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Abstract. In the literature, there are several forms of extensions of the
classical bi-implication for the fuzzy logic, as for example, the axioma-
tization proposed by Fodor and Roubens [1]. Another way to obtain a
generalization is to provide a definition based on the classical equivalence
φ ⇐⇒ ψ ≡ (φ ⇒ ψ) ∧ (ψ ⇒ φ), in which the classical operators of con-
junction and implication are replaced, respectively, by a t-norm (T ) and
a fuzzy implication (I). In this paper, we investigate a particular class of
fuzzy bi-implications B(x, y) = T (I(x, y), I(y, x)), in which I is a fuzzy
(T, N)-implication introduced by Bedregal [2]. We study several proper-
ties satisfied by (T, N)-bi-implications, such as the sufficient conditions
that they must satisfy in order to be a f -bi-implication.

1 Introduction

Since the introduction of fuzzy set theory [3], where the crisp membership func-
tions valued in {0, 1} were generalized to allow degrees of membership valued
in [0,1], the investigation of fuzzy logic began as a family of multivalued logics,
referred by Petr Hájek as fuzzy logic in a narrow sense [4, p. 2], which is the
object of investigation of the mathematical fuzzy logic community. What differ-
entiates fuzzy logics in a narrow sense from other multivalued logics, is that the
former has both truth-functionality and truth degrees in [0,1] as fundamental
assumptions (see [5]).

Several generalizations of the classical boolean connectives to the fuzzy set-
ting have been introduced and studied. In particular the classical conjunction
was extended in fuzzy logic by the triangular norms (see for instance [6–9]), the
disjunction by the triangular conorms (see for instance [6–9]), the negation by the
fuzzy negation [10] and the implication by the fuzzy implication (see for instance
[11]). All these together have been used in several applications, for example the
fuzzy implications have been useful to implement automated decision support
systems with “if-then” rules, where depending on the context a suitable fuzzy
implication is selected to implement such rules (see for instance [12]).
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These fuzzy operators have been used as truth-functional interpretations of
formulas over the unit interval. For instance, Hájek [4] proposed a class of log-
ics, called Basic Logics (BL), based on continuous triangular norms and their
residua, were further to be extended to logics based on left-continuous triangular
norms [5].

In classical logic the binary operator that semantically is true only when the
truth-value of its operands are equal, is called equivalence or bi-implication [13,
p. 7] or biconditional when the implication is called conditional [14, p. 70]. Since
equivalences are reflexive, symmetric and transitive relations [13, p. 22] and the
class of operators introduced in this paper are generated by two occurrences of
an implication we prefer the name fuzzy bi-implication, just as in [6, p. 235].

In the literature there is not a consensus upon what a fuzzy bi-implication
should be and one may find it under the names of T -indistinguishability operator
[15, p. 18], fuzzy bi-implication [16,17], fuzzy equality [18], fuzzy bi-residuation
[19], fuzzy equivalence [1,20], T -equivalence [21], fuzzy similarity [4, p. 123] and
restricted equivalence function [22].

The first steps made in order to study the relations in between several of
these extensions and to provide a few novel extensions, were made in [23–25].
In this paper we propose a novel class of fuzzy bi-implications obtained by the
composition of a (T,N)-implication [2,26–28] and a fuzzy negation. We study
several of its properties and, determine the sufficient conditions for such a fuzzy
bi-implication to constitute a sub-class of the well-known axiomatization pro-
posed by Fodor and Roubens in [1].

Several among these fuzzy bi-implications, and, in particular, those proposed
and studied in this paper, can be applied, for example, for image comparison
(see for instance [29]) as well as, be used as a truth-functional interpretation of
formulas with occurrences of bi-implications, just as the Goedel logic has the
conjunction interpreted as the minimum t-norm, probably in other fuzzy logics
the bi-implication could be interpreted as a particular fuzzy bi-implication in
between those proposed in this paper.

This paper is organized in the following manner: in Sect. 2 we provide the
basic concepts needed in order to make this paper self-contained; in Sect. 3 we
propose the class of (T,N)-bi-implications, study several of its properties and
relate it with the Fodor-Roubens axiomatization; finally in Sect. 4 we provide
some conclusions and propose directions for future works.

2 Preliminaries

In this part of the paper, we present some important preliminary notions for the
development of this work.

2.1 t-Norms and Fuzzy Negations

In the literature, there are several operators that extend the classical conjunction
for fuzzy logic, as for example the t-norms defined below:
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Definition 1 ([6] p. 4). A function T : [0, 1]2 → [0, 1] is a t-norm if for all
x, y, z ∈ [0, 1], the following axioms are satisfied:

1. (T1) Commutativity: T (x, y) = T (y, x);
2. (T2) Associativity: T (x, T (y, z)) = T (T (x, y), z);
3. (T3) Monotonicity: T (x, y) ≤ T (x, z), whenever y ≤ z;
4. (T4) 1-ident: T (x, 1) = x.

Some classical examples of t-norms are:

Example 1 ([6] p. 4).

1. The minimum TM(x, y) = min(x, y);
2. The product TP(x, y) = x · y;

3. The drastic product TD(x, y) =
{

0, if (x, y) ∈ [0, 1)2

min(x, y), otherwise

t-norms satisfy the following properties:

Proposition 1 ([6] pp. 5–6). If T : [0, 1]2 → [0, 1] is a t-norm, then:

1. T (0, x) = T (x, 0) = 0, for all x ∈ [0, 1];
2. T (1, x) = x, for all x ∈ [0, 1];
3. T (x1, y1) ≤ T (x2, y2), whenever x1 ≤ x2 and y1 ≤ y2;
4. TD(x, y) ≤ T (x, y) ≤ TM(x, y), for all x, y ∈ [0, 1];

The following Remark is a direct consequence of Definition 1 and Proposi-
tion 1.

Remark 1.

1. T (x, y) = 1 ⇐⇒ x = 1 and y = 1, for all x, y ∈ [0, 1];
2. T (x, x) = 1 ⇒ x = 1.

Another important connective of fuzzy logic is the negation, as below:

Definition 2 ([11] pp. 13–14 and [30]).

1. A fuzzy negation is a non-increasing function N : [0, 1] → [0, 1] such that
N(1) = 0 and N(0) = 1;

2. When a fuzzy negation is involutive, i.e., satisfies the property N(N(x)) = x
for each x ∈ [0, 1], we say that N is a strong fuzzy negation;

3. A fuzzy negation is strict if it is continuous and for each x, y ∈ [0, 1] satisfies
N(x) > N(y) whenever x < y;

4. A fuzzy negation is non-filling if N(x) = 1 ⇐⇒ x = 0;
5. A fuzzy negation is crisp if N(x) ∈ {0, 1} for any x ∈ [0, 1].

Remark 2. It is relevant for this work to emphasize that every strong fuzzy
negation is strict [11, p. 15].

In the example below we present some fuzzy negations.
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Example 2 ([11] pp. 14–15).

1. The Zadeh’s negation NC(x) = 1 − x is strong and non-filling, but is not
crisp;

2. NR(x) = 1 − √
x is strict, non-filling, but is not crisp and strong;

3. The threshold N t(x) =

⎧⎨
⎩

1, if x < t
1 or 0, if x = t, t ∈ (0, 1)
0, if x > t

is crisp, but is neither

strict nor non-filling.

2.2 Fuzzy Implications

The notion of implication in Fuzzy Logic has many non equivalent extensions.
In this paper we are going to use the next one.

Definition 3 ([11] p. 2). A fuzzy implication is a binary operator I :
[0, 1]2 → [0, 1] that satisfies:

(I1) I(x1, y) ≥ I(x2, y), whenever x1, x2, y ∈ [0, 1] and x1 ≤ x2;
(I2) I(x, y1) ≤ I(x, y2), whenever x, y1, y2 ∈ [0, 1] and y1 ≤ y2;
(I3) I(0, 0) = 1;
(I4) I(1, 1) = 1;
(I5) I(1, 0) = 0.

Properties (I1) and (I2) are called first place antitonicity and second place
isotonicity, respectively The remaining properties together with

(I6) I(0, 1) = 1,

are called boundary conditions. The boundary conditions guarantee that the
class of fuzzy implications extend the classical implication. The next result has
(I6) as a particular case. Hence, (I6) is unnecessary in the Definition 3.

Proposition 2 ([11] p. 2). If I : [0, 1]2 → [0, 1] is a fuzzy implication, then

I(x, 1) = 1, for all x ∈ [0, 1]

The properties considered in the next two definitions were stated for fuzzy
implications in [11, pp. 9,20] and [24], but we will study them for fuzzy bi-
implications, which will be presented in Sect. 3.

Definition 4. A fuzzy operator F : [0, 1]2 → [0, 1] is said to satisfy the property
of:

(LNP) left neutrality if:

F (1, y) = y, for all y ∈ [0, 1]

(IP) identity if:
F (x, x) = 1, for all x ∈ [0, 1]



Fuzzy Bi-implications Generated by t-norms and Fuzzy Negations 605

(LOP) left-ordering if:

F (x, y) = 1, whenever x ≤ y

Definition 5. Let N : [0, 1] → [0, 1] be a fuzzy negation. A fuzzy operator F :
[0, 1] → [0, 1] is said to satisfy:

(CP) the contraposition law with respect to N , if:

F (x, y) = F (N(y), N(x)), for all x, y ∈ [0, 1]

(LCP) the left contraposition law with respect to N , if:

F (N(x), y) = F (N(y), x), for all x, y ∈ [0, 1]

(RCP) the right contraposition law with respect to N , if:

F (x,N(y)) = F (y,N(x)), for all x, y ∈ [0, 1]

If F satisfies the contraposition law (or left contraposition or right contraposi-
tion) with respect to N , then we denote these properties by CP (N) (respectively,
by LCP (N) or RCP (N)).

2.2.1 (T,N)-implications
In [2], the author introduced a class of fuzzy implications obtained by the defining
standard based on the classical equivalence φ ⇒ ψ ≡ ¬(φ ∧ ¬ψ)

Definition 6 ([2]). Let T : [0, 1]2 → [0, 1] be a t-norm and N : [0, 1] → [0, 1] be
a fuzzy negation. The function defined by:

INT (x, y) = N(T (x,N(y))), for every x, y ∈ [0, 1]

is called N -dual fuzzy implication of T .

In [26–28], the authors called the N -dual fuzzy implications simply as (T,N)-
implications and studied properties of these fuzzy operators. For example, they
studied the conditions for (T,N)-implications to satisfy (EP), (CP), (LCP),
(RCP) and (LNP). For this work, it is important to mention the following result:

Proposition 3 ([27]). Let T : [0, 1]2 → [0, 1] be a t-norm. If N : [0, 1] → [0, 1]
is a crisp fuzzy negation, then INT satisfies (LOP).

2.3 Fuzzy Bi-implications

In what follows we show an axiomatization of a class of fuzzy bi-implications
proposed by Fodor and Roubens.

Definition 7 ([1] p. 33). A function B : [0, 1]2 → [0, 1] is called f-bi-
implication if it satisfies the following axioms:
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(B1) B(x, y) = B(y, x), for all x, y ∈ [0, 1]; (commutativity)
(B2) B(0, 1) = B(1, 0) = 0; (boundary condition)
(B3) B(x, x) = 1, for all x ∈ [0, 1]; (identity principle)
(B4) B(x, y) ≤ B(x′, y′), whenever x ≤ x′ ≤ y′ ≤ y.

It is important to note that other two further boundary conditions that an
extension of the classical bi-implication needs to satisfy are B(0, 0) = B(1, 1) = 1
which are immediate consequences of (B3).

Example 3. Examples of f-bi-implications are:

1. BM(x, y) =
{

1, if x = y
min(x, y), otherwise , that satisfies (LNP ), (IP ), but does not

satisfy (LOP );

2. BP(x, y) =

{
1, if x = y
min(x,y)
max(x,y) , otherwise , that satisfies (LNP ), (IP ), but does not

satisfy (LOP );
3. BKP(x, y) = 1 − max(x2, y2) + xy, that satisfies (IP ), but does not satisfy

(LNP ) and (LOP ).

Note that, by (B2) their does not exist a f -bi-implication that satisfies
(LOP ).

3 Fuzzy Bi-implications Generated by t-Norms and
Fuzzy Negations

In this section, we investigate a special type of fuzzy bi-implications obtained by
the defining standard based on the classical logical equivalence φ ⇐⇒ ψ ≡ (φ ⇒
ψ)∧(ψ ⇒ φ) Considering the t-norms and fuzzy implications as a generalizations,
respectively, of the classical conjunction and classical implication, we have the
following function B(x, y) = T (I(x, y), I(y, x)), where T is a t-norm and I is
a fuzzy implication. In this paper, we study the case in which I is a (T,N)-
implication.

Definition 8. Let N : [0, 1] → [0, 1] be a fuzzy negation and T : [0, 1]2 → [0, 1]
be a t-norm. The N dual fuzzy bi-implication of T (or fuzzy (T,N)-bi-implication
or simply (T,N)-bi-implication) is a function BN

T : [0, 1]2 → [0, 1] of the form:

BN
T (x, y) = T (INT (x, y), INT (y, x))

= T (N(T (x,N(y))), N(T (y,N(x))))

Example 4. Let TM and NC be the operators defined, respectively, in Exam-
ples 1 and 2, then:

BNC

TM
(x, y) = min(1 − min(x, 1 − y), 1 − min(y, 1 − x))

= min(max(1 − x, y),max(1 − y, x))

Note that BNC

TM
is not a f-bi-implication, since it does not satisfy (B3), for

example, BNC

TM
(0.7, 0.7) = 0.7. Thus, (T,N)-bi-implications fail to constitute a

subclass of the class of f-bi-implications.
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3.1 Properties of (T,N)-bi-implications

In this subsection we investigate some properties of (T,N)-bi-implications. In
the next result we show that there exist an unique fuzzy negation that generates
a given (T,N)-bi-implication.

Proposition 4. Let T : [0, 1]2 → [0, 1] be a t-norm and N : [0, 1] → [0, 1] be a
fuzzy negation. Then,

BN
T (x, 0) = N(x), for any x ∈ [0, 1]

Proof. Just note that:

BN
T (x, 0) = T (N(T (x,N(0))), N(T (0, N(x)))

= T (N(T (x, 1)), N(0)) − by 1 of Proposition 1
= T (N(x), 1) − by (T4) and Definition 2
= N(x) − by (T4)

Corollary 1. If T : [0, 1]2 → [0, 1] is a t-norm and N : [0, 1] → [0, 1] is a fuzzy
negation, then BN

T (·, 0) : [0, 1] → [0, 1] is a fuzzy negation.

A natural question is, does there exist an unique t-norm that generates
a given (T,N)-bi-implication. For a (T,N)-bi-implication generated by strong
fuzzy negations, the following Proposition proves a positive answer for this ques-
tion.

Proposition 5. If N is a strong fuzzy negation and T is t-norm, then it does
not exist a t-norm T ′ �= T such that BN

T = BN
T ′ .

Proof. Just note that, for any strong negation N and x, y ∈ [0, 1]

I(x, y) = N(T (x,N(y))) ⇒ N(I(x, y)) = T (x,N(y))
⇒ T (x, y) = N(I(x,N(y)))

Note that when a (T,N)-bi-implication is generated by a strong fuzzy nega-
tion, both the fuzzy negation and the t-norm, are unique. The next two results
are immediately obtained by the Definition 8 and the Corollary 1.

Proposition 6. If T : [0, 1]2 → [0, 1] is a t-norm and N : [0, 1] → [0, 1] is a
fuzzy negation, then BN

T satisfies (B1).

Corollary 2. If T : [0, 1]2 → [0, 1] is a t-norm and N : [0, 1] → [0, 1] is a fuzzy
negation, then BN

T (0, ·) : [0, 1] → [0, 1] is a fuzzy negation.

Since there is a unique fuzzy negation that generates a (T,N)-bi-implication,
the fuzzy negation of Corollaries 1 and 2 coincide. In the following results we
investigate the sufficient conditions for a (T,N)-bi-implication to be a f -bi-
implication.
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Proposition 7. If T : [0, 1]2 → [0, 1] is a t-norm and N : [0, 1] → [0, 1] is a
fuzzy negation, then BN

T satisfies (B2).

Proof. Follows from (B1) and by the equality BN
T (1, 0) = N(1) = 0 of Proposi-

tion 4.

Proposition 8. If N is a non-filling fuzzy negation, then BN
T satisfies (B3) if,

and only if, the pair (T,N) satisfies the law of non-contradiction.1

Proof. Since,

BN
T (x, x) = 1 ⇐⇒ T (N(T (x,N(x))), N(T (x,N(x)))) = 1 − by Definition 8

⇐⇒ N(T (x,N(x))) = 1 − by Remark 1
⇐⇒ T (x,N(x)) = 0 − by non-filling condition

Corollary 3. If N is a strict fuzzy negation, then BN
T satisfies (B3) if, and only

if, the pair (T,N) satisfies the law of non-contradiction.

Proof. It follows from the fact that all strict fuzzy negation are injective hence,
non-filling.

Example 5. If T = TP and N⊥(x) =
{

1, if x = 0
0, otherwise , then (T,N) satisfies the

law of non-contradiction, N⊥ is a non-filling fuzzy negation that fails to be strict
and BN⊥

TP
satisfies (B3), by Proposition 7.

Theorem 1. Let T : [0, 1]2 → [0, 1] be a t-norm and N : [0, 1] → [0, 1] be a fuzzy
negation. If INT satisfies (LOP ), then BN

T satisfies (B4).

Proof. First let’s see that:

BN
T (x, y) =

{
N(T (x,N(y))), if x ≥ y
N(T (y,N(x))), if x ≤ y

(1)

Indeed, as for all x, y ∈ [0, 1] we have

x ≤ y or y ≤ x

Then, by (LOP ) of INT , we have

INT (x, y) = 1 or INT (y, x) = 1

Thus, the equality

BN
T (x, y) = T (N(T (x,N(y))), N(T (y,N(x))))

= T (INT (x, y), INT (y, x))
1 If T : [0, 1]2 → [0, 1] is a t-norm and N : [0, 1] → [0, 1] is a fuzzy negation, then

we say that the pair (T, N) satisfies the law of non-contradiction if T (x, N(x)) = 0,
for all x ∈ [0, 1] (this law is equivalently stated in [11, p. 55]).
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ensures the Eq. (1) is valid.
Now, given x ≤ x′ ≤ y′ ≤ y, then

BN
T (x, y) = N(T (y,N(x))) and BN

T (x′, y′) = N(T (y′, N(x′)))

Therefore, by the monotonicity conditions of T and N , we conclude that

BN
T (x, y) ≤ BN

T (x′, y′)

Corollary 4. If T : [0, 1]2 → [0, 1] is a t-norm and N : [0, 1] → [0, 1] is a
non-filling fuzzy negation such that the pair (T,N) satisfies the law of non-
contradiction and INT satisfies (LOP ), then BN

T is a f-bi-implication.

Proof. Follows from Propositions 5, 6 and 7, and Theorem 1.

Corollary 5. If N is a crisp fuzzy negation and T is a t-norm, then BN
T satisfies

(B4).

Proof. By Proposition 2, INT satisfies (LOP ). Therefore, by Theorem 1, BN
T sat-

isfies (B4).

There is only one crisp fuzzy negation that is non-filling, that is N⊥, which in
turn also satisfies the law of non-contradiction with any t-norm. Consequently,
by Corollaries 4 and 5, every (T,N)-bi-implication generated by N⊥ and a t-norm
is a f -bi-implication.

There are (T,N)-implications that fail to satisfy (LOP ). For example, for
TM and NC we have that INC

TM
(0.3, 0.5) = 0.7. But in the next result the (T,N)-

bi-implication generated by TM and a strong fuzzy negation satisfies (B4).

Theorem 2. If T = TM and N is a strong fuzzy negation, then BN
TM

satisfies
(B4).

Proof. For any x, y ∈ [0, 1], either x ≤ N(y) or x ≥ N(y). In addition, as N is a
strong fuzzy negation:

x ≤ N(y) ⇐⇒ y ≤ N(x)

and
x ≥ N(y) ⇐⇒ y ≥ N(x)

If x ≤ N(y), then y ≤ N(x) and so,

BN
TM

(x, y) = TM(N(TM(x,N(y))), N(TM(y,N(x))))
= min(N(min(x,N(y))), N(min(y,N(x))))
= min(N(x), N(y))

If x ≥ N(y), then y ≥ N(x) and so

BN
TM

(x, y) = TM(N(TM(x,N(y))), N(TM(y,N(x))))
= min(N(min(x,N(y))), N(min(y,N(x))))
= min(N(N(y)), N(N(x)))
= min(x, y) − because N is strong
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Thus,

BN
TM

(x, y) =
{

min(N(x), N(y)), if x ≤ N(y)
min(x, y), if x ≥ N(y)

Let x ≤ x′ ≤ y′ ≤ y. Then,

• for x ≤ N(y), we have
BN

TM
(x, y) = N(y)

Thus, if x′ ≤ N(y′), then BN
TM

(x′, y′) = N(y′) ≥ N(y) = BN
TM

(x, y). If x′ ≥
N(y′), then BN

TM
(x′, y′) = x′ ≥ N(y′) ≥ N(y) = BN

TM
(x, y). So, BN

TM
(x, y) ≤

BN
TM

(x′, y′).
• for x ≥ N(y), we have

BN
TM

(x, y) = x

Thus, if x′ ≤ N(y′), then BN
TM

(x′, y′) = N(y′) ≥ x′ ≥ x = BN
TM

(x, y). If x′ ≥
N(y′), then BN

TM
(x′, y′) = x′ ≥ x = BN

TM
(x, y). So, BN

TM
(x, y) ≤ BN

TM
(x′, y′).

Therefore, BN
TM

satisfies (B4).
Even though BN

TM
of Theorem 2 satisfies (B4) it is worthy to mention that

the pair (TM, N), where N is a strong fuzzy negation, does not satisfy the law of
non-contradiction, because min(x,N(x)) = 0 ⇐⇒ x = 0 or N(x) = 0. Hence
BN

TM
fails to be a f -implication. The next Propositions show sufficient conditions

for a (T,N)-bi-implication to satisfy (LNP ), LCP (N), RCP (N) and CP (N)).

Proposition 9. Let T : [0, 1]2 → [0, 1] be a t-norm and N : [0, 1] → [0, 1] be a
fuzzy negation. If N is strong, then BN

T satisfies (LNP ).

Proof. For (LNP ) we have:

BN
T (1, x) = T (N(T (1, N(x))), N(T (x,N(1))) − by Definition 8

= T (N(N(x)), N(T (x, 0))) − by (T1) and (T4)
= T (x,N(0)) − by Proposition 1 and becauseN is strong
= x − by Definition 2 and (T4)

Proposition 10. If N is a strong fuzzy negation and T is a t-norm, then BN
T

satisfies LCP (N), RCP (N) and CP (N)).

Proof. For LCP (N), just see that for all x, y ∈ [0, 1]:

BN
T (N(x), y) = T (N(T (N(x), N(y))), N(T (y,N(N(x)))))

= T (N(T (N(x), N(y))), N(T (y, x)))
= T (N(T (N(y), N(x))), N(T (x,N(N(y)))))
= BN

T (N(y), x)
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The property RCP (N) follows from Proposition 9 and (B1), and for CP (N),
just note that for all x, y ∈ [0, 1]:

BN
T (N(x), N(y)) = T (N(T (N(x), N(N(y)))), N(T (N(y), N(N(x)))))

= T (N(T (N(x), y)), N(T (N(y), x)))
= T (N(T (x,N(y))), N(T (y,N(x))))
= BN

T (x, y)

4 Conclusions and Future Works

In this paper, we introduce a new class of binary operators that extend the
classical bi-implications, called (T,N)-bi-implications. We show that the class
of (T,N)-bi-implications is not contained in the class of f -bi-implications and
that these two classes of functions have a non-empty intersection. We also obtain
sufficient conditions for a (T,N)-bi-implication to be a f -bi-implication. Some
open questions are: if the class of f -bi-implications is a subclass of the class of
(T,N)-bi-implications and investigate other properties satisfied by the (T,N)-
bi-implications, as the exchange principle.
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