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Abstract—In this paper we explore classic-like aspects of

Kripke models endowed with a fuzzy accessibility relation and a

fuzzy notion of satisfaction, and prove a general completeness

result concerning the fuzzy semantics of a generous class of

normal modal systems enriched with multiple instances of the

axiom of confluence.

I. INTRODUCTION

With different goals, several papers in the literature have
proposed to ‘modalize’ fuzzy logics or to ‘fuzzify’ modal
logics. In [2], for instance, the author aims at constructing
logical calculi with languages appropriate for specifying dy-
namical systems whose behavior and structure is only modeled
approximately. Other authors are also interested in providing
adequate axiomatizations for such logics. For example, in [4]
the authors provide an axiomatization for the -fragment and
the ⌃-fragment of the so-called Gödel modal logics, based
on the many-valued Gödel logic and some well-known logics
from the literature on modal logics. In [5] the authors char-
acterize minimal many-valued modal logics for a operator
defined over finite residuated lattices. All papers cited above
have one thing in common: the semantical framework used
to characterize the modal systems is based on Kripke-style
structures.

The semantics that we utilize here is also a many-valued
Kripke-style semantics. Our particular aim, though, is to
characterize a generous class of many-valued modal systems
with locally bivalent semantics that behave just like the usual
boolean-based Kripke semantics for modal logics. In [6], the
authors study models for a certain kind of fuzzy modal logics
and prove weak completeness results for a couple of modal
extensions of classic-like fuzzy models of some traditional
normal modal systems, viz. K, T , D, B, S4 and S5. In [1]
we followed a similar thread to prove completeness results
for a much more inclusive class of fuzzy normal modal
systems which contain instances of the axiom of confluence

G

k,l,m,n ⌃k m
'

l⌃n
'. It should be clear that the

systems K G

k,l,m,n encompass the above traditional systems,
and a lot else. Indeed, one may observe that the characteristic
modal axioms T ' ', D ' ⌃', B ' ⌃',
4 ' ' and 5 ⌃' ⌃' are but particular

instances of G

k,l,m,n where k, l,m, n are 0, 0, 1, 0 ,
0, 0, 1, 1 , 0, 1, 0, 1 , 0, 2, 1, 0 and 1, 1, 0, 1 , respectively.

In our preliminary study, [1], we have followed [6] in
producing for the real-valued unit interval 0, 1 the ‘canonical’
binary partition 0, 1 , 1, 1 and in putting certain restric-
tions on the fuzzy operators which we have used to interpret

the connectives of our language. Notions of satisfactiona and
validity of a formula are straighforwardly defined based on this
partition. A weak completeness result was then established for
a large class of modal systems. In the present paper, our ‘crisp
semantics’ is more general: instead 0, 1 , 1, 1 we use a
partition 0, i , i, 1 , with i 0. We are to show, then, how
to extend the completeness result for a much larger class of
classic-like fuzzy modal logics.

The so-called Geach axiom G

1,1,1,1 is well-known to
characterize, in terms of the associated notion of accessibil-
ity (and its inverse ) in the corresponding Kripke
frames, the diamond property, namely: if y x z,
then there is some w such that y w z. As
noted in [7], where i denotes an i-long sequence of
transitions (and similarly for i and transitions), the
natural generalization of the diamond property is the following
k, l,m, n -confluence property: if y

k
x

l
z, then there

is some w such that y

m
w

n
z. From the logical

viewpoint, a general completeness proof based directly on the
axiom of confluence, thus, is attractive in having the potential
to subsume a denumerable number of particular instances
of G

k,l,m,n . At any rate, it should be noted that the conflu-
ence property has importance on its own. In abstract rewriting
systems and type theory, for instance, one deals with frames in
which accessibility characterizes some appropriate notion of
reduction. There, confluence is used together with termination
to guarantee convergence of reductions, which on its turn
guarantees the existence of normal forms and has applications
on the design of decision procedures. Strong normalization,
in particular, is a much desirable property of lambda calculi,
and is a property guaranteed by theorems of confluence à la
Church-Rosser, with applications to programming language
theory. The availability of modal logics of confluence, and
in fact of fuzzy versions of such logics, allows one to expect
to have a local perspective on rewrite systems and on program
evaluation, and this time imbued with varying degrees of
uncertainty, customized to the user’s discretion.

The plan of the paper is as follows: in section II we
introduce the usual fuzzy operators; in section III we present
the concept of classic-like fuzzy semantics and show that there
exist fuzzy logics with the same set of tautologies of classical
propositional logic; in section IV we present a particular kind
of fuzzy Kripke semantics for modal logics; in section V we
prove completeness results for the modal system K extended
with instances of the axiom of confluence.
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II. FUZZY OPERATORS

We first review some useful terminology and easy results:

Definition II.1. Throughout the paper we shall use O to

denote the boolean domain 0, 1 of classical logic, and U to

denote the unit interval 0, 1 , typical of fuzzy logics. By we

will always denote the natural total order on U . Given a k-ary

operator

c�b on O and a k-ary operator

c�u on U , we shall

say that

c�u agrees with

c�b if

c�u O c�b. Given some

i U 0 , we will use ⇧ to denote the partition ⇧0,⇧1

of U , where ⇧0 0, i and ⇧1 i, 1 .

We list in what follows the defining properties of the most
standard fuzzy operators used to interpret their homonymous
classical counterparts:

Definition II.2. A fuzzy conjunction, or t-norm, is a binary

operation T on U such that: (T0) T agrees with classical

conjunction, (T1) T is commutative, (T2) T is associative, (T3)
T is monotone, that is, order-preserving, on both arguments,

and (T4) T has 1 as neutral element. We call x U
a ⇧0-divisor of a t-norm T if there exists some y U
such that T x, y ⇧0; such ⇧0-divisor is called non-

trivial if both x, y ⇧1. We say that T is left-continuous

if it preserves limits of non-decreasing sequences, that is,

if limn T xn, y T limn xn, y , for every non-

decreasing sequence xn n N.

Definition II.3. A fuzzy disjunction, or s-norm, is a binary

operation S on U such that: (S0) S agrees with classical

disjunction, (S1) S is commutative, (S2) S is associative, (S3)
S is monotone on both arguments, and (S4) S has 0 as neutral

element. We call x U a ⇧1-divisor of a t-norm T if there

exists some y U such that S x, y ⇧1; such ⇧1-divisor is

called non-trivial if both x, y ⇧0.

Some easily checkable important derived properties of the
above operators include:

Proposition II.1. For any t-norm T , s-norm S, and every

x, y U :

(i) If T x, y ⇧1, then x ⇧1 and y ⇧1.

(ii) If S x, y ⇧0, then x ⇧0 and y ⇧0.

Note that small t-norms such as the ‘drastic t-norm’ (that
sets the value of T x, y as min x, y if max x, y 1,
and as 0 otherwise) fail the converse of Prop. II.1(i). Dually,
large s-norms such as the ‘drastic s-norm’ fail the converse of
Prop. II.1(ii). It is interesting to observe that:

Proposition II.2. Let T be a t-norm, and S be an s-norm.

Then:

(i) If T lacks non-trivial ⇧0-divisors, then x ⇧1 and y ⇧1

imply T x, y ⇧1, for every x, y U .

(ii) If S lacks non-trivial ⇧1-divisors, then x ⇧0 and y ⇧0

imply S x, y ⇧0, for every x, y U .

Definition II.4. A fuzzy negation is a unary operation N on U
such that: (N0) N agrees with classical negation, (N1) N is

antitone, that is, order-reversing.

Definition II.5. A fuzzy implication is a binary operation I

on U such that: (I0) I agrees with classical implication, (I1)
I is antitone on the first argument, and (I2) I is monotone on

the second argument.

Given that the unit interval U 0, 1 is closed and
bounded, the Bolzano-Weierstrass theorem guarantees that:

Proposition II.3. The image of a left-continuous t-norm is

complete (in the sense that its subsets contain their own

suprema).

Residuation allows us to define a particularly interesting
kind of fuzzy implication:

Proposition II.4. The residuum I of a left-continuous t-norm

is a fuzzy implication. Moreover, I x, y 1 iff x y.

III. FUZZY SEMANTICS

Let P be a denumerable set of propositional variables, and
let the set of formulas of classical propositional logic, LP , be
inductively defined by:

' :: p ' '1 '2 '1 '2 '1 '2

where p ranges over elements of P .
The following definition employs the standard fuzzy op-

erators in interpreting the above symbols for the classical
connectives:

Definition III.1. A fuzzy evaluation of the propositional

variables is any total function e : P ⇧0 ⇧1. The

structure S N,T, S, I will be called a fuzzy semantics

for the propositional connectives , , , . By way of a

fuzzy semantics, an evaluation e may be recursively extended

to a fuzzy valuation e

S
: LP ⇧0 ⇧1 as follows:

e

S
p e p for each p P

e

S
↵ N e

S
↵

e

S
↵ � T e

S
↵ , e

S
�

e

S
↵ � S e

S
↵ , e

S
�

e

S
↵ � I e

S
↵ , e

S
�

A formula ↵ LP is called an S-tautology, denoted by S ↵,

if for every fuzzy evaluation e we have e

S
↵ ⇧1. We shall

denote by T LP the set of all classical tautologies in LP and

by TS
LP the set of all S-tautologies in LP .

The fact that each fuzzy operator agrees with the corre-
sponding classical operator immediately guarantees the fol-
lowing result:

Proposition III.1. All fuzzy tautologies are classical tautolo-

gies, that is, TS
LP T LP , for any fuzzy semantics S.

The following definitions, from [8], and the subsequent
result aim at capturing the core of classical semantics from
within the context of fuzzy semantics:

Definition III.2. S is a classic-like fuzzy semantics if

T LP TS
LP .

Definition III.3. Let S N,T, S, I be a fuzzy semantics

and ⇧ be a partition for U . We say that: (1) N is crisp with
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respect to ⇧ when N x ⇧0 if and only if x ⇧1; (2) T

is crisp with respect to ⇧ when T x, y ⇧1 if and only if

x, y ⇧1; (3) S is crisp with respect to ⇧ when S x, y ⇧0

if and only if x, y ⇧0; (4) I is crisp with respect to ⇧ when

I x, y ⇧0 if and only if x ⇧1 and y ⇧0. When the

above conditions are all satisfied we say that S is ⇧-crisp.

Notice in particular how crisp t-norms and crisp s-norms are
fully characterized by Prop. II.1 and Prop. II.2. Part of what
it takes for a fuzzy implication to be crisp is also guaranteed
by Prop. II.4. To show now that a ⇧-crisp fuzzy semantics
is a classic-like fuzzy semantics we prove first the following
result.

Proposition III.2. Given a fuzzy valuation e

S
of a ⇧-crisp

fuzzy semantics S, there is a classical valuation v : LP O
that simulates it, that is, such that

v ' 1 iff e

S
' ⇧1

holds good for every ' LP .

Proof: Let : U O be such that x 1 if x

⇧1 and x 0 otherwise. We will show that v e

S

defines a standard boolean valuation. The base step is trivial.
In the inductive step, for the case of a negated formula  ,
note that v  1 iff e

S
 1 iff e

S
 ⇧1 iff

N e

S
 ⇧1. As S is ⇧-crisp, N e

S
 ⇧1 iff e

S
 

⇧0. The induction hypothesis applies to  , thus we conclude
that eS  ⇧0 iff v  0. From all this we conclude that
v  1 iff v  0, exactly as one would expect of
the standard classical semantics of negation. The cases of the
remaining operators are analogous.

Corollary III.1. All classical tautologies are tautologies of

a ⇧-crisp fuzzy semantics, that is, S is a classic-like fuzzy

semantics whenever S N,T, S, I is ⇧-crisp.

Proof: Consider a classical tautology ', and pick an
arbitrary fuzzy valuation e

S. In view of Prop. III.2, there is
a classical valuation v that simulates e

S. But the formula ' is
a tautology, so v must satisfy it, hence e

S must equally satisfy
this formula.

IV. FUZZY KRIPKE SEMANTICS

The set of modal formulas, LMP , is defined by adding ⌃�
to the inductive clauses defining LP . The connective may
be introduced by definition, setting ↵ : ⌃ ↵.

Definition IV.1. Generalizing the notion of a characteristic

function to the domain of fuzzy logic, a fuzzy n-ary relation B

over a universe A is characterized by a membership function

µB : A

n U which associates to each tuple x A

n

its degree of membership µB x in B. In this context, a

fuzzy subset is characterized by a fuzzy unary relation, or

the corresponding unary membership function. A crisp n-ary

relation is any fuzzy n-ary relation B over a given A such

that µB A

n O, and crisp sets are defined analogously.

In the following definitions the standard Kripke models are
fuzzified:

Definition IV.2. A fuzzy frame F is a structure W, ,

where W is a non-empty crisp set (of ‘objects’, ‘worlds’, or

‘states’) and is a fuzzy binary (‘reduction’, ‘accessibility’,

or ‘transition’) relation over W . As expected, to characterize

m-step accessibility,

m
, we set:

µ 0 wi, wj ⇧1 means that wi wj

µn 1 wi, wj ⇧1 means that there is some wk such that

µ

n
wi, wk ⇧1 and µ wk, wj ⇧1

Furthermore, wi
m

wj is used to denote wj
m

wi.

Definition IV.3. Given a fuzzy frame F, an F-evaluation is

any total function ⇢ : P W U . A fuzzy Kripke model

is a structure K F, S, V , where F is a fuzzy frame, S is

a classic-like fuzzy semantics where T is a left-continuous t-

norm and V is an F-valuation. Given a fuzzy Kripke model

K, the associated degree of satisfiability is a total function

K : W LMP U recursively defined as follows (in infix

notation, we write w K ' where w W and ' LMP ;

when there is no risk of ambiguity, we use more simply w '

instead of w K '):

w ↵ V ↵, w , if ↵ P

w ↵ N w ↵

w ↵ � T w ↵, w �

w ↵ � S w ↵, w �

w ↵ � I w ↵, w �

w ⌃↵ sup T µ w,w ,w ↵ : w W

w ↵ N w ⌃ ↵

A formula ' LMP is said to be true in a fuzzy Kripke model

K, denoted by K ↵, if w ' ⇧1 for every w W . Given

a collection K of fuzzy Kripke models, a formula ' LMP

is said to be a K-tautology (denoted by K '), if ' is true in

every model in K.

Note that the above notion of satisfaction coincides with the
standard interpretation in modal logics based on the standard
bivalent semantics, with the fuzzy operators collapsing into
their counterparts in classical logic, and with the interpreta-
tions of ⌃ and coinciding with their standard interpretations
in Kripke semantics.

Many standard properties of binary relations have natural
fuzzy counterparts, among which we may mention:

Definition IV.4. We say the fuzzy accessibility relation is:

⇧-reflexive if µ x, x ⇧1, for every x W

⇧-symmetric if µ x, y ⇧1 implies µ y, x ⇧1,

for every x, y W

⇧-transitive if µ 2 x, y ⇧1 implies µ x, y ⇧1

for every x, y W

⇧-euclidean if µ x, y ⇧1 and µ x, z ⇧1

imply µ y, z ⇧1 for every x, y, z W

In general, given natural numbers k, l,m, n, we say that

is ⇧-(k,l,m,n)-confluent if for each x, y, z W such that

µ k x, y ⇧1 and µ l x, z ⇧1 there exists w W

such that µ

m
y, w ⇧1 and µ

n
z, w ⇧1.
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V. MODAL SYSTEMS BASED ON INSTANCES OF G

k,l,m,n

We will show that normal modal systems based on instances
of G

k,l,m,n can be characterized by adequate fuzzy Kripke
models. First of all, we will prove the completeness of the
K-Modal System with respect to the class all fuzzy Kripke
models. Next, we will enrich this system with one or more
instances of Gk,l,m,n and prove a general completeness result
for the systems thereby obtained.

Given a fuzzy Kripke model M W, , S, V , in what
follows we shall denote by MC the model W,

C
, S, V ,

where µ C : W W O is such that

µ C w,w

1, if µ w,w ⇧1

0, if µ w,w ⇧0

and V

C
: P W O is such that V

C
p, w 1 if

V p,w ⇧1 and V

C
p, w 0 otherwise.

The following result shows that each fuzzy modal semantics
may be assumed to be based on a convenient crisp accessibility
relation.

Proposition V.1. Let M W, , S, V be a fuzzy Kripke

model. Given an arbitrary w W and ↵ LMP , then w M
↵ ⇧1 iff w MC ↵ 1.

Proof: This is checked by induction on ↵.
Base step ↵ is some p P

w M p ⇧1 iff, by Def. IV.3, V p,w ⇧1 iff, by
definition of V C , V C

p, w 1 iff w MC p 1.
Step Suppose, by Induction Hypothesis, that w M �

⇧1 iff w MC � 1. We will check in detail the case
where ↵ ⌃�. Suppose first that w M ⌃� ⇧1. Then,
sup T µ w,w ,w M � : w W ⇧1. There exists
w such that T µ w,w ,w M � ⇧1. By Prop. II.1
µ w,w ⇧1 and w M � ⇧1. By definition of
MC it’s the case that µ C w,w 1 and by Induction
Hypothesis w MC � 1. By the standard interpretation
of ⌃, it follows that w MC ⌃� 1. Conversely, using the
fact that T is crisp with respect to ⇧, we can prove that if
w MC ⌃� 1, then w M ⌃� ⇧1.

As a straightforward consequence, it follows that:

Corollary V.1. Given an arbitrary fuzzy Kripke model M and

↵ LMP , then M ↵ iff MC ↵.

A. The K-Modal System

Definition V.1. The K-modal system is the triple LMP ,�

(K) , (MP), (Nec) , where � is an axiomatization of Clas-

sical Propositional Logic, where (K) is the axiom

↵ � ↵ �

and where (MP) and (Nec) are respectively the rules of Modus

Ponens and Necessitation, namely:

(MP) :
↵,↵ �

�

and

(Nec) :
↵

↵

Proposition V.2. Let ↵ LMP . Then, ↵ is a theorem in

the K-modal system iff K ↵ for each fuzzy Kripke model

K W, , S, V .

Proof: We already know, by Corollary III.1, that
the theorems of classical logic are all valid in any classic-like
fuzzy semantics. It remains to be proven that the axiom K is
valid and that the inferences rules preserve validity. Suppose
that there exists a w W such that w ↵ � ↵

� ⇧0. So by Def. III.3 it follows that

w ↵ � ⇧1 (1)

and
w ↵ � ⇧0 (2)

By (2) and Def. III.3, we have

w ↵ ⇧1 (3) and w � ⇧0 (4)

By (4) and Def. IV.3,

N sup T µ w,w ,N w � w W ⇧0 (5)

By (5) and Def. III.3, we have

sup T µ w,w ,N w � w W ⇧1 (6)

By (6) and Prop. II.3 there exists a w W such that

T µ w,w ,N w � ⇧1 (7)

By (7) and the Prop. II.1, we have

µ w,w ⇧1 (8) and N w � ⇧1 (9)

From (9), by Def. III.3 we know that

w � ⇧0 (10)

By (1) and Def. IV.3,

sup T µ w,w ,N w ↵ � w W ⇧0 (11)

By (11) and (8) in particular when w w we have N w

↵ � ⇧0, by Def. III.3, that is,

w ↵ � ⇧1 (12)

Using (3), (8) and Def. III.3, analogously we conclude that

w ↵ ⇧1 (13)

By (12), (13) and the interpretation of classic-like fuzzy
implication it follows that

w � ⇧1 (14)

But (14) contradicts (10) given that ⇧0,⇧1 is a partition.
Assume now that K �. Suppose by contradiction that
K � is not the case. So there exists a w W such that
w � ⇧0, that is, N sup T µ w,w ,N w

� w W ⇧0. It follows by Def. III.3 that
sup T µ w,w ,N w � w W ⇧1. For some
w W it is the case that T µ w,w ,N w � ⇧1.
From this we conclude that w � ⇧0, contradicting the
assumption.
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Assume for an arbitrary w that w ' ⇧1 and w

'  ⇧1. Suppose again by contradiction that w

 ⇧0. Since w ' ⇧1, by Def. III.3 it follows that
I w ', w  ⇧0, that is w '  ⇧0. This is
an absurd. The K system is known to be complete with
respect the class of all Kripke models. So, by Corollary V.1,
if K ↵ then K ↵.

B. Completeness of KG

k,l,m,n

In what follows, we shall prove a sequence of lemmas which
are used to establish a soundness result in Theorem V.1.

Lemma V.1. Let M W, , S, V be a fuzzy Kripke

model. If w ⌃z
' ⇧1, then there exists a wz such that

both µ

z
w,wz ⇧1 and wz ' ⇧1.

Proof: The proof proceeds by induction on z.
Basis z 1

If w ⌃� ⇧1, then sup T µ w,w ,w � w

W ⇧1, by Def. IV.3. So, by Prop. II.3 there is a w1 W

such that T µ w,w1 , w1 � ⇧1. By Prop. II.1 we
have µ w,w1 ⇧1 and w1 � ⇧1.
Step Suppose by Induction Hypothesis that for z k the

property is valid. Note that if w ⌃k 1
� ⇧1, then, by

Def. IV.3,

sup T µ w,w ,w ⌃k
� w W ⇧1 (15)

From 15 and Prop. II.3 there exists a w1 such that

T µ w,w1 , w1 ⌃k
� ⇧1 (16)

By 16 and Prop. II.1 we have:

µ w,w1 ⇧1 (17) and w1 ⌃k
� ⇧1 (18)

By 18 and Induction Hypothesis it follows that there exists
a wk such that µ k w1, wk ⇧1 and wk � ⇧1.
Using 17 and setting wk 1 wk we conclude that
µk 1 w,wk 1 ⇧1 and wk 1 � ⇧1.

Lemma V.2. Let M W, , S, V be a fuzzy Kripke

model. If µ

m
w, v ⇧1 and w

m
' ⇧1, then v

' ⇧1.

Proof: The proof is carried out by induction on m.
Basis m 1. Assume that:

µ w, v ⇧1 (19) and w � ⇧1 (20)

By 20 , Def. III.3 and Def. IV.3 we have that

T µ w, v ,N v � ⇧0 (21)

By (19), (21) and Def. III.3 we have that N v � ⇧0. By
Def. III.3 it follows that v � ⇧1.
Step m k 1

The (IH) Induction Hypothesis states that for m k, if
µ k w, v ⇧1 and w

k
� ⇧1 then v � ⇧1.

Given µk 1 w, v ⇧1 and w

k 1
� ⇧1, we

can prove, using (IH) and Definitions III.3 and IV.3, that
v � ⇧1.

The following result concerns equivalences between formu-
las with nested modalities.

Lemma V.3. If M W, , S, V is a fuzzy Kripke model,

and w is a element of W , then w ⌃m
' ⇧1 iff w

m
' ⇧1.

Proof: It is not hard to check this by induction on m.
The basis and inductive steps use Def. IV.3 and Def. III.3.

Lemma V.4. Let M W, , S, V be a fuzzy Kripke

model. If w ⌃n
' ⇧1 and µ

n
w, v ⇧1, then

v ' ⇧0.

Proof: This is a straightforward consequence of the
previous results. Indeed, note first that by Lemma V.3 we
have v ⌃m

' ⇧1 iff v

m
' ⇧1. So we know

that w

m
' ⇧1 and µ

n
w, v ⇧1, and applying

Lemma V.2 it follows that v ' ⇧1. By Def. III.3 we
conclude that v ' ⇧0.

Lemma V.5. Let M W, , S, V be a fuzzy Kripke

model. If w

n
' ⇧0, then there exists some wn such

that µ

n
w,wn ⇧1 and wn ' ⇧1.

Proof: This is checked by induction on n. The basis
is straightforward using Def. IV.3. If w

k 1
' ⇧0

we have for some w1 that µ w,w1 ⇧1 and w1
k
' ⇧0. So, using the Induction Hypothesis it follows

that µk 1 w,wk 1 ⇧1 and wk 1 ' ⇧1

The following lemma shows that the axiom G

k,l,m,n is
sound with respect fuzzy Kripke models in which is ⇧-
k, l,m, n -confluent:

Lemma V.6 (Soundness Lemma). If ↵ is a formula of form

G

k,l,m,n
and G is a fuzzy Kripke model where is ⇧1-

k, l,m, n -confluent, then G ↵.

Proof: Let ↵ be ⌃k m
�

l⌃n
�. Suppose that w G

⌃k m
�

l⌃n
� ⇧0 for some w W . Then by Def. III.1

w G ⌃k m
� ⇧1 (22)

and
w G l⌃n

� ⇧0 (23)

By 22 and Lemma V.1 there exists a wk such that

µ k w,wk ⇧1 (24) and wk G m
� ⇧1 (25)

By 23 and Lemma V.5 there exists a wl such that

µ l w,wl ⇧1 (26)

and
wl G ⌃n

� ⇧1 (27)

By 24 , 26 and the appropriate instance of the ⇧-confluence
property of there exists a x W such that

µ

m
wk, x ⇧1 (28) and µ

n
wl, x ⇧1 (29)
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By 25 , 28 and Lemma V.2 we conclude that

x G � ⇧1 (30)

By 27 , 29 and Lemma V.4, on the other hand, we conclude
that

x G � ⇧0 (31)

Note that 31 contradicts 30 .

Theorem V.1. For any ↵ LMP , we have that ↵ is a theorem

of KG

k,l,m,n
iff KG ↵ for each fuzzy Kripke model KG

W, , S, V such that is ⇧- k, l,m, n -confluent.

Proof: ( ) Let ↵ be a theorem of the KG

k,l,m,n

and KGk,l,m,n be a fuzzy Kripke model where is ⇧-
k, l,m, n -confluent. We will prove that KG ↵. In view of

Prop. V.2, however, it is sufficient to check the case where
↵ is an instance of the G

k,l,m,n-axiom, i.e., to check that
w KG ⌃k m

�

l⌃n
� ⇧1 for each w W and

� LMP , but from the Lemma V.6 it is immediate.
In [7] the completeness of system KG

k,l,m,n with respect
the class of models that satisfies the confluence accessibility
relation is established. By Corollary V.1 it follows that the
system KG is complete with respect the KG

k,l,m,n system.
So, if KG � then KG �.

The completeness results proven in Prop. V.1 can be shown
to hold not only for singular instances of G

k,l,m,n, but also
for several such instances combined. Indeed:

Proposition V.3. Let G

k1,l1,m1,n1
, . . . , G

kp,lp,mp,np
be in-

stances of the schema G

k,l,m,n
. Let K G

k1,l1,m1,n1
. . .

G

kp,lp,mp,np
be the system which results from extending K

with G

k1,l1,m1,n1
, . . . , G

kp,lp,mp,np
. A formula ↵ is a theorem

of K G

k1,l1,m1,n1
. . . G

kp,lp,mp,np
iff KG ↵ for each

fuzzy Kripke model KG W, , S, V such that is

⇧- k1, l1,m1, n1 -confluent,. . ., kp, lp,mp, np -confluent.

Proof: By Theorem V.1 this result is valid for
K G

k1,l1,m1,n1 . If we add G

k2,l2,m2,n2 and use Lemma V.6

we can conclude that K G

k1,l1,m2,n2
G

k2,l2,m2,n2 is sound
in all fuzzy Kripke models such that is k1, l1,m1, n1 -
confluent and k2, l2,m2, n2 -confluent. Using the same rea-
soning we can extend the result for each system K

G

k1,l1,m1,n1
. . . G

kp,lp,mp,np . From Corollary V.1 this
proof is analogous to the proof of completeness for extensions
of K with finitely many instances of G

k,l,m,n, as done, e.g.,
in [9].

Notice that the completeness of the modal systems KT ,
KB and KD are direct consequences of Prop. V.1, while
the completeness of B, S4 and S5 follows from Prop. V.3.
To illustrate, here is how we may obtain completeness for
S5 (we use below and & for the classical metalinguistic
implication and conjunction).

Example V.1. S5 is complete with respect all ⇧-reflexive and

⇧-euclidean fuzzy Kripke models. The modal system S5 is
axiomatized by K, T and 5, i.e. K 0, 0, 1, 0 1, 1, 0, 1 .
But is ⇧- 1, 1, 0, 1 -confluent iff (by Definition IV.4)
x y z µ x, y ⇧1 & µ x, z ⇧1 w y

w & µ z, w ⇧1 iff for arbitrary x, y, z W we have
that µ x, y ⇧1 & µ x, z ⇧1 µ z, y

⇧1 iff x y z µ x, y ⇧1 & µ x, z ⇧1

µ z, y ⇧1 iff (by Definition IV.4) is ⇧-euclidean.
Furthermore, using a similar reasoning we note that is
⇧1- 0, 0, 1, 0 -confluent iff x y z x y & x z

w µ y,w ⇧1 & z w iff x µ x, x ⇧1 iff
is ⇧-reflexive. So, by Theorem V.3 follows the complete-

ness of K 0, 0, 1, 0 1, 1, 0, 1 with respect all fuzzy
Kripke models that are ⇧-reflexive and ⇧-euclidean.

VI. FINAL REMARKS

The paper generalizes scattered results from [6] to a much
more inclusive collection of modal logics, and also greatly
generalizes our previous approach in [1] by the considera-
tion of other classic-like partitions of the interval 0, 1 as
0, i i, 1 . The partition presupposed by most fuzzy logics

in the literature takes i 1, a constraint which seems by all
means unnecessary. Furthermore, adapting the previous results
to partitions of the form 0, i i, 1 requires straightforward
modifications to the above.

We believe it is possible to study a multimodal (diamond)
version of the axiom of confluence by adding appropriate
indices to the modalities, at the linguistic level, and adding
corresponding fuzzy accessibility relations, at the semantic
level (in such case, the initial case with iterated modalities
will accordingly be reduced to distinct one-step modalities).
Completeness should in this case be attainable, as in the case
of normal modal logics extending classical logic, by adding
appropriate interaction axioms. We also conjecture that the
above results on the axiom of confluence and its corresponding
collection of frames may be extended to every Sahlqvist-
definable frame class. This thread of investigation, however,
shall be left as matter for future work.
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