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Abstract. In a previous paper we have studied two classes of fuzzy bi-
implications based on t-norms and r-implications, and shown that they
are increasingly weaker subclasses of the Fodor-Roubens bi-implication.
Now we prove that each of these three classes of bi-implications are closed
under automorphisms.
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1 Introduction

In [9] we studied the relation between the more well-known definition proposed
by Fodor and Roubens and other appealing definitions, old or new, of fuzzy
operators that extend the interpretation of the classical bi-implication.

On the other hand, automorphisms , i.e., isomorphisms between the same
lattices, with the composition form a group [22, 3]. Automorphisms had played
an interesting role in fuzzy connectives, because when a class of fuzzy connec-
tives is closed under automorphisms the action of the group of automorphisms
establishes an equivalence relation between the connectives and therefore deter-
mine a partition among these connectives. These partitions, in some case have
characterized important subclasses of fuzzy connective. For example, the class
of strict t-norms is the equivalence class of the product t-norm [16], the class
of nilpotent t-norms agree with the equivalence class of the  Lukasiewicz t-norm
[16], the class of strong negations is the same that the equivalence class of the
standard negation [26], and the class of implications which are both strong and
residual is the equivalence class of the  Lukasiewicz implication [1]. So it is rea-
sonable to study the action of automorphisms on fuzzy bi-implications. In this
paper we prove that each of the three classes of fuzzy bi-implications studied in
[9] are closed under automorphisms.

2 Fuzzy extension of conjunction and implication

Definition 21 A triangular norm (in short t-norm) is a binary operator T

on the unit interval [0, 1] that: on {0, 1} behaves as classical conjunction, is
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commutative, is associative, is increasing on both arguments, and has 1 as neutral
element.

The notions of continuity are the usual ones. In particular:

Definition 22 A t-norm T is left-continuous if for all non-decreasing sequences
(xn)n∈N we have that lim

n→∞

T (xn, y) = T ( lim
n→∞

xn, y).

Definition 23 A fuzzy implication is a binary operator I on the unit interval
[0, 1] that: on {0, 1} behaves as classical implication, is decreasing on the first
argument and is increasing on the second argument.

Definition 24 The residuum of a left-continuous t-norm T is the operation I

such that I(x, y) ≥ z iff T (z, x) ≤ y.

Theorem 21 ([2]) The residuum of a left-continuous t-norm is unique.

A particularly interesting class of fuzzy implications is the one based on residua:

Definition 25 A binary operator I on [0, 1] is called an r-implication if there
is a t-norm T such that:

I(x, y) = sup{z ∈ [0, 1] | T (z, x) ≤ y} (1)

In such case we may say also that I is an r-implication based on T , and denote
it by IT . We say that IT is of type LC in case T is left-continuous. In the later
situation we also say that (T, IT ) form an adjoint pair, or that IT is the adjoint
companion of T .

2.1 Automorphisms and their action on the fuzzy connectives

Definition 26 A function ρ:[0, 1] → [0, 1] is an automorphism if it is bijective
and increasing, i.e., if x ≤ y then ρ(x) ≤ ρ(y) [12, 22, 24].

Theorem 22 ([8, 24]) A function ρ:[0, 1] → [0, 1] is an automorphism iff it
is continuous in the usual sense, strictly increasing and preserves bounds, i.e.,
ρ(0) = 0 and ρ(1) = 1.

Since the inverse of an automorphism is also an automorphism and auto-
morphisms are closed under composition, then the set of automorphisms on
[0, 1], Aut([0, 1]), with the composition operator forms a group [22]. Thus, as
usual in algebra, see for example [14], we can consider the action of the group
<Aut([0, 1]), ◦)> on a set of functions from [0, 1]n into [0, 1].

Definition 27 The action of an automorphism ρ on a function f :[0, 1]n → [0, 1]
is the function fρ : [0, 1] → [0, 1] defined by

fρ(x1, . . . , xn) = ρ−1(f(ρ(x1), . . . , ρ(xn))) (2)

In this case fρ is called a conjugate of f .
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A set F of n-ary functions on [0, 1] is closed under automorphisms if for each
f ∈ F and ρ ∈ Aut([0, 1]) we have that fρ ∈ F . Clearly, if g is a conjugate of a
function f , then also f is a conjugate of g, in fact if g = fρ, since (fρ)−ρ = f

then f = gρ
−1

. In adition, if f is conjugate of g and g is conjugate of h then f is
a conjugate of h and clearly each function is conjugate of itself. Therefore, the
relation of conjugate on a set F closed under automorphisms is an equivalence
relation which allows us to partition F . In particular, is well known that the sets
of t-norms, t-conorms, fuzzy negations and implications are each closed under
automorphisms (see for example [2, 8, 16]). In the following we will prove that
the subclasses of left-continuous t-norms and of the r-implications are closed
under automorphisms.

Proposition 21 Let T be a t-norm and ρ be an automorphism. T is left-continuous
iff T ρ is a left-continuous t-norm.

Proof. (⇒) Let (xn)n∈N be a non-decreasing sequence. Then, because ρ is in-
creasing, (ρ(xn))n∈N also is a non-decreasing sequence. Thus, because ρ is con-
tinuous and T is left-continuous, we have that

lim
n→∞

T ρ(xn, y) = lim
n→∞

ρ−1(T (ρ(xn), ρ(y))) by Eq. (2)

= ρ−1( lim
n→∞

T (ρ(xn), ρ(y))) because ρ−1 is continuous

it preserves limits
= ρ−1(T ( lim

n→∞

ρ(xn), ρ(y)) because T is left-continuous

= ρ−1(T (ρ( lim
n→∞

xn), ρ(y)) because ρ is continuous

it preserves limits
= T ρ( lim

n→∞

xn, y) by Eq. (2)

(⇐) Follows straightforward from the (⇒) side and the fact that (T ρ)ρ
−1

=
T ..

Proposition 22 Let T be a t-norm and ρ be an automorphism. Then (IT )ρ =
I(T

ρ).

Proof.

(IT )ρ(x, y) = ρ−1(IT (ρ(x), ρ(y))) by Eq. (2)
= ρ−1(sup{z ∈ [0, 1] | T (ρ(x), z) ≤ ρ(y)}) by Eq. (1)
= ρ−1(sup{z ∈ [0, 1] | ρ−1(T (ρ(x), z)) ≤ ρ−1(ρ(y))}) ρ−1 is increasing
= ρ−1(sup{z ∈ [0, 1] | ρ−1(T (ρ(x), ρ(ρ−1(z)))) ≤ y}) ρ−1 is inverse of ρ
= sup{ρ−1(z) ∈ [0, 1] | ρ−1(T (ρ(x), ρ(ρ−1(z)))) ≤ y} ρ−1 is continuous

it preserves sups
= sup{ρ−1(z) ∈ [0, 1] | T ρ(x, ρ−1(z)) ≤ y} by Eq. (1)
= I(T

ρ)(x, y) by Eq. (2)

Corollary 21 Let I : [0, 1]2 → [0, 1] and ρ be an automorphism. I is an r-
implication of type LC iff Iρ is an r-implication of type LC.

Proof. Straightforward from Propositions 21 and 22.
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3 Fuzzy bi-implication and automorphisms

3.1 Automorphisms on an axiomatized class of fuzzy bi-implications

Definition 31 The class of f -bi-implications contains all binary operators B

on the unit interval [0, 1] respecting the following axioms:

(B1) B(x, y) = B(y, x) (B-commutativity)
(B2) B(x, x) = 1 (B-identity)
(B3) B(0, 1) = 0
(B4) If w ≤ x ≤ y ≤ z, then B(w, z) ≤ B(x, y)

In view of (B1), (B2) and (B3), it is easy to see that any Fodor-Roubens fuzzy
bi-implication is bound to agree with classical bi-implication on {0, 1}.

The following are some examples of f -bi-implications:

Example 31

1. BM (x, y) =

{

1 if x = y

min(x, y) otherwise

2. BP (x, y) =

{

1 if x = y
min(x,y)
max(x,y) otherwise

3. BL(x, y) = 1 − |x− y|

4. BD(x, y) =







y if x = 1
x if y = 1
1 otherwise

5. BTI1
B (x, y) =

{

1 if x = y or max(x, y) 6= 1
0 otherwise

Proposition 31 Let B : [0, 1]2 → [0, 1] and ρ be an automorphism. B satisfies
(Bi) iff Bρ satisfies (Bi), for i = 1, . . . , 4.

Proof. (⇒) If B satisfies (Bi) for i = 1, . . . , 3 then, from Eq. (2) and the fact
that ρ(1) = 1 and ρ(0) = 0, trivially Bρ satisfy (Bi). On the other hand, if
w ≤ x ≤ y ≤ z, then because ρ is increasing, ρ(w) ≤ ρ(x) ≤ ρ(y) ≤ ρ(z) and
so, since B satisfies (B4), we have that B(ρ(w), ρ(z)) ≤ B(ρ(x), ρ(y)). There-
fore, because ρ−1 is increasing, ρ−1(B(ρ(w), ρ(z))) ≤ ρ−1(B(ρ(x), ρ(y))), i.e.,
Bρ(w, z) ≤ Bρ(x, y) and so Bρ satisfies (B4).

(⇐) Follows straightforward from the (⇒) side and the fact that (Bρ)ρ
−1

=
B.

Corollary 31 Let B : [0, 1]2 → [0, 1] and ρ be an automorphism. B is an f-bi-
implication iff Bρ is also an f-bi-implication.

Proof. Straightforward from previous proposition.

Example 32 Let ρ be the following automorphism: ρ(x) = x2 for each x ∈ [0, 1],
then
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1. BM (x, y) = B
ρ
M (x, y)

2. BP (x, y) = B
ρ
P (x, y)

3. B
ρ
L(x, y) =

√

1 − |x2 − y2|
4. BD(x, y) = B

ρ
D(x, y).

5. BTI1
B (x, y) = (BTI1

B )ρ(x, y)

Definition 32 An f-bi-implication B is said to satisfy:

– the diagonal principle, if B(x, y) 6= 1 whenever x 6= y (DP)

Proposition 32 Let B be an f-bi-implication and ρ be an automorphism. B

satisfies the diagonal principle iff Bρ also satisfies the diagonal principle.

Proof. (⇒) If x 6= y then because ρ is bijective, ρ(x) 6= ρ(y) and so, because B

satisfies the diagonal principle, B(ρ(x), ρ(y)) 6= 1. Thus, because ρ−1 is bijective,
then ρ−1(B(ρ(x), ρ(y))) 6= ρ−1(1), i.e. Bρ(x, y) 6= 1.

(⇐) Follows straightforward from the (⇒) side and the fact that (Bρ)ρ
−1

=
B.

3.2 Automorphisms on classes of fuzzy bi-implications based on a
defining standard of t-norms and fuzzy implications

In the definitions that follow, we call TI the defining standard B(x, y) = T (I(x, y), I(y, x))
for fuzzy bi-implications, where we assume that T is a t-norm and I an r-
implication.

Definition 33 ([9]) The class of a-bi-implications contains all binary opera-
tors B on [0, 1] following the TI defining standard and based on an arbitrary
t-norm T and on the residuum IT of T , that is, operators defined by setting

B(x, y) = T (IT (x, y), IT (y, x)) (3)

Proposition 33 Let B : [0, 1]2 → [0, 1] and ρ be an automorphism. B is an
a-bi-implication iff Bρ is an a-bi-implication.

Proof. (⇒)
Bρ(x, y) = ρ−1(B(ρ(x), ρ(y))) Eq. (2)

= ρ−1(T (IT (ρ(x), ρ(y)), IT (ρ(y), ρ(x)))) Eq. (3)
= ρ−1(T (ρ ◦ ρ−1(IT (ρ(x), ρ(y))), ρ ◦ ρ−1(IT (ρ(y), ρ(x)))))
= T ρ((IT )ρ(x, y), (IT )ρ(y, x)) Eq. (2)
= T ρ(I(T

ρ))(x, y), I(T
ρ)(y, x)) By Prop. 22

Therefore, Bρ also is an a-bi-implication.
(⇐) Follows straightforward from the (⇒) side and the fact that (Bρ)ρ

−1

=
B.

Definition 34 ([9]) The class of ℓ-bi-implications contains all binary opera-
tors B on [0, 1] following the TI defining standard and based on a left-continuous
t-norm T and the residuum of T , which is an r-implications of type LC, that is,
operators defined through the equation B(x, y) = T (IT (x, y), IT (y, x)).
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Proposition 34 Let B : [0, 1]2 → [0, 1] and ρ be an automorphism. B is an
ℓ-bi-implication iff Bρ is an ℓ-bi-implication.

Proof. Straightforward from Proposition 33 and Corollary 21.

4 Conclusions

In this paper we considered the action of the automorphism group on the three
classes of fuzzy bi-implications that were studied in [9], say: f -bi-implications,
a-bi-implications and ℓ-bi-implications. In particular, we proved that all three
classes are closed under automorphisms and therefore, the action of automor-
phism induces to a partition of these classes. For example, the equivalence class
of the bi-implication BM is the singleton set {BM} but the equivalence class of
BL is not a countable set (to see it, in the example 5 is suficient to substitute
the automorphism ρ(x) = x2 by ρ(x) = xr, with r been a positive real number).

It is a preliminary work, and several other aspects of the action of autormor-
phism on bi-implication can be studied in future works. For example, since for
one hand, in [9] was proved that the f -bi-implications properly contains the a-
bi-implications which also properly contain the ℓ-bi-implications, we can explore
the action of the auitomorphism on bi-implications in order to characterize the
classe of bi-implication which are in a class (for example in f -bi-implications)
which are not in the lesser class (for example in a-bi-implications). Notice, that if
B is a bi-implication which is in a classe but is not in some other classes then all
of their conjugates also are in this same situation. Other point that we can study
is if the conjugate of the natural fuzzy negation induced by a bi-implication co-
incuide with the natural negation induced by the conjugate (with respect the
same automorphism) of the bi-implication, i.e. if for each automorphism ρ and
bi-implication B, (NB)ρ = NBρ , where NB is the natural negation induced by
B.
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