
Towards fully automated axiom extraction

for finite-valued logics

João Marcos and Dalmo Mendonça

DIMAp / CCET, UFRN, Brazil

jmarcos@dimap.ufrn.br, dalmo3@gmail.com

Abstract

We implement an algorithm for extracting appropriate collections of classic-
like sound and complete tableau rules for a large class of finite-valued
logics. Its output consists of Isabelle theories.1

Keywords: many-valued logics, tableaux, automated theorem proving.

1 Introduction

This paper will report on the first developments towards the implementation
of a fully automated program for the extraction of adequate proof-theoretical
counterparts for sufficiently expressive logics characterized by way of a finite
set of finite-valued truth-tables. The underlying algorithm was first described
in [4]. Surveys on tableaux for many-valued logics can be found in [7, 1]. Our
implementation has been performed in ML, and its application gives rise to an
Isabelle theory (check [8]) formalizing a given finite-valued logic in terms of
two-signed tableau rules.

The survey paper [7] points at a few very good theoretical motivations for
studying tableaux for many-valued logics, among them:
• tableau systems are a particularly well-suited starting point for the devel-

opment of computational insights into many-valued logics;

• a close interplay between model-theoretic and proof-theoretic tools is nec-
essary and fruitful during the development of proof procedures for non-
classical logics.

Section 2, right below, recalls the relevant definitions and some general re-
sults concerning many-valued logics as well as their homologous presentation
in terms of bivalent semantics described by clauses of a certain format we call
‘gentzenian’. An algorithm for endowing any sufficiently expressive finite-valued
logic with an adequate bivalent semantics is exhibited and illustrated for the
case of L3, the well-known 3-valued logic of Lukasiewicz.

1A development snapshot of the code may be found at http://tinyurl.com/5cakro.

1

Joao Marcos
Preprint.In "The Many Sides of Logic", College Publications, 2009.

The main concepts concerning tableau systems in general and the particular
results that allow one to transform any computable gentzenian semantics into
a corresponding collection of tableau rules are illustrated in section 3, again for
the case of L3.

Section 4 discusses our current implementation, carefully explaining its ex-
pected inputs and outputs, and yet again illustrates its functioning for the case
of L3. Advantages and shortcomings of our program, in its present state of
completion, as well as conclusions and some directions for future developments
are mentioned in section 5.

2 Many-valued logics

Given a denumerable set At of atoms and a finite family Cct = { c©i
j}j∈J of

connectives, where arity(c©i
j) = i, let S denote the term algebra freely generated

by Cct over At. Here, a semantics Sem for the algebra S will be given by any
family of mappings {§Vk }k∈K where dom(§Vk) = S and codom(§Vk) = Vk, and
where each collection of truth-values Vk is partitioned into sets of designated
values, Dk, and undesignated ones, Uk. The mappings §Vk themselves may be
called (κ-valued) valuations, where κ = Card(Vk). A bivalent semantics is any
semantics where Dk and Uk are singleton sets, for every k ∈ K. For biva-
lent semantics, valuations are often called bivaluations. The canonical notion
of (single-conclusion) entailment |=Sem ⊆ Pow(S) × S induced by a semantics
Sem is defined by setting Γ �Sem ϕ iff §Vk (ϕ) ∈ Dk whenever §Vk (Γ) ⊆ Dk, for
every §Vk ∈ Sem. The pair 〈S, |=Sem〉 may then be called a generic κ-valued logic,
where κ = Maxk∈K(Card(Vk)).

If one now fixes the sets of truth-values V, D and U , and fixes, for each con-
nective c©i

j an interpretation ĉ©i
j : Vi −→ V, one may immediately build from

that an associated algebra of truth-values T V = 〈V,D, { ĉ©i
j}j∈J〉 (in the present

paper, whenever there is no risk of confusion, we shall not differentiate nota-
tionally between a connective symbol c© and its operational interpretation ĉ©).
A truth-functional semantics is then defined by the collection of all homomor-
phisms of S into T V. In the present paper, the shorter expression κ-valued logic
(or, in general, finite-valued logic) will be used to qualify any generic κ-valued
truth-functional logic, for some finite κ, where κ is the minimal value for which
the mentioned logic can be given a truth-functional semantics characterizing the
same associated notion of entailment.

It is interesting to observe that the canonical notion of entailment of any
given semantics, and in particular of any given truth-functional semantics, may
be emulated by a bivalent semantics. Indeed, let V2 = {F, T} and D2 = {T},
and consider the ‘binary print’ of the algebraic truth-values produced by the
total mapping t : V −→ V2, defined by t(v) = T iff v ∈ D. For any κ-valued
valuation §V of a given semantics Sem, consider now the characteristic total
function b§ = t◦ §V . Now, collect all such bivaluations b§’s into a new semantics
Sem(2), and note that Γ �Sem(2) ϕ iff Γ �Sem ϕ. As a matter of fact, the stan-
dard 2-valued notion of inference of Classical Logic is characterized indeed by

2

a finite-valued semantics that is simultaneously bivalent and truth-functional.
In general, nonetheless, if a logic is κ-valued, for κ > 2, a bivalent characteri-
zation of it will explore the trade-off between, on the one hand, the ‘algebraic
perspective’ of many-valuedness, with its many ‘algebraic truth-values’ and its
semantic characterization in terms of a set of homomorphisms, and, on the other
hand, the classic-inclined ‘logical perspective’, with its emphasis on characteri-
zations based on two ‘logical values’ (for more detailed discussions of this issue,
check [4, 11]). Our interest in this paper is to probe some of the practical ad-
vantages of the bivalent classic-like perspective as applied to the wider domain
of finite-valued truth-functional logics.

Our running example in the present paper will involve Lukasiewicz’s well-
known 3-valued logic L3, characterized by the algebra of truth-values 〈{1, 1

2 , 0},
{1}, {¬,→,∨,∧}〉, where the interpretation of the unary negation connective ¬
sets ¬v1 = 1− v1 and the interpretation of the binary implication connective→
sets (v1 → v2) = Min(1, 1 − v1 + v2). The binary symbols ∨ and ∧ can be
introduced as primitive if we interpret them by setting (v1 ∨ v2) = Max(v1, v2)
and (v1 ∧ v2) = Min(v1, v2), but they can also, more simply, be introduced by
definition just like classical disjunction and conjunction, setting α ∨ β def

== (α →
β)→ β and α∧ β def

== ¬(¬α∨¬β). The binary prints of an arbitrary atom of L3

and of its negation are illustrated in the table below.

v t(v) ¬v t(¬v)

0 F 1 T
1
2 F 1

2 F

1 T 0 F

(1)

Given some finite-valued logic L based on a set of truth-values V, we say that L
is functionally complete over V if any κ-valued n-ary operation, for κ = Card(V),
is definable with the help of a suitable combination of its primitive opera-
tors { ĉ©i

j}j∈J . When L is not functionally complete from the start, we may
consider Lfc as any functionally complete κ-valued conservative extension of L.
Given truth-values v1, v2 ∈ V, we say that they are separated, and we write
v1]v2, in case v1 and v2 belong to different classes of truth-values, that is, in
case either v1 ∈ D and v2 ∈ U , or v1 ∈ U and v2 ∈ D. Given a unary, primitive
or defined, connectives of a given truth-functional logic, with interpretation ŝ,
we say that s separates v1 and v2 in case ŝ(v1)]ŝ(v2). Obviously, for any pair
of truth-values in V it is possible to define in the term algebra of Lfc an appro-
priate separating connective s. When that separation can be done exclusively
with the help of the original language of L, we say that V is effectively separable,
and the logic L, in that case, will be considered to be sufficiently expressive for
our purposes. It should be noticed that the vast majority of the most well-known
finite-valued logics enjoy this expressivity property.

Notice in particular, from Table (1) above, how the negation connective of L3

separates the two undesignated truth-values, 1
2 and 0. Based on this table, one

may in fact easily provide a unique identification to each of the 3 initial algebraic

3

truth-values of L3, by way of the 3 following statements:

v = 1 iff t(v) = T (I)
v = 1

2 iff t(v) = F and t(¬v) = F
v = 0 iff t(v) = F and t(¬v) = T

One can also use this separating connective s = λu.¬u in order to provide
a bivalent description of each of the operators of the language. Consider for
instance the cases of c©1 = λvw.(v → w) and c©2 = λvw.¬(v → w) (that is, c©2

is s c©1):
c©1 0 1

2 1

0 1 1 1
1
2

1
2 1 1

1 0 1
2 1

c©2 0 1
2 1

0 0 0 0
1
2

1
2 0 0

1 1 1
2 0

(2)

From table c©2 it is clear for instance that:

§(¬(α→ β)) = 1 iff §(α) = 1 and §(β) = 0 (II)

Let’s write T :ϕ and F :ϕ, respectively, as abbreviations for t(§(ϕ)) = T and
t(§(ϕ)) = F . Then, the statement (II) may be described in bivalent form, with
the help of (I), by writing:

T :¬(α→ β) iff T :α and (F :β and T :¬β) (III)

In [4] an algorithm that constructively specifies a bivalent semantics for
any sufficiently expressive finite-valued logic was proposed. The output of
the algorithm is a computable class of clauses governing the behavior of all
the bivaluations that together will canonically define an entailment that co-
incides with the original entailment defined with the help of the algebra of
truth-values T V and the class of all the corresponding finite-valued homomor-
phisms of S into T V. Moreover, all those clauses are in a specific format we
call gentzenian, namely, they are conditional expressions (E) of the form Φ⇒ Ψ
where the symbol⇒ represents a meta-linguistic implication, and both Φ and Ψ
are meta-formulas of the form > (top), ⊥ (bottom) or a clause (G) of the form∨

1≤i≤m

∧
1≤j≤nm

A(i, j, w), where each A(i, j, w) has the form b(ϕj
i) = wj

i , for
some given ϕj

i ∈ S and wj
i ∈ {F, T}. (Recall that we use b : S → V2 for bival-

uations.) If we let | represent disjunction and & represent conjunction in the
meta-language, any clause (G) will have thus the extended format:

b(ϕ1
1) = w1

1 & . . .& b(ϕn1
1) = wn1

1 | . . . | b(ϕ1
m) = w1

m & . . . & b(ϕnm
m) = wnm

m .

The meta-logic governing such meta-linguistic expressions is fol, First-Order
Classical Logic. Accordingly, an expression of the form A1|A2 ⇒ A3 will be
equivalent to (A1 ⇒ A3)&(A2 ⇒ A3), and an expression of the form A1&A2 ⇒
A3 will be equivalent to A1 ⇒ A3|∼A2, where the meta-linguistic negation ∼ is

4

such that ∼(b(ϕ) = T) denotes b(ϕ) = F , and ∼(b(ϕ) = F) denotes b(ϕ) = T .
We may also write Φ⇔ Ψ as an abbreviation for (Φ⇒ Ψ)&(Ψ⇒ Φ).

With a slight notational change and using fol, one can now see (III) as a
description done in an abbreviated gentzenian format:

T :¬(α→ β) ⇔ T :α & F :β & T :¬β (IV)

Following the above line of reasoning, and considering now table c©1 instead
of c©2, it is also correct to write, for instance, the clause:

F :(α→ β) ⇔ T :α & F :β & F :¬β | (V)
T :α & F :β & T :¬β |
F :α & F :¬α & F :β & T :¬β

According to the reductive algorithm described in [4], a sound and complete
bivalent version of any sufficiently expressive finite-valued logic L is obtained if
one performs the following two steps:
[step 1] Iterate the above illustrated procedure in order to obtain clauses describ-
ing exactly in which situations one may assert the sentences T : c©(α1, . . . , αn),
F : c©(α1, . . . , αn), T :s c©(α1, . . . , αn) and F :s c©(α1, . . . , αn), for each primitive
n-ary c© ∈ Cct and each one of the separating connectives s of L.
[step 2] Add to all those clauses the following extra axioms governing the be-
havior of the admissible collection of bivaluations:

(C1) > ⇒ T :α | F :α
(C2) T :α & F :α ⇒ ⊥
(C3) T :α ⇒

∨
d∈D

∧
1≤m<n≤Card(D) w

d
mn:smn(α)

(C4) F :α ⇒
∨

u∈U
∧

1≤m<n≤Card(U) w
u
mn:smn(α)

for every α ∈ S, where smn is the unary (primitive or defined) connective that
we use to separate the truth-values m and n, and wv

mn = t(smn(v)).
Notice that (C3) and (C4) have the role of recording the relevant information

on binary prints, as it can be found, in the case of L3, in Table 1.

3 Tableaux

Generic tableau systems for finite-valued logics are known at least since [5].
In the corresponding tableaux, however, formulas may receive as many labels
as the number of truth-values in V, and that somewhat obstructs the task
of comparing for instance the associated notions of proof and of consequence
relation to the corresponding classical notions. However, as it will be shown,
with the help of the bivalent semantics illustrated in the previous section it is
now straightforward to produce sound and complete collections of classic-like
two-signed tableau rules (i.e., each formula appears with exactly one of two
labels at the head of each rule).

5

The basic idea, explained in [4], is to dispose the gentzenian clauses governing
the admissible bivaluations in an appropriate way. For that matter, clauses such
as (IV) and (V) can be rendered, respectively, into the following tableau rules:

(IV)tab T:¬(α→ β)

T:α
F:β
T:¬β

F:(α→ β)

T:α
F:β
F:¬β

T:α
F:β
T:¬β

F:α
F:¬α
F:β
T:¬β

(V)tab

Each tableau branch can be seen as a non-empty sequence of signed formulas,
Γ, L:ϕ,∆, where L ∈ {F, T}, ϕ ∈ S and Γ and ∆ are sequences. To be sure, a
rule such as (V)tab will be read thus as an instruction allowing one to transform
a sequence Γ,F:(α→ β),∆ into the three following new sequences:

[1] Γ, T :α, F :β, F :¬β,∆
[2] Γ, T :α, F :β, T :¬β,∆
[3] Γ, T :α, F :¬α, F :β, F :¬β,∆

If one recalls the first step of the algorithm described in the last section,
there will be tableau rules with heads L: c©ϕ and L:s c©ϕ for each sign L ∈
{F, T}, each primitive connective c© and each separating connective s. Rules
(IV)tab and (V)tab, above, are indeed examples of such tableau rules. To obtain
soundness and completeness with respect to the original finite-valued semantics,
in general, besides the rules produced in the first step one must also take into
consideration the rules corresponding to axioms (C1)–(C4), mentioned in the
second step. It is interesting to notice that in most practical cases, however,
axioms (C3) and (C4) can often be directly proven from the remaining ones.
Moreover, axiom (C2) expresses just the usual closure condition on tableau
branches. On the other hand, axiom (C1) gives rise in general to the following
dual-cut rule, for arbitrary α:

T : α F : α

All further definitions and concepts concerning the setup and construction of
signed tableaux are standard (check [9]). In particular, a branch (sequence of
signed formulas) is said to be closed if there is a formula that occurs in it both
with the sign T and with the sign F , and a closed tableau for a given sequence
of signed formulas is produced by a finite set of transformations allowed by the
corresponding tableau rules to such an effect that at some point all branches
that originate from the original branch are closed.

One could be worried, and with good reason, that the unrestrained use of the
dual-cut rule might potentially make the corresponding tableaux non-analytic.
We will discuss that issue in the conclusion. The tableau rules originated from

6

the above procedure can naturally be used in order to prove theorems, check con-
jectures and suggest counter-models, but also, in the meta-theory, to formulate
and prove derived rules that can be used to simplify the original presentation of
the logic as originated by our algorithm. So, for instance, the above illustrated
complex three-branching rule for F : (α → β) can eventually be simplified into
any one of the following equivalent two-branching rules:

(V∗)tab F : (α→ β)

T : α
F : β

F : α
F : ¬α
F : β
T : ¬β

F : (α→ β)

T : α
F : β

F : ¬α
T : ¬β

(V∗∗)tab

Tableau systems for the logic L3, in particular, are known indeed at least
since [10]. The latter have not been generated algorithmically, though, through
an automated generic procedure such as the one we illustrate here.

4 Implementation, and applications

We used the functional programming language ML to automate the axiom ex-
traction process. ML provides one, among other advantages, with an elegant
and suggestive syntax, a compile-time type checking that is both modular and
reliable, as well as a type inference mechanism that greatly helps both in pre-
venting program errors and in the task of formal verification of correctness of
the implemented algorithms.

The relevant inputs of our program include the detailed definition of a finite-
valued logic, together with an appropriate set of separating connectives for that
logic. Here’s an example of an input for the logic L3, presented above, where
the functions CSym, CAri and CPre take a connective and return its symbol
(syntactic sugar), arity and precedence/associativity rules, respectively. The
primitive connectives are defined by their truth-tables, listed in CTabs. A truth-
table of an n-ary connective c© is represented as a list of all pairs ([x1, . . . , xn],
y) such that c©(x1, . . . , xn) = y. Derived connectives should be defined by
abbreviation in terms of the primitive ones, and these definitions are given by
the function CDef.

(* PROGRAM INPUT, EXAMPLE OF L3 *)

structure L3 : LOGIC =

struct

val theoryName = "TL3";

val Values = ["0", "1/2", "1"];

val Designated = ["1"];

val Connectives = ["Neg", "Imp", "Disj", "Conj"];

val Primitives = ["Neg", "Imp"];

val SeparatingD = [];

val SeparatingU = ["Neg"];

7

fun CSym "Neg" = "~"

| CSym "Imp" = "-->"

| CSym "Disj" = "|"

| CSym "Conj" = "&";

fun CAri "Neg" = 1

| CAri "Imp" = 2

| CAri "Disj" = 2

| CAri "Conj" = 2;

val CTabs = ref [

("Neg", [(["0"], "1"),

(["1/2"], "1/2"),

(["1"], "0")]) ,

("Imp", [(["0", "0"], "1"),

(["0", "1/2"], "1"),

(["0", "1"], "1"),

(["1/2", "0"], "1/2"),

(["1/2", "1/2"], "1"),

(["1/2", "1"], "1"),

(["1", "0"], "0"),

(["1", "1/2"], "1/2"),

(["1", "1"], "1")])

];

fun CDef "Disj" = ("A0 | A1", "(A0 --> A1) --> A1")

| CDef "Conj" = ("A0 & A1", "~(~A0 | ~A1)");

fun CPre "Neg" = "[40] 40"

| CPre "Imp" = "[34,35] 35"

| CPre "Disj" = "[24,25] 25"

| CPre "Conj" = "[29,30] 30";

end;

For every symbol from Connectives that may appear in both the list of Primitives
and the list of rewrite rules CDef, our program calculates its corresponding truth-
table in terms of those that can be found in CTab, and adds it to the input of
the algorithm for extracting tableau rules. (A future version of the program
shall handle truth-tables defined intensionally, by way of a lambda-calculus-like
expression.)

To perform the extraction, our program first generates a list of heads for
all the necessary rules, according to the algorithm explained and illustrated in
sections 2 and 3.

val rulesList = [T "~(A0)", T "A0 --> A1",
T "~(~(A0))", T "~(A0 --> A1)",
F "~(A0)", F "A0 --> A1",
F "~(~(A0))", F "~(A0 --> A1)"]

Obviously, in general, if there are c primitive connectives and s separating con-
nectives, there will be exactly 2× c× s rule heads in rulesList.

Next, each connective’s truth-table is converted into a table where each
value is exchanged by its binary print. The binary print of a value is calculated

8

based on the separating connectives given as input (SeparatingD for designated
values and SeparatingU for undesignated values). The program represents such
tables as lists of pairs (input, output). For the case of Neg, the sole separating
connective of our version of L3, the table contains the following information:

(* A0 *) (* ~(A0) *)
(* 0 *) ([F "A0", T "~(A0)"], [T "~(A0)"])
(* 1/2 *) ([F "A0", F "~(A0)"], [F "~(A0)", F "~(~(A0))"])
(* 1 *) ([T "A0"], [F "~(A0)", T "~(~(A0))"])

Now, for each expression in rulesList, a search through all tables generated
in the last step is done, and all clauses in which the given formula appears on
the right-hand side (as output) are returned. The left-hand side (input) of these
clauses are the branches of the desired tableau rule. As an example, two of the
clauses involving implication, and corresponding to the tableau rules (IV)tab

and (V)tab from the last section, are calculated and recorded by the program as
follows:

(* IV *) ([[T "A0",F "A1",T "~(A1)"]], T "~(A0 --> A1)")
(* V *) ([[F "A0",F "~(A0)",F "A1",T "~(A1)"],

[T"A0",F "A1",T "~(A1)"],
[T"A0",F "A1",F "~(A1)"]] , F "A0 --> A1")

The next, and final, steps include calculating axioms (C3) and (C4), and
printing all definitions, syntactical details and rules into a theory file, ready to
be used by Isabelle.

Isabelle, also written in ML, is a generic theorem-proving environment based
on a higher-order meta-logic in which it is quite simple to create formal theories
with rules and axioms for various kinds of deductive formalisms, and equally
easy to define tacticals and to prove theorems about the underlying formal
systems.

Here’s an illustration of how we use Isabelle’s syntax for representing
tableaux, extending the theory Sequents.thy that comes with Isabelle’s de-
fault library, and taking as example the file generated by our program as output
for the logic L3:

theory TL3

imports Sequents

begin

typedecl a

consts

Trueprop :: "(seq’=>seq’) => prop"

TR :: "a => o" ("T:_" [20] 20)

FR :: "a => o" ("F:_" [20] 20)

Neg :: "a => a" ("~ _" [40] 40)

Imp :: "[a,a] => a" ("_-->_" [24,25] 25)

syntax "@Trueprop" :: "(seq) => prop" ("[_]" 5)

9

ML

{*

fun seqtab_tr c [s] = Const(c,dummyT) $ seq_tr s;

fun seqtab_tr’ c [s] = Const(c,dummyT) $ seq_tr’ s;

*}

parse_translation {* [("@Trueprop", seqtab_tr "Trueprop")] *}

print_translation {* [("Trueprop", seqtab_tr’ "@Trueprop")] *}

local

axioms

axC1: "[| [$H, T:A] ; [$H, F:A] |] ==> [$H]"

axC21: "[$H, T:A, $E, F:A, $G]"

axC22: "[$H, F:A, $E, T:A, $G]"

axC3: "[| [$H, T:A, $G] |]

==> [$H, T:A, $G]"

axC4: "[| [$H, F:A, T:~(A), $G] ;

[$H, F:A, F:~(A), $G] |]

==> [$H, F:A, $G]"

ax0: "[| [$H, F:A0, T:~(A0), $G] |]

==> [$H, T:~(A0), $G]"

ax1: "[| [$H, F:A0, T:~(A0), F:A1, T:~(A1), $G] ;

[$H, T:A0, T:A1, $G] ;

[$H, F:A0, F:~(A0), T:A1, $G] ;

[$H, F:A0, F:~(A0), F:A1, F:~(A1), $G] ;

[$H, F:A0, T:~(A0), T:A1, $G] ;

[$H, F:A0, T:~(A0), F:A1, F:~(A1), $G] |]

==> [$H, T:A0 --> A1, $G]"

ax2: "[| [$H, T:A0, $G] |]

==> [$H, T:~(~(A0)), $G]"

ax3: "[| [$H, T:A0, F:A1, T:~(A1), $G] |]

==> [$H, T:~(A0 --> A1), $G]"

ax4: "[| [$H, F:A0, F:~(A0), $G] ;

[$H, T:A0, $G] |]

==> [$H, F:~(A0), $G]"

ax5: "[| [$H, F:A0, F:~(A0), F:A1, T:~(A1), $G] ;

[$H, T:A0, F:A1, F:~(A1), $G] ;

[$H, T:A0, F:A1, T:~(A1), $G] |]

==> [$H, F:A0 --> A1, $G]"

ax6: "[| [$H, F:A0, F:~(A0), $G] |]

==> [$H, F:~(~(A0)), $G]"

ax7: "[| [$H, F:A0, F:~(A0), F:A1, T:~(A1), $G] ;

[$H, T:A0, F:A1, F:~(A1), $G] |]

==> [$H, F:~(A0 --> A1), $G]"

ML {* use_legacy_bindings (the_context ()) *}

10

(* Abbreviations *)

Conj_def: "A0 & A1 == ~(~A0 | ~A1)"

Disj_def: "A0 | A1 == (A0 --> A1) --> A1"

(* Structural rules *)

thin: "[$H, $E, $G] ==> [$H, $A, $E, $B, $G]"

exch: "[$H, $A, $E, $B, $G] ==> [$H, $B, $E, $A, $G]"

end

In this theory, consts lists the formula constructors. TR :: "a => o" means
that the constructor TR takes a formula (typed a) and returns a labeled formula
(typed o). The addition of the structural rules, unusual for tableau systems, is
motivated by the fact that our formalism for tableaux was based on Isabelle’s
Sequents.thy, but also because we want to be able to prove not just theorems
but also derived rules. A detailed example of such proofs will be presented
below.

In the generated axioms corresponding to the tableau rules, T:X and F:X
are (labeled) formulas, $X, is any sequence of such formulas, or contexts, each
sequence between square brackets represents a tableau branch, and a collection
of branches is delimited by [| and |]. The symbol ==> denotes Isabelle’s
meta-implication, that may be used to write down object-language rules, and
== denotes Isabelle’s meta-equality, that may be used for stating rewrite rules
concerning the derived operators of our logics. In Isabelle, the application of
a rule means that it’s possible to achieve the goal (sequence on the right of the
meta-implication) once it’s possible to prove the hypotheses (sequences on the
left of the meta-implication), which constitute the collection of new subgoals
that take the place of the original goal after the rule is applied. The dual-cut
rule corresponds to axiom axC1, and the closure rule for a branch of the tableau
corresponds to the axioms axC21 and axC22. We retain both the latter rules
as primitive for reasons of efficiency, but clearly one is derivable from the other
with the use of of exch. Notice in particular how, in effect, the tableau rules
produced for the original finite-valued logic provided as input correspond to
axioms in the higher-order language of Isabelle.

The axiom set generated by the generic algorithm that we implemented isn’t
necessarily the most smart or efficient one. Axiom axC3, for instance, is clearly
ineffectual in the above theory, having the same sequences at both sides of the
meta-implication. Moreover, it may also happen that the formula over which
the rule is applied also appears in some of the resulting branches, yet one is
likely to try to control that phenomenon when aiming at defining tacticals for
automated theorem proving.

Note that ax5 corresponds to rule (V)tab from the last section. The sim-
pler rule (V∗∗)tab, mentioned in the same section, can obviously be written in
Isabelle as:

ax5SS: "[| [$H, T:A0, F:A1, $E] ;
[$H, F:~(A0), T:~(A1), $E] |]
==> [$H, F:A0 --> A1, $E]"

11

The proof that ax5 and ax5SS are indeed equivalent tableau rules, in the sense
that one can be derived from the other in the presence of the remaining rules
of our theory, can now be done directly with the help of Isabelle’s meta-logic.
The rules mentioned below are the ones listed in the above theory. In what
follows, verbatim text prefixed by > indicates user input entered at Isabelle’s
command line environment.

First we prove that ax5SS can be derived from the axioms of our theory.

> Goal " [| [$H, T:A0, F:A1, $G] ;

[$H, F:~(A0), T:~(A1), $G] |]

==> [$H, F:A0 --> A1, $G]";

Let A0 and A1 be represented by the schemas α and β and the contexts $H
and $G be represented by Γ and ∆. We start thus to construct our tableau
from the sequence Γ, F :α→ β,∆ and intend to extend it into the two branches
Γ, T :α, F :β,∆ and Γ, F :¬α, T :¬β,∆.

Notice that we can apply rule ax5 over the initial sequence:

> by (resolve_tac [ax5] 1);

The following three branches originate then from Γ, F :α → β,∆, as new sub-
goals:

[1] Γ, F :α, F :¬α, F :β, T :¬β,∆
[2] Γ, T :α, F :β, T :¬β,∆
[3] Γ, T :α, F :β, F :¬β,∆

To obtain the two initially intended branches from those, we may now just apply
the thinning structural rule:

> by (res_inst_tac [("A","<<F:A0>>"),("B","<<F:A1>>")] thin 1);

Notice how that forces the instantiation of the sequences $A and $B, respectively,
with the singleton sequences constituted of the signed formulas F:A0 and F:A1.
The new version of subgoal [1.1] that results from that transformation is:

[1.1] Γ, F :¬α, T :¬β,∆
Similar transformations can be applied to subgoals [2] and [3]:

> by (res_inst_tac [("A","<<T:~A1>>")] thin 2);

> by (res_inst_tac [("A","<<F:~A1>>")] thin 3);

This originates, of course:

[2.1] Γ, T :α, F :β,∆
[3.1] Γ, T :α, F :β,∆

Notice how [2.1] and [3.1] coincide with the second branch of ax5SS and [1.1]
corresponds to its first branch. The proof will be finished thus if one identifies
the latter subgoals ‘by assumption’ with the intended branches that were entered
as premises of the initial Goal command:

12

> by (REPEAT (assume_tac 1));

The message No subgoals!, issued by Isabelle, indicates that the proof is
done. We can now record the result under the name ax5SS:

> qed "ax5SS";

Conversely, in the next step, we will prove ax5 as a derived rule of our
tableau system from the remaining axioms, together with ax5SS.

> Goal "[| [$H, F:A0, F:~(A0), F:A1, T:~(A1), $G] ;
[$H, T:A0, F:A1, T:~(A1), $G] ;
[$H, T:A0, F:A1, F:~(A1), $G] |]
==> [$H, F:A0 --> A1, $G]";

This time one can apply rule ax5SS over the initial sequence, Γ, F :α→ β,∆:

> by (resolve_tac [ax5SS] 1);

The following two branches originate then as new subgoals:

[1] Γ, T :α, F :β,∆
[2] Γ, F :¬α, T :¬β,∆

We may apply ax0 to subgoal [2]:

> by (resolve_tac [ax0] 2);

That will transform subgoal [2] into the new branch:

[2.1] Γ, F :¬α, F :β, T :¬β,∆
Next, we may apply ax4 to [2.1]:

> by (resolve_tac [ax4] 2);

This will transform [2.1] into the two new branches:

[2.1.1] Γ, F :α, F :¬α, F :β, T :¬β,∆
[2.1.2] Γ, T :α, F :β, T :¬β,∆

This time thinning alone won’t do to finish the proof, though, as more branches
and formulas will be needed to emulate ax5. It will be helpful thus to apply
axC4 to subgoal [1], or else axC1 with instantiation over the cut-formula A.

> by (resolve_tac [axC4] 1);

From that we know that subgoal [1] will be transformed into the two new
branches:

[1.1] Γ, T :α, F :β, T :¬β,∆
[1.2] Γ, T :α, F :β, F :¬β,∆

Observe that [1.1] coincides with [2.1.2], an intended branch of ax5, and the
two other branches are provided by [1.2] and [2.1.1]. Thus, we can finish the
proof using the premises:

13

> by (REPEAT (assume_tac 1));

With that we have proven that the two tableau systems for L3, one with
ax5 and the other one with ax5SS in its place, are equivalent. The above proofs
could of course have been performed, more appropriately, directly inside a theory
obtained by erasing axiom ax5 from the above theory TL3.

One last observation. For each symbol that does not appear in Connectives
and Primitives a definition by abbreviation is expected in CDef. In that case
one could use a strategy similar to the one above to propose and prove in
Isabelle a list of derived rules involving that connective symbol.

5 Epilogue

The present paper has reported on the first concrete implementation of a certain
constructive procedure for obtaining adequate two-signed tableau systems for a
large number of finite-valued logics. Expressing a variety of logics in the same
framework is quite useful for the development of comparisons between such log-
ics, including their expressive and deductive powers. The general algorithm for
tableaux for finite-valued logics proposed in [5], despite being more generally
applicable in that it does not require the input logics to be ‘sufficiently expres-
sive’, produces tableau rules having as many signs as the number of truth-values
in the original semantical presentation of the given logic. Thus, for instance,
even though a logic such as Lukasiewicz’s L5 is a deductive fragment of L3 (in
general, Lm is a deductive fragment of Ln iff n− 1 is a divisor or m− 1; check
ch.8.5 of [6]), they will be hardly comparable inside such a multi-signed frame-
work. In contrast, in our present framework, all two-signed rules of L5 will be
easily provable inside of L3. We have indeed shown in the last section how it is
already possible, with the help of the theories presently produced by our pro-
gram, to use Isabelle’s meta-logic to show that two different axiomatizations
for the same logic are equivalent. To show equivalence between axiomatizations
from without the local perspective of a given theory, Isabelle’s locales (cf. [2])
will probably provide a better framework, and we hope to deal with that in the
next version of our program.

There still remains some room for improvement and extension of both our
algorithm (which should still, among other things, be upgraded in order to deal
in general with first-order truth-functional logics) and its implementation. By
way of an example, we have assumed from the start that the logics received as
inputs to our program came together with a suitable collection of separating
connectives. This second input, however, could be dispensed with, as the set of
all definable unary connectives can in fact be automatically generated in finite
time from any given initial set of operators of the input logic. That generation,
however, may be costly for logics with a large number of truth-values and is
not as yet performed by our program. Another direction that must be better
explored, from the theoretical perspective, concerns the conditions for the ad-
missibility or at least for the explicit control of the application of the dual-cut

14

rule. On the one hand, the elimination of dual-cut has an obvious favorable
effect on the definition of completely automated theorem-proving tacticals for
our logics. If that result cannot be obtained in general but if we can at least
guarantee, on the other hand, that this dual-cut rule will never be needed, in
each case, for more than a finite number of known formulas —say, the ones
related to the original goal as constituting its subformulas or being the result
of applying the separating connectives to its subformulas— then again this will
make it possible to devise tacticals for obtaining fully automated derivations
using the above described tableaux for our finite-valued logics. An important
recent advance in that direction has in fact been done in [3], where the axiom
extraction algorithm has already been upgraded in order to originate entirely
analytic tableau systems, without the dual-cut rule or any potentially ‘com-
plexifying’ rules such as axC3 and axC4. A future version of our program had
better be adapted to this new procedure, which will allow, moreover, for the
algorithmic generation of fully automated proof tacticals, easily expressible in
the framework of Isabelle.

Acknowledgments

The authors are indebted to the financial support provided by CNPq in the
form of research grants, and by the FAPESP ConsRel Project.

References

[1] Matthias Baaz, Christian G. Fermüller, and Gernot Salzer. Automated deduction
for many-valued logics. In J. A. Robinson and A. Voronkov, editors, Handbook of
Automated Reasoning, pages 1355–1402. Elsevier and MIT Press, 2001.

[2] Clemens Ballarin. Interpretation of locales in Isabelle: Theories and proof con-
texts. In J. M. Borwein and W. M. Farmer, editors, Mathematical Knowledge
Management, (MKM 2006), LNAI 4108, pages 31–43. Springer, 2006.

[3] Carlos Caleiro and João Marcos. Classic-like analytic tableaux for finite-valued
logics. 2009. Preprint available at:
http://wslc.math.ist.utl.pt/ftp/pub/CaleiroC/09-CM-ClATab4FVL.pdf.

[4] Carlos Caleiro, Walter Carnielli, Marcelo E. Coniglio, and João Marcos. Two’s
company: “The humbug of many logical values”. In J.-Y. Béziau, editor, Logica
Universalis, pages 169–189. Birkhäuser Verlag, Basel, Switzerland, 2005.
http://wslc.math.ist.utl.pt/ftp/pub/CaleiroC/05-CCCM-dyadic.pdf.

[5] Walter A. Carnielli. Systematization of the finite many-valued logics through the
method of tableaux. The Journal of Symbolic Logic, 52(2):473–493, 1987.

[6] Roberto L. Cignoli, Itala M. L. D’Ottaviano and Daniele Mundici. Algebraic
Foundations of Many-Valued Reasoning, volume 7 of Trends in Logic. Dordrecht:
Kluwer, 1999.

[7] Reiner Hähnle. Tableaux for many-valued logics. In M. D’Agostino et al., editors,
Handbook of Tableau Methods, pages 529–580. Springer, 1999.

15

[8] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A
Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[9] Raymond M. Smullyan. First-Order Logic. Dover, 1995.

[10] Wojciech Suchoń. La méthode de Smullyan de construire le calcul n-valent de
 Lukasiewicz avec implication et négation. Reports on Mathematical Logic, 2:37–42,
1974.

[11] Heinrich Wansing and Yaroslav Shramko. Suszko’s Thesis, inferential many-
valuedness, and the notion of a logical system. Studia Logica, 88(3):405–429, 2008.

16

