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Abstract
The original version of Herbrand’s theorem [8] for first-order logic provided
the theoretical underpinning for automated theorem proving, by allowing a
constructive method for associating with each first-order formula χ a sequence
of quantifier-free formulas χ1,χ2,χ3, · · · so that χ has a first-order proof if and
only if some χi is a tautology. Some other versions of Herbrand’s theorem have
been developed for classical logic, such as the one in [6], which states that a
set of quantifier-free sentences is satisfiable if and only if it is propositionally
satisfiable. The literature concerning versions of Herbrand’s theorem proved in
the context of non-classical logics is meager. We aim to investigate in this paper
two versions of Herbrand’s theorem for hybrid logic, which is an extension of
modal logic that is expressive enough so as to allow identifying specific sates of
the corresponding models, as well as describing the accessibility relation that
connects these states, thus being completely suitable to deal with relational
structures [3]. Our main results state that a set of satisfaction statements is
satisfiable in a hybrid interpretation if and only if it is propositionally satisfiable.

1 Introduction
Hybrid logics [3] are a breed of modal logics that provide appropriate syntax for
referring to the associated possible-worlds semantics through the use of nominals.
The latter, in particular, add to the modal description of relational structures the
ability to refer to specific states. If modal logics have been successfully employed in
specifying reactive systems, the hybrid component adds to them enough expressivity
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so as to refer to individual states and to reason about the system’s local behavior
at each of these states. Hybrid logics turn out thus to be strictly more expressive
than their modal fragments. For example, irreflexivity (i → ¬✸i), asymmetry (i →
¬✸✸i) or antisymmetry (i → ✷(✸i → i)) are properties of the underlying transition
structure which fail to be definable in standard modal logic (see [4]). Nonetheless,
for the propositional case the satisfiability problem for hybrid logics is still decidable.

An important feature of hybrid logics that will play a central role in our approach
is the fact that they allow for the specification of Robinson Diagrams [2]. Indeed,
in these logics one may: (1) express equality between states named by i and j (note
that @ij intends to affirm that the states named by i and j are identical, while
@i¬j, being logically equivalent to ¬@ij, intends to affirm that states i and j are
distinct); (2) talk about accessibility between states through a modality (note that
@i✸j intends to affirm that the state named by j is a successor of the state named
by i); (3) formulate satisfiability statements about a specific state (note that @ip
intends to affirm that the proposition p is true at the state named by i, while @i¬p,
being logically equivalent to ¬@ip, intends to deny this). Consequently, within a
hybrid logic one is able to completely describe the corresponding models using the
rich underlying syntax.

Herbrand’s theorem is a fundamental result of mathematical logic. It essentially
allows a certain kind of reduction of first-order logic to propositional logic. While not
aimed at providing an efficient procedure for (semi)decidability, Herbrand-like theo-
rems are ordinarily used as useful intermediate steps in proving that some theorem-
proving resolution-based method works as intended. Several versions of Herbrand’s
theorem are now available for classical logic; here we present two versions for hybrid
logics, using the concepts of satisfiability and propositional satisfiability, following
the approach described in [6].

Outline of the paper. In Section 2 we start by recalling the basic hybrid logic.
Theorem 2.13, our first Herbrand-like theorem, states that hybrid satisfiability is
equivalent to propositional satisfiability for sets of satisfaction statements containing
the equality axioms. In Section 3 we discuss the quantified hybrid logic — a logic
less known than the basic hybrid logic. The strategy to establish a Herbrand-like
theorem in this case follows the one for the classical first-order version, by making
use of Skolemization to eliminate the existential quantifiers on world variables. The
main result here is stated on Theorem 3.26. Section 4 wraps up with some pointers
for future investigation.
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On Herbrand’s Theorem for Hybrid Logic

2 The Case of the Basic Hybrid Logic
The simplest form of hybrid logic is based on the basic hybrid language, which adds
nominals and the satisfaction operator to the language of propositional modal logic.
This simple upgrade of the usual modal language carries great power in terms of
expressivity.

Definition 2.1. Let L = ⟨Prop, Nom⟩ be a hybrid signature, where Prop is a count-
able set of propositional symbols and Nom is a countable set of symbols disjoint
from Prop. We use p, q, r and so on to refer to the elements in Prop. The elements
in Nom are called nominals and we typically write them as i, j, k, and so on. The
hybrid formulas over L, which we denote by Form@(L), are defined by the following
grammar:

ϕ ::= i | p | ¬ϕ | ϕ1 ∧ ϕ2 | ✸ϕ | @iϕ
where i ∈ Nom and p ∈ Prop.

The formulas with prefix @ are called satisfaction statements. The connectives ∨, →,
and ✷ are defined as usual. !

Definition 2.2. Let L = ⟨Prop, Nom⟩ be a hybrid signature. A hybrid structure M
over L is a tuple (W, R, N, V ). Here, W is a non-empty set called domain whose
elements are called states or worlds, R ⊆ W × W is called accessibility relation,
N : Nom → W is a hybrid nomination and V : Prop → Pow(W ) is a hybrid
valuation. The pair ⟨W, R⟩ is called the frame underlying M, and M is said to be
a structure based on this frame. !

The satisfaction relation, which is defined next, is a generalization of Kripke-style
satisfaction.

Definition 2.3. The satisfaction relation " between a hybrid structure M = (W, R,
N, V ), a state w ∈ W , and a hybrid formula is recursively defined by:

• M, w " i iff w = N(i);

• M, w " p iff w ∈ V (p);

• M, w " ¬ϕ iff it is not the case that M, w " ϕ;

• M, w " ϕ1 ∧ ϕ2 iff M, w " ϕ1 and M, w " ϕ2 ;

• M, w " ✸ϕ iff ∃w′ ∈ W (wRw′ and M, w′ " ϕ);

• M, w " @iϕ iff M, w′ " ϕ, where w′ = N(i).
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If M, w " ϕ we say that ϕ is satisfied in M at w. If ϕ is satisfied at all states in a
structure M, we write M " ϕ. If ϕ is satisfied at all states in all structures based
on a frame F , then we say that ϕ is valid on F and we write F " ϕ. If ϕ is valid
on all frames, then we simply say that ϕ is valid and we write " ϕ. We say that a
set Φ of hybrid formulas is satisfiable if there exists a model M and a world w ∈ W
such that M, w " Φ, i.e., M, w " ϕ for all ϕ ∈ Φ. For ∆ ⊆ Form@(L), we say that
M is a model of ∆ if M " δ for all δ ∈ ∆. !

Definition 2.4. Let L be a hybrid signature. The set At(L) of atomic satisfaction
statements (atoms, for short) over L is the set of L-formulas of the forms @ip,
@i✸j, and @ij for i, j ∈ Nom and p ∈ Prop. We use BCAt(L) to denote the set
of all (finite) Boolean combinations of atomic satisfaction statements over L, i.e.,
BCAt(L) is the smallest set containing At(L) and closed under ∧ and ¬. !

Definition 2.5. An L-truth assignment is a mapping v : At(L) → {T, F}. Given
an L-truth assignment v, one may extend it to v : BCAt(L) → {T, F } through the
truth-functional interpretation of the propositional connectives. In order to simplify
notation, given that this extension is unique, we will use v in order to refer both
to an L-truth assignment and to its extension v. Let Φ ⊆ BCAt(L). We say that
Φ is propositionally satisfiable if there is an L-truth assignment that simultaneously
satisfies every member of Φ. We say that Φ is propositionally unsatisfiable if there
is no such L-truth assignment. !

We have now the basis to start investigating a first Herbrand-like theorem for
hybrid logic:

Theorem 2.6. Let Φ ⊆ BCAt(L). If Φ is propositionally unsatisfiable then Φ is
unsatisfiable.

Proof. Suppose that Φ is satisfiable: then there is a model M and a world w ∈ W
such that M, w " Φ, i.e., M, w " ϕ for all ϕ ∈ Φ.

Define vM : At(L) → {T, F } by setting vM(ψ) = T iff M, w " ψ.
Let us prove by induction on the structure of ϕ ∈ BCAt(L) that vM(ϕ) = T iff

M, w " ϕ.

• If ϕ ∈ At(L), the result follows from the definition of vM.

• Suppose now, by Induction Hypothesis, (IH), that M, w " ϕi iff vM(ϕi) = T ,
for i = 1, 2.
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– If ϕ = ϕ1 ∧ ϕ2 , then

M, w " ϕ iff M, w " ϕ1 ∧ ϕ2
iff M, w " ϕ1 and M, w " ϕ2
iff

(IH)
vM(ϕ1 ) = T and vM(ϕ2 ) = T

iff vM(ϕ1 ∧ ϕ2 ) = T
iff vM(ϕ) = T

– If ϕ = ¬ψ, then

M, w " ϕ iff M, w " ¬ψ
iff M, w ! ψ
iff

(IH)
vM(ψ) = F

iff vM(¬ψ) = T
iff vM(ϕ) = T

Since M, w " Φ, by assumption, we have that vM(ϕ) = T for any ϕ ∈ Φ. Therefore,
Φ is propositionally satisfiable. #

Example 2.7. Let L = ⟨{p, q}, {i, j}⟩, and Φ = {@ip ∨ @iq, @j¬q, @ij, @i✸j}.
The set Φ is satisfiable, as there is a model M = (W, R, N, V ) such that W =

{w}, R = {(i, i)}, N(i) = N(j) = w, V (p) = {w} and V (q) = ∅, where M, w " Φ.
Define vM : At(L) → {T, F } by setting vM(ψ) = T iff M, w " ψ. This implies

that vM(@ip) = T , vM(@i✸j) = T , vM(@ij) = T and for all other atomic satisfac-
tion statements in L, vM assigns F . The extension of vM to vM is straightforward.
Thus Φ is propositionally satisfiable. $

The converse of the previous theorem is not true in general. Here is a counter-
example:

Example 2.8. Let L = ⟨{p}, {i, j}⟩, and Φ = {@ij, @ip, @j¬p}.
Note that Φ is propositionally satisfiable: take vM : At(L) → {T, F } to be such

that vM(@ip) = T , vM(@ij) = T , and vM assigns the value F to all other atomic
satisfaction statements.

However, Φ is not satisfiable, as there is no model M such that M, w " Φ.
Any model that satisfies the first formula in Φ has that N(i) = N(j) = w. From
the second and the third formulas, one must have that w ∈ V (p) and w /∈ V (p),
respectively, which is a contradiction. $
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As in the case of first-order logic with equality, the characteristic equality axioms
need to be taken into consideration. In hybrid logic we do not have an explicit
symbol of equality in the language; however, there are hybrid formulas that express
the equality axioms over nominals in L (see [3]):

• Reflexivity: @ii, for i ∈ Nom;

• Symmetry: @ij → @ji, for i, j ∈ Nom;

• Nom: (@iϕ ∧ @ij) → @jϕ, for i, j ∈ Nom and @iϕ an atomic satisfaction
statement;

• Bridge: (@i✸j ∧ @jk) → @i✸k, for i, j, k ∈ Nom.

The set of all equality axioms over the hybrid signature L is denoted by Eq(L). It
is easy to check that these formulas are all valid in hybrid logic. Note that Bridge
does not follow from the other axioms, as it is the only axiom where nominals are
replaced in formula position.

Lemma 2.9. Let M be a model and ϕ be a formula in BCAt(L). Then,

∃w ∈ W : M, w " ϕ iff M " ϕ

Proof. We will check this result by induction on the structure of ϕ ∈ BCAt(L):
• For ϕ = @iψ an atomic satisfaction statement:

∃w ∈ W : M, w " ϕ iff ∃w ∈ W : M, w " @iψ
iff M, w′ " ψ, where w′ = N(i)
iff M " @iψ
iff M " ϕ

• Suppose by (IH) that ψ and θ are such that the result holds. Then,
− For ϕ = ¬ψ:

∃w ∈ W : M, w " ϕ iff ∃w ∈ W : M, w " ¬ψ
iff ∃w ∈ W : M, w ̸" ψ
iff

(IH)
M ̸" ψ

iff ∀w ∈ W : M, w ̸" ψ
iff ∀w ∈ W : M, w " ¬ψ
iff M " ¬ψ
iff M " ϕ

− For ϕ = ϕ1 ∧ ϕ2 :
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For one implication:
∃w ∈ W : M, w " ϕ

iff ∃w ∈ W : M, w " ϕ1 ∧ ϕ2
iff ∃w ∈ W : (M, w " ϕ1 and M, w " ϕ2 )

implies ∃w ∈ W : M, w " ϕ1 and ∃w ∈ W : M, w " ϕ2
iff

(IH)
M " ϕ1 and M " ϕ2

iff ∀w ∈ W : M, w " ϕ1 and ∀w ∈ W : M, w " ϕ2
iff ∀w ∈ W : M, w " ϕ1 and M, w " ϕ2
iff ∀w ∈ W : M, w " ϕ1 ∧ ϕ2
iff M " ϕ1 ∧ ϕ2
iff M " ϕ

For the converse implication:
M " ϕ iff M " ϕ1 ∧ ϕ2

iff ∀w ∈ W : M, w " ϕ1 ∧ ϕ2
implies

(given that W ≠ ∅)
∃w ∈ W : M, w " ϕ1 ∧ ϕ2

iff ∃w ∈ W : M, w " ϕ #

Let us consider next the binary relation ∼ defined on Nom by setting i ∼ j iff
v (@ij) = T .

Lemma 2.10. The binary relation ∼ is an equivalence relation.

Proof. [Reflexivity] is guaranteed by the homonymous axiom stated above, namely
@ii, for i ∈ Nom. Once Eq(L) ⊆ Φ, then v(@ii) = T implies i ∼ i.
[Symmetry] holds due to the fact that if i ∼ j, then v(@ij) = T , and given that
Eq(L) ⊆ Φ, we have v(@ij → @ji) = T , which implies that v(@ji) = T . So, j ∼ i.
[Transitivity] follows from Symmetry and the axiom Nom. Suppose i ∼ j and j ∼ k.
By [Symmetry] it follows that j ∼ i and j ∼ k, thus v(@ji) = T and v(@jk) = T .
Once more, since Eq(L) ⊆ Φ, we have in particular that v ((@ji ∧ @jk) → @ik) = T .
We conclude that v(@ik) = T , thus i ∼ k. #

The above result is crucial in proving Herbrand’s Theorem for languages con-
taining equality. Next we show that if for a set Φ of Boolean combinations of atomic
satisfaction statements with equality there is a valuation v that assigns the value
true to all atomic satisfaction statements in Φ, then there is a hybrid structure that
satisfies the equality axioms and where Φ is satisfiable.

Theorem 2.11. Assume Eq(L) ⊆ Φ ⊆ BCAt(L). If Φ is unsatisfiable then Φ is
propositionally unsatisfiable.
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Proof. Suppose that Φ is propositionally satisfiable and let v : At(L) → {T, F } be
such that v(ϕ) = T for any ϕ ∈ Φ.

Let W = Nom. We define the hybrid structure M = (Wv, Rv, Nv, Vv) such that:
• Wv = W/ ∼;
• [i]Rv[j] iff v (@i✸j) = T , for i, j ∈ Nom;
• Nv(j) = [i] iff v (@ij) = T , for i, j ∈ Nom; and
• [i] ∈ Vv(p) iff v (@ip) = T , for i ∈ Nom, p ∈ Prop.

Claim I. Rv is well-defined.
We want to prove that if i ∼ j and k ∼ l, then [i]Rv[k] implies [j]Rv[l].
– Suppose that i ∼ j, k ∼ l and [i]Rv[k]. By definition, we know that [i]Rv[k]

means that v (@i✸k) = T , and i ∼ j means that v (@ij) = T . It follows that
v (@i✸k ∧ @ij) = T . The axiom Nom let us conclude then that v (@j✸k) = T .
We also know that k ∼ l means that v (@kl) = T . From the axiom Bridge, since
v (@j✸k ∧ @kl) = T , it follows that v (@j✸l) = T . Therefore, by definition, [j]Rv[l].

Claim II. Vv is well-defined.
We want to prove that if i ∼ j then ([i] ∈ Vv(p) iff [j] ∈ Vv(p)).
– Suppose that i ∼ j and [i] ∈ Vv(p). By the definition of the equivalence relation

∼, v(@ij) = T ; and by the definition of Vv, v(@ip) = T . Then v(@ip ∧ @ij) = T
and from Nom it follows that v(@jp) = T . So, [j] ∈ Vv(p). The converse direction
is checked analogously in view of the symmetry of ∼.

All that is left to prove now is the satisfiability of Φ.

Claim III. For all ϕ ∈ BCAt(L), (M " ϕ iff v(ϕ) = T ).
Below you should recall that for Boolean combinations of atomic satisfaction

statements, satisfiability at one state is equivalent to satisfiability at all states, by
Lemma 2.9.

• ϕ = @ip
M " @ip iff M, [i] " p

iff [i] ∈ Vv(p)
iff v(@ip) = T
iff v(ϕ) = T
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• ϕ = @i✸j
M " @i✸j iff M, [i] " ✸j

iff ∃k : [i]Rv[k] and M, [k] " j
iff ∃k : [i]Rv[k] and [k] = [j]
iff [i]Rv[j]
iff v(@i✸j) = T
iff v(ϕ) = T

• ϕ = @ij
M " @ij iff M, [i] " j

iff [i] = [j]
iff v(@ij) = T
iff v(ϕ) = T

• By (IH), let ϕ1 ,ϕ2 be such that M " ϕi iff v(ϕi) = T , for i = 1, 2.
This part is similar to Theorem 2.6, so we omit the details.

– Given ϕ = ϕ1 ∧ ϕ2 , note that

M " ϕ1 ∧ ϕ2 iff v(ϕ1 ∧ ϕ2 ) = T

– Given ϕ = ¬ϕ1 , note that

M " ¬ϕ1 iff v(¬ϕ1 ) = T

Thus, in particular, M " Φ, and this means that Φ is satisfiable. #

We finish this section by generalizing the above results to compound satisfaction
statements. Let ϕ be any satisfaction statement. The following rules allow us to
rewrite ϕ by recursively applying the following rules in order to obtain a semantically
equivalent formula ϕ◦ ∈ BCAt(L∗), where L∗ is an expansion of L obtained by the
addition of new nominals to the initial hybrid signature. Observe that such extension
is possible since we considered Nom to be a countable set.

Rewrite Rules:

1. @i@jϕ% @jϕ

2. @i¬ϕ% ¬@iϕ

3. @i(ϕ ∧ ψ) % @iϕ ∧ @iψ
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4. @i✸ϕ% @i✸k ∧ @kϕ, for k a fresh nominal

As the above rules successively decrease the complexity of satisfaction state-
ments, it is clear that the associated rewrite system is terminating. In fact, by using
the Knuth-Bendix completion algorithm it is easy to see that the rewrite system is
also confluent. In this respect, it is worth noting that the formula @i@j✸ϕ may
rewrite in two ways, namely as @j✸k1 ∧ @k1ϕ and as @j✸k2 ∧ @k2ϕ. These are
the same, however, modulo the introduced fresh nominals. Moreover, we should
point out that Areces and Gorín, in [1], have investigated labeled resolution calculi
for hybrid logics with inference rules similar to the above rewrite rules; namely our
rules 1., 3. and 4. correspond to their @, ∧ and ⟨r⟩ rules, respectively.

Example 2.12. Consider the formula ϕ = @i@j✸(p ∧ ¬q) in L. It is clear that ϕ
is not a Boolean combination of atomic satisfaction statements of L.

Applying the rewrite rules yields that:
@i@j✸(p ∧ ¬q) % @j✸(p ∧ ¬q)

% @j✸k ∧ @k(p ∧ ¬q), k fresh
% @j✸k ∧ (@kp ∧ @k¬q)
% @j✸k ∧ (@kp ∧ ¬@kq)

Thus ϕ◦ = @j✸k ∧ (@kp ∧ ¬@kq). Note that the new formula is in the hybrid
signature L∗ that expands L by the addition of the new nominal k. $

Theorem 2.13 (Herbrand-like). Let Φ be a set of satisfaction statements such that
Eq(L) ⊆ Φ. Then Φ is propositionally unsatisfiable iff Φ is unsatisfiable.

Proof. We exhaustively apply the previously introduced rules to the formulas of Φ
and transform Φ into Φ◦ := {ϕ◦ : ϕ ∈ Φ} ∪ Eq(L∗). Note that Φ◦ is a subset of
BCAt(L∗), which contains the equality axioms in the expanded language, thus we
may apply Theorems 2.6 and 2.11. #

3 The Case of Quantified Hybrid Logic
In this section we introduce a hybrid logic enriched with operators over world vari-
ables, typically written as s, t, u and so on, distinct from both nominals and propo-
sitional variables. We will also resort to an algebraic similarity type in order to
allow function symbols. This logic, which we will call Algebraic Strong Priorean
Logic, shares some similarities with the logic HLOV(@, ∀, ∃) found in [9], namely
in the use of quantifiers and functions, but it differs in the definition of terms; in
particular, while HLOV(@, ∀, ∃) allows for quantification over both state variables
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and functional terms, the Algebraic Strong Priorean Logic restricts quantifications
to state variables.

Definition 3.1. An algebraic similarity type Σ is a tuple (F,σ) such that F is a non-
empty set of function symbols, and σ assigns to each function symbol its arity. An
algebraic similarity type together with a countable set of world variables, WVar, and
a countable set of nominals, Nom, induces the set Term(Σ, WVar, Nom) of Σ-terms,
whose elements are the algebraic terms given by the grammar:

t ::= i | s | f
(
t1 , · · · , tσ(f)

)

where i ∈ Nom, s ∈ WVar and f ∈ F. !

We may now introduce a powerful hybrid language, H (Σ, @, ∀), whose grammar
is defined below:

Definition 3.2. A hybrid similarity type L is a tuple (Prop, Nom, WVar), where
Prop and Nom are as usual the set of propositional variables and the set of nom-
inals of a hybrid signature, and WVar is a countable set of world variables. Let
Σ = ⟨F,σ⟩ be an algebraic similarity type. The well-formed formulas
Form@,∀(L, Term(Σ, WVar, Nom)) over the hybrid similarity type L and the Σ-terms
Term(Σ, WVar, Nom) are defined by the following grammar:

ϕ ::= p | t | ¬ϕ | ϕ1 ∧ ϕ2 | ✸ϕ | @tϕ | ∀sϕ | ∃sϕ

where p ∈ Prop, t ∈ Term(Σ, WVar, Nom) and s ∈ WVar.

Note that @ can make use of Σ-terms, i.e., world variables and functional terms.
The connectives ∨, →, and ✷ are defined as usual. !

The earlier definition of a ‘hybrid structure’ is now upgraded as follows:

Definition 3.3. Let L = ⟨Prop, Nom, WVar⟩ and Σ = ⟨F,σ⟩ be, respectively, a
hybrid and an algebraic similarity types. A hybrid structure H over ⟨L, Σ⟩ is a tuple
(W, R,

(
fW

)

f∈F
, N, V ), where W , R, N and V are the domain, accessibility relation,

hybrid nomination and valuation as introduced in Definition 2.2, and
(
fW

)

f∈F
is a

family containing for each f ∈ F an interpretation fW : W σ(f) → W . !

As we need a mechanism for coping with the terms introduced in the above gram-
mars, we consider now a world assignment g : WV ar → W . Two world assignments
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g and g′ are called s-variant iff g(u) = g′(u), for all u ∈ WVar such that u ̸= s; in
such case we write g

s∼ g′. We extend g to Term(Σ, WV ar) in the following way:

ḡ(t) =

⎧
⎪⎪⎨

⎪⎪⎩

g(t), if t ∈ WVar
N(t), if t ∈ Nom
fW

(
ḡ(t1 ), . . . , ḡ(tσ(f))

)
, if t = f(t1 , . . . , tσ(f)), for some f ∈ F

In order to simplify notation, we will use g to denote both a world assignment and
its extension.

The notion of satisfaction is now defined in the following way:

Definition 3.4. The satisfaction relation " between a hybrid structure
H =

(
W, R,

(
fW

)

f∈F
, N, V

)
, a state w ∈ W , a world assignment g and a hybrid

formula is recursively defined by:

• H, g, w " p iff w ∈ V (p), for p ∈ Prop;

• H, g, w " t iff w = g(t), for t ∈ Term(Σ, WVar, Nom);

• H, g, w " ¬ϕ iff it is not the case that H, g, w " ϕ;

• H, g, w " ϕ1 ∧ ϕ2 iff H, g, w " ϕ1 and H, g, w " ϕ2 ;

• H, g, w " ✸ϕ iff ∃w′ ∈ W (wRw′ and H, g, w′ " ϕ);

• H, g, w " @tϕ iff H, g, w′ " ϕ, where w′ = g(t), for t ∈ Term(Σ, WVar, Nom);

• H, g, w " ∀sϕ iff H, g′, w " ϕ for all g′ such that g′ s∼ g;

• H, g, w " ∃sϕ iff H, g′, w " ϕ for some g′ such that g′ s∼ g.

Here, H, g, w " ϕ is read as saying that ϕ is satisfied at the state w in the hybrid
structure H under the world assignment g. !

We shall use the appellation Algebraic Strong Priorean Logic to refer to the
logic induced by the above notion of satisfaction. It is worth pointing out that the
Algebraic Strong Priorean Logic contains the logic of the hybrid language with a
binder, as ↓ s.ϕ is expressible here by ∃s (s ∧ϕ). Such logic is very expressive. The
algebraic structure over the set of worlds may be useful in several contexts. Here are
some examples: on trees, one can consider a functional symbol for referring to the
first common ancestor of two given nodes; on the graph representations of maps, one
can consider a functional symbol for referring to an intermediate city that minimizes
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the distance between two other given cities; on temporal frames, one can consider
functional symbols that allow pointing to a specific time after or before the current
moment, or a function that allows one to say that something happens periodically.

Definition 3.5. A set Φ of formulas in Form@,∀(L, Term(Σ, WVar, Nom)) is said
to be satisfiable if there exists a hybrid structure H over ⟨L, Σ⟩, a w ∈ W and
a world assignment g such that H, g, w " ϕ for all ϕ ∈ Φ. We say that ϕ ∈
Form@,∀(L, Term(Σ, WVar, Nom)) is satisfiable if the singleton {ϕ} is satisfiable. !

Definition 3.6. A literal in H (Σ, @, ∀) is a formula of the form: @ap, @a¬p,
@ab, @a¬b @a✸b, @a¬✸b, where p ∈ Prop, and a, b ∈ Term(Σ, WVar, Nom). !

Lemma 3.7 (Labelling). Let ϕ be a formula in Form@,∀(L, Term(Σ, WVar, Nom)).
Then

ϕ is satisfiable iff @iϕ is satisfiable,

where i is a fresh nominal.

Proof.
ϕ is satisfiable iff ∃H, ∃g, ∃w : H, g, w " ϕ

iff ∃H̃, ∃g, ∃w : H̃, g, w " ϕ, w = Ñ(i)
iff ∃H̃, ∃g, ∃w̃ : H̃, g, w̃ " @iϕ
iff @iϕ is satisfiable #

Our goal in what follows is to study the satisfiability of a formula in the Algebraic
Strong Priorean Logic. Since the satisfiability problem of a formula ϕ is equivalent to
the satisfiability problem of a formula @iϕ — where i does not occur in ϕ — we will
prove satisfiability of the latter. In order to do so, it will be convenient to rearrange
formulas so that we end up with a formula in Prenex Conjunctive Normal Form,
i.e., a formula in which quantifiers appear on the left, prefixing a quantifier-free part
that is a conjunction of clauses, where clauses are disjunctions of literals.

Definition 3.8. A formula is said to be rectified if no world variable occurs both
bound and free and if all quantifiers in the formula refer to different world variables.

!

The renaming of bound world variables follows the same approach as in first-
order logic, whose proof is standard:

Lemma 3.9. It is always possible to perform a systematic renaming of bound (world)
variables such that the result is a rectified formula, equivalent to the original one in
the following way: if s occurs bounded in a formula ϕ and u does not occur at all,
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then ϕ is equivalent to the formula obtained by replacing all occurrences of s in the
scope of a quantifier in ϕ with u.

Given a formula ϕ as input, we will refer to the formula ϕ̃ produced by the above
renaming procedure the rectified version of ϕ.

Definition 3.10. Let s1 , . . . , sn be the world variables occurring free in ϕ. The
[rectified] existential closure of ϕ is the formula which results from rectifying ϕ and
then existentially bounding its free variables, i.e., it is the formula ∃s1 . . . ∃sn ϕ̃,
where ϕ̃ is the rectified version of ϕ. !

Lemma 3.11. A formula ϕ and its existential closure ψ are equisatisfiable.

Proof.

ψ is satisfiable
iff ∃H, ∃g, ∃w : H, g, w " ∃s1 . . . ∃sn ϕ

iff ∃H, ∃g, ∃w : H, g1 , w " ∃s2 . . . ∃sn ϕ, for some g1
s1∼ g

iff ∃H, ∃g, ∃w : H, g2 , w " ∃s3 . . . ∃sn ϕ, for some g2
s2∼ g1

s1∼ g
iff · · ·
iff ∃H, ∃g, ∃w : H, gn, w " ϕ, for some gn

sn∼ gn−1
sn−1∼ · · · s2∼ g1

s1∼ g
iff ∃H, ∃gn, ∃w : H, gn, w " ϕ
iff ϕ is satisfiable #

Let us apply the latter two results in the following examples:

Example 3.12. Let ϕ1 = @i(✸p ∧ ¬@sp).
– This formula is rectified.
– The existential closure of ϕ1 is the formula ψ1 = ∃s @i(✸p ∧ ¬@sp).
It is easy to check that ϕ1 and ψ1 are equisatisfiable. $

Example 3.13. Let ϕ2 = @i (¬ (∀s@s¬p ∧ ∃s @sp) ∧ @s¬p).
– This formula is not rectified.
The renaming of variables leads to @i (¬ (∀t@t¬p ∧ ∃u@up) ∧ @s¬p),

which is equivalent to ϕ2 .
– The (rectified) existential closure of ϕ2 is the formula

ψ2 = ∃s @i (¬ (∀t@t¬p ∧ ∃u@up) ∧ @s¬p).
The formulas ϕ2 and ψ2 are equisatifiable. $
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Example 3.14. Let ϕ3 = @i(∀s∃t@s✸t).
– This formula is rectified.
– Since ϕ3 does not have free world variables, it coincides with its existential

closure, ψ3 . $

The following theorem allows us to convert a formula into an equivalent formula
in Prenex Conjunctive Normal Form.

Theorem 3.15. Let L = ⟨Prop, Nom, WVar⟩ be a hybrid similarity type, Σ be an
algebraic similarity type, and H be a hybrid structure over ⟨L, Σ⟩. For each formula
of the form @iϕ, where ϕ ∈ Form@,∀(L, Term(Σ, WVar, Nom)) and i ∈ Nom does not
occur in ϕ, its existential closure ψ is equivalent to a formula in Prenex Conjunctive
Normal Form.

Proof. Let ψ be a formula in the conditions of the theorem.
Step 1: Use the double negation law, the De Morgan’s laws, the duality equivalences
∀sϕ ≡ ¬∃s ¬ϕ and ✸ϕ ≡ ¬✷¬ϕ, and the following rewrite rules until no further
transformations apply.

@a(θ1 ∧ θ2 ) % @aθ1 ∧ @aθ2 @a(θ1 ∨ θ2 ) % @aθ1 ∨ @aθ2
¬@aθ % @a¬θ @a@bθ % @bθ
@a✸θ % ∃u(@a✸u ∧ @uθ) @a∃s θ % ∃s @aθ
@a✷θ % ∀u(@a✷¬u ∨ @uθ) @a∀sθ % ∀s@aθ

where a, b ∈ Term(Σ, WVar, Nom) and u ∈ WVar does not occur in ψ.
Step 2: Flush all quantifiers to the prefix position, as usual, and the result is a
formula in Prenex Normal Form (since the variables added in Step 1 are new, the
formula remains rectified). Apply the associative and distributive laws as necessary
in order to reach a formula in Prenex Conjunctive Normal Form.

Due to the rectified nature of the formulas over which the transformations have
been applied, the resulting formulas are equivalent to the original ones. #

We return to the previous examples and apply the latter result:

Example 3.16. Let ψ1 = ∃s @i(✸p ∧ ¬@sp):
Step 1:

∃s @i (✸p ∧ ¬@sp) % ∃s (@i✸p ∧ @i¬@sp)
% ∃s (∃u (@i✸u ∧ @up) ∧ @i@s¬p)
% ∃s (∃u (@i✸u ∧ @up) ∧ @s¬p)

Step 2: ∃s∃u (@i✸u ∧ @up ∧ @s¬p) $
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Example 3.17. Let ψ2 = ∃s @i (¬ (∀t@t¬p ∧ ∃u@up) ∧ @s¬p).
Step 1:

∃s @i (¬ (∀t@t¬p ∧ ∃u@up) ∧ @s¬p)
% ∃s @i ((¬∀t@t¬p ∨ ¬∃u@up) ∧ @s¬p)
% ∃s @i ((∃t¬@t¬p ∨ ∀u¬@up) ∧ @s¬p)
% ∃s (@i (∃t@t¬¬p ∨ ∀u@u¬p) ∧ @i@s¬p)
% ∃s ((@i∃t@tp ∨ @i∀u@u¬p) ∧ @s¬p)
% ∃s ((∃t@i@tp ∨ ∀u@i@u¬p) ∧ @s¬p)
% ∃s ((∃t@tp ∨ ∀u@u¬p) ∧ @s¬p)

Step 2: ∃s∃t∀u ((@tp ∨ @u¬p) ∧ @s¬p) $

Example 3.18. Let ψ3 = @i(∀s∃t@s✸t).
Step 1:

@i(∀s∃t @s✸t) % ∀s∃t (@i@s✸t)
% ∀s∃t (@s✸t)

Step 2: ∀s∃t (@s✸t) $

Analogously to the corresponding construction in first-order logic, we can also
resort to Skolemization in the Algebraic Strong Priorean Logic.

Lemma 3.19 (Skolemization in H (Σ, @, ∀)). Let ϕ be a sentence of the form
∀s1 . . . ∀sn∃sn+1 G(s1 , . . . , sn, sn+1 ) of H (Σ, @, ∀), where the existentially quantified
variable sn+1 is preceded by n universally quantified variables. In case n = 0, aug-
ment the underlying hybrid similarity type with a new nominal c and form the sen-
tence G(c); otherwise, augment the underlying hybrid similarity type with a new n-
ary function symbol f and form the sentence ∀s1 , . . . , snG(s1 , . . . , sn, f(s1 , . . . , sn)).
Let ϕ′ denote this new sentence, formed after the appropriate augmentation of the
language. Then, there is an extension H′ of the model H such that:

H, g, w " ϕ iff H′, g, w " ϕ′.

The (standard) proof of the latter result shows how to build the mentioned extension
of the original model.

We now apply Skolemization to the previous examples.

Example 3.20. ψ1 = @i✸c1 ∧ @c1p ∧ @c2¬p $

Example 3.21. ψ2 = ∀u ((@c2p ∨ @u¬p) ∧ @c1¬p) $
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Example 3.22. ψ3 = ∀s (@s✸f(s)) $

Definition 3.23. A formula of H (Σ, @, ∀) is in conjunctive Skolem form if it is in
Prenex Conjunctive Normal Form and its prefix contains only universal quantifiers.

!

For a given formula ϕ, its Skolem Form is the result of applying labelling (Lemma
3.7), followed by the rectification and existential closure of the new formula (Lemma
3.11), then putting it in Prenex Conjunctive Normal Form (Theorem 3.15) and
finally performing Skolemization (Lemma 3.19).

With conjunctive Skolem forms defined, we can state the following result:

Theorem 3.24. A set Φ of formulas in H (Σ, @, ∀) is satisfiable iff the set of con-
junctive Skolem forms of formulas in Φ is satisfiable.

Proof. In view of Lemma 3.7, we know that the satisfiability of Φ is preserved when
one considers the set {@iϕ |ϕ ∈ Φ}, with i not occurring in any formula ϕ. Recall
that such nominal is always possible to find, as we assumed Nom to be a countable
set.

From Lemma 3.11, the satisfiability problem for {@iϕ |ϕ ∈ Φ} is the same as
for {@iϕ |ϕ ∈ Φ} where @iϕ represents the existential closure of @iϕ. This step is
possible to accomplish since we also assumed WVar to be a countable set.

Furthermore, we can use the procedure employed in the proof of Theorem 3.15
in order to put formulas in Prenex Conjuntive Normal Form, and this is a procedure
that strictly preserves the satisfiability of formulas. Thus we can deal with the
satisfiability problem of {PCNF

(
@iϕ

)
|ϕ ∈ Φ} where PCNF(ψ) is the result of

applying the steps in the proof of Theorem 3.15 to the formula ψ. Next we apply
Skolemization to all formulas. Beware of the fact that the Skolem symbols introduced
in each formula are to be disjoint. Let us call the resulting set Φ̃. Clearly, by Lemma
3.19, the satisfiability problem for Φ̃ is the same as for Φ. #

The above relatively straightforward proof contrasts with proofs of the analogous
result in first-order logic (see, e.g., [5]), which are often involved.

Definition 3.25. A ground instance of a sentence ∀s1 . . . ∀sn G(s1 , . . . , sn), with
G(s1 , . . . , sn) a quantifier-free formula of H (Σ, @, ∀), is a formula of the form
G(i1 , . . . , in) which results from substituting all occurrences of s1 , . . . , sn in G with
nominals i1 , . . . , in. !
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Before presenting our Herbrand-like result for hybrid logic with quantifiers, we
find it worth pointing out that hybrid logic can be translated into first-order logic
with equality, and (a fragment of) first-order logic with equality can be trans-
lated back into (a fragment of) hybrid logic (cf. [3]). Both translations are truth-
preserving. First-order logic is compact, which means that a set of first-order sen-
tences is satisfiable if and only if every finite subset of it is satifiable. Furthermore,
from our earlier Herbrand-like result (Theorem 2.6), we know that for a set of
Boolean combinations of atomic satisfaction statements, satisfiability implies propo-
sitional satisfiability.
Theorem 3.26 (Herbrand-like). Let L and Σ be, respectively, a hybrid and an
algebraic similarity type, and let Φ ⊆ Form@,∀(L, Term(Σ, WVar, Nom)). Then Φ is
unsatisfiable iff some finite set Φ∗ of ground instances of Skolem forms of Φ∪Eq(L)
is propositionally unsatisfiable.
Proof. By Theorem 3.24 the set Φ is unsatisfiable iff the set Ψ of conjunctive Skolem
forms of formulas in Φ is unsatisfiable. So, in the present proof we will deal with Ψ.

Let us now prove the right-to-left direction of the theorem. First observe that,
from Theorem 2.6, if a set Φ∗ of ground instances of Ψ ∪ Eq(L) is propositionally
unsatisfiable then it is unsatisfiable. Furthermore, notice that a ground instance of
a universal sentence τ is a logical consequence of τ . Therefore, if a set Φ∗ of ground
instances of Ψ ∪ Eq(L) is unsatisfiable, then Ψ ∪ Eq(L) is unsatisfiable, which yields
that Ψ is unsatisfiable. It follows from the previous paragraph that Φ is unsatisfiable.

For the left-to-right direction of the theorem we prove the contrapositive: if every
finite set of ground instances of Skolem forms of Φ ∪ Eq(L), i.e., ground instances of
Ψ ∪ Eq(L), is propositionally satisfiable, then Φ is satisfiable. Let Φ0 be the set of
all ground instances of Ψ ∪ Eq(L). From the assumption that every finite subset of
Φ0 is propositionally satisfiable, it follows from compactness that the entire set Φ0
is propositionally satisfiable. From Theorem 2.11, we conclude that Φ0 is satisfiable.
Thus Ψ∪Eq(L) is satisfiable, from which Ψ is satisfiable, which finally implies that Φ
is satisfiable. #

4 Conclusion
We have proposed two versions of Herbrand’s theorem in the context of hybrid logic,
with a restriction to satisfaction statements, by making use of rules that rewrite each
satisfaction statement as a Boolean combination of atomic satisfaction statements,
and making use also of the fact that each model can be described by its diagram.
We proved that a set of satisfaction statements is propositionally unsatisfiable if and
only if it is unsatisfiable.
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Formulas with quantifiers over objects constitute a challenge. In fact, allowing
non-rigidity introduces a new set of problems: when dealing with non-rigid terms,
i.e. terms that can designate different things at different possible worlds, the act
of designation and the act of passing to an alternative world need not commute.
For an example of how this has been dealt with elsewhere, it is worth to point
out Fitting’s version (cf. [7]) of Herbrand’s theorem for the modal logic K with
varying domains. Following the standard steps for Herbrand-like theorems, after
going through Skolemization one gets non-rigid designators for some formulas and
the above mentioned difficulty concerning non-commutativity ensues. In order to
overcome this issue, Fitting resorted to the concepts of predicate abstraction and
validity functional form. In short, if ϕ is a formula, then ⟨λx.ϕ⟩ is a predicate
abstraction that is to be applied to terms; loosely speaking, for ⟨λx.ϕ⟩(t) to be
true at a world w, ϕ should be true in that world provided we take the value of x
to be whatever the term t designates at w. The predicate abstraction mechanism
does not have an important role to play in classical logic because all the classical
connectives and quantifiers are ‘transparent’ to it. On the other hand, ⟨λx.✷ϕ⟩(t)
and ✷⟨λx.ϕ⟩(t) may have very different meanings, from a semantical viewpoint.
Fitting defines as modal Herbrand transform of a formula X the formula X ′ such
that X → X ′ can be derived from a certain calculus that he presents. He later
proves equivalence between the validity problem for a closed formula ϕ and for
one of its modal Herbrand expansions, a notion built over that of modal Herbrand
transforms. We are confident that within the hybrid scenario something similar is to
be done: by adding just nominals and the satisfaction operator, and assuming that
nominals are rigid, it would seem that @ is to behave as classical connectives and
quantifiers do when interacting with the predicate abstraction mechanism, namely,
that ⟨λx.@iϕ⟩(t) and @i⟨λx.ϕ⟩(t) are to share the same meaning. If the addition of
nominals proves not to be worrisome, then updating the concept of modal Herbrand
transform into hybrid Herbrand transform, after proper adjustments to the calculus
proposed by Fitting in order to incorporate the hybrid machinery, should be rather
trouble-free. The details need to be checked, of course, and we propose that as
future work.

As in [1], we have here investigated a direct path towards the proofs of our
main (Herbrand-like) results, without taking an indirect approach through first-
order translations of the hybrid formulas. However, for a more straightforward
comparison with the standard formulation of the Herbrand Theorem and its numer-
ous applications, it might be worth exploring the connection of our present results
concerning Hybrid Logic to the more long winded route going through its translation
into classical first-order logic. For space reasons, though, we have to leave details of
this reconnaissance to a future opportunity.
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