not able to communicate. They are then asked to describe the image with 
labels under a given time constraint (e.g. Google Image Labeler uses 2 minutes). As soon 
as they use a common label, it is saved in the database to index the image, the players 
earn points accordingly, and the next image is shown. The objective is to get as many 
points as possible. While the ESP game is initially designed for a two-player game, in a 
broader context, the label consensus dynamics of the naming game can be directly used 
to improve the description accuracy of the images.  

Research on the naming game uses mainly the introduced communication model 
above and focuses on showing its convergence empirically [Baronchelli et al. 2006, 
Steels 1996, Steels 1998]. Convergence of a deterministic naming game, however, has 
been mathematically proven [De Vylder and Tuyls 2006]. One common characteristic of 
these models is that their dynamics are influenced only by the local memories of the 
agents involved. There is no common access memory, implying that the dynamics of 
these models is completely uncoupled from any influence of an environment external to 
the one where the negotiation occurs. The consensus, when reached, is a consensus 
which belongs to a specific population, and makes sense only in that context. From a 
sociological point of view, such an arrangement can be plainly artificial, or at least very 
difficult to establish [Carrington et al. 2007].  

The variation of the naming game model introduced in this paper differs from 
these approaches in that it enables agents to access a shared (global) memory with a 
given probability p (see Fig. 1). The reason for introducing a shared memory originates 
from the fact that the real world consists of central access points like books, media, and 
conferences where individuals build a common vocabulary even without a single direct 
interaction. Additionally, often an individual tends to search for an external reference 
before even emitting an opinion about a given subject. The shared memory extension 
might thus be important for modeling and understanding e.g. the influence of the press 
and media on the consensus of the group of individuals. 



  

Since classical naming games that allow only local negotiations tend to converge 
[De Vylder and Tuyls 2006], it appears reasonable that an extended version using a 
shared memory should behave similarly. Although one of our contributions is to show 
that the extended naming game in fact converges, the focus is on the role and impact of a 
shared memory on the convergence behavior itself. Knowledge about this influence 
enables the possibility to control the convergence and, thus, to trigger the outcomes. 
Another contribution of this paper shows that against common sense expectation, the 
shared memory is not solely responsible for triggering the consensus word, thus giving 
importance backing to the importance of local interactions. 

Moreover, we also consider that systems as diverse as the World Wide Web are 
best described as networks with complex topologies [Barabási and Albert 1999]. In fact, 
a common property of many large networks is that the vertex connectivity follows a 
scale-free power law distribution. A model based in preferential attachment to nodes that 
has this property is the Barabási-Albert model (BA) [Barabási and Albert 1999], and the 
influence of this topology on the consensus dynamics is also analyzed in this paper.  

The paper is organized as follows. A detailed description of the shared memory-
based model is given in Section II. The model has been implemented as a proof-of-
concept prototype. Empirical results are shown and discussed in Section III. Section IV 
presents a discussion about the influence of the network topology in the dynamics 
behavior, and also presents empirical results about the model presented in this paper, 
when applied to BA networks. Finally, Section V presents the main conclusions of the 
paper. 

2. A Non-Deterministic Naming Game Model 
This section describes formally the model proposed in Section I. A population of N 
agents is considered. Each agent has access to a local memory, which can contain 
potentially any number of words about a given subject. A word can be a composition of 
alphabetic elements, but also any other kind of unique identifier. Furthermore, all agents 
have reading access to the common external (shared) memory. This shared memory 
contains — prior to the beginning of the game — C distinct words (C ≥ 1). The 
objective of the game is to reach a steady state (consensus), i.e. a state in which all 
agents have the same word in their local memories.  

At t=0, all agents have empty local memories. At each successive time step 
(t=1,2,3,…) two agents are randomly selected, one playing the role of the speaker and 
the other as the hearer. The negotiation dynamics is as follows: 
1. The speaker randomly selects one of the words in its own local memory. If the local 
memory is empty, two actions are possible: a) with probability λ the speaker chooses a 
word from the shared memory whereby the selected word is added to the local memory 
of the speaker, or b) with probability 1- λ a new word is created locally and selected. 

2. The speaker transmits the selected word to the hearer.  

3. If the hearer does not have the transmitted word in its local memory, the interaction is 
considered a failure and the hearer adds the transmitted word to the local memory. If the 
hearer has the transmitted word in the local memory, two actions are possible. In both 
cases, the negotiation is considered a success: a) with probability λ the agents involved 
consult the shared memory. If the transmitted word exists in the shared memory, the 



  

speaker and hearer remove all other words from their memories, or b) with probability 1- 
λ both agents remove all words, besides the transmitted one, from their local memories. 

The model has three inputs: the number of agents N, the probability λ, and the 
number of words C in the shared memory. The probability λ represents the tendency for 
the agents to check the shared memory. When λ=0, the model is reduced to the standard 
naming game described e.g. in [Baronchelli et al. 2006], i.e. without any external 
influences which are represented by the shared memory. When λ=1, the game can be 
interpreted as a controlled version of the naming game having C possible words. 

3. Simulation and Results for MF Topologies 
The extended naming game communication model has been implemented as a proof-of-
concept prototype. Empirical results obtained by simulation are evaluated and discussed 
in this section. 

We assume that the agents are in a fully connected network, where each agent 
can communicate with all others. This topology is referred in Statistical Mechanics as a 
Mean Field topology (MF), and is also assumed in the communication models described 
in [Baronchelli et al. 2006, De Vylder and Tuyls 2006, Steels 1996, Steels 1998]. The 
number of agents N is set to 100 in all simulations. The values of λ vary from 0.0 to 1.0, 
and we tested values of C as 1, 5, 10, 50, 100 and 500. For each combination (λ,C) the 
game was executed 1000 times. The results shown are averages over these runs. 

 
Figure 1. Illustration of the extended naming game using a shared memory that 
agents are able to access with probability λ. 

There are three default measurements for the naming game, see e.g. [Baronchelli 
et al. 2007]. The first one is the variation of the total number of words as a function of 
time Nw(t). For a given time step t, the value of Nw(t) is the sum of the number of words 
in the local memories of all agents. Second, we define Nd(t) as a function that gives the 
number of different words at time t, i.e. it is the number of elements of the set 
containing all the words in the model at time t. Third, we define the success rate S(t) as 
follows: In a given interaction between two agents, the value 1 is assigned if the 



  

interaction is a success and 0 if it is a failure. It is important to note that for a given 
execution the success rate S(t) can only have values either 0 or 1. 

 
Figure 2. Curves for Nw, Nd and S as a function of time for N=100 agents playing 
the game described by the introduced model for a MF topology. 

Figure 2 is an overview of the behavior of the basic properties of the system 
using the introduced shared memory in a MF topology. It shows that the system 
dynamics is influenced by both λ and C. The dark blue curves show the results for the 
standard naming game [Baronchelli et al. 2006], which occurs when λ =0. It is also 
possible to see that the system clearly undergoes a disorder/order transition. At the 
beginning, the total number of words in the system Nw(t) grows smoothly, indicating 
that unsuccessful interactions occur, a fact that can be confirmed by the low value of 
S(t). On the other hand, the number of different words Nd(t), grows significantly, 
quickly reaching its maximum value. This means that new words are introduced. Still at 
the beginning, Nd(t) begins to decrease, although somewhat moderately, while the value 
of Nw(t) is still increasing. This means that although successful interactions start to 



  

occur, failures are still predominant. After Nd(t) reaches its maximum, no new words are 
further created. Instead, the initially created words spread all over the network. The 
difference compared to the initial phase is in the fact that the rate for creating new 
words is steadily decreasing. The value of S(t) grows moderately at first, but when the 
existing words are propagated to the majority of the agents, some become very popular, 
and the success rate starts to grow at a faster pace. With the more frequent occurrence of 
successful interactions, both the total number of words and the number of different 
words decrease, eventually leading to a consensus state, where Nd=1and Nw=N.  

An important issue is to analyze how the input parameters λ and C influence the 
behavior of the system. In other words, it is important to verify how the shared memory 
affects the game dynamics. The most clearly affected property is the maximum value of 
Nd(t), max(Nd), which is the maximum number of distinct words in the system. For a 
fixed value of C, max(Nd) decreases for increasing values of λ. On the other hand, for a 
fixed value of λ, max(Nd) increases for increasing values of C. Figure 3 shows the 
behavior of max(Nd) with respect to λ and C.  

Observe that checking of shared memory by the agents as described in Section II 
is done with probability λ. It can potentially happen in two situations: (a) an agent 
receives a transmitted word or (b) an agent is selected as speaker and does not have a 
word in its local memory. In the latter case, the agent can choose one of the words of 
the shared memory with probability λ or invents a new word with probability 1- λ. 

In the classical naming game with N agents [Baronchelli et al. 2006], max(Nd) is 
approximately N/2, meaning that on average half of the agents invent new words. This 
happens because the inventing agents were chosen as speakers while their local 
memories were empty. With the introduction of the shared memory, this behavior is 
expected as well, so that on average N/2 agents are chosen as speakers while their local 
memories are empty. Amongst these agents, λN/2 choose a word from the shared 
memory for transmission, while (1- λ)N/2 will introduce (invent) new words, ideally 
distinct ones. Then, the average maximum number of distinct words expected in the 
system obeys max(Nd (N,λ,C)) ≤ (1- λ)N/2 + NCd (N,λ,C), where NCd (N,λ,C) represents 
the maximum possible number of words chosen by the λN/2 agents amongst the C 
words of the shared memory, in other words NCd (N,λ,C) = C if λN/2 > C and NCd 
(N,λ,C) = λN/2, if λN/2 ≤ C. 

Figure 4 shows the variation of the time in which the number of distinct words in 
the system reaches its maximum value tmax(Nd). For a fixed C, tmax(Nd) decreases for 
increasing values of λ. For a fixed value of λ, tmax(Nd) increases for increasing values of 
C. Figure 5 shows the behavior of the average convergence time tconv for the game. We 
say that the system has converged when every agent has exactly one word, which is the 
same for all of them, that is, when Nw=N and Nd=1. For C=1 (only one word in the 
shared memory), the convergence time always decreases when λ increases. For other 
values of C, the convergence time is maximum for some λp, increasing in the interval 
[0, λp) and decreasing in (λp,1]. In general, for a fixed λ, tconv increases for increasing C. 
When λ=0, the convergence time obviously does not depend on C and its value is 
approximately 2,500, in fact the same registered in [Baronchelli et al. 2006] and, thus, 
indirectly validating the implementation. 

The curves for the maximum number of words in the system, max(Nw) are 
shown in Figure 6. For a fixed value of λ, max(Nw) increases for increasing values of C. 



  

When C=1, the value of max(Nw) always decreases when λ increases. For other values 
of C, max(Nw) also reaches its maximum value for some λp, increasing in the interval 
[0, λp) and decreasing in (λp,1]. Figure 7 shows the behavior of the property tmax(Nw), the 
time in which the total number of words in the system Nw(t) reaches its maximum value. 
For a fixed value of λ, tmax(Nw) always increases for increasing values of C. 

For all simulations executed, convergence was observed to a state in which all 
the agents have the same word, i.e. a steady state. Interestingly, the resulting consensus 
word is not always amongst the C words in the shared memory. To analyze this result 
we define the parameter Pshared as the quotient between the number of executions in 
which the consensus word is also in the shared memory and the total number of 
executions. It means the probability that a system with inputs N, λ and C converges to a 
word in the shared memory. The behavior of Pshared is shown in Figure 8. Remarkably, 
the shared memory only contains the consensus word in all executions when λ>0.5. For 
λ<0.5 the ratio depends on the number of words C in the shared memory whereby more 
words mean a lower ratio.  

 
Figure 3. Variation of the maximum number of distinct words in the system 
max(Nd) with respect to λ and C for the MF topology. 

 

Figure 4. Time when Nd(t) reaches its maximum value tmax(Nd) as a function of λ 
for the MF topology. 



  

 
Figure 5. Average convergence times for the proposed model for the MF topology. 

 
Figure 6. Maximum number of words in the system max(Nw) for the MF topology. 

 
Figure 7. Time in which the total number of words in the system is maximum 
(tmax(Nw)) for the MF topology. 



  

 
Figure 8. Behavior of Pshared as function of λ and C. 

 
Figure 9. Curves for Nw(t), Nd(t) and S as function of time for N=100 agents 
playing the game described by the introduced model for a BA topology. 



  

 
Figure 10. Behavior of the maximum number of distinct words in the system 
max(Nd) with respect to λ and C for the BA topology. 

In order to explain this phenomenon, we consider that invention of words only 
occur in the very beginning of the game. When λ increases, the number of agents that 
choose words from the shared memory instead of inventing new ones increases at the 
same time. Thus, some of the words which were initially exclusively in the shared 
memory become popular from the very beginning of the game. This explains the fact 
that the consensus word has a relatively high probability of belonging to the shared 
memory. 

4. Simulation and Results for BA topologies 
In the previous section, we assumed that the agents were in a fully connected (MF) 
network. However, several works report on how the underlying topology influences the 
consensus behavior [Baronchelli et al. 2006, Baronchelli et al. 2007, Brust et al. 2008, 
McIntyre and Steels 1999]. In this section, we investigate how the network topology 
affects the properties of the extended naming game. 

Many topologies of large networks, from the WWW to citation patterns in 
science, display that, independently of its constituents, the probability P(k) that a vertex 
in the network interacts with k other vertices decays as a power law that follows P(k) ~ 
k – γ. This property is called scale-free [Barabási and Albert 1999]. We consider here the 
scale-free BA model from [Barabási and Albert 1999], which has become one of the 
most used models for complex heterogeneous networks. A BA topology is a very 
simple construct. Starting from a small set of m interconnected nodes, new nodes are 
introduced one by one. Each new node selects m older nodes for connection according 
to the preferential attachment rule, i.e., the probability of connecting to a node is 
proportional to its degree. When a predefined network size is reached, this procedure 
stops. It can be shown that the obtained network follows a power law distribution P(k) ~ 
k – γ, with γ = 3 [Barabási and Albert 1999]. We thus consider here BA networks with 
N=100 agents and average degree <k> = 15. The values of λ and C are the same as in 
Section III and, for each combination (λ, C), the game was executed 500 times. The 
results were averaged over these runs. Figure 9 shows the behavior of the parameters 
Nd(t), Nw(t) and S(t). The system dynamics behaves as in the MF case, influenced by the 
values of both λ and C. 



  

The most clearly influenced parameter is the maximum value of Nd(t), max(Nd). 
For a fixed value of C, max(Nd) decreases for increasing values of λ. Also, for a fixed 
value of λ, max(Nd) increases for increasing values of C, as in the MF case. A 
comparison between Figure 9 and Figure 2 shows that the maximum total number of 
words is smaller than in the MF case, while the number of different words remains 
almost the same. This is due to the fact that the network topology does not influence the 
creation of new words, but the network has an average connectivity smaller than the MF 
network. The nodes have access only to the words of their neighbors’ inventories, 
whereas in the MF case all nodes have potential access to all words in the game. In this 
way, the average memory size of any agent is smaller than in the MF case, as it has 
more limited access to the existing words. The behavior of max(Nd) with respect to λ 
and C is shown in Figure 10. Figure 11 shows the behavior of the convergence time tconv. 
Comparing Figures 11 and 5, one can notice that tconv for BA networks is larger than in 
the MF case. We can explain this fact also by the smaller average connectivity of the 
BA networks, resulting in a more local spreading of words, thus taking longer to reach 
consensus. Figure 12 shows the curves for the maximum number of words in the 
system, max(Nw). We can notice, comparing once again with the same parameter in the 
MF case (Figure 6), that the BA case has lower memory use, due to the fact that each 
node has restricted access to the existing words in the network, as already mentioned in 
this section. The curves for the time in which Nw(t) reaches its maximum, tmax(Nw) are 
shown in Figure 13. The behavior of the parameter Pshared, defined in the last section, is 
shown in Figure 14. In the BA case, words are propagated in a more local way than in 
the MF case. For BA networks, when λ > 0.4, the shared memory contains a consensus 
word with high probability, while in the MF this occurs for λ larger than 0.5. This 
difference happens because, in the BA case, the words are propagated in a more 
localized form than in the MF case. 

When, in a BA network, an agent invents a random word, it can only be present 
in various network nodes if it is propagated step by step during various interactions. The 
word presence in different nodes increases the chances of it being the consensus word. 
On the other hand, when more than one agent selects a same word of the shared memory, 
few interactions are necessary (relatively to when the word in question was invented) for 
the word to be in various different network nodes. Thus, in the BA network, the 
difference between a probability of consensus on a word of the shared memory and the 
probability of consensus on a random invented word is larger than the same difference 
for a MF network. In a MF network, an invented word may be in various nodes of the 
network after few interactions, because every node is connected to all the others. Thus, 
there is less difference (relatively to the same pattern in a BA network) in the consensus 
probability of a random word and of a word in the shared memory. 

As a final remark, we observe that, regarding the variation of the size of the 
shared memory C and probability λ, the model maintains qualitatively the same 
characteristics found in the previous section, with respect to the variation of max(Nd), 
tconv, max(Nw), tmax(Nw) and Pshared. 

5. Discussion and Conclusion 
In this paper, we introduce a shared external memory into the original naming game 
model [Steels 1998] and analyzed the resulting consensus dynamics both for completely 
connected (MF) and scale-free (BA) topologies. The memory can be interpreted as the 



  

role of a dictionary, a popular reference (book, encyclopedia, etc.), the press, or a search 
engine, in a social network of simple communicating agents. 

Results show that if the agents follow the communication rules described in the 
extended naming game consensus is always reached, i.e., the agents reach an agreement 
on the vocabulary about the objects in their environment. That happens without 
centralized control, as the agents only have reading access to the shared memory. We 
have empirically shown the degree of impact of the external shared memory on the 
consensus dynamics. It is noteworthy observing that, although the shared memory does 
not completely determine the consensus word (a possible indication of the importance 
of local interactions), it has enormous influence in defining it, even for low access 
probabilities. For further investigations we can consider the idea that some entity has 
total access to the shared memory (reading and writing). This entity could to a certain 
extent determine and manipulate the outcome of the game, bringing to the fore an 
interesting discussion on related media control phenomena for which the model could 
be understood as a first simplification. As the value of λ does not even have to be the 
same for all agents, it might be more realistic, as far as a study on social 
communications is concerned, to consider that each agent has its own value of λ, 
simulating different likelihoods of being influenced by an external source of 
information. The characteristics of the external shared memory (including but not 
limited to the value of C) are in a certain way determined by the entities that control the 
external memory. In other words, if these entities allow agents to access only a limited 
set of possible words, this will result in lowering C. On the other hand, with a low value 
of C, it is easier to predict the outcome of the game: the consensus word will very likely 
be amongst those words that are “interesting” to the entities that control the memory, 
even if the system has small λ. Further studies will consider socially-related concepts 
such as trust and reputation in the line initiated in [Brigatti 2007], and the inclusion of 
utility measures as considered in the multi-agent games literature. 

 

 
Figure 11. Average convergence times for the proposed model for the BA topology. 



  

 

Figure 12. Maximum number of words max(Nw) for the BA topology. 

 

Figure 13. Average time in which the total number of words in the system is 

maximum  for the BA topology. 

 
Figure 14. Pshared versus λ and C for the proposed model in BA networks. 
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