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Abstract. The paper deals with fuzzy versions of the classical bi-im-
plication, that is, extensions of classical bi-implication to the canonical
domain of mathematical fuzzy logics, the real-valued unit interval [0, 1].
Our approach to fuzzy bi-implication may be summarized as follows:
first, we recall a well-known approach to bi-implications, by Fodor and
Roubens, via the direct axiomatization of the properties of the corre-
sponding class of operators; next, we investigate a particular defining
standard of bi-implication in terms of t-norms and r-implications. We
study four prospective classes of bi-implications based on such defin-
ing standard, by varying the properties of its composing operators, and
show that these classes collapse into precisely two increasingly weaker
subclasses of the Fodor-Roubens bi-implication.

1 Introduction

The investigation of fuzzy logic in a narrow sense, as subfield of multi-valued
logic, was initiated by Petr Hájek in [9], much after the introduction of fuzzy
set theory by Lotfi Zadeh in [20]. Since then, however, a lot of debate has hap-
pened over the ‘most reasonable way’ of extending the most usual operators from
the discrete classical domain {0, 1} into the continuum represented by the real-
valued unit interval [0, 1]. In the meanwhile, if some classical connectives have
found well-accepted fuzzy counterparts, others remained largely as a matter of
contention. The fuzzy interpretation of conjunction, for instance, is well settled
in terms of the triangular norm operator, and similarly for disjunction as its
dual [11–14]. Classical negation, in weak and strong forms, also has a reasonably
well-studied associated fuzzy operator [6]. Furthermore, there are many compet-
ing fuzzy versions of implication, of which [1] seems to be the most widely used
in the literature.

Classical bi-implication also does not fall short of fuzzy interpretations, and
one may find it studied in the literature under the appellations of T-indistinguish-
ability operator [18], fuzzy bi-implication [2, 4], fuzzy equality [17], fuzzy bi-
residuation [11, 15], fuzzy equivalence [7, 8], T-equivalence [16], fuzzy similarity
[9] and restricted equivalence function [5].

As it happens, it is relatively common to find in the recent literature inves-
tigations that study the relations between different classes of the most common
fuzzy operators. This happens for instance with the relation between different
classes of triangular norms [12] and with the intersections of different classes of
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fuzzy implications [1]. For fuzzy bi-implication, however, the same investigation
still remains to be done. In this paper we contribute to fill this gap, by study-
ing the relation between the more well-known definition proposed by Fodor and
Roubens and other appealing definitions, old or new, of fuzzy operators that
extend the interpretation of the classical bi-implication.

The plan of the paper is as follows: in section 2 we recall some basic definitions
and facts about t-norms and r-implications; subsection 3.1 recalls the definitions
and proves some important results about the so-called Fodor-Roubens fuzzy
bi-implications; section 3.2 studies four classes of bi-implications produced by
the defining standard based on the classical equivalence in between α ⇔ β and
(α ⇒ β) ∧ (β ⇒ α), and shows that these classes amount to two distinct classes
of which one is a subclass of the other, and both are subclasses of Fodor-Roubens
bi-implications; we conclude by some considerations concerning open problems
and interesting lines for future research.

2 Conjunction and Implication from a Fuzzy Perspective

There are infinite ways in which the interpretation of conjunction ∧ may be
extended from the classical {0, 1} domain to the unit interval [0, 1], but not
all of them behave as what is intuitively expected from a generalization of the
Boolean conjunction to the unit square. The fuzzy logic community, as a matter
of fact, has by and large agreed to impose the properties of t-norms to any
extension of the classical conjunction.

The following definitions and examples may be found in [12].

Definition 1. A triangular norm (in short t-norm) is a binary operator T on
the unit interval [0, 1] that: (T0) agrees with classical conjunction on {0, 1},
(T1) is commutative, (T2) is associative, (T3) is monotone on both arguments,
and (T4) has 1 as neutral element.

In fact, it is easy to check that (T0) follows from the remaining properties.
The associated notions of continuity are the usual ones. In particular:

Definition 2. A t-norm T is left-continuous if for all non-decreasing sequences
(xn)n∈N we have that lim

n→∞ T (xn, y) = T ( lim
n→∞xn, y).

There are uncountably many t-norms, but below we mention some of the most
well-known among them.

Example 1.

1. TM (x, y) = min(x, y) (minimum t-norm)
2. TP (x, y) = x · y (product t-norm)
3. TL(x, y) = max(x + y − 1, 0) (�Lukasiewicz t-norm)

4. TD(x, y) =

{
0 if (x, y) ∈ [0, 1)2

min(x, y) otherwise
(drastic t-norm)
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Notice, in particular, that TM , TP and TL are all left-continuous, yet TD is not.
The following constitutes a generalization of the transitivity property in the

context t-norms:

Definition 3. Let T be a left-continuous t-norm, and F a binary operator on
[0, 1]. We say that F is T -transitive if T (F (x, y), F (y, z)) ≤ F (x, z).

As regards implication⇒, there are several competing approaches to what should
constitute its fuzzy counterpart (see for example [6, 10, 19]). Below we propose
an axiomatization equivalent to the ones that may be found in [1, 8, 10], which
characterize the most common fuzzy implication found in the literature.

Definition 4. A fuzzy implication is a binary operator I on the unit interval
[0, 1] that: (I0) agrees with classical implication on {0, 1}, (I1) is antitone on the
first argument and (I2) is monotone on the second argument.

The following are examples of fuzzy implications:

Example 2.

1. IM (x, y) =

{
1 if x ≤ y
y otherwise

(minimum / Gödel implication)

2. IP (x, y) =

{
1 if x ≤ y
y
x otherwise

(product / Goguen implication)

3. IL(x, y) = min(1 − x + y, 1) (contractionless / �Lukasiewicz implication)

4. ID(x, y) =

{
y if x = 1
1 otherwise

(drastic / Weber implication)

5. I1B(x, y) =

{
0 if x = 1 and y �= 1
1 otherwise

(boolean 1-implication)

The first four examples are well-known, but for the last one, introduced here,
we have to check that the corresponding definition satisfies the properties in
Definition 4. In any case, (I0) is obvious. Consider now xa < xb. So, xa < 1,
thus I1B(xa, y) = 1 ≥ I1B(xb, y), satisfying thus (I1). Next, assume ya < yb ≤ 1,
and suppose that I1B(x, ya) > I1B(x, yb). Notice that this is only possible in
case I1B(x, ya) = 1 and I1B(x, yb) = 0. From I1B(x, yb) = 0 one may conclude in
particular that x = 1, and from this and I1B(x, ya) = 1 it follows that ya = 1.
Contradiction, for ya < yb. Thus, (I2) is also satisfied.

Definition 5. A fuzzy implication I is said to satisfy:

– the identity principle, if I(x, x) = 1 (IP)
– the left-ordering property, if I(x, y) = 1 whenever x ≤ y (LOP)
– the right-ordering property, if I(x, y) �= 1 whenever x > y (ROP)

Given an arbitrary t-norm T and an arbitrary fuzzy implication I, the pair (T, I)
is said to satisfy:

– modus ponens, if T (x, I(x, y)) ≤ y (MP)
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Notice that all implications in Ex. 2 satisfy (LOP), and a fortiori also (IP).
There are well-known examples of implications failing (LOP) (check the first
chapter of [1]), but they will be of no particular interest to us here.

The following operation is used to generalize the Deduction Metatheorem:

Definition 6. The residuum of a left-continuous t-norm T is the (unique) op-
eration I such that I(x, y) ≥ z iff T (z, x) ≤ y.

A particularly interesting class of fuzzy implications is the one based on residua:

Definition 7. A binary operator I on [0, 1] is called an r-implication if there is
a t-norm T such that:

I(x, y) = sup{z ∈ [0, 1] | T (z, x) ≤ y}
In such case we may say also that I is an r-implication based on T , and denote
it by IT . We say that IT is of type LC in case T is left-continuous. In such
case we also say that (T, IT ) form an adjoint pair, or that IT is the adjoint
companion of T .

Given a left-continuous t-norm T , it should be clear from the above that its
residuum IT is the pointwise largest operation such that (T, IT ) satisfies modus
ponens.

Note that:

Proposition 1. (TX , ITX ) form adjoint pairs, for each X ∈ {M,P,L}.
It is also the case that (cf. [1, 2]):

Proposition 2. Let IT be an r-implication. Then: (i) IT (1, y) ≥ y; (ii) IT satis-
fies the identity principle; (iii) IT satisfies the left-ordering property. Assume IT

to be of type LC. Then: (iv) IT is T -transitive; (v) IT satisfies the right-ordering
property.

Even though we will not need the following results here, it is interesting to
mention that for r-implications we can immediately count on IT (1, y) ≤ y as
well, thus validating (MP), and to mention also the characteristic strengthening
of the above result according to which any r-implication that satisfies both (LOP)
and (ROP) is of type LC. It might also be interesting to notice how Prop. 2(v)
shows that I1B cannot be the residuum of a left-continuous t-norm, as it obviously
fails (ROP). While neither ID nor I1B are of the type LC, and on the one hand
it is easy to see that ID is indeed the residuum of TD, on the other hand it is
not at all obvious which t-norm, if any, would I1B be the residuum of.

3 Fuzzy Bi-implication

3.1 Via Axiomatization

As it happens with implication, for the bi-implication ⇔ there is also no universal
agreement on what should constitute its fuzzy counterpart. The most well-known
class of fuzzy bi-implications was investigated by Fodor and Roubens and is
characterized by the following properties (see [8]):
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Definition 8. The class of f -bi-implications contains binary operators B on
the unit interval [0, 1] respecting the following axioms:

(B1) B(x, y) = B(y, x) (B-commutativity)
(B2) B(x, x) = 1 (B-identity)
(B3) B(0, 1) = 0
(B4) If w ≤ x ≤ y ≤ z, then B(w, z) ≤ B(x, y)

In view of (B1), (B2) and (B3), it is easy to see that any Fodor-Roubens fuzzy
bi-implication is bound to agree with classical bi-implication on {0, 1}. We will
refer to this ‘boundary’ property as (B0).

Here are some examples of f -bi-implications:

Example 3

1. BM (x, y) =

{
1 if x = y
min(x, y) otherwise

2. BP (x, y) =

{
1 if x = y
min(x,y)
max(x,y) otherwise

3. BL(x, y) = 1 − |x− y|

4. BD(x, y) =

⎧⎨
⎩

y if x = 1
x if y = 1
1 otherwise

5. BTI1
B (x, y) =

{
1 if x = y or x, y �= 1
0 otherwise

Definition 9. A fuzzy bi-implication B is said to satisfy:

– the diagonal principle, if B(x, y) �= 1 whenever x �= y (DP)

It should be clear that:

Theorem 1. (i) Not all f -bi-implications satisfy the diagonal principle. (ii)
There are f -bi-implications that are T -intransitive, that is, that fail T -transiti-
vity for every t-norm T . Indeed, BD is a convenient witness to both these facts.

Proof. Part (i). If x < y < 1 then BD(x, y) = 1. Since we have x �= y and
BD(x, y) = 1 then BD does not satisfy (DP). Part (ii). Let T be an arbitrary t-
norm. Then, in view of (T4) and the definition of BD, T (BD(1, .9), BD(.9, .8)) =
T (.9, 1) = .9 �≤ .8 = BD(1, .8). Therefore, BD fails to be T -transitive. 	

Moreover:

Theorem 2. The following property holds good for any r-implication IT :

– min(IT (x, y), IT (y, x)) = IT (max(x, y),min(x, y))

Proof. Let IT be of type LC. Assume without loss of generality that x ≤ y.
Recall that, by Prop. 2(iii), IT satisfies (LOP), thus min(IT (x, y), IT (y, x)) =
min(1, IT (y, x)) = IT (y, x). Notice, in addition, that y = max(x, y) and x =
min(x, y), once x ≤ y. 	
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3.2 Via a Defining Standard over t-Norms and Fuzzy Implications

Inspired by the classical (in fact, intuitionistic) equivalence in between α ⇔ β
and (α ⇒ β) ∧ (β ⇒ α), in this section we explore the fuzzy bi-implication
obtained by setting as defining standard B(x, y) = T (I(x, y), I(y, x)). We shall
call this TI defining standard for bi-implication. As a matter of fact, a very
general result may be proven about such defining standard, when r-implications
are involved:

Theorem 3. Given B(x, y) = T (I(x, y), I(y, x)), where I is an r-implication,
the specific choice of t-norm T is inconsequential. Indeed, the following property
holds good in general:

– B(x, y) = min(I(x, y), I(y, x))

Proof. Assume without loss of generality that x ≤ y. Since, by Prop. 2(iii), the
r-implication I satisfies (LOP), we have that B(x, y) = T (I(x, y), I(y, x)) =
T (1, I(y, x)), and by (T4), we know that T (1, I(y, x)) = I(y, x). Using (LOP)
again, we conclude that I(y, x) = min(I(x, y), I(y, x)). 	

In the definitions that follow, we fix the TI defining standard for fuzzy bi-
implications, assume that T is a t-norm and I an r-implication, and experiment
with properties associated to left-continuity. We start by proposing the following
very generous class of fuzzy bi-implications:

Definition 10. The class of aa-bi-implications contains all binary operators B
on [0, 1] following the TI defining standard and based on arbitrary t-norms
and arbitrary r-implications, that is, operators defined by setting B(x, y) =
T1(IT2(x, y), IT2(y, x)), where T1 and T2 are arbitrary t-norms.

One may readily prove that:

Theorem 4. Every aa-bi-implication B satisfies the equation B(1, y) ≥ y.

Proof. By Theor. 3, we know that B(1, y) = min(IT (1, y), IT (y, 1)), for some
appropriate r-implication IT , which by Prop. 2(iii) must satisfy (LOP). From
the latter property we conclude that IT (y, 1) = 1, thus, B(1, y) = IT (1, y). The
proof is completed by recalling from Prop. 2(i) that IT (1, y) ≥ y. 	

Theorem 5. Every aa-bi-implication is an f -bi-implication.

Proof. Let T be a t-norm, I be an r-implication and B be the aa-bi-implication
based on T and I. It is obvious that B satisfies (B1) and (B3), and (B2) follows
from Prop. 2(ii). Now, recall by Prop. 2(iii) that I satisfies (LOP), and assume
w ≤ x ≤ y ≤ z. So:

B(w, z) = T (I(w, z), I(z, w))
= T (1, I(z, w)) by (LOP), once w ≤ z
= I(z, w) by (T4)
≤ I(y, x) by (I1), once z ≥ y, and (I2), once w ≤ x
= T (I(x, y), I(y, x)) by (LOP), once x ≤ y
= B(x, y)

Therefore, B satisfies (B4). 	
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A restricted version of the above definition may be found in [2]:

Definition 11. The class of a-bi-implications contains all aa-bi-implications in
which T1 = T2, that is, in which IT2 is precisely the residuum of T1.

Example 4. The ‘drastic’ bi-implication BD (Ex. 3.4) is an a-bi-implication. In-
deed, BD(x, y) = TD(ID(x, y), ID(y, x)).

In view of Ex. 4 and Theor. 1 we know that there are a-bi-implications (thus, a
fortiori, aa-bi-implications) that are intransitive and fail the diagonal principle.

As a corollary of Theor. 3, however, it is easy to see that the classes of aa-bi-
implications and a-bi-implications are coextensive, even though the former class
might have initially seemed to be more inclusive than the latter. So:

Theorem 6. Every aa-bi-implication is an a-bi-implication.

In what follows we restrict a bit further the preceding definitions of fuzzy bi-
implication.

Definition 12. The class of a�-bi-implications contains all binary operators B
on [0, 1] following the TI defining standard and based on arbitrary t-norms and r-
implications of type LC, that is, operators defined through the equation B(x, y) =
T1(IT2(x, y), IT2(y, x)), where T1 is an arbitrary t-norm and IT2 an r-implication
of type LC.

The following specialization of a�-bi-implications was studied in [11]:

Definition 13. The class of �-bi-implications contains all a�-bi-implications in
which T1 = T2, that is, in which IT2 is precisely the adjoint companion of T1.

Example 5. BM , BP and BL are �-bi-implications.

Again, as an immediate corollary of Theor. 3, we know that the two latter classes
of bi-implications are coextensive, that is:

Theorem 7. Every a�-bi-implication is an �-bi-implication.

As a more interesting side-effect of Theor. 3, the following results from [3] on
�-bi-implications may also be generalized to a�-bi-implications:

Theorem 8. Every a�-bi-implication based on an r-implication IT of type LC

enjoys both the diagonal principle and T -transitivity.

Proof. Let T1 be a t-norm, IT be an r-implication of type LC and B be the a�-bi-
implication B(x, y) = T1(IT (x, y), IT (y, x)) based on T1 and IT . By Theor. 3, we
know that B(x, y) = min(IT (x, y), IT (y, x)). So, B(x, y) = 1 iff both IT (x, y) =
1 and IT (y, x) = 1. Given Prop. 2(v), IT satisfies (ROP), so IT (x, y) = 1 and
IT (y, x) = 1 imply that x ≤ y and y ≤ x. It follows that x = y whenever
B(x, y) = 1, in other words, that B satisfies (DP).
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Now we are going to check that T (B(x, y), B(y, z)) ≤ IT (x, z). Recall that,
by Prop. 2(iv), IT is T -transitive, once T is left-continuous. So:

T (B(x, y), B(y, z)) =
= T (min(IT (x, y), IT (y, x)),min(IT (y, z), IT (z, y))) by Theor. 3
≤ T (IT (x, y), IT (y, z)) by (T3)
≤ IT (x, z) by T -transitivity of IT

For analogous reasons, it is also true that T (B(x, y), B(y, z)) ≤ IT (z, x). There-
fore, T (B(x, y), B(y, z)) ≤ min(IT (x, z), IT (z, x)) and again by Prop. 2(iii) and
Theor. 3, it follows that min(IT (x, z), IT (z, x)) = B(x, z). Thus, B is T -transitive.

	


Last but not least, for the sake of comparing the above classes of bi-implication,
we may observe that:

Theorem 9. Not all a-bi-implications are �-bi-implications. Again, BD bears
witness to this fact.

Proof. Recall from Ex. 4 that BD is an a-bi-implication and that in Theor. 1
we proved that BD does not satisfy neither the diagonal principle nor the T -
transitivity property for no t-norm T . Since by the definition of the class of �-bi-
implications, any creature from this class is in particular an a�-bi-implication,
and in Theor. 8 we have seen that every a�-bi-implication satisfies both (DP)
and T -transitivity, the drastic bi-implication BD gives us two good reasons to
conclude that not every a-bi-implication is an �-bi-implication. 	


While the latter distinguishing result should be contrasted with the ordinary
facts mentioned in Ex. 5, the next result should be contrasted with Ex. 3.5:

Theorem 10. Not all f -bi-implications are a-bi-implications. Indeed, this state-
ment has BTI1

B as witness.

Proof. Consider any y ∈ (0, 1). Then, BTI1
B (1, y) = 0. Yet, in view of Theor. 4

we know that B(1, y) ≥ y for any aa-bi-implication B.

4 Conclusions

There are basically three classes of fuzzy bi-implications to be found in this
paper: (B1) f -bi-implications; (B2) a-bi-implications (which we have shown to be
coextensive with the apparently more general class of aa-bi-implications); (B3) �-
bi-implications (which we have shown to be coextensive with the apparently more
general class of a�-bi-implications) We have seen that (B3) is a proper subclass
of (B2), and that (B2) is a proper subclass of (B1). The full picture may be
appreciated in Fig. 1.

In [5] a class B4 of ‘restricted equivalence functions’ is introduced via ax-
iomatization as a subclass of B1. It has not been shown, however this consists
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B1

B2

B3

•BD

•BTI1
B

Fig. 1. Subclasses of Fodor-Roubens fuzzy bi-implication

in a proper subclass. An interesting line of investigation would be thus to de-
termine which are the relations that hold between B4 and the other classes of
fuzzy bi-implications that we have studied here.

Finally, to get a better view over the possibilities it is also very important
to investigate other defining standards for bi-implication, such as the one that
sets B(x, y) = I(S(x, y), T (x, y)), where T is a t-norm, I a convenient fuzzy
implication, and S a t-conorm (the dual of a t-norm, used for interpreting dis-
junction). Some results have already been found that characterize some classes,
based on such an alternative defining standard, that properly extend B3 yet
are not extended by B1, providing thus a legitimate alternative to the Fodor-
Roubens paradigm. Presenting these results in detail is left as matter for future
work.

To the authors of this paper, the class of Fodor-Roubens implications is too
inclusive. In particular, satisfaction of the equation I(1, y) ≤ y is not enforced,
and that seems to us rather inadvisable, at least if one wants to count on (fuzzy)
modus ponens. This defect is appropriately fixed by r-implications. In exporting
the intuitions behind (Fodor-Roubens) fuzzy implications into the class of f -bi-
implications, the defects of the former are inherited, and there will be no way of
guaranteeing that, say, B(1, y) ≤ y. Not by coincidence, the alternative classes of
bi-implications we have studied here are based precisely on r-implications, and
the fact that they turned out to define proper subclasses of the f -bi-implications
containing the most natural examples of fuzzy bi-implications from the literature
would seem to lend support to our decision of concentrating our attention on such
classes. However, if one takes into account, on a closer look, the additional fact
that our main theorems concerning both the class of bi-implications following
the TI defining standard and the class of a-bi-implications are based directly on
the left-ordering property, rather than on other properties of fuzzy implications,
there seems to be some chance that an interesting class of bi-implications might
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still lurk somewhere in between B1 and B2. We close our present study by leaving
the investigation of this thread open for the interested researcher.
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