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Abstract Until recently, truth-functionality
has been considered essential to the mech-
anism for combining logics known as fib-
ring. Following the first efforts towards ex-
tending fibred semantics to logics with non-
truth-functional operators, this paper aims
to clarify the subject at the light of ideas
borrowed from the theory of general log-
ics as institutions and the novel notion of
non-truth-functional room. Besides introduc-
ing the relevant concepts and constructions,
the paper presents a detailed worked example
combining classical first-order logic with the
paraconsistent propositional system C1, for
which a meaningful semantics is obtained.
The possibility of extending this technique to
build first-order versions of further logics of
formal inconsistency is also discussed.

Keywords: Fibring, non-truth-functional seman-
tics, paraconsistency, first-order.

1 Introduction

Recently, the problem of combining logics has
been deserving much attention. The practi-
cal impact of combining logics is clear. In the
fields of artificial intelligence and software engi-
neering, the need for working with several for-
malisms at the same time is widely recognized.
Besides, combinations of logics are also of great
theoretical interest [3]. Among the different
combination techniques, both fibring [11, 16]
and combinations of parchments [15] deserve
close attention, as well as [7] as far as non-
truth-functionality is concerned. Moreover, af-
ter the work in [5], it seems that the theory

of fibring can also deal with logics endowed
with non-truth-functional semantics, including
a wide class of paraconsistent logics.

To clarify the subject we adopt the general
context of institutions [13, 14], and introduce
the novel notion of non-truth-functional (ntf)
room. These can be seen, in fact, as the basic
constituents of ntf parchments, an algebraic-
oriented view on presentations of logics as insti-
tutions [12], from where we borrow the termi-
nology. Following the tradition of institutions,
we consider a logic to consist of an indexing
functor to a suitable category of logic systems.
In our case, the logic systems of interest are
ntf rooms. For simplicity, we shall only work
at this level of abstraction. As shown in [4],
everything can be smoothly lifted to the fully
fledged indexed case.

This seems to provide the adequate set-
ting for widening the work reported in [5] to
a larger class of non-truth-functional logics,
by providing a neat separation between inter-
pretation structures and interpretation maps
and, altogether, a sharp delimitation of truth-
functionality. Our ntf rooms essentially extend
the rooms for model-theoretic parchments of
[15], as in the layered rooms of [6], by endow-
ing the algebras of truth-values with more than
just a set of designated values. In fact, we re-
quire the set of truth-values to be structured
according to a Tarskian closure operation as in
[4], recovering an early proposal of Smiley [18].
On the other hand, we shall also extend these,
following the ideas in [5], to cope with the pos-
sible non-truth-functionality of operators.

The paper is organized as follows: in Section
2 the concept of ntf room and related notions
are introduced and illustrated with represen-
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tations of both classical first-order logic and
the paraconsistent propositional system C1; in
Section 3, after establishing the morphisms of
ntf rooms and using them to characterize fib-
ring, we explore the fibred semantics obtained
by combining classical first-order logic with C1;
Section 4 concludes the paper by hinting at
the possible systematization of the process of
obtaining first-order versions of paraconsistent
systems, and by discussing the possible exten-
sion of the completeness preservation results
that are known for the truth-functional case.

2 Non-truth-functional logics

In the sequel, AlgSigϕ denotes the category of
algebraic many sorted signatures Σ = 〈S,O〉,
where S is the set of sorts and O = {Ow}w∈S+

is the family of sets of operators indexed by
their type, with a distinguished sort ϕ (for for-
mulae) and morphisms preserving it. Given
one such signature, we denote by Alg(Σ) the
category of Σ-algebras and Σ-algebra homo-
morphisms, and by cAlg(Σ) the class of all
pairs 〈A, c〉 with A a Σ-algebra and c a clo-
sure operation on |A|ϕ (the carrier of sort ϕ,
that we can see as the set of truth-values). We
shall use TΣ to denote the initial Σ-algebra
(the term algebra), and [[ ]]A (for term in-
terpretation) to denote the unique Alg(Σ)-
homomorphism from TΣ to any given Σ-algebra
A. Also recall that every AlgSigϕ-morphism
σ : Σ1 → Σ2 has an associated reduct func-
tor |σ : Alg(Σ2) → Alg(Σ1). As usual,
we shall preferrably write σ̂ (for term transla-
tion) instead of [[ ]]TΣ2 |σ to denote the unique
Alg(Σ1)-homomorphism from TΣ1 to TΣ2 |σ.

Definition 2.1 An ntf room is a tuple R =
〈Σ, T, I,S,H〉 where:

• Σ = 〈S,O〉 ∈ |AlgSigϕ| is a signature (of
syntactic operators);

• Σt = 〈S, T 〉 ∈ |AlgSigϕ| is a subsigna-
ture of Σ (the truth-functional part), with
ι : Σt → Σ the corresponding AlgSigϕ-
inclusion morphism;

• I is a class (of interpretation structures);

• S : I → cAlg(Σt) is a map (assigning
truth-functional interpretation algebras to
interpretation structures);

• H = {HI}I∈I , where each HI ⊆
homAlg(Σt)(TΣ|ι,A) is a class (of interpre-
tation maps), letting S(I) = 〈A, c〉.

In the sequel, whenever clear from the con-
text, we shall denote S(I) by 〈AI , cI〉.

Of course, the possible non-truth-function-
ality of an interpretation map regarding the
whole syntax given by Σ follows from the fact
that it is only required to be homomorphic over
the truth-functional part Σt. For instance, an
operator o ∈ Oϕϕ not in T can be non-truth-
functional in that the value of h(o(γ)) may not
be a function of h(γ) for some interpretation I
and h ∈ HI . However, if C and T coincide, ι is
the identity, and we recover the plain old truth-
functional case by letting each HI contain the
unique possible homomorphism [[ ]]AI .

A global entailment system can be extracted
from an ntf room by considering, for each in-
terpretation structure I, the set ∅cI ⊆ |AI |ϕ of
designated values. If we recognize |TΣ|ϕ (the
carrier of sort ϕ in the initial Σ-algebra) as
the set of formulae and Mg = {〈I, h〉 : I ∈
I, h ∈ HI} as the family of global models, we
can define the corresponding global satisfaction
relation g between models and formulae by:

• 〈I, h〉 g γ if h(γ) ∈ ∅cI ,

and obtain the induced global consequence rela-
tion �g between sets of formulae and formulae,
as expected, by defining:

• Γ �g δ if 〈I, h〉 g δ whenever 〈I, h〉 g Γ,
for every 〈I, h〉 ∈ Mg.

Now, by further exploring the closure opera-
tion on truth-values and freely varying the ad-
mitted set of distinguished values, we can also
define a local entailment system. Local mod-
els are set to be Ml = {〈I, h, T 〉 : 〈I, h〉 ∈
Mg, T cI ⊆ T ⊆ |AI |ϕ} and the local satisfac-
tion relation l is defined by:



• 〈I, h, T 〉 l γ if h(γ) ∈ T .

The local consequence relation �l is defined as
expected from l, and can be easily seen to
coincide with:

• Γ �l δ if h(δ) ∈ {h(γ) : γ ∈ Γ}cI , for every
〈I, h〉 ∈ Mg.

In general, �lΣ is weaker than �gΣ, but we
always have that ∅ �lΣ γ iff ∅ �gΣ γ.

For the sake of illustration we develop two
examples. The first one, naturally just truth-
functional, is classical first-order logic. The
second, where negation is an essentially non-
truth-functional operator, is the paraconsistent
propositional logic C1 of da Costa [9].

Example 2.2 Classical first-order logic.
Let F = {Fn}n∈IN and P = {Pn}n∈IN be fam-
ilies of sets of function and predicate symbols,
respectively, with the given arities, and X a
denumerable set of variables. The first-order
ntf room over 〈F, P,X〉 consists of:

• S = {τ, ϕ}, where τ is the sort of terms;

• O = T (all operators are truth-functional)
is such that:

∗ Oτ = X ∪ F0,

∗ Oτnτ = Fn, n > 0,

∗ Oτnϕ = Pn, n ∈ IN ,

∗ Oϕϕ = {∼} ∪ {∀x,∃x : x ∈ X},
∗ Oϕ2ϕ = {∧,∨,⊃};

• I is the class of all 〈F, P 〉-interpretations
I = 〈D, I〉 with D 6= ∅ a set, fI : Dn →
D for f ∈ Fn, and pI ⊆ Dn for p ∈ Pn;

• each S(I) = 〈A, c〉 with |A|τ =
DAsg(X,D) and |A|ϕ = ℘(Asg(X,D)),
where Asg(X,D) = DX is the set of as-
signments ρ to variables, and:

∗ xA(ρ) = ρ(x), x ∈ X;

∗ fA(e1, . . . , en)(ρ) =
fI(e1(ρ), . . . , en(ρ)), f ∈ Fn;

∗ pA(e1, . . . , en) =
{ρ : 〈e1(ρ), . . . , en(ρ)〉 ∈ pI}, p ∈ Pn;

∗ ∼A (r) = Asg(X,D) \ r;
∗ ∀xA(r) =

{ρ : ρ[x/d] ∈ r for every d ∈ D};
∗ ∃xA(r) =

{ρ : ρ[x/d] ∈ r for some d ∈ D};
∗ ∧A(r1, r2) = r1 ∩ r2;

∗ ∨A(r1, r2) = r1 ∪ r2;

∗ ⊃A (r1, r2) = (Asg(X,D) \ r1) ∪ r2;

endowed with the cut closure operation
induced by set inclusion, that is, for ev-
ery R ⊆ ℘(Asg(X,D)), Rc = {r ⊆
Asg(X,D) : (

⋂
R) ⊆ r} (the principal

ideal determined by (
⋂
R) on the com-

plete lattice 〈℘(Asg(X,D),⊇〉);

• each HI = {[[ ]]AI}.

In all cases, ∅cI = {Asg(X,D)} and global sat-
isfaction at I corresponds to truth for all as-
signments, leading to the corresponding global
entailment. Local entailment, instead, corre-
sponds to consequence over a fixed assignment.
Note that {γ} �g (∀x γ) but {γ} 6�l (∀x γ),
hinting to the well-known fact that generaliza-
tion holds globally but not locally.

Example 2.3 Paraconsistent propositional
system C1.
Let Π be a set of propositional symbols. The
C1 ntf room over Π consists of:

• S = {ϕ};

• O is such that:

∗ Oϕ = Π;

∗ Oϕϕ = {¬};
∗ Oϕ2ϕ = {∧,∨,⊃},

whereas T does not include ¬.

• I is the class of all pairs I = 〈B, ϑ〉 where
B = 〈B,u,t,−,>,⊥〉 is a Boolean alge-
bra and ϑ : Π→ B is a valuation;

• each S(I) = 〈A, c〉 with |A|ϕ = B, and:

∗ πA = ϑ(π), π ∈ Π;



∗ ∧A(b1, b2) = b1 u b2;

∗ ∨A(b1, b2) = b1 t b2;

∗ ⊃A (b1, b2) = −b1 t b2;

endowed with the cut closure operation in-
duced by the usual order on B defined by
b1 ≤ b2 iff b1 t b2 = b2, that is, for every
X ⊆ B, Xc = {b ∈ B : b1 ≤ b if b1 ≤
x for every x ∈ X} (the least closed ideal
of 〈B,≥〉 that contains X);

• each HI is the class of all Alg(Σt)-
homomorphisms h : TΣ|ι → AI such that:

∗ −h(γ) ≤ h(¬ γ);

∗ h(¬¬ γ) ≤ h(γ);

∗ (h(γ◦) u h(γ) u h(¬ γ)) = ⊥;

∗ (h(γ◦) u h(δ◦)) ≤ h((γ ∧ δ)◦);
∗ (h(γ◦) u h(δ◦)) ≤ h((γ ∨ δ)◦);
∗ (h(γ◦) u h(δ◦)) ≤ h((γ ⊃ δ)◦),

where γ◦ is the usual C1 abbreviation of
¬(γ ∧ ¬ γ).

In all cases, ∅cI = {>}, and therefore global
satisfaction at I corresponds to truth, leading
to the corresponding global entailment. It is
also easy to see that, in this case, local and
global entailments coincide.

Although in the C1 system negation is not
truth-functional, the possible interpretations
of ¬ are restricted according to the previ-
ous 6 conditions. Obviously, we would end
up exactly with classical propositional logic
if we replaced the last 5 conditions by just
(h(γ) u h(¬ γ)) = ⊥. This last condition is
clearly a form of Pseudo-Scotus and would im-
mediately lead to h(¬ γ) = −h(γ). However,
as it is, the third condition still embodies a
controlled form of explosion in the presence of
consistency (as expressed by the γ◦ abbrevia-
tion).

3 Fibring

Morphisms of ntf rooms are specially tailored
for fibring. Let us consider fixed two arbitrary

ntf rooms R1 = 〈Σ1, T1, I1,S1,H1〉 and R2 =
〈Σ2, T2, I2,S2,H2〉.

Definition 3.1 A morphism from R1 to R2 is
a pair 〈σ, θ〉 where σ : Σ1 → Σ2 is an AlgSigϕ-
morphism and θ : I2 → I1 is a map such that:

• σ(T1) ⊆ T2, inducing an AlgSigϕ-
morphism σt : Σt

1 → Σt
2 that satisfies

(ι2 ◦ σt) = (σ ◦ ι1);

• if S2(I) = 〈A, c〉 then S1(θ(I)) =
〈A|σt , c〉;

• if h ∈ H2,I then (h|σt ◦ σ̂|ι1) ∈ H1,θ(I).

Easily, ntf rooms and their morphisms con-
stitute a category NTFRoom, where we can
characterize fibring via colimits as in [16, 4,
5, 6, 19]. Extending these previous character-
izations of fibring to this level, we shall just
concentrate on the particular cases of colimit
defining fibring constrained by sharing of sym-
bols. Thus, when fibring R1 and R2, we shall
assume that the required sharing of operators
is specified by means of the largest common
subsignature Σ0 = 〈S0, O0〉 of both Σ1 and
Σ2, that is S0 = S1 ∩ S2 (it always includes
at least ϕ) and O0,w = O1,w∩O2,w for w ∈ S+

0 .
For simplicity, since it serves our current pur-
pose, we shall just dwell on the case where
all the shared operators are truth-functional
on both R1 and R2, that is, we assume that
T0 = O0 is contained in both T1 and T2. We
denote by σk : Σ0 → Σk the corresponding
signature inclusions and by R0 the ntf room
〈Σ0, T0, I0,S0,H0〉 where I0 = cAlg(〈S0, O0〉),
S0 is the identity on I0 and each H0,〈A,c〉 =
{[[ ]]A}. In the simplest possible case when
S0 = {ϕ} and O0 = T0 = ∅ we say that the
fibring is free or unconstrained .

Definition 3.2 The fibring of R1 and R2 con-
strained by sharing Σ0 is the ntf room R =
〈〈S,O〉, T, I,S,H〉 such that:

• S = S1 ∪ S2, with inclusions fk : Sk → S;

• Ow = O1,w∪O2,w if w ∈ S+
0 , Ow = Ok,w if

w ∈ S+
k \ S

+
0 and Ow = ∅ otherwise, with

inclusions gk : Ok → O;



• Tw = T1,w ∪ T2,w if w ∈ S+
0 , Tw = Tk,w if

w ∈ S+
k \ S

+
0 and Tw = ∅ otherwise;

• I is the class of all pairs 〈I1, I2〉 ∈ I1 ×I2
such that |AI1 |s = |AI2 |s for every s ∈ S0,
cI1 = cI2 and oAI1 = oAI2 for every w ∈
S+

0 and o ∈ T0,w;

• each S(〈I1, I2〉) = 〈A, c〉, where A is the
unique 〈S, T 〉-algebra such that S1(I1) =
〈A|〈f1,g1〉t , c〉 and S2(I2) = 〈A|〈f2,g2〉t , c〉;

• each H〈I1,I2〉 consists of all Alg(〈S, T 〉)-
homomorphisms h : T〈S,C〉|ι → A such

that (h|〈f1,g1〉t ◦ ̂〈f1, g1〉|ι1) ∈ H1,I1 and

(h|〈f2,g2〉t ◦ ̂〈f2, g2〉|ι2) ∈ H2,I2 .

Note that the fibred interpretation algebras
are precisely those 〈A, c〉 obtained by joining
together any two given 〈A1, c1〉 and 〈A2, c2〉
that are compatible on the shared syntax, and
that the fibred interpretation maps h are ob-
tained by extending any two given h1 and h2.

Proposition 3.3 The constrained fibring of
layered rooms R1 and R2 by sharing Σ0 is
a pushout of {〈σk, θk〉 : R0 → Rk}k∈{1,2} in
NTFRoom, where each θk(I) = 〈A|σt

k
, c〉 if

Sk(I) = 〈A, c〉.

As a corollary, unconstrained fibring is a co-
product in NTFRoom. Let us now analyze in
some detail the application of this construction
to the combination of classical first-order logic
and the propositional system C1.

Example 3.4 Paraconsistent first-order sys-
tem C∗1 .
By fibring classical first-order logic over
〈F, P,X〉 and the paraconsistent propositional
system C1 (in the particular case when Π = ∅)
while sharing the classical operators ∧, ∨ and
⊃ via a corresponding pushout in NTFRoom,
we obtain the following ntf room:

• S = {τ, ϕ}, where τ is the sort of terms;

• O is such that:

∗ Oτ = X ∪ F0;

∗ Oτnτ = Fn, n > 0;

∗ Oτnϕ = Pn, n ∈ IN ;

∗ Oϕϕ = {¬,∼} ∪ {∀x,∃x : x ∈ X};
∗ Oϕ2ϕ = {∧,∨,⊃},

whereas T does not include ¬;

• I is the class of all 〈F, P 〉-interpretations
I = 〈D, I〉, as in the classical case, since
℘(Asg(X,D)) is always a Boolean algebra
with u = ∩, t = ∪, − = (Asg(X,D) \ ),
> = Asg(X,D) and ⊥ = ∅;

• S(I) also coincides with the classical case;

• each HI is the class of all Alg(Σt)-
homomorphisms h : TΣ|ι → AI such that:

∗ Asg(X,D) \ h(γ) ⊆ h(¬ γ);

∗ h(¬¬ γ) ⊆ h(γ);

∗ (h(γ◦) ∩ h(γ) ∩ h(¬ γ)) = ∅;
∗ (h(γ◦) ∩ h(δ◦)) ⊆ h((γ ∧ δ)◦);
∗ (h(γ◦) ∩ h(δ◦)) ⊆ h((γ ∨ δ)◦);
∗ (h(γ◦) ∩ h(δ◦)) ⊆ h((γ ⊃ δ)◦).

As expected, ∅cI = {Asg(X,D)}, and local
and global entailments again reflect reasoning
with or without fixing an assignment. What
is more, if we restrict the interpretation maps
a little further in order to encompass also the
following conditions:

∗ ∀xA(h(γ◦)) ⊆ h((∀x γ)◦);

∗ ∀xA(h(γ◦)) ⊆ h((∃x γ)◦);

∗ ∃xA(h(¬ γ)) = h(¬∀x γ);

∗ ∀xA(h(¬ γ)) = h(¬∃x γ),

we obtain precisely the paraconsistent first-
order system C∗1 of [9], but with a semantics
that is richer than the bivalued semantics pro-
posed in [2], in the sense that local and global
reasoning are still distinguished (vide general-
ization). Note also that classical negation ∼
is indeed definable in terms of the paraconsis-
tent negation ¬. Namely, ∼ γ is interpreted
precisely as (¬ γ) ∧ γ◦.



Adding explosiveness back to C1, one obtains
simply the classical propositional logic. But, as
mentioned before, C1 indeed contains a quali-
fied form of explosion: a contradiction γ and
¬γ implies anything else as soon as we are sure
that γ is consistent , as indicated in C1 by the
validity of γ◦. This fact characterizes C1 as a
particular case of a logic of formal inconsis-
tency, in fact, a C-system based on classical
propositional logic [8]. A promissing next step,
in this line of investigation, would be the ap-
plication of the above techniques to paracon-
sistent logics in general, or at least to larger
classes of C-systems, and logics of formal in-
consistency.

4 Conclusions

By adopting the general setting of the theory
of institutions [12, 13] and the novel notion
of ntf room, we have given a rigorous catego-
rial characterization of fibring of logics with
possible non-truth-functional semantics, in a
way that abstracts away from the previous at-
tempt reported in [5] and also extends it to
deal with logics that are not propositionally
based. Moreover, we have illustrated the ca-
pabilities of the proposed framework by ob-
taining a meaningful fibred semantics for the
paraconsistent first-order system C∗1 of [9]. Al-
though just an example, which by the way
could not even be dealt with in the context of
[5], we think that its implicit general character
is worth exploring on the way to systematizing
the process of first-orderfying a logic, namely
at the light of Gabbay’s original ideas on the
potentialities of the idea of fibring [11].

While the hub of paraconsistent logic –
namely, avoiding the explosive character of in-
ferences in the presence of contradictions –
is in general completely identified already at
the propositional level, it is often mathemat-
ically interesting to count on first-order ver-
sions of these logics. In fact, according to
the third requisite set forth by da Costa [9],
which would be responsible later on for mak-
ing some authors identify da Costa as the “true

founder of paraconsistent logic” (see for in-
stance [10]), all paraconsistent logics should be
first-orderfiable. This study opens the way to
the first-orderfying of a paraconsistent logic to
become something more than a craftsman job.

Beyond this goal, we also aim at explor-
ing the non-truth-functional representation of
other many-valued logics, and in particular the
possibility of building, for instance, fibred log-
ics that are simultaneously paraconsistent and
paracomplete, such as the logic of bilattices [1],
or the systematization of the process of fuzzy-
fying a logic [11]. Other interesting applica-
tions of fibring, in a truth-functional setting,
have been explored elsewhere and include, for
instance, the interplay between modalities and
quantifiers [17] and a treatment of partiality in
the context of equational logic [6].

Moreover, and most importantly, we in-
tend to study the extension to this general
setting of the soundness and completeness
preservation results already obtained for truth-
functional fibring [19, 4, 6], and also for a
much more restricted non-truth-functional set-
ting [5], within the context of Hilbert-style
proof calculi and on a propositional basis.
With respect to soundness, everything is ex-
pected to work smoothly, according to the
general results in [4]. The completeness re-
sults, on their turn, use techniques involving
either Lindenbaum-Tarski constructions [4, 6],
Henkin style constructions [19] or encodings in
conditional equational logic as a meta-logic [5]
and also seem to be easily adaptable if we keep
the propositional base restriction. However,
the key ideas towards results also encompass-
ing logics with terms and quantification are al-
ready being developed in the recent paper [17].
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