
Grant Agreement: 287829

Comprehensive Modelling for Advanced Systems of Systems

Compositional Analysis and Design of CML
Models

Deliverable Number: D24.1

Version: 0.4

Date: March, 2012

Public Document Document

http://www.compass-research.eu

D24.1 - Comp. Anal. of CML Models (Public Document)

Contributors:

Marcel Oliveira, UFPE
Augusto Sampaio, UFPE
Pedro Antonino, UFPE
Rodrigo Ramos, UFPE
Ana Cavalcanti, University of York
Jim Woodcock, University of York

Editors:

Marcel Oliveira, UFPE
Augusto Sampaio, UFPE

Reviewers:

Universidade Federal de Pernambuco, University of Newcastle, University of
York

2

D24.1 - Comp. Anal. of CML Models (Public Document)

Document History

Ver Date Author Description
0.1 05-12-2012 Marcel Oliveira Initial document version
0.2 05-02-2013 Marcel Oliveira Sent for Internal Review with Con-

tributors of Deliverable
0.3 08-03-2013 Marcel Oliveira Sent for Internal Review with COM-

PASS Members
0.4 27-03-2013 Marcel Oliveira Ready for 2nd Year Project Review

3

D24.1 - Comp. Anal. of CML Models (Public Document)

Abstract

Several compositional approaches (both for development and analysis) have
been proposed as promising paradigms to deal with the ever increasing need
for mastering complexity, evolution and reuse in the design of computer based
systems. In order to ensure the success of a compositional reasoning method,
it is essential that we trust the behaviour of the constituent parts and their
combination. These can be components in component-based system develop-
ment approaches, or entire systems in the more recent effort to systematise
the development of Systems of Systems. Such trustworthiness is even more
important in critical applications. It is crucial to verify whether Systems of
Systems (SoS) satisfy some desired properties. In fact, most dysfunctional
interactions are originated by classical problems in concurrent systems, such
as deadlock and livelock. Unfortunately, it is at present difficult to verify
important properties of industrial applications in a compositional way. Most
well known industrial models, which define constituents and how they inte-
grate, are widely based on simple, low-level granularity parts represented by
syntactical interfaces, which lack behavioural information and restrict veri-
fication. Furthermore, the practice to date has been to verify and validate
the system after it has been built – the system is designed, implemented and
then verified and validated. The major issue is the high cost to fix a problem
that is found in a late stage in development, especially when the problem
requires redesigning the system to meet reliability or some other quality at-
tribute requirement. For SoS, this is even more critical; as far as we are
aware, there is no well established compositional approach for developing or
reasoning about an SoS based on properties of its constituent systems.

Previously, we proposed a CSP-based correct-by-construction strategy for
ensuring the preservation of properties of a system from proved properties
of its interaction model and of its constituents. We consider the freedom of
deadlock. Although we focus on this property, the strategy can be applied
to predict other safety and liveness properties. Particularly, in Deliverable
D24.4 (due in month 36) we will consider a notion of service conformance,
which entails the preservation of (part of) the behaviour of the constituents
systems after composition. In this document, we present the basic definitions
of that model, which constitutes a generic component model that imposes
the necessary constraints that characterise the components we deal with, and
how they interact. As our approach applies to design a system (in terms of
its components) or an SoS (from its constituent systems), we use the word
components here in a broader sense, standing for components or entire system
models. Each component is represented by a contract, which describes the

4

D24.1 - Comp. Anal. of CML Models (Public Document)

dynamic behaviour, interfaces and interaction points of the component. The
component model also describes how components interact and how white-box
can be packaged into black-box components.

We lift our previous results to provide a similar systematic approach to build
trustworthy CML SoS. The main principle for lifting the approach from CSP
to CML is to keep the main structure of the previous definitions and rules.
The correctness of this lifting is based on two theoretical links presented in
this document. We present a link between state-rich Circus processes and
CSP processes, and a link between CML processes and Circus processes.
Together, the two links provide a full path from CML to CSP, which enables
the lifting of some theoretical results unveiled in the realm of CSP, like ours,
to CML.

The reason for adopting Circus as an intermediate step is that a semantics for
CML was available only in month 12. Also, as the semantics of both CML
and Circus are defined in the framework of the UTP (Unifying Theories
of Programming), the link between CML and Circus is relatively simple.
Based on the results of the lifting, we explore a first example of compositional
analysis of a simple ring buffer application specified in CML. The application
of the approach to part of the case studies of COMPASS is planned for the
deliverable D24.4 (due in month 36).

Despite being a promising approach, its practical effectiveness had not yet
been quantitatively measured. In this document we explore variations of
the composition rules with the notion of metadata that record information
that can be used to alleviate some verification conditions during component
composition. Mechanising the rule applications has required a CSP encoding
of the composition rules and a process refinement characterisation of the rule
side conditions. We then provide a detailed cost analysis of the approach by
mechanically verifying the preservation of deadlock freedom in a stepwise
construction of the dining philosophers example.

This document is an important contribution to one of the COMPASS ob-
jectives: developing compositional design and analysis techniques, based on
architectural patterns (WP24), that will help to realise the potential and
promise of SoS.

5

D24.1 - Comp. Anal. of CML Models (Public Document)

Contents

1 Introduction 13
1.1 Motivation . 13
1.2 Objetives . 16
1.3 Overview . 18

2 Technical Background 20
2.1 CSP . 20

2.1.1 CSP semantic models 23
2.2 Circus . 30
2.3 CML . 36
2.4 Unifying Theories of Programming 43

3 Systematic Development of Trustworthy Component Sys-
tems 46
3.1 Component Model . 46
3.2 Extended Component Model 52
3.3 Mechanising the Composition Rules Side Conditions in CSP . 57

3.3.1 Alphabets . 58
3.3.2 I/O Channels . 58
3.3.3 Infinite Traces and Divergence-Freedom 59
3.3.4 Input Determinism . 59
3.3.5 Strong Output Decisiveness 61
3.3.6 Further Side Conditions in CSP 65

3.4 Experiments . 66

4 Lifting the Approach to Circus and CML 71
4.1 Component Contracts . 71
4.2 Renaming Contracts . 72
4.3 I/O Processes . 73
4.4 Implementation Protocols . 73

5 Linking Theories 76
5.1 Linking Processes . 77
5.2 Linking Refinement . 79
5.3 From Circus to CSP . 79

5.3.1 Mapping Circus into CSP 79
5.3.2 Correctness . 94

5.4 From CML to Circus . 105
5.4.1 Mapping CML into Circus 106

6

D24.1 - Comp. Anal. of CML Models (Public Document)

5.4.2 Correctness . 111

6 Case Study 116
6.1 CML Ring Buffer . 116
6.2 BRIC Ring Buffer . 121

6.2.1 BRIC Composition . 124

7 Conclusion 134
7.1 Related work . 136
7.2 Future work (Deliverable 24.4) 143

A Refinement Laws 147

B Mapping Functions 156
B.1 Mapping Function for Actions 156
B.2 Mapping Function for Numbers 157
B.3 Mapping Function for Predicates 157
B.4 Mapping Function for Set Expressions 158
B.5 Mapping Function for Channel Set Expressions 158
B.6 Mapping Function for Sequence Expressions 158

C Prefixed Actions 159

D RingBuffer : from CML to CSP 160
D.1 CML RingBuffer . 160
D.2 Circus State-rich RingBuffer 163
D.3 Circus Stateless RingBuffer 164
D.4 CSP RingBuffer . 166

E Lifting the Approach to Circus and CML 173
E.1 Propositions . 173
E.2 Theorems . 174

F Mechanisation of the Composition Rules Side Conditions in
CSP 176
F.1 Interleave composition (P [|||] Q) 176
F.2 Communication composition (P [ip ↔ oq]Q) 177
F.3 Feedback composition (P [ip ↪→ oq]) 180
F.4 Reflexive composition (P [ip ¯↪→ op]) 181

G An Exercise on the New Definition of Channel Projection 182
G.1 Lazy Abstraction . 183

7

D24.1 - Comp. Anal. of CML Models (Public Document)

G.1.1 Lazy Abstraction in the Failures Model (F). 183
G.2 Traces Model and I/O Process Properties 185

H Z Formalisation of BRIC 186
H.1 Embedding Circus Syntax into Z 186
H.2 Z Auxiliary Functions . 193
H.3 Circus UTP Model . 195

H.3.1 General Types . 195
H.3.2 Model Auxiliary Functions 197
H.3.3 Predicate Model . 198
H.3.4 Observational Variables 199
H.3.5 Semantic Functions . 199

H.4 Linking UTP Model to FD Model 200
H.5 Properties . 201
H.6 Refinement . 202

I Z Formalisation of Circus BRIC 204
I.1 Basic Definitions . 204
I.2 Component Model . 205

I.2.1 I/O channels . 205
I.2.2 Input determinism . 206
I.2.3 Strong output decisiveness 206
I.2.4 I/O Process . 207
I.2.5 Component Contract 208
I.2.6 Asynchronous Composition 209
I.2.7 Asynchronous Unary Composition 213
I.2.8 Projection . 215
I.2.9 Communication protocol 216
I.2.10 Protocol Implementation 216
I.2.11 Dual Protocol . 217
I.2.12 Dual Protocol . 217
I.2.13 Renaming I/O . 218
I.2.14 I/O confluence . 218
I.2.15 Conjugate protocols 219
I.2.16 Strong protocol compatibility 220
I.2.17 Finite output property 220
I.2.18 Decoupled Channels 221
I.2.19 Buffering self-injection compatibility 221
I.2.20 Interaction patterns . 222
I.2.21 Interaction process . 223
I.2.22 Interaction component 223

8

D24.1 - Comp. Anal. of CML Models (Public Document)

I.2.23 Interaction channels 223
I.2.24 Wrapping . 224

I.3 Composition Rules . 224
I.3.1 Interleave Composition 224
I.3.2 Communication Composition 225
I.3.3 Feedback Composition 225
I.3.4 Reflexive Composition 226
I.3.5 Extended Communication Composition 226
I.3.6 Extended Feedback Composition 227
I.3.7 Wrapping interaction 228

I.4 Extending the Model with Metadata 230
I.4.1 Enriched component contract 230
I.4.2 Enrich component contract 232
I.4.3 Enriched interleaving composition 232
I.4.4 Enriched Communication Composition 233
I.4.5 Enriched Feedback Composition 234
I.4.6 Enriched Reflexive Composition 235

J Proofs on Model Equivalence 237
J.1 Lemmas from Oliveira’s Phd 238
J.2 Laws from UTP Tutorial Phd 239
J.3 New Lemmas . 239
J.4 Theorems . 293
J.5 Auxiliary Lemmas . 399

K Proofs of the Rewrite from Stateful Circus into Stateless Cir-
cus 402
K.1 Skip . 403
K.2 Stop . 405
K.3 Chaos . 406
K.4 Prefixing . 407
K.5 Output Communications . 410
K.6 Output Communications . 414
K.7 Guard . 414
K.8 Input . 418
K.9 Internal Choice . 422
K.10 External Choice . 425
K.11 Hiding . 430
K.12 Alternation . 433
K.13 Assignment . 436
K.14 Sequential Composition . 440

9

D24.1 - Comp. Anal. of CML Models (Public Document)

K.15 Auxiliary Lemmas . 444
K.15.1 Free Event . 457
K.15.2 Simple Synchronisation Event 459
K.15.3 Output Event . 460
K.15.4 Guarded Action . 461
K.15.5 Input Event . 462
K.15.6 Assignment . 466

10

D24.1 - Comp. Anal. of CML Models (Public Document)

List of Figures

1 FDR GUI . 21
2 A Simple CSP Example . 22
3 A Simple Register . 31
4 Theories in the UTP . 45
5 Experiment Results - Phase 1 68
6 Experiment Results - Phase 2 69
7 Mapping CML into CSP . 77
8 First Iteration of Refinement Strategy 83
9 Second Iteration of Refinement Strategy 84
10 Design of a Distributed Ring Buffer 117
11 RingCell Contract . 121
12 Controller Contract . 123
13 Contracts Before Composition 125
14 Contracts Before Communication 126
15 CRingCell1 wrt Contract . 130
16 CRingCell2 Contract . 131
17 CRingCell Contract . 132

11

D24.1 - Comp. Anal. of CML Models (Public Document)

List of Tables

1 Circus Alphabet . 44
2 Mechanisation of Side Conditions in CSP for Interleave Com-

position . 58
3 Mapping between CML and Circus process operators 107
4 Mapping between CML and Circus action CSP-based operators109
5 Mapping between CML and Circus action command operators 110
6 Mapping between CML and Circus action loop operators . . . 112

12

D24.1 - Comp. Anal. of CML Models (Public Document)

1 Introduction

1.1 Motivation

Although compositional approaches (both for development and analysis) have
been around for a long time [Mah90], over the last decade it has re-emerged
as a promising paradigm to deal with the ever increasing need for mastering
complexity, evolution and reuse in the design of computer based systems.
The basic motivation for this paradigm is to replace conventional program-
ming with the composition and configuration of reusable and independent
constituents.

Nevertheless, in order to ensure the success of a compositional and reasoning
method, it is essential that we trust the behaviour of the constituents and
their integrations. Such trustworthiness is even more important in critical ap-
plications. For instance, avionics systems must have high reliability and con-
tinue to operate upon a failure [MJG+10], autonomous agents in a manufac-
turing system must correctly obey their schedule [Weh00, BGL+08]. Errors
in these systems are caused not only by failures of individual constituents,
but by dysfunctional interactions between non-failed constituents.

The reason of dysfunctional interactions is that real industrial constituents
do not always fit together like ‘Lego Pieces’, or just using simple glue code.
Integration solutions are often developed in an ad hoc manner, in which
incompatibilities are not discovered until their side effects emerge during
implementation [HGK+06]. Critical issues for system and Systems of Sys-
tems (SoS) construction are related to the design of the communication-based
interaction mechanisms that permit constituents to work together [Spi04].
The correct design of these elements is critical; otherwise the system or the
SoS may malfunction in subtle ways or may not work at all. This concern
is even more acute when a group of constituents are put together and co-
ordinated to accomplish a collective set of tasks [PA98]. Therefore, it is
crucial to verify whether SoS satisfy some desired properties. In fact, most
dysfunctional interactions are originated by classical problems in concurrent
systems, such as deadlock and livelock.

Safety-related properties, including deadlock and livelock freedom, are emer-
gent system attributes [Lev95]. In other words, these are properties that
emerge from the interactions among multiple constituents, and their anal-
ysis might not reside in any system in particular. For this reason, emer-
gent properties cannot be tested directly in an efficient compositional way.

13

D24.1 - Comp. Anal. of CML Models (Public Document)

In [Min07, MCMM08], it was shown that deciding deadlock freedom and
liveness in interaction systems is NP-hard. Therefore, it is desirable to es-
tablish (stronger) conditions that are easier to test and entail the desired
properties [GGMC+06]. To help development, these conditions should be
intrinsic to the design and implementation rules used by developers and in-
tegrators [Wal03, MH05]. In this way, an engineer, who is not an expert in
analytic theory, can reason about properties of the design.

Problems are inevitable after all. It is impossible to foresee every possible
situation in which a given system might be used. Problems will surely arise
when two or more systems with interfaces that do not match are integrated.
The sooner and more easily these problems are identified and resolved, the
greater is the success of the compositional method.

Unfortunately, it is at present difficult to verify important properties of SoS
in industry. Most well known industrial models, which define constituents
and how they integrate, are widely based on simple, low-level granularity
parts (EJB [DK06] and COM/DCOM [Mic11]). These are represented by
syntactical interfaces, which lack behavioural information and restrict verifi-
cations [FG03].

Ironically, the idea of higher-level granularity models, such as Wright [All97a,
ADG98], Fractal [BCL+06] and SOFA [BHP06], has been still waiting for
full commercial exploitation [Pla05]. Higher-level granularity models com-
plement the syntactical information of a constituent with behaviour. The
overall behaviour can be described using different styles that are usually
associated to constituent, port and assembly behaviours [HJK10a]. The pro-
tocol represents the overall observable behaviour of the constituent. The
port-protocol is associated to a port; it describes the behaviour of a point of
interaction of the constituent. Finally, the assembly behaviour is related to
the interaction between different constituents.

Nevertheless, formal description methods are getting more and more atten-
tion in the development of critical systems because of their accuracy and the
use of theorem proving mechanisms [Chi09]. Much effort is devoted to the
correctness of CBS [All97a, BCD02, HLL06b, Sif10, CZ07]. These works de-
fine a component model with a precise meaning, or adopt a formal notation
to specify the system. This makes it possible to analyse the systems and to
provide tool support in verifications. For SoS, this is even more critical; as
far as we are aware, there is no well established compositional approach for
developing or reasoning about an SoS based on properties of its constituent
systems.

14

D24.1 - Comp. Anal. of CML Models (Public Document)

The practice to date has been to verify and validate the system or the SoS
after it has been built [HLL06b, PV02, CCH+09] – the system or the SoS
is designed, implemented and then verified and validated. The major issue
is the high cost to fix a problem that is found in a late stage in develop-
ment, especially when the problem requires redesigning the system to meet
reliability or some other quality attribute requirement.

Instead of verifying the entire system or the SoS, other more promising ap-
proaches focus on iteratively identifying problems in compositions. However,
in most approaches the cost of subsequent compositions is not alleviated by
the results of the previous ones [ADG98, BCD02, CK96]. Every composition
is taken as a monolithic system for verification, and properties of its consti-
tuting parts are not considered. Verification methods do not take advantage
of the hierarchical structure of systems. In other words, these methods are
not compositional, and have scalability problems by not using local analysis
when this is possible.

In [RSM09], we describe a theoretical foundation for the development of
correct systems, whose summary is presented in Section 3. We propose a
correct-by-construction strategy for ensuring the preservation of properties
of a system (in terms of its components) or an SoS (from its constituent sys-
tems) from proved properties of its interaction model and of its constituents.
We consider freedom of deadlock and livelock. Although we focus on these
properties, the strategy can be applied to predict other safety and liveness
properties. Moreover, the ideas can be transferred to other formal models,
and support the implementation of practical tools.

This approach is intended to address engineering concerns, and make the
expertise on correctness available to engineers who are not experts in un-
derstanding the origin of dysfunctional interactions between non-failed con-
stituents in the system. Moreover, we claim that a constructive approach, in
opposition to a posteriori verification, is more suitable. It preserves quality
attributes of the system by construction, and identifies problems early in the
design phase. Moreover, we use local analysis, when this is possible, to scale
the verifications in our approach.

To underpin this approach, in [RSM09], we also propose important design
constraints. By satisfying these constraints at development, we can cer-
tainly trust the resulting system. These constraints characterise which kinds
of constituents, as well as interactions, are supported in this work. To al-
low further verifications, we focus on behaviour-rich elements, in which not
only syntactical information about operations is presented, but also their be-
haviour: the possible valid sequences of operations that the constituent can

15

D24.1 - Comp. Anal. of CML Models (Public Document)

perform. The other constraints are the constructive constraints. They aimed
to assist system evolution. We focus on notions that predict quality attributes
of constituents in compositions. These notions allow checking whether the
behaviours of two constituents are compatible for them to interoperate. The
entire approach is based on the CSP process algebra [Ros98], which allows
us to formally address property characterisation and preservation.

In [RSM10], we start by performing a study on protocols in isolation, inde-
pendent of being associated to components. This study shows whether two
protocol specifications are compatible to interoperate. The study considers
both synchronous and asynchronous mediums, and presents test character-
isations to verify such compatibility. A component model that delimits the
broad outline of what constitutes a component, exposing its necessary re-
lated technical concepts and constraints, called BRIC, was also introduced
in [RSM10]. As we intend that our approach apply both to design a sys-
tem (in terms of its components) or an SoS (from its constituent systems),
we use the word ’components’ here in a broader sense, standing for compo-
nents or entire system models.

1.2 Objetives

In this document, we present the basic definitions of that model, which im-
poses the necessary constraints that characterise the components we deal
with, and how they interact. It is aligned with the concepts of other practical
models [BHP06, HLL06b, MB05] and covers a wide variety of applications.
Each constituent is represented by a contract, which describes its dynamic
behaviour, interfaces and interaction points. The model also describes how
constituent elements interact and how white-box can be packaged into black-
box elements. The basic notions of this model were originally presented
in [RSM09, RSM10].

Based on the definition of BRIC components, [RSM09] presents a correct-
by-construction strategy for BRIC components. We presented a strategy
for composition that is based on a comprehensive set of basic composition
rules for BRIC components. The proposed rules can be regarded as safe
steps to form a wide variety of trustworthy systems and SoS. The systematic
use of these rules guarantees, by construction, the absence of deadlock and
livelock. Most of the side conditions of these rules are based on the notion
of port protocols. The verification using port protocols is more efficient
since the (whole) behaviour of a constituent is typically much broader (if
we compare the number of states and transitions) than its port protocols.

16

D24.1 - Comp. Anal. of CML Models (Public Document)

The proposed set of rules covers systems with arbitrary topologies, including
those with cycles. An application of these composition rules for tree-topology
architectures is presented in [RSM09]. The refinement based conformance
notion, on which the rules are based on, was first presented in [RSM08].

To improve the practical application of our rules, Ramos proposed an en-
riched model, called BRICK [Ram11]. In this model, contracts are enriched
with metadata to carry additional information useful in composition verifica-
tions. Such metadata enrich component contracts with static information (i.e
port protocols and channels dependency) that assist the runtime environ-
ment with additional (validation) properties. Furthermore, we presented a
new set of composition rules that take this metadata into consideration. The
metadata of the composition is directly derived from the metadata of its con-
stituting elements. As a result, the complexity of compositions is reduced,
and the value of the method is improved.

Despite being a promising approach, its practical effectiveness was not quan-
titatively measured. For instance, the costs of the verification of the side con-
ditions imposed by the composition rules was not compared with the costs
of an ad hoc verification of the resulting composite system. In this document
we explore variations of the composition rules presented in [RSM09], with
the notion of metadata. Mechanising the rule applications required a novel
CSP encoding of the composition rules and a process refinement characteri-
sation of the rules side conditions. We then provide a detailed cost analysis of
the approach by mechanically verifying the preservation of deadlock freedom
using the dining philosophers example. The results presented here provide
empirical evidence that our approach offers a gain, not only concerning a
stepwise systematisation of the system construction, but also regarding the
verification effort. Nevertheless, we demonstrate that this is the case only
when the optimisations based on metadata are considered.

In this document, we lift the results from [RSM09] to provide a similar sys-
tematic approach to build trustworthy CML SoS. Envisioning the SoS context
in which our work is inserted, our approach supports asynchronous commu-
nications. The main principle for lifting the approach from CSP to CML (via
Circus [CSW03]) is to keep the main structure of the definitions and rules.
Nevertheless, a thorough analysis indicated that some changes could be done
to simplify the application of the approach. Furthermore, in order to reuse
these results by providing a theoretical link for processes and refinement,
as we explain in Section 5, we restricted our scope. Our link is limited to
a subset of untimed feasible divergence free CML processes without object-
oriented constructs and without undefined expressions with a limited use of

17

D24.1 - Comp. Anal. of CML Models (Public Document)

predicative specifications. This theoretical link provides a mapping between
Circus processes and CSP processes, which constitutes a very interesting
piece of research that allows researchers to freely migrate results between
these two formalisms. The soundness of this link amounts to a very large
part of the work presented here.

The reason for adopting Circus as an intermediate step is that a semantics for
CML was available only in month 12. Also, as the semantics of both CML
and Circus are defined in the framework of the UTP (Unifying Theories
of Programming), the link between CML and Circus is relatively simple.
Based on the results of the lifting, we explore a first example of compositional
analysis of a simple ring buffer application specified in CML. The application
of the approach to part of the case studies of COMPASS is planned for the
deliverable D24.4 (due in month 36).

The results presented here are an important step towards one of the COM-
PASS objectives: developing compositional design and analysis techniques,
based on sophisticated architectural patterns (WP24), that will help to re-
alise the potential and promise of SoS. They will foster reusability and substi-
tutability (evolution) of components, by limiting impact and costs of changes.
This also has an impact on cost of development, to ensure scalability. Here,
we discuss small scale examples based on simple components. A large scale
SoS example is currently under development and will be part of the final
deliverable of task T2.4.1.

1.3 Overview

This document has the following structure. Sections 2 and 3 are devoted
to background. The former presents the technical background of the doc-
ument by providing a detailed description of the formal languages used
here: CSP (2.1), Circus (2.2), CML (2.3) and their theoretical foundation
framework, the Unifying Theories of Programming (2.4). The latter dis-
cusses the original systematic approach by presenting its basic definitions,
composition rules and their extended counterparts. A novel quantitative
analysis of the original approach is also included in this section.

The remaining sections constitute the main contributions of this document.
In Section 4 we lift the results presented in Section 3 to provide a similar
systematic approach to build trustworthy CML systems. Section 5 provides
the theoretical correctness foundations of this lifting. Section 6 presents an
initial evaluation of our approach on a case study originally presented in

18

D24.1 - Comp. Anal. of CML Models (Public Document)

Circus in [CSW03].

Finally, Section 7 presents our general conclusions, pointing out our main
contributions. We analyse the advantages and disadvantages of our approach
comparing with related works, and we discuss some topics for future work,
particularly considering the scope of the Deliverable D24.4 (due in month
36).

19

D24.1 - Comp. Anal. of CML Models (Public Document)

2 Technical Background

In this section, we provide the technical background of the document. In
Section 2.1, we present the process algebra on which the original approach is
underpinned, CSP [Hoa85, Ros98]. Next, Section 2.2 presents an extension
to CSP, Circus [CSW03], which adds specification facilities in the Z [WD96]
style, enabling both state and communications aspects to be captured in the
same specification. This specification style is the source of inspiration to
our target language, CML [WCF+12], a formal specification language that
integrates a state based notation (VDM++ [FL09]) and CSP, as well as Di-
jkstra’s language of guarded commands and the refinement calculus. Finally,
we present the theoretical foundations of Circus and CML, the Unifying The-
ories of Programming, a framework in which the theory of relations is used
as a unifying basis for programming science across many different computa-
tional paradigms.

2.1 CSP

The language of CSP was first described by Hoare [Hoa85]. It is a pro-
cess algebra that can be used to describe systems composed by interacting
components, which are independent self-contained entities (called processes)
with particular interfaces that are used to interact with the environment.
In [Ros98], a new version of CSP was presented: it differs from Hoare’s ver-
sion only on the treatment of alphabets. It is the later version that forms
the basis of FDR, a tool that model-checks a machine-processable subset of
CSP, called CSPM, which is a combination of an ASCII version of CSP with
an expression language inspired on functional languages. A link between the
CSP and CSPM syntaxes can be found in [Ros98]. In what follows, we briefly
describe the most important CSP constructs.

The two most basic CSP processes are STOP and SKIP ; the former dead-
locks, and the latter does nothing and terminates. If P is a CSP process,
and a an event, then the prefixing a → P is initially able to perform only a,
and after performing a it behaves as P . A boolean guard may be associated
with a process: given a predicate g , if the condition g is true, the process
g & P behaves like P ; it deadlocks otherwise. Processes P1 and P2 can be
combined in sequence using the sequence operator: P1; P2. This process
executes the process P2 after the execution of P1 terminates. The external
choice P1 2 P2 initially offers events of both processes. The performance
of the first event resolves the choice in favour of the process that performs

20

D24.1 - Comp. Anal. of CML Models (Public Document)

Figure 1: FDR GUI

it. Differently from the external choice, the environment has no control over
the internal choice P1 u P2, in which the process internally (nondetermin-
istically) resolves the choice. The sharing parallel composition P1 |[cs]| P2
synchronises P1 and P2 on the channels in the set cs ; events that are not
listed occur independently. Differently, in the alphabetised parallel composi-
tion P1 |[cs1 | cs2]|P2, the processes P1 and P2 synchronise on the channels
that are in the intersection between cs1 and cs2; events that are not in this
intersection occur independently. Processes can also be composed in inter-
leaving: in P1 ||| P2, both processes run independently. The event hiding
operator P \ cs is used to encapsulate the events that are in the channel
set cs . This removes these events from the interface of P , which become no
longer visible to the environment. CSP also provides finite iterated operators
that can be used to generalise the binary operators of sequence, external and
internal choice, parallel composition, and interleaving. A few other process
constructors are available in CSP but omitted here for conciseness. Further-
more, we also omit the syntax of the expression language accepted in CSP,
which can be found in [Ros98].

By way of illustration, we consider the development of a parking spot pre-
sented in Figure 2. In CSP, every channel used in the specification must be
declared. For instance, channel enter , leave declares the channels enter and
leave, which indicate that a customer has entered the parking spot and left it,
respectively. Our abstract specification of a parking spot, PARKING SPOT

21

D24.1 - Comp. Anal. of CML Models (Public Document)

channel enter , leave

PARKING SPOT = enter → leave → PARKING SPOT

datatype ALPHA = a | b
datatype ID = Letter .ALPHA | unknown
channel cash, ticket , change : ID

MACHINE = cash?id → ticket .id → change.id → MACHINE

CUSTOMER(id) =
(enter → cash!id →

(ticket .id → change.id → SKIP
2 change.id → ticket .id → SKIP));

leave → CUSTOMER(id)

PAID PARKING SPOT =
(CUSTOMER(Letter .a)
|[{| cash, ticket , change |}]|
MACHINE) \ {| cash, ticket , change |}

Figure 2: A Simple CSP Example

only requires that two customers cannot enter in sequence; the first one must
leave before the next one enters. Using FDR’s assertion commands, we can
verify that the abstract specification of the parking spot is deadlock free,
divergence free, and deterministic. This is indicated in FDR with a X on the
left of the assertion in Figure 1.

Our concrete parking spot, PAID PARKING SPOT is a paid version of a
public parking spot with a pay and display parking permit machine that
accepts cash, and issues tickets and change. First, we declare a datatype
that represents simple identifications. Datatypes can be divided into two
groups: basic datatypes and complex datatypes. The former is defined in
terms of simple constants and the latter uses constructors that are applied to
types. In Figure 2, datatype ALPHA = a | b defines a datatype ALPHA: vari-
ables of type ALPHA can assume either value a or b. On the other hand,
datatype ID = Letter .ALPHA | unknown defines a ID that represents iden-
tifications. The constructors Letter receives an ALPHA value and returns a
value of type ID (for example, Letter .a); another possibility is the unknown
ID .

22

D24.1 - Comp. Anal. of CML Models (Public Document)

Next, we declare all the new channels that are used in the concrete specifica-
tion. Then, we declare the MACHINE process, which implements the func-
tions of issuing tickets and change, after receiving the cash. After entering
the parking spot, a CUSTOMER must interact with the ticket MACHINE
by inserting the cash into it. The CUSTOMER can then pick the ticket and
the change in any order, and finally, leave the parking spot. In order to
uniquely identify each customer, we parameterise the process CUSTOMER
with an identification, which is used to identify this customer while interact-
ing with the machine via channels cash, ticket , and change. This guarantees
that the machine will only issue the ticket and the change to the customer
who inserted the cash.

The paid parking spot is modelled by the process PAID PARKING SPOT .
It is a parallel composition of the processes CUSTOMER and MACHINE ;
they synchronise on cash, ticket and change, which are hidden from the en-
vironment. The specification PAID PARKING SPOT must always allow
only one customer to enter, and then to leave the parking spot. The asser-
tion assert PARKING SPOT [FD = PAID PARKING SPOT captures the
failures divergence refinement check to be carried out.

2.1.1 CSP semantic models

CSP offers a number of semantical approaches. A process written in CSP
may be understood in terms of operational semantics (where the process is
transformed to a labelled transition system, with transitions representing
communications); or in terms of algebraic semantics (where properties of a
process – such as equivalence to some other process – may be deduced by
syntactic transformations on the process text following a set of algebraic
laws); or in terms of denotational semantics (where the process corresponds
to a value in some mathematical model, typically a complete partial order or
a complete metric space). The latter is the one of particular interest for our
work.

In what follows we briefly describe the three denotational models: traces,
failures and failures-divergences [Ros98].

Traces model. The traces model T denotes a CSP process according to its
traces, which are the set of sequences of communications which the process
may engage. Let A∗X = Σ∗ ∪ {s a 〈X〉 | s ∈ Σ∗} be the alphabet of

23

D24.1 - Comp. Anal. of CML Models (Public Document)

communications. Formally in the traces model each process is identified by
a set T ⊆ A∗X that satisfies the following healthiness condition:

T1. T is nonempty and prefix-closed. This means that it always contains
the empty trace 〈 〉 and if s a t ∈ T then s ∈ T .

Given a CSP process P , the traces of P are denoted as traces(P). For
example, STOP never communicates anything: its set of traces consists only
of the empty trace traces(STOP) = {〈 〉}. Furthermore, the traces of an
prefix process are the traces of the prefixed process P , each prefixed with the
event a first communicated and the empty trace added (traces(a → P) =
{〈 〉} ∪ {〈a〉a s | s ∈ traces(P)}). Details about the other constructors are
presented in [Ros98].

A process C is a trace refinement of A if, and only if, it contains all traces
within A.

Definition 2.1 (Traces refinement) Let P, Q be CSP processes. P is
a trace refinement of Q, written as Q vT P, if and only if, traces(P) ⊆
traces(Q).

Two processes P and Q are traces-equivalent, P ≡T Q , if P vT Q and
Q vT P , i.e., traces(P) = traces(Q). The process STOP is the most refined
process in the traces model, i.e., P vT STOP for all processes P .

The traces model is the weakest of the three denotational models of CSP
that we consider. In fact, the traces of internal and external choice are
indistinguishable. This indicates that traces(P) does not give a complete
description of P , since we would like to be able to distinguish between P u Q
and P 2 Q . For example, the process a → SKIP guarantees that if the
environment is prepared to engage in the event a and then terminate, then
it can engage in the event a and terminate successfully. However, a →
SKIP u a → STOP does not guarantee that it can engage in the event a
and terminate successfully if the environment is ready to engage in the event
a and terminates. The traces model identifies both processes as they have
the same traces. However, one of them guarantees that it will terminate
successfully, but the other does not guarantee.

In terms of verification, the traces model can be deployed for the verification
of safety conditions. That is, a process Q which is a trace refinement of a
process P , will perform traces already defined in P and nothing more, i.e.,
traces(Q) ⊆ traces(P). Safety conditions are concerned with the exclusion
of traces only.

24

D24.1 - Comp. Anal. of CML Models (Public Document)

Stable failures Model. The stable failures model F gives a finer infor-
mation about processes. For instance, it allows us to distinguish between
internal and external choice (and much more). In particular, it allows us
to detect deadlocked processes. A failure of a process is a pair (s ,X), that
describes a set of events X which a process can fail to accept after executing
the trace s . The set X is called the refusal set; the process cannot perform
any event in the set X no matter for how long it is offered.

The ’stable’ in the model name means that the sequences represented by s
are those that reach a stable state where no transition is chosen nondeter-
ministically. In other words, stable states are those in which there are no
choices between external and internal actions.

As an example, let us consider the following processes over the alphabet
{a, b}:

P = a → STOP 2 b → STOP
Q = a → STOP u b → STOP

The stable failure set of P and Q , denoted by failures(P) and failures(Q),
are given by:

failures(P) = {(〈 〉, {X})}
∪ {(〈a〉,X) | X ⊆ {a, b,X}}
∪ {(〈b〉,X) | X ⊆ {a, b,X}}

failures(Q) = {(〈 〉,X) | X ⊆ {a,X}}
∪ {(〈 〉,X) | X ⊆ {b,X}}
∪ {(〈a〉,X) | X ⊆ {a, b,X}}
∪ {(〈b〉,X) | X ⊆ {a, b,X}}

Here, P and Q have different failures, i.e., the stable failures model F can
distinguish between internal and external choice. The failures of P records
that initially (after the trace s = 〈 〉) the process cannot refuse either a or
b. The process Q has two initial invisible actions τ to choose from. After
performing them, it reaches stable states, where it can perform either a or b
separately, and refuse b or a respectively. The failure of Q does not record
any information about the initial state, but only information about the stable
states.

Observe that it is by no means inevitable that every trace of a process has
failure: it may never stop performing τ actions. So, as not all traces of a
process are present in its failures, a process in the F model is represented
not only by its stable failures, but also by its traces. Formally, in the stable

25

D24.1 - Comp. Anal. of CML Models (Public Document)

failures model, each process P is modelled by a pair (T ,F), denoting T =
traces(P) and F = failures(P), where T ⊆ Σ∗X and F ⊆ Σ∗X × P(Σ∗X),
satisfying the following healthiness conditions (where s , t range over Σ∗ and
X ,Y over P(ΣX)):

T1. T is non-empty and prefix closed.

T2. (s ,X) ∈ F ⇒ s ∈ T . This asserts that all traces performed by the
failures should be recorded in the traces component T . In other words
it establishes consistency between the traces component and the failures
component.

T3. s a 〈X〉 ∈ T ⇒ (s a 〈X〉,X) ∈ F . If a trace terminates successfully by
producing X, then it should refuse all events in ΣX at the stable state
after s a 〈X〉.

F2. (s ,X) ∈ F ∧ Y ⊆ X ⇒ (s ,Y) ∈ F . This asserts that in a stable state
if a set X is refused, then any subset Y of X should also be refused.

F3. (s ,X) ∈ F ∧ ∀ a : Y • s a 〈a〉 /∈ T ⇒ (s ,X ∪ Y) ∈ F . This asserts
that if a process P can refuse the set X of events in some stable state,
then the same state must also refuse any set of events Y that the process
can never reach.

F4. sa〈X〉 ∈ T ⇒ (s ,Σ) ∈ F . This asserts that if we have any terminating
trace s a 〈X〉, these should refuse Σ at the stable state after s .

For example, STOP initially refuses to communicate anything.

failures(STOP) = {(〈 〉,X) | X ⊆ ΣX}

Furthermore, initially the prefix process cannot refuse the prefixing event.
Details about the other constructors are presented in [Ros98].

failures(a → P) = {(〈 〉,X) | a /∈ X }
∪ {(〈a〉a s ,X) | (s ,X) ∈ failures(P)}

A process C is a stable failures refinement of A if, and only if, it contains all
traces within A and presents less stable failures; it refuses less communica-
tions.

Definition 2.2 (Stable failure refinement) Let P, Q be CSP processes.
P is a stable failure refinement of Q, written as Q vF P, if, and only if:
traces(P) ⊆ traces(Q) ∧ failures(P) ⊆ failures(Q).

26

D24.1 - Comp. Anal. of CML Models (Public Document)

In other words, if every trace s of Q is possible for P and every refusal
after this trace is possible for P , then Q can neither accept an event nor
refuse unless P does. Two processes P and Q are stable failure-equivalent,
P ≡F Q , if vF Q and Q vF Q , i.e., traces(P) = traces(Q) and failures(P) =
failures(Q). The bottom element in vF is Σ∗X,Σ∗X × P(Σ∗X)), while its top
element is (〈 〉, ∅).

An important phenomenon captured by F is deadlock. Deadlock is a phe-
nomenon pertaining to networks of communicating processes which occur
when two processes cannot agree to communicate with each other, thus the
whole system becomes permanently frozen. This is potentially catastrophic
in safety-critical computing applications. A network that can never exhibit
deadlock is said to be deadlock-free.

In CSP deadlock is represented by the process STOP , which can perform
only the empty trace, and after the empty trace the process STOP refuses
to engage in any event. In CSP, a process P is considered to be deadlockfree,
if the process P after performing a trace s never becomes equivalent to the
process STOP .

Definition 2.3 (Deadlock-free process) A process P is deadlock-free in
CSP if, and only if, ∀ s : Σ∗ • (s ,ΣX) /∈ failures(P)

This definition is justified, as in the model F the set of stable failures is
required to be closed under the subset-relation (F2). In other words: Before
termination, the process P can never refuse all events; there is always some
event that P can perform. Moreover, the stable failure refinement notion
preserves the deadlock-freedom of a process. That is, if P is deadlock free
and P vF Q , then Q is deadlock free.

From the definition of deadlock-free, an interesting lemma about deadlock-
freedom in parallel synchronisations is described below.

Lemma 2.1 Let P and Q be divergence-free CSP processes. Then P ‖ Q
deadlocks if, and only if:

∃(t ,X) : failures(P) • (t ,Σ \ X) ∈ failures(Q)

From the lemma above, it is possible to formulate an important observa-
tion about how process should communicate in order to preserve deadlock-
freedom: one process can never refuses all events that the other can perform.
For instance, consider that X is a maximum refusal of P , then P can perform
events within ΣX \X . From the lemma above, in order to avoid deadlock, Q
cannot refuse such events.

27

D24.1 - Comp. Anal. of CML Models (Public Document)

Failures/divergences Model. The failures/divergence model gives us the
most satisfactory representation for analysing liveness and safety properties
of a CSP process; it allows us to detect not only deadlocked, but also live-
locked processes. Furthermore, it has long been taken as the ‘standard’ model
for CSP.

A process diverges, if it reaches a state from which it may forever compute
internally through an infinite sequence of invisible actions. This is clearly a
highly undesirable feature of the process, described by as ‘even worse than
deadlock’ [Hoa85]. Livelock may invalidate certain analysis methodologies,
and is often caused by a bug in the modelling. However the possibility of
writing down a divergent process arises from the presence of two crucial
constructs: hiding and ill-formed recursive processes. For instance, consider
the processes P = P and Q = (a → Q) \ {a}. Q converts the external
event a into an internal action τ . Therefore, Q indefinitely performs internal
actions, which leads to a divergence. As a consequence, Q and P have the
same behaviour in the failures-divergences model. The CSP process div (the
same of Q , in our example) represents the livelock phenomenon: immediately,
it can refuse every event, and it diverges after any trace.

In the failures/divergence model, the processes are represented by two sets
of behaviours: the failures and the divergences. The divergences of a process
are the finite traces on which the process can perform an infinite sequence
of internal (invisible) actions. So, each process P is modelled by the pair
(failures⊥(P), divergences(P)), where:

• divergences(P) is the (extension-closed) set of traces s on which a pro-
cess can diverge. Thus, divergences(P) contains not only the traces s
on which P can diverge, but also all extensions s a t of such traces;

• failures⊥(P) = failures(P) ∪ {(s ,X) | s ∈ divergences(P)}.

Formally the failures/divergences model FD is defined to be the pairs (F⊥,D)
satisfying the following healthiness condition, where s , t range over Σ∗X, and
X , Y range over P(ΣX):

F.1. traces⊥(P) = traces(P) ∪ divergences(P) is non-empty and prefix
closed.

F.2. (s ,X) ∈ F ∧ Y ⊆ X ⇒ (s ,Y) ∈ F .

F.3. (s ,X) ∈ F ∧ (∀ a ∈ Y • s a 〈a〉 /∈ traces⊥(P))⇒ (s ,X ∪ Y) ∈ F .

F.4. s a 〈X〉 ∈ traces⊥(P)⇒ (s ,Σ) ∈ F .

D.1. s ∈ D ∩ Σ∗ ∧ t ∈ Σ∗X ⇒ s a t ∈ D .

28

D24.1 - Comp. Anal. of CML Models (Public Document)

D.2. s ∈ D ⇒ (s ,X) ∈ F . This adds all divergences-related failures of F .

D.3. sa〈X〉 ∈ D ⇒ s ∈ D . This ensures that we do not distinguish between
how processes behave after successful termination.

A process C is a failures/divergence refinement of A if, and only if, it contains
all failures and divergences of A: it refuses less communications and diverges
in less occasions.

Definition 2.4 (Failures/divergences refinement) Let P, Q be CSP pro-
cesses. P is a failures-divergences refinement of Q, written as Q vFD P, if
and only if, failures⊥(P) ⊆ failures⊥(Q) ∧ divergences(P) ⊆ divergences(Q).

Two processes P and Q are failures-divergences equivalent, P ≡FD Q , if
P vFD Q and Q vFD P , i.e., failures⊥(P) = failures⊥(Q) and divergences(P) =
divergences(Q). The process div is the least refined process in the fail-
ures/divergence model. Then, a process is said to be free of divergence (or
livelock free) if after carrying out a sequence of events, its denotation is
different from div.

It is consensual that the failures-divergences model gives us the most satis-
factory representation for analysing liveness and safety properties of a CSP
process. However, when we look into the mathematical theory of how diver-
gences are calculated, it turns out that seeing accurately what a process can
do after it has already been able to diverge is very difficult, and not really
worth the effort [Ros98]. By combining traces with stable failures (which is
in fact the failures part of the failures-divergences model), it is possible to
see beyond any divergence by ignoring divergences altogether. Moreover, it
is sometimes advantageous to analyse a divergence-free process P by placing
it in a context in which it may diverge as the result of hiding some set of
actions; this only works when the traces and stable failures in this context
are not influenced by these divergences.

For instance, the process P = (a → P 2 b → P) \ {| b |} diverges in its initial
state. The hiding operation converts the external choice into an internal
choice. Therefore, the process internally chooses between the external event
a and an internal action resulted from hiding b. As a consequence, P may
indefinitely perform internal actions, which in the failures-divergences model
leads to divergence.

As we will see in Section 3, in our formalisation of some notions, it is not
convenient that certain hidden events result in divergence. For example, our
intention is that the communication protocols of divergence-free components
are also divergence-free processes, even after hiding all events not in the

29

D24.1 - Comp. Anal. of CML Models (Public Document)

protocol interface.

Therefore, we assume in this work that basic components are divergence-free
and deadlock-free, and use the semantic models presented here in verifications
to ensure that such problems are not introduced in the system formed by
these components. The failures model is used in local analysis, in which the
involved processes are divergent-free and the applied operators are known
for not introducing such a problem. The failures/divergence model is used in
verifications about the compositionality of strategy proposed here, checking
theirs traces, failures and divergences.

2.2 Circus

Circus [CSW03] is a language that is suitable for the specification of concur-
rent and reactive systems; it also has a theory of refinement associated to it.
Its objective is to give a sound basis for the development of concurrent and
distributed system in a calculational style like that of [Mor94].

Circus is based on imperative CSP [Ros98], and adds specification facilities
in the Z [WD96] style. This enables both state and communications aspects
to be captured in the same specification, as in [SD01]. In the same way as
Z specifications, Circus programs are formed by a sequence of paragraphs.
Each of these paragraphs can either be a Z paragraph [Spi92], a definition of
channels, a channel set definition, or a process declaration.

We illustrate the main constructs of Circus using the specification of a simple
register (Figure 3). It is initialised with zero, and can store or add a given
value to its current value. It can also output or reset its current value. The
specification is composed of seven paragraphs.

All the channels that are used within a process must be declared. In a channel
declaration, we declare the name of the channel and the type of the values it
can communicate. However, if the channel does not communicate any value,
but it is used only as a synchronising event, its declaration contains only its
name; no type is defined. A channel declaration may declare more than one
channel of the same type. In this case, instead of a single channel name, we
have a comma-separated list of channel names. This is illustrated in Figure 3
by the declaration of channels store, add , and out .

Generic channel declarations introduce a family of channels. For instance,
the declaration channel [T] c : T declares a family of channels c. For
every actual type S , we have a channel c[S] that communicates values of

30

D24.1 - Comp. Anal. of CML Models (Public Document)

channel store, add , out : Z
channel result , reset
process Register =̂

begin state RegSt =̂ [value : Z]
RegCycle =̂ store?newValue → value := newValue

2 add?newValue → value := value + newValue
2 result → out !value → Skip
2 reset → value := 0

• value := 0; (µX • RegCycle; X)
end

channel read ,write : Z
process SumClient =̂

begin
ReadValue =̂ read?n → reset → Sum(n)
Sum =̂ n : Z • (n = 0) & result → out?r → write!r → Skip

2 (n 6= 0) & add !n → Sum(n − 1)
• µX • ReadValue; X
end

chanset RegAlphabet == {| store, add , out , result , reset |}
process Summation =̂

(SumClient |[RegAlphabet]| Register) \ RegAlphabet

Figure 3: A Simple Register

type S . Channels can also be declared using schemas that group channel
declarations, but do not have a predicate part. This follows from the fact
that the only restriction that may be imposed on a channel is the type it
communicates.

We may introduce sets of previously defined channels in a chanset para-
graph. In this case, we declare the name of the set and a channel-set ex-
pression, which determines the channels that are members of this set. In
our example, we declare the alphabet of the Register as the channel set
RegAlphabet . These are the channels that can be used to interact with this
process.

The declaration of a process is composed of its name and its definition.
Furthermore, like channels, processes may also be declared generic. In this
case, the declaration introduces a family of processes.

31

D24.1 - Comp. Anal. of CML Models (Public Document)

A process is specified as a (possibly) parametrised process, or as an indexed
process. If a process is parametrised or indexed, we first have the declaration
of its parameters. Afterwards, following a •, in the case of parametrised
processes, or a �, in the case of indexed processes, we have the declaration
of the process body. In both cases, the parameters may be used as local
variables in the definition of the process. If the process is not parametrised,
we have only the definition of its body.

A process may be explicitly defined, or it may be defined in terms of other
processes (compound processes). An explicit process definition is delimited
by the keywords begin and end; it is formed by a sequence of process para-
graphs and a distinguished nameless main action, which defines the process
behaviour, in the end. Furthermore, in Circus we use the Z notation to
define the state of a process. It is described as a schema paragraph, after
the keyword state. Process Register in Figure 3 is defined in this way. The
schema RegState describes the internal state of the process Register : it con-
tains an integer value that stores its value. The behaviour of Register is
described by the unnamed action after a •. The process Register has a re-
cursive behaviour: after its initialisation, it behaves like RegCycle, and then
recurses.

Processes may also be defined in terms of other previously defined processes
using the process name, CSP operators, iterated CSP operators, or indexed
operators, which are particular to Circus specifications.

Processes P1 and P2 can be combined in sequence using the sequence op-
erator: P1;P2. This process executes the process P2 after the execution of
P1 terminates. The external choice P1 2 P2 initially offers events of both
processes. The performance of the first event resolves the choice in favour
of the process that performs it. Differently from the external choice, the
environment has no control over the internal choice P1 u P2, in which the
process internally (nondeterministically) resolves the choice.

The parallel operator follows the alphabetised parallel operator approach
adopted by [Ros98]; we must declare a synchronisation channel set. For in-
stance, in P1|[cs]|P2 the processes P1 and P2 synchronise on the channels in the
set cs ; events that are not listed occur independently. By way of illustration,
the process Summation in Figure 3 reads a value n through channel read ,
interacts with a Register , and outputs the value of

∑n
i=1 i through channel

write. It is declared as a parallel composition of processes Register and its
client SumClient ; they synchronise on the set of events RegAlphabet .

Processes can also be composed in interleaving. For instance, a process

32

D24.1 - Comp. Anal. of CML Models (Public Document)

RegisterTwice that represents two Registers running independently can be
defined as the composition Register ||| Register . However, an event reset leads
to a non-deterministic choice of which Register process of the interleaving
actually starts: one of the processes resets, and the other one does not.

The event hiding operator P \ cs is used to encapsulate the events that
are in the channel set cs . This removes these events from the interface of P ,
which become no longer visible to the environment. For instance, the process
Summation encapsulates the interaction between the processes Register and
SumClient (RegAlphabet); the only ways to interact with Summation are via
the channels write and read .

As with CSP, Circus provides finite iterated operators that can be used to
generalise the binary operators of sequence, external and internal choice,
parallel composition, and interleaving. Furthermore, we may instantiate a
parametrised process by providing values for each of its parameters. For
instance, we may have either P(v), where P =̂ (x : T • Proc), or, for
reasoning purposes, we can write directly (x : T • Proc)(v). Apart from
sequence, all the iterated operators are commutative and associative. For
this reason, there is no concern about the order of the elements in the type
of the indexing variable. However, for the sequence operator, we require this
type to be a finite sequence. As expected, the process o

9 x : T • P(x) is the
sequential composition of processes P(v), with v taken from T in the order
that they appear.

Circus introduces a new operator that can be used to define processes. The
indexed process i : T�P behaves exactly like P , but for each channel c of P ,
we have a freshly named channel c i . These channels are implicitly declared
by the indexed operator, and communicate pairs of values: the first element,
the index, is a value i of type T , and the second element is the value of the
original type of the channel. An indexed process P can be instantiated using
the instantiation operator Pbec; it behaves just like P , however, the value
of the expression e is used as the first element of the pairs communicated
through all the channels.

For instance, we may define a process similar to the previously defined
RegisterTwice, in order to have the same process that represents two Registers
running independently, but with an identification of which process is re-
set. In order to interact with the indexed process IndexRegister =̂ i :
{1, 2} � Register , we must use the channels store i , add i , result i , out i
and reset i . We may instantiate the process IndexRegister : the process
IndexRegisterb1c, for instance, outputs pairs through channel out i whose
first elements are 1 and the second elements are the values stored in the reg-

33

D24.1 - Comp. Anal. of CML Models (Public Document)

ister. It may be restarted by sending the value 1 through the channel reset i .
Similarly, we have the process IndexRegisterb2c. Finally, we have the process
presented below that represents a pair of registers: the first element of the
pairs identifies the register.

RegisterTwiceId =̂ IndexRegisterb1c ||| IndexRegisterb2c

The renaming operator P [oldc := newc] replaces all the communications that
are done through channels oldc by communications through channels newc,
which are implicitly declared, if needed. Usually, indexing and renaming
are used in conjunction, as in the redefinition of the process RegisterTwice
presented below.

RegisterTwice =̂

RegisterTwiceId

 store i , add i ,
result i , out i ,
reset i

:=
storeid , addid ,
resultid , outid ,
resetid

We may also combine instantiations of an indexed process using the iterated
operators. For example, we may redefine the process RegisterTwiceId as

||| i : {1, 2} • Registerbic. The same characteristics and restrictions still
apply to the iterated operators.

Finally, generic processes may be instantiated: the expression P [T] instanti-
ates a generic process named P using the type T .

When a process is explicitly defined, besides the definitions of the state and
the main action, we have in its body Z paragraphs, definitions of (parametrised)
actions, and variable sets definitions; they are used to specify the main action
of the process.

As with processes, an action may be parametrised, in which case we have
the declaration of the parameters followed by a •, and then, the body of
the action. An action can be a schema expression, a guarded command, an
invocation to a previous defined action, or a combination of these constructs
using CSP operators. Furthermore, state components and local variables
may be renamed; however, no channel name can be changed.

Three primitive actions are available in Circus: Skip, Stop, and Chaos . The
action Skip does not communicate any value or changes the state: it ter-
minates immediately. The action Stop deadlocks, and the action Chaos di-
verges.

34

D24.1 - Comp. Anal. of CML Models (Public Document)

The prefix operator is standard. However, a guard construction may be
associated with it. For instance, given a Z predicate p, if the condition p is
true, the action p & c?x → A inputs a value through channel c and assigns
it to the variable x , and then behaves like A, which has the variable x in
scope. If, however, the condition p is false, the same action deadlocks. Such
enabling conditions like p may be associated with any action. Predicates
may also be associated with an input prefix. For instance, a communication
c?x : p will only happen when a value of the type of the channel c that
satisfies the predicate p is communicated.

The action Sum in the process SumClient (Figure 3) exemplifies the output
prefix operator. While the number n is different from 0, this action requests
the Register to add a value to its current value by outputting n through
channel add . Finally, when n reaches 0, it requests the result from the
Register , reads it from channel out , and writes it to channel write.

All the free variables of an action must be in scope in the containing process.
All actions are in the scope of the state components. Input communications
introduce new variables into scope, which may not be used as targets of
assignments.

The CSP operators of sequence, external and internal choice, parallel, inter-
leaving, and hiding may also be used to compose actions. However, differ-
ently from processes, at the level actions, recursive definitions (µ) are also
available.

Our Register , as previously described, has a recursive behaviour. Its cycle,
the action RegCycle, is an external choice: values may be stored or accu-
mulated, using channels store and add ; the result may be requested using
channel result , and output through out ; finally, the register may be reset
through channel reset .

At the level of actions, the parallel and the interleaving operators are slightly
different from that of CSP in [Ros98] and [Hoa85]. In order to avoid conflicts
in the access to the variables in scope, parallel composition and interleaving
of actions must also declare two disjoint sets (that may partition) of variables
in scope: state components, and input and local variables. In A1 |[ns1 | cs |
ns2]| A2, both A1 and A2 have access to the initial values of all variables
in ns1 and ns2, but A1 may modify only the values of the variables in ns1,
and A2, the values of the variables in ns2. Besides, the actions A1 and A2

synchronise on the channels in the set cs .

Parametrised actions can be instantiated: for instance, we can have the action
A(x), if A is a previously defined single-parametrised action; we can also have

35

D24.1 - Comp. Anal. of CML Models (Public Document)

an instantiation of the form (x : T • A)(x).

As for processes, the iterated operators for sequence, external and internal
choice, parallel, and interleaving can also be used in order to generalise the
corresponding operators.

Actions may also be defined using Dijkstra’s guarded commands [Dij76]. An
action can be a (multiple) assignment, or a guarded alternation. For instance,
we store a value in the Register using the assignment value := newValue.
Variable blocks can also be used in an action specification. In the interest
of supporting a calculational approach to development, an action can also
be written as a specification statement in the style of Morgan’s refinement
calculus [Mor94]. We adopt the syntactic sugaring {pre} for specification
statements : [pre, true] (assumptions). In the same way, the coercion [post]
is a syntactic sugaring for : [true, post]. The invocation of substitutions
by value, result, or by value-result, as those presented in [Cav97], are also
available in Circus.

Circus and CML, which is the subject of the next section, are indeed very
similar languages. Both languages are based on a language for data-modelling
and CSP. The former uses Z as its data language and the latter uses the Vi-
enna Development Method (VDM) [Jon90]. In addition, CML also includes
constructs for object orientation based on VDM++ [FL09] and an object-
oriented extension of Circus [CSW05b], and constructs for time modelling
based on Timed CSP and a timed extension of Circus [SCHS10].

2.3 CML

The COMPASS modelling language (CML) [WCF+12] is a formal speci-
fication language that integrates a state based notation (VDM++) and a
process algebraic notation (CSP [Hoa85]), as well as Dijkstra’s language of
guarded commands and the refinement calculus. It supports the specifica-
tion and analysis of state-rich distributed specifications. Additionally, CML
supports step-wise development by means of algebraic refinement laws. The
soundness of the refinement laws is established with respect to the formal
semantics of CML, defined in Unifying Theories of Programming [HJ98].
CML is still under development, with a COMPASS tool and several analysis
plug-ins currently in production [CML+12]. In particular, tool support for
CML will include a parser, a type-checker, a simulator, a theorem prover, a
model-checker and a refinement editor.

In the remainder of this chapter, we introduce CML by means of a speci-

36

D24.1 - Comp. Anal. of CML Models (Public Document)

fication of a simple clock, and provide extensions to the clock example to
illustrate features of the CML language. For more details on CML, refer to
[WCF+12, WCC+12].

Initially, we specify a simple clock whose only observable behaviour is a
synchronisation on a channel tick.

channels tick

Internally, the clock has a state variable s that records the number of seconds
(marked by tick) that have elapsed, and has two operations defined: Init()
and increment. The first simply initialises the state with 0, and the second
adds one to the state component. The state is captured by the following
class declaration.

class ClockSt =

begin

state

public s: nat

initial

public Init()

frame wr s

post s = 0

operations

public increment()

frame wr s

post s = s~ + 1

end

The frame keyword in the declaration of operations specifies the state com-
ponents that can be read and written by the operation. In the case of the
Init operation, the state component s can be written by Init. The post

keyword specifies the post-condition of the operation. In the case of Init,
the post-condition states that the state component s (after the operation) is
equal to zero. The post-condition of the operation increment equates the
state component s, after the operation, to the sum of its initial value (s~)
and one.

Our simple clock initialises its state, waits for one time unit, which we take
to mean one second, increments its counter and synchronises on tick. This
is specified by the following process declaration.

37

D24.1 - Comp. Anal. of CML Models (Public Document)

process SimpleClock =

begin

state

c: ClockSt

actions

Ticking = Wait 1; c.increment(); tick -> Skip

@ c.Init(); mu X @ Ticking; X

end

The simple clock is a process that declares a state and a number of actions.
The state, in this case, is formed by a single state component c of type
ClockSt. The actions include Ticking and the action started by @. The
latter is a mandatory main action that defines the behaviour of the process; in
this case, it simply initialises the state by calling the operation Init() of the
state component c and recursively (mu) calls the action Ticking. This action
waits for one time unit, increments the internal counter and synchronises on
the channel tick.

Our initial specification of the clock is extremely simple, the only observable
event is the synchronisation on tick. It might be interesting to have a clock
that takes advantage of its internal counter and supplies information about
how many seconds, minutes, hours and days have elapsed.

We now extend our simple clock to include this additional functionality.
First, we declare four additional channels that communicate a natural num-
ber. They are used to query the seconds, minutes, hours and days that have
elapsed.

channels second, minute, hour, day: nat

The new clock specification is similar to the simple clock; it declares the state
of the process as the component c of type ClockSt, but additionally defines
three functions: get_minute, get_hour and get_day. They take the number
of seconds recorded in the state, and calculate, respectively, the equivalent
number of minutes, hours and days.

process Clock =

begin

state c: ClockSt

functions

get_minute(s: nat) m: nat

post m = s/60

get_hour(s: nat) h: nat

38

D24.1 - Comp. Anal. of CML Models (Public Document)

post h = get_minute(s)/60

get_day(s: nat) d: nat

post d = get_hour(s)/24

The ticking action remains the same as before, but we add a new action,
Interface, that provides the extra functionality.

actions

Ticking = Wait 1; c.increment(); tick -> Skip

Interface = second!(c.s) -> Interface

[] minute!(get_minute(c.s)) -> Interface

[] hour!(get_hour(c.s)) -> Interface

[] day!(get_day(c.s)) -> Interface

This action simply offers a choice ([]) of communication over the channels
second, minute, hour and day, and recurses. Each communication outputs
(outputs are indicated by ! after a channel name) the appropriate value
calculated using the functions previously defined.

Now, the main action of the new clock is slightly different. It first initialises
the state as usual, but instead of offering Ticking alone, it composes Ticking
in parallel with the recursive action Interface with the option of interrupt-
ing (/\) Interface with a synchronisation on tick. The parallel operator
[| ns1 | cs | ns2|] contains a set of events cs on which the two parallel
actions synchronise, and two name sets ns1 and ns2 that partition the state
of the process and indicate which state components can be updated by the
left (ns1) and right (\verbns2!) parallel actions. In our example, the ac-
tion Ticking can update the state component c and the right parallel action
does not update the state. The parallel actions synchronise on the channel
tick.

The two parallel action synchronise on the channel tick.

@ c.Init(); mu X @ (

Ticking

[| {c} | {|tick|} | {} |]

(Interface/\tick -> Skip)

); X

end

While Ticking is waiting, the right hand side of the parallelism can offer
any number of interactions over the channels in Interface. When Ticking

finishes waiting, s is incremented, and the parallelism synchronises on tick.

39

D24.1 - Comp. Anal. of CML Models (Public Document)

In this case, the action Interface is interrupted and both sides of the par-
allelism terminate. At this point, the recursive call (on X) takes place.

When the parallelism starts, both sides receive a copy of the state, and when
the parallelism terminates, the state is updated based on the changes per-
formed by the two sides (on their copies of the state) and the partition of
the state. A consequence of this is that changes to the state performed by
Ticking can only reflect in the behaviour of Interface when the paral-
lelism terminates, the state is updated and Interface restarts (as part of
the recursive call) with a copy of the updated state.

Now we have a clock that not only signals the passing of time, but can also
output the time. However, we might also want to be able to restart the clock.
For this, we define a channel restart and a new clock RestarableClock.

channels

restart

We define the restartable clock similarly to the process Clock defined above.
The restartable clock process RestartableClock has a new action Cycle,
and the altered main action offers the action Cycle and the possibility of
interrupting it through the channel restart. If the interruption takes place,
the main action recurses and Cycle is called resetting the state.

process RestartableClock =

begin

state c: ClockSt

functions

get_minute(s: nat) m: nat

post m = s/60

get_hour(s: nat) h: nat

post h = get_minute(s)/60

get_day(s: nat) d: nat

post d = get_hour(s)/24

actions

Ticking = Wait 1; c.increment(); tick -> Skip

Interface = second!(c.s) -> Interface

[] minute!(get_minute(c.s)) -> Interface

[] hour!(get_hour(c.s)) -> Interface

[] day!(get_day(c.s)) -> Interface

40

D24.1 - Comp. Anal. of CML Models (Public Document)

Cycle = c.Init(); mu X @ (

Ticking

[| {c} | {|tick|} | {} |]

(Interface/\tick -> Skip)

); X

@ mu X @ Cycle /\ restart -> X

end

We can further extend the functionality of the clock by specifying a multi-
clock. A simple way of defining such a clock is to compose a number of
restartable clocks (or any other variety of clock). This raises the question
of how the clocks are composed. For instance, do all clocks synchronise on
tick? Can they be restarted on a one by one basis? We present below two
processes that model a multi-clock. Both of them assume that the clocks are
synchronous, but the first allows independent restarting, while the second
does not.

First, we define a number of channels that allow the environment to com-
municate with specific clocks. We assume that the clocks in the multi-clock
are numbered by natural numbers, and are declared in an equivalent way to
the ones already defined (except for tick), communicating a natural number
(the identifier of the clock) and the value originally communicated. We prefix
the name of the channels with an i.

channels

isecond, iminute, ihour, iday: nat * nat

irestart: nat

Our first model of a multi-clock is specified by the process NRestartableClocks1.
This is a parameterised process that takes the number n of clocks, and starts
n copies of RestartableClock running in parallel and synchronising on tick.
The channels in the RestartableClock process need to be renamed, other-
wise we would not be able to distinguish one clock from another. We rename
each channel (except tick) to its i version, communicating the identifier of
the clock.

process NRestartableClocks1 = n: nat @

[|{|tick|}|] i: {1,...,n} @

RestartableClock[[second <- isecond.i,

minute <- iminute.i,

hour <- ihour.i,

day <- iday.i,

restart <- irestart.i]]

41

D24.1 - Comp. Anal. of CML Models (Public Document)

Our alternative process NRestartableClocks2 is similar, except that the
different clocks synchronise on restart as well, and this channel is not re-
named. Thus, a synchronisation on restart restarts all the clocks simulta-
neously.

process NRestartableClocks2 = n: nat @

[|{|tick, restart|}|] i: {1,...,n} @

RestartableClock[[second <- isecond.i,

minute <- iminute.i,

hour <- ihour.i,

day <- iday.i]]

One might consider that, whilst these definitions are reasonably intuitive,
they are not the most efficient for implementation purposes. So, one might
implement a multi-clock simply by associating each channel of a restartable
clock with the equivalent i channel, but ranging over all the possible clocks.
The next process models such an solution.

process NRestartableClocksImpl = n: nat @

RestartableClock[[second <- isecond.i,

minute <- iminute.i,

hour <- ihour.i,

day <- iday.i | i in set {1,...,n}]]

This process simply renames each channel of RestartableClock (except
tick and restart) to a set of communications on the associated i chan-
nel communicating the identifiers of the clocks.

This process raises the question of which of our multi-clock processes is being
implemented by NRestartableClocksImpl. This questions can be formu-
lated as follows.

assert NRestartableClocks1 [= NRestartableClocksImpl

assert NRestartableClocks2 [= NRestartableClocksImpl

The first assertion states that NRestartableClocksImpl is a refinement of
NRestartableClocks1, and the second asserts that the implementation is a
refinement of NRestartableClocks2. For some models, this assertions can
be checked using a model-checker, but for other, a theorem-prover may be
necessary. The CML tools will help answer such questions.

42

D24.1 - Comp. Anal. of CML Models (Public Document)

2.4 Unifying Theories of Programming

The semantic models of Circus and CML are based on Hoare & He’s Uni-
fying Theories of Programming [HJ98]. The UTP is a framework in which
the theory of relations is used as a unifying basis for programming science
across many different computational paradigms: procedural and declarative,
sequential and parallel, closely-coupled and distributed, and hardware and
software. All programs, designs, and specifications are interpreted as re-
lations between an initial observation and a single subsequent observation,
which may be either an intermediate or a final observation, of the behaviour
of program execution.

Common ideas, such as sequential composition, conditional, nondetermin-
ism, and parallel composition are shared by different theories of different
programming paradigms. For instance, sequential composition is relational
composition, conditional is boolean connective, nondeterminism is disjunc-
tion, and parallel composition is a restricted form of conjunction. Miracle
is interpreted as an empty relation, abortion is interpreted as the universal
relation, and correctness and refinement is interpreted as inclusion of rela-
tions: reverse implication. All the laws of the relational calculus may be used
for reasoning about correctness in all theories and in all languages.

Three elements of a theory are used to differentiate different programming
languages and design calculi: the alphabet, a set of names that characterise a
range of external observations of a program behaviour; the signature, which
provides syntax for denoting the objects of the theory; and the healthiness
conditions, which select the objects of a sub-theory from those of a more
expressive theory in which it is embedded.

The alphabet of a theory collects the names within the theory that identify
observation variables that are important to describe all relevant aspects of
a program behaviour. The initial observations of each of these variables are
undecorated and compose the input alphabet (inα) of a relation. Subsequent
observations are decorated with a dash and compose the output alphabet
(outα) of a relation. This allows a relation to be expressed as in Z by its
characteristic predicate. Table 1 summarises the observational variables of
the UTP that are used in the semantics of Circus.

In Circus, some combinations of these variables have interesting semantic
meaning. For instance, okay ′ ∧ wait ′ represents a non-divergent state of a
process that is waiting for some interaction with the environment; if, however,
we have okay ′ ∧ ¬ wait ′, the non-divergent process has terminated; finally,

43

D24.1 - Comp. Anal. of CML Models (Public Document)

okay This boolean variable indicates if the system has been
properly started in a stable state, in which case its value
is true, or not; okay ′ means subsequent stabilisation in
an observable state.

tr This variable, whose type is a sequence of events, records
all the events in which a program has engaged.

wait This boolean variable distinguishes the intermediate ob-
servations of waiting states from final observations on
termination. In a stable intermediate state, wait ′ has
true as its value; a false value for wait ′ indicates that
the program has reached a final state.

ref This variable describes the responsiveness properties of
the process; its type is a set of events. All the events
that may be refused by a process before the program has
started are elements of ref , and possibly refused events
at a later moment are referred by ref ′.

v All program variables (state components, input and lo-
cal variables, and parameters) are collectively denoted
by v .

Table 1: Circus Alphabet

¬ okay ′ represents a divergent process.

Besides these variables, there are also UTP theories that include variables
that may be used to represent program control, real time clock, or re-
source availability. For each theory, we may select a subset of relevant vari-
ables.

The signature of a theory is a set of operators and atomic components of this
theory: it is the syntax of the language. The smaller the signature, the sim-
pler the proof techniques to be applied for reasoning. Signatures may vary
according to the theory’s purpose. Specification languages are least restric-
tive and often include quantifiers and all relational calculus operators. Design
languages successively remove non-implementable operators. The negation
is the first one to be removed. Thus, all operators are monotonic, and recur-
sion can safely be introduced as a fixed-point operator. Finally, programming
languages present only implementable operators in their signature. They are
commonly defined in terms of their observable effects using the more general
specification language.

Healthiness conditions are used to test a specification or design for feasi-

44

D24.1 - Comp. Anal. of CML Models (Public Document)

Figure 4: Theories in the UTP

bility, and reject it if it makes implementation impossible in the target
language. They are expressed in terms of an idempotent function φ that
makes a program healthy. Every healthy program P must be a fixed-point
P = φ (P). Some healthiness conditions are used to identify the set of rela-
tions that are designs (H1 and H2), reactive processes (R1-R3), and CSP
processes (CSP1-CSP2).

In Figure 4, we present how some of the theories presented in [HJ98] are
related. Relations are predicates with an input and an output (dashed)
alphabet. Designs are relations that are H1 and H2 healthy. Reactive pro-
cesses are R1, R2 and R3 healthy relations (this composition is represented
by the healthiness condition R). Finally, there are two ways of characteris-
ing the CSP processes: they are characterised as reactive processes that are
CSP1 and CSP2 healthy, or as relations that result from applying R to
designs.

45

D24.1 - Comp. Anal. of CML Models (Public Document)

3 Systematic Development of Trustworthy Com-

ponent Systems

In this section, we discuss the theoretical background of the report. We
present the basic definitions and the composition rules in Section 3.1. The
extended counterparts of the definitions and the composition rules are pre-
sented in Section 3.2. A full account on the theoretical background can be
found elsewhere [Ram11].

Sections 3.3 and 3.4 present novel results. The former defines CSP assertions
for all side conditions of the composition rules and the latter discusses the
experiment we did to demonstrate the practical effectiveness of the approach
by comparing the costs of the verification of the side conditions imposed by
the composition rules with the costs of an ad hoc verification of the result-
ing composite system. We also explore variations of the composition rules
presented in [RSM09], with the notion of metadata.

3.1 Component Model

Our approach is based on a component model that delimits the broad out-
line of what constitutes a component, exposing its necessary related technical
concepts and constraints. Both, components and connectors, as well as their
interaction semantics, are characterised in this component model that defines
the building blocks of our systematic development approach. A component
contract1, whose definition is presented below, encapsulates a component in
our approach. They are defined in terms of their behaviour (represented
as a CSP process), ports (represented as channels) and respective inter-
faces (types).

Definition 3.1 (Component contract) A component contract Ctr com-
prises an observational behaviour B, a set of communication channels C, a
set of interfaces I, and a total function R : C → I between channels and
interfaces of the contract (Ctr : 〈B,R, I, C〉), such that:

• B is an I/O process as defined below;

• Let c ∈ C:

1In the COMPASS project contracts are described in CML. Here, a contract is a tuple
that includes a behavioural specification (originally described in CSP, but lifted here to
CML), and other elements that describe the ports and their types.

46

D24.1 - Comp. Anal. of CML Models (Public Document)

– outputs(c,B) = {out .x : R(c) • c.out .x}, and;

– inputs(c,B) = {in.x : R(c) • c.in.x}

Intuitively, the component R describes the component’s channels and their
respective types.

Our approach follows approaches like that of [All97b] in which component
models have a higher-level granularity by complementing the syntactical in-
formation of a component with behaviour. In our case, we explicitly sepa-
rated inputs and outputs.

The behaviour of these components are represented by I/O processes, which
are CSP processes P that satisfy five conditions, which are formally presented
in [Ram11]:

• I/O Channels. Every channel in P is either an input channel or an
output channel. Formally, we say a channel c is an I/O channel if there
exists two functions, inputs(c,P) and outputs(c,P), for every process
P, such that:

– inputs(c,P) ∪ outputs(c,P) ⊆ {| c |}, and

– inputs(c,P) ∩ outputs(c,P) = ∅.

Formally, the two functions map pairs CHANNEL × PROCESS to a
set of events. In Appendix H, we present a full type-checked Z formal-
isation of our compositional model.

• Infinite Traces. P has an infinite set of traces (but finite state-space);

• Divergence-freedom. P is divergence-free;

• Input Determinism. If a set of input events in P are offered to the
environment, none of them are refused. Formally, we say a process P
is input deterministic if:

– ∀ s a 〈c.a〉 : traces(P) | c.a ∈ inputs(c,P) •
(s , {c.a}) /∈ failures(P)

• Strong Output Decisive. All choices (if any) among output events
on a given channel in P are internal. The process, however, must offer
at least one output on that channel. Formally, we say a process is
strong output decisive if:

– ∀ s a 〈c.b〉 : traces(P) | c.b ∈ outputs(c,P) •
(s , outputs(c,P)) /∈ failures(P)
∧ (s , outputs(c,P) \ {c.b}) ∈ failures(P)

47

D24.1 - Comp. Anal. of CML Models (Public Document)

These conditions lay the foundations of our composition rules for contracts
whenever every two components are compatible to interoperate. The appli-
cation of the composition rules and the characterisation constraints in the
component model impose side conditions that, if satisfied, ensure deadlock
freedom in the composition result. Hence, in our approach, problems are
anticipated before all parts are integrated.

In [Ram11], we present four composition rules; each one focuses on a specific
scenario at composition. The rules provide asynchronous pairwise compo-
sitions and focus on the preservation of deadlock freedom in the resulting
component. The preservation of livelock-freedom is not in the scope of this
report but also discussed in [Ram11]. Using the rules, developers may syn-
chronise two channels of two components, or even of the same component.
The four rules are interleave, communication, feedback and reflexive compo-
sitions. The first three rules have also been presented in [RSM09].

The interleave composition rule is the simplest form of composition. It ag-
gregates two independent entities such that, after composition, these entities
still do not communicate between themselves. They directly communicate
with the environment as before, with no interference from each other. The
only proviso states that they do not share any communication channel.

Definition 3.2 (Interleave composition) Let P and Q be two component
contracts, such that:

• P and Q have disjoint channels, and;

• CP ∩ CQ = ∅.

Then, the interleave composition of P and Q (namely P [|||] Q) is given by:

P [|||] Q = P 〈〉 � 〈〉Q

This definition and others that follow use the direct composition operator
� , which provides an asynchronous interaction, mediated by infinite buffers,
between corresponding channels from two lists. In this rule, no channel
participates in the operation.

The result of an application of a composition rule is a new component. In
many cases, it is necessary to provide a means to connect to two channels of
a same component. This, however, is not possible using CSP as it does not
provide any constructor for a reflexive direct connection. For that, we use a
buffered communication as means to permit such reflexive communication in
a component. By providing an asynchronous interaction, we also offer a more

48

D24.1 - Comp. Anal. of CML Models (Public Document)

generic approach that allows its use in both asynchronous and synchronous
systems. On the other hand, the costs of verification are knowingly higher
for buffered asynchronous specifications. This cost, however, is alleviated by
the use of metadata as we discuss in Section 3.2.

The next composition rule needs the properties below.

Prop. i. (I/O Confluence) Whenever a state has two alternative actions
α and β, then performing either of them does not preclude the
other, unless it is a choice among inputs or outputs of the same
channel;

Prop. ii. (Finite Output Property) They always communicate a finite
number of outputs. As I/O processes are divergence-free, the ab-
sence of divergence after hiding the outputs in the original protocol
guarantees this property.

Prop. iii. (Strong Compatibility) There must always be an output event
to be performed, and at least one of the processes must have all
enabled outputs accepted by the other process.

The first two properties deal with buffering concerns in order to allow me-
chanical verifications on the system without state explosion [Ros05]. The
third property guarantees the interoperability of the two components. Here,
the formal definitions are omitted for the sake of conciseness. They can be
found in [Ram11].

The second composition rule states the most common way for linking com-
plementary channels of two different entities.

Definition 3.3 (Communication composition) Let P and Q be two com-
ponent contracts, and ic and oc two communication channels, such that:

• ic ∈ CP ∧ oc ∈ CQ ;

• CP ∩ CQ = ∅, and;

• the port protocols ProtIMP(P , ic) |[R ic→oc
IO]| and ProtIMP(Q , oc) |[R oc→ic

IO]|
are I/O confluent strong compatible and satisfy the finite output prop-
erty.

Then, the communication composition of P and Q (namely P [ic ↔ oc]Q)
via ic and oc is defined as follows:

P [ic ↔ oc]Q = P 〈ic〉 � 〈oc〉Q

49

D24.1 - Comp. Anal. of CML Models (Public Document)

Besides having disjoint channel sets, further restrictions apply to the divergent-
free processes implementation protocols on the linked channels (ProtIMP),
which are given by the abstraction of their behaviour projection over these
channels. These restrictions, however, apply to a renamed version of these
protocols: |[R oc→ic

IO]| replaces outputs of oc by inputs of ic.

Practical developments also present more complex systems with cycles of
dependencies in the topology of the system structure; undesirable cycles need
to be avoided. The feedback composition provides the possibility of creating
safe cycles.

Definition 3.4 (Feedback composition) Let P be a component contract,
and ic and oc two communication channels, such that:

• the protocols ProtIMP(P , ic) |[R ic→oc
IO]| and ProtIMP(P , oc) |[R oc→ic

IO]| are
I/O confluent strong compatible and satisfy the finite output property,
and;

• {ic, oc} ⊆ CP and decoupled in P.

Then, the feedback composition P (P [oc ↪→ ic]) hooking oc to ic is defined
as follows:

P [oc ↪→ ic] = P �
∣∣〈ic〉
〈oc〉

This rule imposes some conditions that are similar to those in the communi-
cation composition rule (relative to protocol compatibility and buffer toler-
ance), except that it additionally imposes that channels are decoupled.

Prop. iv. (Decoupled Channels) Communication on one channel does not
interfere on communications through the other (their communi-
cations are interleaved). Formally, the channels within Ch are
decoupled in P if, and only, if P � Ch ≡F |||z∈Ch

ProtIMP(P , z).

The composition rules presented so far deal with systems with a tree topology.
In practice, there are more complex systems that indeed present cycles of
dependencies in the topology of the system structure. The last composition
rule, reflexive composition, is more general than the feedback one. However,
it is also more costly regarding verification.

Definition 3.5 (Reflexive composition) Let P be a component contract,
and ic and oc two communication channels, such that:

• {ic, oc} ⊆ CP , and;

50

D24.1 - Comp. Anal. of CML Models (Public Document)

• P � {ic, oc} is buffering self-injection compatible and satisfies the finite
output property.

Then, the reflexive composition P (namely P [oc ¯↪→ ic]) hooking oc to ic is
defined as follows:

P [ic ¯↪→ oc] = P �
∣∣〈ic〉
〈oc〉

This rule requires that the projection on the two linked channels (P �
{ic, oc}) satisfies the finite output property and the projection is buffering
self-injection compatible.

Prop. v. (Buffering Self-injection Compatibility) allows the injection
of information from one channel to the other via the implicit
buffers of the composition. Formally, a buffering self-injection
compatible process can establish a communication between its
channels via a one-place buffer without deadlock.

From our proposed building block constructors (composition rules), any sys-
tem S can be structured as follows.

S ::= P | S [|||] S | S [c1 ↔ c2]S | S [c1 ↪→ c2] | S [c1 ¯↪→ c2]

where P is a component contract whose behaviour is deadlock free. We
say that any component system that follows this grammar is in normal
form.

The following theorem from [Ram11] guarantees that components arising
from the application of the rules to deadlock-free components are also deadlock-
free.

Theorem 3.1 (Deadlock-free Component Systems) Any system S in normal
form, built from deadlock-free components, is deadlock-free.

In addition to the contract elements previously presented, we may also define
an enriched component contract (BRICK-components). These components
enrich the original contracts with metadata that record by construction in-
formation that can be used to alleviate some verification conditions during
component composition. This enriched components contract, the correspond-
ing composition rules and the mechanisation of the composition rules side
conditions in CSP is presented in the next section.

51

D24.1 - Comp. Anal. of CML Models (Public Document)

3.2 Extended Component Model

In our approach, metadata comprise information that can (at any moment)
be derived from other component contract elements. Such metadata enriches
component contracts with static information that assists the runtime envi-
ronment with additional (validation) properties. The metadata information
is: (1) dual protocols; (2) context protocols; (3) protocol implementations;
and (4) decoupled channels. Informally, the behaviour of the dual protocol
of a process P after a trace s is always an external choice of the outputs and
one of the inputs of P , if it exists, after s . Furthermore, a context protocol
of a process P is a deadlock-free deterministic process that has the same
traces as P . Both are used in protocol compatibility verifications. The main
metadata information selected in our approach are decoupled channels and
protocol implementations. These are important conditions in the communi-
cation and feedback compositions rules. Similarly to the composition rules
presented before, we presented four composition rules for enriched component
contracts. In particular, we use metadata to alleviate several verifications in
our rigorous strategy for component compositions. The extended contracts
specialise the notion of protocol oriented component and enrich their contract
with metadata.

Definition 3.6 (Enriched component contract) Let Ctr be a protocol
oriented component contract, and K a metadata derived from its elements.
An enriched component contract that includes Ctr is represented by:

〈BCtr ,RCtr , ICtr , CCtr ,K〉

where K comprises the following information:

K : 〈ProtK, CTXK, DProtK, DecK〉

such that:

• dom ProtK ⊆ CCtr ∧
∀ c : dom ProtK • ProtK(c) vF ProtIMP(Ctr , c)

• dom DProtK ⊆ CCtr ∧
∀ c : dom DProtK • DProtK(c) is the dual protocol of ProtK(c)

• dom CTXK ⊆ CCtr ∧
∀ c : dom CTXK • CTXK(c) is the context process of ProtK(c)

• dom DecK ⊆ CCtr ∧ ran DecK ⊆ CCtr

• ∀ c1, c2 : CCtr • c1 DecK c2 ⇒ {c1, c2}DecoupledIn Ctr ∧ c2 DecK c1

52

D24.1 - Comp. Anal. of CML Models (Public Document)

The element ProtK is a relation from channels to protocols, which represent
the actual port-protocol of the component on that channel. If a protocol
within ProtK satisfies a property, then, by refinement, it also holds for the
protocol of the component. Similarly, the elements DProtK and CTXK map
channels into context processes and dual protocols, respectively. They are
used to support the use of the protocols within ProtK; these are used, for
instance, in protocol compatibility verifications. Finally the element DecK is
a relation among decoupled channels of the component.

Since these metadata comprise derived information, it can be ignored by
a composition environment, and, furthermore, the component can still be
used in environments unaware of them. As a consequence, despite the use of
metadata can be considered a powerful tool during the integration phase, its
use is optional.

To increase the value of our compositional approach, we derive composition
metadata from the metadata of the original components, without always
building them from scratch. After each composition rule is applied, the
metadata are updated using simple formulae that consider the semantics of
such composition rule.

Similarly to the composition rules presented before, we present four compo-
sition rules for enriched component contracts. In order to preserve protocols
behaviours after each composition and to store them in metadata, enriched
components require a stronger verification of protocol compatibility, which
we call matching compatible.

Similarly to the rules presented before, we present four new composition rules
for enriched component contracts. In order to preserve protocol behaviours
after each composition and to store them in metadata, the new rules require
a stronger notion of protocol compatibility, which we call matching compat-
ibility.

Prop. vi. (Matching Compatibility) Two protocols R and S are compat-
ible if the dual protocol of R is failure equivalent to S . Formally,
two port-protocols P and Q are matching compatible if, and only
if, DProt(P) ≡F Q .

This kind of compatibility is subtly different from strong compatibility. The
former is even stronger than the latter. The advantage of compositions
in which the protocols are matching compatible is that it preserves local
progress and, furthermore, other protocols (not involved in the composition)
are preserved.

53

D24.1 - Comp. Anal. of CML Models (Public Document)

The simplest composition of enriched component contracts is the one formed
by the interleaving of its components.

Definition 3.7 (Enriched interleaving composition) Let P and Q be
two enriched component contracts, such that P and Q have disjoint channels,
CP ∩ CQ = ∅. Then, the enriched interleaving composition of P and Q
(namely P [|||] Q) is given by:

P [|||]e Q = Enrich(〈BP ,RP , IP , CP〉〈〉 � 〈〉〈BQ ,RQ , IQ , CQ〉,
〈ProtKPQ ,CTXKPQ ,DProtKPQ ,DecKPQ〉)

where

(i) ProtKPQ = ProtKP ∪ ProtKQ

(ii) CTXKPQ = CTXKP ∪ CTXKQ (c)

(iii) DProtKPQ = DProtKP ∪DProtKQ

(iv) DecKPQ =

DecKP ∪DecKQ ∪ {(c1, c2) | (c1 ∈ CQ ∧ c2 ∈ CP) ∨ (c1 ∈ CP ∧ c2 ∈ CQ)}

The result of this composition is similar to the one from Definition 3.2. In
addition, we show here the metadata associated to the interleaving. At this
moment, no benefit is obtained from the metadata; they are maintained for
more complex compositions. However, the calculation of metadata is very
simple. It basically includes all information of the metadata of P and Q ,
except that it also states that all channels of one component are decoupled
from the other; this is a direct result of the interleaved behaviour of the
composition.

Similarly, we define communication compositions of enriched component con-
tracts in the following way.

Definition 3.8 (Enriched communication composition) Let P and Q
be two enriched component contracts, and ic and oc two channels, such that:

• ic ∈ CP ∧ oc ∈ CQ ;

• CP ∩ CQ = ∅, and;

• the port protocols ProtKP (ic) |[R ic→oc
IO]| and ProtKQ (oc) |[R oc→ic

IO]| are I/O
confluent matching compatible and satisfies the finite output property.

54

D24.1 - Comp. Anal. of CML Models (Public Document)

Then, the communication composition P [ic ↔ oc]Q is defined as follows:

P [ic ↔ oc]eQ =

Enrich

(
〈BP ,RP , IP , CP〉〈ic〉 � 〈oc〉〈BQ ,RQ , IQ , CQ〉,
〈ProtKPQ ,CTXKPQ ,DecKPQ〉

)
where

ProtKPQ = {(c,ProtKP (c)) | c ∈ dom ProtKP \ {ic}}
∪{(c,ProtKQ (c)) | c ∈ dom ProtKQ \ {oc}}

DProtKPQ = {(c,DProtKP (c)) | c ∈ dom DProtKP \ {ic}}
∪{(c,DProtKQ (c) | c ∈ dom DProtKQ \ {oc}}

CTXKPQ = {(c,CTXKP (c)) | c ∈ dom CTXKP \ {ic}}
∪{(c,CTXKQ (c) | c ∈ dom CTXKQ \ {oc}}

DecKPQ =

(c1, c2) | {c1, c2} ∩ {ic, oc} = ∅

∧

(

(c1 DecKP ic ∨ ic DecKP c1)
∧ (c2 ∈ CQ ∨ c1DecKPc2)

)
∨
(

(oc DecKQ c2 ∨ c2 DecKQ oc)
∧ (c1 ∈ CP ∨ c1DecKQc2)

)

The result of this composition is similar to the one from Definition 3.3, except
for: instead of checking compatibility among port protocols of the original
components, we check it on port protocols within their metadata. Further-
more, the composition does not have to take into account the complexity of
its components, since no port-protocol has to be derived from the component
behaviours. In addition, we show here the metadata associated to the com-
position, which can be used in further compositions. Again, the calculation
of metadata is very simple. They include all information of the metadata of
P and Q , excluding information about ic and oc, which does not belong to
the new composition contract. There are also new relations identified among
channels of one component and channels of the other, requiring that these
channels are decoupled with the channels involved in the composition (ic and
oc). This results from the semantics of the parallel operator being used in the
composition. Observe that DecK is a symmetric relation, and, furthermore,
this has to be handled in its calculation.

Now we define the feedback composition of an enriched component con-
tract.

Definition 3.9 (Enriched feedback composition) Let P be an enriched
component contract, and ic and oc two communication channels, such that:

55

D24.1 - Comp. Anal. of CML Models (Public Document)

• {ic, oc} ⊆ CP ;

• the port protocols ProtKP (ic) |[R ic→oc
IO]| and ProtKP (oc) |[R oc→ic

IO]| are I/O
confluent matching compatible and satisfies the finite output property,
and;

• ic DecKP oc.

Then, the feedback composition P (namely P [oc ↪→ ic]) hooking oc to ic is
defined as follows:

P [oc ↪→ ic]e = Enrich(〈BP ,RP , IP , CP〉 �
∣∣〈ic〉
〈oc〉,

〈ProtKS ,CTXKS ,DProtKS ,DecKS 〉)

where

ProtKPQ = {(c,ProtKP (c)) | c ∈ dom ProtKP \ {ic, oc}}
DProtKPQ = {(c,DProtKP (c)) | c ∈ dom DProtKP \ {ic, oc}}
CTXKPQ = {(c,CTXKP (c)) | c ∈ dom CTXKP \ {ic, oc}}

DecKPQ =

(c1, c2) | {c1, c2} ∩ {ic, oc} = ∅

∧ c1 DecKP c2

∧
(

(c1 DecKP ic ∧ c1 DecKP oc)
∨ (ic DecKP c2 ∧ oc DecKP c2)

)

The result of this composition is similar to the one from Definition 3.4, except
that most provisos use the metadata of its original components directly. In-
stead of having to check compatibility among port protocols of P , we check
this on port protocols within the metadata. Instead of verifying that two
channels are decoupled in P , we verify it directly on relations within the
metadata. In this way, we perform lightweight verifications. Moreover, the
composition does not have to take into account the complexity of P . In
addition, we show here the metadata associated to the composition, which
can be used in further compositions. Again, the calculation of metadata
is very simple. The new metadata include all information of the metadata
of P , excluding information about ic and oc, which does not belong to the
composition contract. Some other channels are also removed from the de-
coupled relation DecKS , since after the composition new communications are
established.

The last rule is the reflexive composition of enriched compositions.

Definition 3.10 (Enriched reflexive composition) Let P be a compo-
nent contract, and ic and oc two communication channels, such that:

56

D24.1 - Comp. Anal. of CML Models (Public Document)

• {ic, oc} ⊆ CP , and;

• P � {ic, oc} is buffering self-injection compatible and satisfies the finite
output property.

Then, the reflexive composition P (namely P [oc ¯↪→ ic]) hooking oc to ic is
defined as follows:

P [ic ¯↪→ oc]e = Enrich(〈BP ,RP , IP , CP〉 �
∣∣〈ic〉
〈oc〉,

〈ProtKS ,CTXKS ,DProtKS ,DecKS 〉)

where

ProtKPQ = {(c,ProtKP (c)) | c ∈ dom ProtKP \ {ic, oc}}
DProtKPQ = {(c,DProtKP (c)) | c ∈ dom DProtKP \ {ic, oc}}
CTXKPQ = {(c,CTXKP (c)) | c ∈ dom CTXKP \ {ic, oc}}

DecKPQ =

(c1, c2) | {c1, c2} ∩ {ic, oc} = ∅

∧ c1 DecKP c2

∧
(

(c1 DecKP ic ∧ c1 DecKP oc)
∨ (ic DecKP c2 ∧ oc DecKP c2)

)

The result of this composition is similar to the one from Definition 3.5. It does
not benefit from the metadata of its original components. This is because to
check buffering self-injection compatibility we cannot solely use port proto-
cols, but the entire component behaviour; it checks the behaviour concerning
two communication channels. In addition, we show here the metadata asso-
ciated to the composition, which can be used in further compositions. The
structure of the metadata is identical to the one of a feedback composition
of enriched components, since both are unary compositions.

In [Ram11], we provide proofs that guarantee that the result of the applica-
tion of the extended composition rules are themselves extended component
contracts. Observe that all rules presented here also guarantee deadlock
freedom because the behaviour of their compositions is equivalent to the
behaviour of the general rules used to create them.

3.3 Mechanising the Composition Rules Side Condi-
tions in CSP

In [Ram11], we present a formalisation of all side conditions using a math-
ematical notation. Their general mechanical verification requires an inte-

57

D24.1 - Comp. Anal. of CML Models (Public Document)

Alphabets assert STOP [T= RUN(inter(events(P),events(Q)))

I/O Channels assert not

Test(inter(inputs(P),outputs(P)) == {})

[T= ERROR

Infinite Traces assert not HideAll(P):[divergence free [FD]]

Divergence Free assert P:[divergence free [FD]]

Input Determinism assert LHS_InputDet(P) [F= RHS_InputDet(P)

Strong Output assert LHS_OutputDec_A(P)

Decisive [F= RHS_OutputDec_A(P)

assert LHS_OutputDec_B(P,c1)

[F= RHS_OutputDec_B(P,c1)

assert LHS_OutputDec_B(P,c2)

[F= RHS_OutputDec_B(P,c2)

Table 2: Mechanisation of Side Conditions in CSP for Interleave Composition

gration of their encoding in a theorem-prover that supports CSP like CSP-
Prover [IR08]. Nevertheless, for a specific case like our case study presented in
Section 6, it is possible to define CSP assertions for all these conditions.

By way of illustration, Table 2 presents some of the mechanisation of the side
conditions in CSP for the interleave composition of two processes
P (αP = {c1, c2}) and Q described in the sections that follows. Counter-
parts of the assertions presented in these sections are also needed for process
Q . A summary of all mechanisation of the composition rules side conditions
in CSP is presented in Appendix F.

3.3.1 Alphabets

The first assertion guarantees that the channels of the processes are disjoint
by checking that offering (RUN) all events of the intersection (inter) between
both processes events is a refinement of STOP. Since STOP offers no events,
this is only possible if the intersection is empty.

3.3.2 I/O Channels

The assertion related to I/O channels is similar but is characterised in a differ-
ent manner because functions inputs and outputs return channels, not events,
and hence cannot be used in RUN. Its characterisation test uses two auxiliary

58

D24.1 - Comp. Anal. of CML Models (Public Document)

processes: ERROR = error -> SKIP and Test(c) = not c & ERROR. This
assertion is only satisfied if the condition is true.

3.3.3 Infinite Traces and Divergence-Freedom

Infinite traces are checked by asserting that hiding all events (HideAll) intro-
duces divergence. Both, this check and the one that checks if the process itself
is divergence-free are achieved using FDR’s built-in divergence check.

The next two assertions proved to be harder than usual and deserve special
attention. In [ORS+12a], we present an exercise in the definition of the CSP
assertions that characterise input determinism (Section 3.3.4) and strong
output decisiveness (Section 3.3.5). In what follows, we present the details
of the results achieved in [ORS+12a].

3.3.4 Input Determinism

In [RSM09], we formally define input determinism as follows:

Definition 3.11 (Input determinism) We say a process P is input de-
terministic if

∀ s a 〈c.a〉 : traces(P) | c.a ∈ inputs(c,P) • (s , {c.a}) /∈ failures(P)

Informally, this means that if a set of input events in P are offered to the
environment, none of them are refused. As a consequence, the process is
defined to be deterministic on the inputs.

In [Ros10], Roscoe presents a refinement check for divergence-free pro-
cesses in FDR that is based on Lazić’s Algorithm [Laz99].

The approach is to run two copies of the process synchronising on a newly
introduced special event clunk. Furthermore, the set AllButClunk includes
all events that P uses, but not the special event clunk.

channel clunk

AllButClunk = diff(Events,{clunk})

This special event is used to synchronise both copies of the process after any
event. First, we enforce that the process synchronises in this special event
after any other events. This is achieved by running the process is parallel with
a watchdog process that produces a clunk after any event as follows.

59

D24.1 - Comp. Anal. of CML Models (Public Document)

Clunking(P) = P [| AllButClunk |] Clunker

Clunker = [] x:AllButClunk @ x -> clunk -> Clunker

Clunking(P) behaves exactly like P, except that it communicates clunk be-
tween each pair of other events.

Next, we run both controlled copies of the process in parallel, but synchro-
nising only on clunk. It follows that

(Clunking(P) [|{clunk}|] Clunking(P))\{clunk}

allows both copies of P to proceed independently, except that their individual
traces never differ in length by more than one.

If P is deterministic, then, whenever one copy of P performs an event, the
other one cannot refuse it provided they have both performed the same trace
to date. It follows that if we run

RHS_InputDet(P) =

(Clunking(P)[|{clunk}|]Clunking(P)) \ {clunk}

[|AllButClunk|]

Repeat

Repeat = [] x:AllButClunk @ x -> x -> Repeat

then the result will never deadlock after a trace with odd length. Such a
deadlock can only occur if, after some trace of the form <a,a,...,d,d> in
which each P has performed <a,...,d>, one copy of P accepts some event
e and the other refuses it. This exactly corresponds to P not being F -
deterministic.

We can thus check determinism and F -determinism by testing whether the
process RHS_InputDet(P) refines the following process over F .

Deterministic(S) =

STOP

|~|

([] x:AllButClunk @

x -> (if member(x,S)

then x -> Deterministic(S)

else (STOP |~| x -> Deterministic(S))))

LHS_InputDet(P) = Deterministic(inputs(P))

assert LHS_InputDet(P) [F= RHS_InputDet(P)

60

D24.1 - Comp. Anal. of CML Models (Public Document)

The process LHS_InputDet(P) specifies a deterministic behaviour of the set
of input events of a given process (inputs(P)). Notice that using AllButClunk
bring us back to the original Lazićs algorithm, in which

LHS_InputDet =

STOP |~| ([] x:AllButClunk @ x -> x -> LHS_InputDet)

that checks determinism in all events. We are, however, interested in a
particular set of events S, namely the inputs.

Because it runs P in parallel with itself, Lazićs algorithm is at worst quadratic
in the state space of P. (In other words, the number of states can be as many
as the square of the state space of P.) In most cases, however, it is much
better than this, but not as efficient as the FDR check.

Lazić algorithm works (in the respective models) to determine whether a
process is deterministic over FD or F .

The fact that this algorithm is implemented by the user in terms of refinement
checking means that it is easy to vary, and in fact many variations on this
check have been used when one wants to compare the different ways in which
a process P can behave on the same or similar traces. We use this idea for
Strong Output Decisiveness as we explain in the sequel.

3.3.5 Strong Output Decisiveness

In [RSM09], we formally define Strong Output Decisiveness as follows:

Definition 3.12 (Strong output decisiveness) We say a process P is
strong output decisive if:

∀ s a 〈c.b〉 : traces(P) | c.b ∈ outputs(c,P) •
(s , outputs(c,P)) /∈ failures(P)
∧ (s , outputs(c,P) \ {c.b}) ∈ failures(P)

Informally, this means that all choices (if any) among output events on a
given channel in P are internal. The process, however, must offer at least
one output on that channel. Hence, the choice between output channels is
external.

In [Ros05], processes are output decisive on channel c if every maximal refusal
of the process omits at most one member of {|c|}. This definition, however,
differs from ours [RSM09] in three main aspects:

61

D24.1 - Comp. Anal. of CML Models (Public Document)

1. Channel based definition: In [Ros05], we present a channel-based
approach. We consider channels are unidirectional for each process;
hence, within each process, a channel is either input or output. For
this reason, in [Ros05], processes are not allowed to offer an external
choice between an input and an output on the same channel as they
are here.

2. Single event outputs: In [Ros05], process P = c4.out -> PN is not
strong output decisive. In our definition, though, it is.

3. Refusing all outputs: In [Ros05], a strong output decisive process
might refuse all outputs on a given channel at once. In [RSM09], we
reject such processes as strong output decisive; if a process might offer
an output on c1, it might not refuse all outputs on c1 at once. So,
both process below are Strong Output Decisive according to [Ros05],
but they are not according to [RSM09].

We may, therefore, state the notion of Strong Output Decisiveness used
in [RSM09] as follows: a process P is Strong Output Decisive if choices be-
tween outputs on different channels are external and choices between outputs
on the same channel are internal.

The characterisation of strong output decisiveness as assertions will be di-
vided into two parts:

1. The first part, Part A, verifies that after a trace s^<c.x>, the process
cannot refuse all events on {|c|}. This verification, however, does not
guarantee that choices are non-deterministic.

2. The second part, Part B, verifies that trace s^<c.x>, the process
might refuse all events on {|c|} \ {c.x}. Hence, the process is non-
deterministic for outputs on that channel.

Part A - Inter-channel Determinism. Let GET_CHANNELS(P) be a set of
distinct channels used in process P. Using the same Clunker(p) as previously
described in Section 3.3.4, we now use two copies of the clunking version of
P synchronising on clunk and everything except members of the channels we
are worrying about, the outputs of P.

(Clunking(P)[|diff(Events, outputs(P))|]Clunking(P)) \ {clunk}

Furthermore, we consider a process One2Many(S), which simply repeats events
that are not communication on the channels in S; otherwise, it offers any other
communication on that channel.

62

D24.1 - Comp. Anal. of CML Models (Public Document)

One2Many(S) =

([] x:diff(Events,union(S,{clunk})) @ x -> One2Many(S))

[] ([] c:S @ [] x:{|c|} @ x -> One2Many’(S,c,x))

One2Many’(S,c,x) =

[] y:{|c|} @ y -> if x==y then One2Many(S) else STOP

We put this process in parallel with the above to get the right-hand side
implementation of the assertion.

RHS_OutputDec_A(P) =

(Clunking(P)[|diff(Events, outputs(P))|]Clunking(P))\{clunk}

[| AllButClunk |]

One2Many(outputs(P))

This process expects the second copy of P to respond with a member of the
same channel when an output has occurred. Importantly, it only continues
the test when both copies have performed the same event: so at all times
both copies of P have performed the same trace.

We test this implementation against the specification below.

LHS_OutputDec_A(P) =

STOP

|~|

([] x:diff(Events,union(outputs(P),{clunk}))

@ x -> LHS_OutputDec_A(P))

[]

([] x:outputs(P) @ x -> (|~| y:chan(x,P)

@ y -> LHS_OutputDec_A(P)))

where

chan(ev,P) =

inter(outputs(P),

{| c | c <- GET_CHANNELS(P), member(ev,{|c|})|})

This will allow any trace that RHS_OutputDec_A can make, and only insists
on some member of the same channel occurring after an output.

It is important to note that this certainly tests all traces of P since whenever
one copy of P performs an event after trace t , it is certain that the other
one can perform it, even though it may also be capable of refusing that
event.

63

D24.1 - Comp. Anal. of CML Models (Public Document)

Thus, the refinement check below checks that, after every trace t of P after
which an output can happen, the process cannot refuse the whole of the
corresponding channel.

LHS_OutputDec_A [F= RHS_OutputDec_A(P)

This verification, however, does not check that the process can refuse all but
one member of that channel. Hence, it does not check that the process is non-
deterministic for a given output channel. For this reason, this verification
accepts process that offer an external choice on the outputs of a same channel.
Hence, a further check is needed to guarantee the non-deterministic choice
on the outputs of the same channel.

Part B - Intra-channel Non-determinism. At this part of the verifi-
cation, we need to guarantee that every single output of P can, if blocked,
deadlock it on the same trace. To do this we need a Lazić construction
on the left-hand side of the refinement check, along the lines of the process
below.

LHS_OutputDec_B(P,c) =

(FirstCopy(P)[|{clunk}|]SecondCopy(P))\{clunk}

[|Events|]

LHS_Test(inter({|c|},outputs(P)))

where

FirstCopy(P) = P [| AllButClunk |] DoubleClunker

SecondCopy(P) = P [| AllButClunk |] clunk -> DoubleClunker

DoubleClunker =

[] x:AllButClunk @ x -> clunk -> clunk -> DoubleClunker

LHS_Test(S) =

[] x:S @

x -> (x -> LHS_Test(S) [>

([] y:diff(S,{x}) @ y -> STOP)

[]

([] y:diff(Events,S) @ y -> STOP))

[] ([] y:diff(Events,S) @ y -> y -> LHS_Test(S))

The process LHS_OutputDec_B(P,c) strictly alternates events of the two
copies of the P, and as long as they have performed the same trace to date
can, after a c.x, offer everything other than that event itself. So it ought,

64

D24.1 - Comp. Anal. of CML Models (Public Document)

under what we want, to be able to refuse the whole of {|c|} after the first
of each pair of c.x events.

We then check if that is refined by the same construction, replacing RHS_Test

below.

RHS_Test(S) =

[] x:S @

x ->

(([] y:S @ y -> if x==y then RHS_Test(S) else STOP)

[> ([] y:diff(Events,S) @ y -> STOP))

[] ([] y:diff(Events,S) @ y -> y -> RHS_Test(S))

RHS_OutputDec_B(P,c) =

(FirstCopy(P)[|{clunk}|]SecondCopy(P))\{clunk}

[|Events|]

RHS_Test(inter({|c|}, outputs(P)))

Now, process RHS_OutputDec_B(P,c) behaves in the same way except that
it can prevent the second process from performing the second of a pair of
c.x’s. In both cases, the untimed time-out is used to create the possibility of
repeating the event already input, without offering it in a stable way.

Combining Assertions. The final verification of Strong Output Decisive-
ness is then achieved in two parts. First, we verify the Part A, which is done
for the whole process at once.

assert LHS_OutputDec_A [F= RHS_OutputDec_A(P)

If the assertion fails, the process is not Strong Output Decisive and the
verification finishes. If, however, the process passes Part A, we need to
check the Part B, which is done individually for every channel within the
processes alphabet. For instance, supposing process αP = {c1,c2} we need
the following assertions.

assert LHS_OutputDec_B(P,c1) [F= RHS_OutputDec_B(P,c1)

assert LHS_OutputDec_B(P,c2) [F= RHS_OutputDec_B(P,c2)

3.3.6 Further Side Conditions in CSP

Similar tricks were used to encode similar side conditions like checking if a
channel is in the alphabet of a process. The assertions for decoupled chan-

65

D24.1 - Comp. Anal. of CML Models (Public Document)

nels (Prop. iv) ic and oc in P is encoded as a bi-directional refinement be-
tween the projection of P over both channels and the interleaving of the
protocol implementation of P over each individual channel.

The finite output property (Prop. ii) has been characterised as an assertion
that hiding all outputs of the protocol P does not introduce divergence:

assert P \ allOutputs:[divergence free [FD]]

Furthermore, three theorems from [Ram11] were used in the definition of the
characterisation tests. The first theorem (based on [Ram11]) states that a
process P is I/O confluent (i) if, and only if, the process in which a one-place
inwards-pointing buffer is placed on every individual event of P |[R]| (where
R is a forgetful renaming that removes the data components of all channels
but preserves their direction), is deterministic. Based on this theorem, our
characterisation for processes P like our implementation protocols, that work
in a single event c were defined as:

assert InBufferProt(P,c) :[deterministic [F]]

The second theorem states that protocols are strong compatible (Prop. iii)
if one of them is a failures refinement of the dual protocol of the other. This
allows us to characterise strong compatibility check as assertions on simple
failures refinement.

Finally, a third theorem states that a buffering self-injection compatible (v)
process can establish a communication between its channels via a one-place
buffer without deadlock. This can be characterised as follows.

assert not PROJ(P,{i, o}) [| {| i, o |} |] BUFFIO(LR1, LR2)

:[deadlock free [F]]

LR1 and LR2 provide the necessary renaming for communicating with BUFFIO.

Using these assertions, we were able to rigourously apply (and automatically
verify) the systematic development approach to the case study presented in
the next section.

3.4 Experiments

The dining philosophers is a classical concurrency problem: n philosophers
are seated at a round table with n forks and each fork is placed between each
pair of philosophers. In order to eat, a philosopher must pick up the forks
on either side. A philosopher who cannot pick up one or the other fork has

66

D24.1 - Comp. Anal. of CML Models (Public Document)

to wait. However, since there is a limited number of forks, it is necessary to
control the access to such resources. Otherwise, for instance, all philosophers
might get hungry simultaneously and pick up one fork, then deadlock and
starve to death.

The experiment consisted in verifying the CSP scripts of the dining philoso-
phers using FDR, and collecting the overall verification time. The experiment
was executed on a Intel Xeon CPU X3363, 2.83GHz, with 8Gb RAM, running
Ubuntu 9.10 (Kernel 2.6.31-23 - 64 bits). The data were collected for both
development approaches: standard deadlock check and a check of all side
conditions required to apply the composition rules. Furthermore, the data
for the standard deadlock check was collected for two different views: check-
ing for deadlock after each composition (STEP), and checking for deadlock
only at the final composition (WHOLE). Also, we consider the proposed rule-
based strategy both with (METADATA) and without metadata (NO META-

DATA).

We performed a five-level analysis: each new level optimises the verification
process by removing some of the side conditions based on theoretical results.
Our experiment was executed in two phases. Our experiment was executed in
two phases. The first phase considered a network of up to 5 philosophers (see
Figure 5). It aimed to demonstrate the improvement in the verification time
by using metadata. In this phase, the time without the use of metadata
proved to be much higher than that with the use of metadata. This result
demonstrated the infeasibility of the approach if metadata is not considered.
Furthermore, the time for standard verification of a step-by-step view was
also very high. Based on the results of the first phase, we focused on the
most efficient verifications of both approaches in the second phase of the
experiment, which considered a network of up to 7 philosophers. In Figure 6
we present the results of the original verification of the whole system and the
systematic development with the use of metadata.

Concerning the effort for checking the conditions for the rule-based applica-
tion we were able to get rid of the verification of some of the side conditions
in both phases of the experiment. Simple conditions based on set theory may
be verified by SAT solvers at a cost close to zero. For example, in Table 2, the
first assertion refers to set containment and intersection checking that can
be easily achieved using SAT solvers. Furthermore, since deadlock freedom
is guaranteed by construction [ORS+12b], further application of composition
rules to components that result from previous compositions do not need to
check for their deadlock freedom. Also, further theorems guarantee deadlock
freedom of protocol implementations of deadlock free processes [ORS+12b].

67

D24.1 - Comp. Anal. of CML Models (Public Document)

Figure 5: Experiment Results - Phase 1

In [Ros98], it is demonstrated that if a process has no hiding and no un-
guarded recursion, it is divergence free; these are syntactic restrictions that
can be easily checked outside the scope of FDR. In [Ros98], it is also demon-
strated that the checking for finite output property is irrelevant if we are using
finite buffers. Finally, we also considered optimisations based on properties
guaranteed by the extended rules that use process metadata calculated by
construction (decoupled channels, protocol implementation and dual proto-
cols) and optimisations based on properties guaranteed by previous theorems
constructed for systems with replicated components like our case study (for
example, different instances of philosophers and forks).

The results of the first phase are presented in Figure 5. At this phase of the
experiment, the results of Levels 2 and 1 proved to be extremely high. For
presentation purposes, we omitted this data in this figure.

The second phase of the experiment focused on the most optimised Levels
4 and 5. At this phase, the standard verification in a step-by-step view
became much larger and, for presentation purposes, we omitted this data in
the results presented in Figure 6.

The verification of side conditions at Level 1 and 2 proved to be extremely
more expensive than both views of the standard verification. Overall, they
presented a increase of over 50000% and 3000% if compared with the stan-
dard verification of the whole system and step-by-step, respectively. By
taking into consideration the use of finite buffers at Level 3, the increase
in the verification time was reduced to 40000% and 1500%, but was still
unacceptable.

68

D24.1 - Comp. Anal. of CML Models (Public Document)

Figure 6: Experiment Results - Phase 2

The use of metadata, along with the optimisations presented above, proved
to be the turning point in the experiment. Using metadata, the systematic
approach presented a gain of 98.4% against the sum of the verification time
of each individual composition in a 5 philosophers network (see Figure 5).
It, however, presented a loss of 706.5% if compared with the verification of
the overall system. The gains achieved with metadata proved to be higher
as we increase the number of instantiations of the parameterised protocol
implementations. In Figure 6, our approach offers a gain in verification time
for networks with 6 philosophers or more. As a matter of fact, for networks
with 7 philosophers, using metadata, our approach becomes one order of
magnitude faster than the original approach. The systematic approach also
provides a better understanding induced by an incremental and systematic
system construction. Nevertheless, this gain was only possible based on the
strong use of theoretical results (some based on the notion of metadata) that
made it possible to take for granted side conditions that are needed for a
valid composition rule application. This, however, considered the existence
of an external proof that the parameterised processes are valid protocol in-
stantiation using Theorem Provers like [IR08]. Indeed, this should involve
the costs of interactive theorem proving, which is a well-known expensive
activity. We, however, strongly believe that, based on syntactic restrictions,
this activity may also be removed. Nevertheless, our approach presented a
very small increase of 6.8% in the verification time. In our opinion this loss
is relatively unimportant if we consider that the systematic development also
offers a better understanding of the overall system construction.

The standard approach presented a much larger increase rate as we include
more participants in the system. For instance, when increasing the num-
ber of philosophers from 6 to 7, the verification time in the standard ap-

69

D24.1 - Comp. Anal. of CML Models (Public Document)

proach (whole system) increases in 15000%, whilst this increase is of 580%
in our approach.

Both approaches presented an exponential growth in Figure 6, in which the
time for a network with 8 philosophers has been omitted for presentation
purposes. In this network, the standard approach (whole system) took 460
hours to complete the check whilst our approach took 170 hours. Despite
still presenting a significant improvement, the exponential growth indicated
that scalability requires further investigation, as further discussed in the next
section.

70

D24.1 - Comp. Anal. of CML Models (Public Document)

4 Lifting the Approach to Circus and CML

In this section, we lift the results presented in Section 3 to provide a similar
systematic approach to build trustworthy CML systems. The main principle
for lifting the approach from CSP to CML (via Circus) is to keep the main
structure of the definitions and rules. The only change could be the refer-
ences to CML processes and constructs rather than the corresponding CSP
ones. Nevertheless, a thorough analysis indicated that some changes could be
done to simplify the application of the approach. For example, we no longer
require channels to communicates values in and out to indicate the direc-
tion of the communications. This considerably reduces the need for changes
in the original CSP specification to which we want to apply the approach.
Furthermore, in order to reuse these results by providing a theoretical link
for processes and refinement, as we explain in Section 5, we restricted our
scope to divergence-free processes. For this reason, the definition of channel
projection, which uses hiding and potentially introduces divergence, required
a new definition presented here.

For conciseness, in this section, we focus on the changes we applied to the
original approach. The only change in the remaining definitions are the
references to CML processes and constructs rather than the corresponding
CSP ones. In Appendix H, we present a full Z type-checked formalisation of
our compositional model.

The structure of this section is as follows: in Section 4.1 we present a simpler
definition for component contracts; this simplification propagates to the def-
initions of renaming and I/O processes whose new definitions are presented
in Sections 4.2 and 4.3, respectively; finally, new definitions for implementa-
tion protocols and channel projection that do not use hiding are presented
in Section 4.4. These changes removed the possibility of divergence in the
processes used in the approach. For this reason, when migrating from CSP
into CML (via Circus) we are able to reuse the results from [Ram11] based
on the links described in Section 5.

4.1 Component Contracts

Its original definition included a condition that forced a structure to the
channels used in the process behaviour (either c. ∗ .in.∗ or c. ∗ .out .∗). Nev-
ertheless, this definition already forces this behaviour to be an I/O process,
which only uses I/O channels. Hence, every channel is either an input or

71

D24.1 - Comp. Anal. of CML Models (Public Document)

output. This classification is not defined by the use of in or out in the com-
munication value, but by the functions inputs and outputs . Therefore, we
removed the third condition mentioned above.

New Definition 4.1 (Component contract) A component contract Ctr
comprises an observational behaviour B, a set of communication channels C,
a set of interfaces I, and a total function R : C → I between channels and
interfaces of the contract:

Ctr : 〈B,R, I, C〉

such that B is an I/O process (a CML process that satisfy the conditions
described in Definition 4.2).

4.2 Renaming Contracts

The renaming used in the composition rules was defined as follows:

R a→b
IO = {a.out .x 7→ b.in.x}

As explained above in Section 4.1, there is no need to add in and out to the
communication. Hence, we changed this definition to the following one.

P |[R a→b
IO]| = P [{a.x 7→ b.x | a.x ∈ outputs(P)}]

This corresponds to the original intention (i.e. replaces outputs of a by
inputs of b) but uses the function outputs rather than the previously enforced
channel structure.

There are also consequences to the definition of inputs and outputs of a
renamed protocol.

inputs(P |[R a→b
IO]|) = inputs(P)

outputs(P |[R a→b
IO]|) = outputs(P)[a 7→ b]

where [a 7→ b] replaces all references events on a to events on b in a given
set of events.

S [a 7→ b] = S \ {a.x | a.x ∈ S} ∪ {b.x | a.x ∈ S}

72

D24.1 - Comp. Anal. of CML Models (Public Document)

4.3 I/O Processes

The definition of I/O Processes was also simplified by simply enforcing all
channels used in the process to be I/O channels using a single condition.

New Definition 4.2 (I/O process) We say P is a CML I/O process if:

• P only uses I/O Channels;

• P has infinite traces;

• P is divergent-free;

• P is input deterministic;

• P is strong output decisive.

4.4 Implementation Protocols

The protocol implemented by a component (represented solely by a process
at this point) is given by the abstraction of its behaviour projection over a
specific channel. Moreover, the protocol has the same traces and failures as
the projection, but it is divergent-free. We use the failures semantics here,
since we ignore the possible divergences introduced by the restriction.

Definition 4.1 (Protocol implementation) Let P be an I/O process, and
ch a communication channel. The communication protocol ProtIMP(P , ch)
implemented by P over ch is a protocol that satisfies the following property:

ProtIMP(P , ch) ≡F P � ch

This definition might become unfeasible (there is simply no such implemen-
tation protocol that satisfies this property) in cases where P � ch introduces
divergences. This is due to the fact that in such cases ProtIMP(P , ch) might
have failures that are not considered in P � ch because they are in a non-
stable (caused by the divergence) state. This invalidates the failures refine-
ment from right to left. Moving to the failures-divergence refinement hits the
same problem (in the other direction however) due to a simpler cause: P � ch
might introduce divergence.

A possible solution would be to consider different refinement scenarios in
each direction as proposed below.

73

D24.1 - Comp. Anal. of CML Models (Public Document)

Definition 4.2 (Protocol implementation) Let P be an I/O process, and
ch a communication channel. The communication protocol ProtIMP(P , ch)
implemented by P over ch is an I/O process that satisfies the following prop-
erties:

• ProtIMP(P , ch) vF P � ch

• P � ch vFD ProtIMP(P , ch)

In either case, the definitions try to define a process that behaves just like
P looking only at a given channel ch. However, by simply hiding it as in
P � ch we might introduce divergence and this is not a desirable property
in an implementation protocol. Furthermore, in order to reuse the original
CSP approach, we need to get rid of divergent processes since the theoret-
ical link is provided only for divergence-free processes. In Appendix G we
present an exercise on the new definition of channel projection that lead us
to the divergence-free definition below. In this exercise, we investigate pos-
sible alternatives for redefining channel projection like using Roscoe’s lazy
abstraction as defined in [Ros98].

We propose the projection plays a role simply in the traces of a process.
Hence, we would have that the projection on c of process P is a process
that:

• Does not have any event other than c

• Has exactly the same traces as P on c; the behaviour on the other
events are irrelevant.

For that, instead of calculating a given projection, the user of the strategy
needs to propose a projection that satisfies these properties. This, however,
might be automated by a syntactic function that removes the channel. Nev-
ertheless, we also need to guarantee that the communication directions (input
and output) are not changed and that the properties of strong output de-
cisiveness and input determinism are maintained. Overall, these properties
would be characterised as follows:

New Definition 4.3 (Projection) Let P be an I/O Process, and C a set
of communication channels. The projection of P over C (denoted by P � C)
satisfies the following properties:

1. P � C is an I/O Process

2. ∀ c : C • inputs(P � C , c) ⊆ inputs(P , c)

3. ∀ c : C • outputs(P � C , c) ⊆ outputs(P , c)

74

D24.1 - Comp. Anal. of CML Models (Public Document)

4. α(P � C) ⊆
⋃

c:C{| c |}

5. P ≡T P |[Σ]| ((P � C) ||| RUN (NOT (C)))

Properties 1 - 3 guarantees that the communication direction (input and
output) are not changed and that the properties of strong output decisiveness
and input determinism are maintained. This ensures that we are neither
removing nor introducing non-determinism. Property four ensures that the
projection process refers only to channels in C . Finally, together with the
previous properties, property 5 guarantees that the process behaviour on the
projected channels is not changed.

The changes to the definition of channel projection removed the possibility
of divergence in the processes used in the approach because:

• There are no unguarded recursion;

• Hiding is not used;

• I/O Process are, by definition, divergence-free.

For this reason, when migrating from CSP into CML (via Circus) we are
able to reuse the results from [Ram11] based on the links described in Sec-
tion 5.

75

D24.1 - Comp. Anal. of CML Models (Public Document)

5 Linking Theories

In this section, we provide a proof of the soundness of our technique for com-
positional reasoning about CML-based contracts. As already explained, this
is achieved by lifting our results to CML. For pragmatic reasons, the strat-
egy for providing the justification of this lift is twofold: first, in Section 5.3,
we lift the strategy from CSP to Circus; finally, in Section 5.4, we lift the
strategy from Circus to CML. The reason is that, due to the nature of the
schedule of the COMPASS project, in which the development of this deliver-
able was done concomitantly with the development of the CML syntax and
semantics. Hence, we adopted this strategy to first lift the whole systematic
approach to a state-rich concurrent language, Circus, which has a structure
and semantics similar to that of CML.

In both steps of the lifting strategy, two very important theoretical links
are needed: processes and refinement. This is because the composition rules
from [RSM10], their side conditions, and their semantical correctness are
based on the definitions of CSP processes and CSP refinement (T , F and
FD). Overall, a complete theoretical link for processes and refinement from
CML into CSP is provided for a subset of CML, considering the following
restrictions:

• untimed;

• feasible (no miracles);

• divergence free;

• no object-oriented constructs;

• no undefined expressions;

• limited use of predicative specifications;

• external choices are only among prefixed actions as defined in Ap-
pendix C;

• actions do not write to input variables.

This link allows us to reuse the results from [Ram11] in CML for such pro-
cesses.

In Sections 5.1 and 5.2 we present an overview of the strategy to link CML
processes and refinement to CSP processes and refinement, respectively. The
details of the first part of the link, from Circus processes and refinement
into CSP processes and refinement, is presented in Section 5.3 along with

76

D24.1 - Comp. Anal. of CML Models (Public Document)

a discussion on the soundness of this mapping. Finally, in Section 5.4, we
complete the link by providing the translation from CML to Circus.

5.1 Linking Processes

In [RSM10], the behaviour of the basic components is defined in terms of CSP
processes. The lifting of the results to CML (via Circus), requires two map-
pings: the first one maps CML processes to corresponding Circus processes;
the second mapping is from a subset of Circus processes to corresponding
CSP processes.

In the first mapping (ρ), we take a subset of CML processes without object-
oriented constructs and without undefined expressions and return the se-
mantically corresponding Circus process. In the second mapping, we take
processes from a state-rich setting, Circus, to a stateless one, CSP. For this
reason, our strategy for mapping Circus processes into CSP processes de-
picted in Figure 7 is twofold: transforming stateful Circus processes into
stateless Circus processes (Ω), and mapping a subset of stateless divergence-
free Circus processes with a limited use of predicative specifications into
corresponding CSP processes (Υ).

Figure 7: Mapping CML into CSP

In our mapping strategy from Circus to CSP, we first consider stateful
Circus processes, that is, processes with encapsulated states and local vari-
ables. Instead of mapping such processes directly into CSP, we first transform
them, using a function Ω, into stateless processes using the memory model
suggested in [NSM12], in which state components and local variables are
detached from the processes and moved to memory cells that store their val-
ues. The soundness of this transformation is established using the Circus
refinement calculus presented in [Oli06].

77

D24.1 - Comp. Anal. of CML Models (Public Document)

The function Ω takes a subset of stateful feasible Circus processes, in
which:

1. External choices are only among prefixed actions as defined in Ap-
pendix C;

2. Actions do not write to input variables;

3. Actions do not present a miraculous behaviour like, for example, infea-
sible specification statements.

All these restrictions on Ω could be relaxed in order to broaden the appli-
cation of this function. For instance, Ω could take infeasible actions like
Miracle and return the action itself. Nevertheless, for simplification pur-
poses, we restricted the domain of Ω by removing infeasible actions from
its domain (Circus’). As a consequence, we are able to define the function
that transforms Circus processes into CSP processes, Υ, as a total function
on CircusCSP , the range of Ω. Hence, CircusCSP constitutes the set of Cir-
cus processes that can be directly translated into their corresponding CSP
processes.

Next, we provide a mapping Υ for a subset of stateless Circus processes
into corresponding CSP processes. This subset contains all stateless pro-
cesses whose main actions are defined only in terms of Circus behavioural
actions, that is, those actions that are directly available in CSP. This in-
cludes Skip, Stop, prefixing, external and internal choice, guarded action,
sequential composition, parallelism, interleaving, hiding, recursion and the
iterated operators. This mapping guarantees that the Circus processes used
to define a component’s behaviour at the Circus level have a corresponding
CSP behaviour that defines the corresponding component’s behaviour at the
CSP level. The soundness of this mapping Υ is established for the traces
and the failures models. The establishment of correctness of the mapping
in these models is enough for our purposes since we consider only divergent
free processes (See Definition 3.1 in Section 3). For every Circus action A
that is mapped into a CSP process P we prove that the traces of A (in the
UTP) are the same as those of P (in CSP). We do the same for the failures
model.

The details of the mapping from Circus to CSP are discussed in Section 5.3.

78

D24.1 - Comp. Anal. of CML Models (Public Document)

5.2 Linking Refinement

The application of the composition rules is only allowed under certain con-
ditions. Some of these conditions are refinement based (T , F and FD).
Hence, the lifting of the systematic composition approach to CML, BRIC,
requires a relation between CML refinement and CSP refinement (again via
Circus).

The second part of this mapping, from Circus to CSP, is based on the work of
Cavalcanti and Gaudel briefly discussed in Section 5.3, which provides a con-
nection between the Circus and CSP theories within the UTP. Nevertheless,
since the original systematic approach is underpinned by the original CSP
semantics, again, a mapping from the subset of Circus actions (which can be
expressed in CSP) into the corresponding CSP processes is required.

In Section 5.4, we present the strategy (and discuss its correctness) for map-
ping CML processes into Circus processes. Next, in Section 5.3, we present
the strategy for mapping Circus processes into CSP processes. Section 5.3.2
briefly introduces the work by Cavalcanti et al which provides a link be-
tween Circus and CSP theories within the Unifying Theories of Program-
ming (UTP) [HJ98] and discusses the correctness of our approach.

5.3 From Circus to CSP

In this section we present the mapping from Circus processes and refinement
into CSP processes and refinement. First, in Section 5.3.1, we present the
strategy to map stateful Circus processes into CSP processes. Finally, we
present the proof of correctness of this mapping in Section 5.3.2.

5.3.1 Mapping Circus into CSP

In Figure 7, we presented the overall idea of the strategy for mapping Cir-
cus processes into CSP processes, which applies to a subset of feasible Cir-
cus processes that can be mapped into CSP. First, we transform processes
with encapsulated states and local variables into stateless processes using the
memory model suggested in [NSM12]. In his work, Nogueira detaches state
components and local variables from the processes and moves them to a sep-
arate memory process that stores their values. The result is an equivalent
process in which stateless processes communicate with a Memory process

79

D24.1 - Comp. Anal. of CML Models (Public Document)

that encapsulates the original process components. Next, we provide a map-
ping for stateless Circus processes into corresponding CSP processes.

For simplicity, we consider:

1. External choices are only among prefixed actions as defined in Ap-
pendix C. This removes the possibility of actions like (x := e; A1) 2 A2

in which, as described in [Oli06], the assignment does not solve the
choice. The removal of the state components from processes with such
actions requires the use of a protocol that adds an overhead which we
avoid with this restriction;

2. Input variables are not written. By way of illustration, consider the
action c?x → A(x). This restriction forbids that the value of x is
updated in A(x).

The restrictions have impact on the specification style, but do not impose
any relevant limitation in terms of expressiveness. Divergence-free processes
that satisfy these conditions are within the domain of Ω and suitable for
transformation into CSP.

The basic structure of stateless Circus processes in Circus’ is:

process Q =̂
begin
• ACSP

end

As they do not have state components and local variables, they are also
members of CircusCSP : their translation into corresponding CSP processes is
defined by the fairly direct mapping function Υ whose details and correctness
are omitted here and presented in Appendixes B and J. In Figure 7, the
process Q falls into this category.

The second class of Circus processes (i.e. P in Figure 7) corresponds to those
processes that have state components and local variables in the main action.
In Figure 7, the process P falls into this category.

process P =̂
begin

state S =̂ [v0 : Tx ; . . . vn : Tz | inv(v0, . . . , vn)]

• var l0 : U0; . . . ; lm : Um • A(v0, . . . , vn , l0, . . . , lm)
end

80

D24.1 - Comp. Anal. of CML Models (Public Document)

As expected, these processes are also supposed to satisfy the restrictions
discussed in the beginning of this section.

The strategy is to transform these processes using a translation function Ω.
This function moves the state components and local variables from the pro-
cesses to a separate Memory action that encapsulates the state components
and local variables. In Figure 7, the process P is transformed into a state-
less process P ′, which can then be transformed using the mapping function
Υ.

Each of the state components and local variables have a corresponding mem-
ber in the set of names NAME .

nameset NAME == {v0, . . . , vn , l0, . . . , ln}

We consider that a pre-processing of the Circus processes determines this set
of names.

A set of functions, BINDING , represents all possible mappings from names
to values.

BINDING =̂ NAME → U

The process that describes the behavioural aspects of the original process in-
teracts with the memory either by requesting a variable value using a channel
get or by setting a variable new value using channel set . Furthermore, as de-
scribed below, the memory has a recursive behaviour. When the behaviour of
the original process terminates, the memory is also requested to terminated
via the channel terminate. These channels are considered as the memory
interface, characterised by the set MEMI .

channel get , set : NAME × U
channel terminate

MEMI =̂ {| set , get , terminate |}

The resulting process is a stateless version of the original process P . Its main
action is the parallel composition of a memory action with a stateless version
of the original main action A. The range of the translation function Ω is
within the subset CircusCSP of Circus processes that can be directly trans-
lated into their corresponding CSP processes. Hence, the resulting parallel

81

D24.1 - Comp. Anal. of CML Models (Public Document)

composition (i.e. P ′ in Figure 7) presented below has a corresponding pure
CSP behaviour.

Ω (P) =̂
process P ′ =̂

begin
Memory =̂

vres b : BINDING •
(2 n : dom b • get .n!b(n)→ Memory(b))

2

 2 n : dom b •
set .n?nv : (nv ∈ δ(n))→
Memory(b ⊕ {n 7→ nv})

2 terminate → Skip

• var b :

{
x : BINDING | x (v0) ∈ T0 ∧ . . .

∧ inv(x (v0), . . . , x (vn))

}
•

(
ΩA(A);
terminate → Skip

)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

end

The approach of a centralised memory considerably simplifies the proof of
correctness discussed in Section 5.3.2. The simplification in the proof effort
is due to the fact that a centralised memory uses no replicated operators,
which currently are not well covered by the existing Circus refinement laws.
Furthermore, by not using replicated operators we also avoid the need for
induction in the proofs. This induction is needed because using a distributed
memory, the proofs are achieved by induction on the number of memory cells
used in the parallel composition of the Memory definition.

Using the same refinement strategy as that presented in [CSW05a] we may
demonstrate that a distributed memory is a refinement of the centralised
memory. In the distributed memory, independent memory cells are respon-
sible for storing the values of each state component variable. The overall
memory is the parallel composition of all memory cells synchronising on the
termination event only. The monotonicity of Circus refinement allows us to
simply replace the centralised memory by its distributed version if it turns
out to be more convenient.

Rewriting Circus Processes (Definition of Ω) The transformation Ω
can be formalised using the Circus refinement calculus presented in [Oli06]

82

D24.1 - Comp. Anal. of CML Models (Public Document)

in which two refinement iterations of the Circus refinement strategy are
used.

The first iteration, presented in Figure 8, aims at adapting the process to
the translation restrictions discussed on page 79 like copy-rule application,
renaming variables and channels, and schema normalisation. Furthermore,
this iteration also aims at promoting all local variables to state components
using the strategy presented in [CCO11]. First, an action refinement adapts
the process to the translation restrictions: renames all local variables to avoid
name clashes. Finally, it moves the variable declarations to the outermost
scope in the process main action. For that, we may use refinement laws like
Law 4 (var-exp-seq). We are then able to make a process refinement using
Laws 26 and 27 to promote the local variables to state components. This
facilitates the data refinement of the second iteration in which state compo-
nents are replaced by a single mapping function as we describe below.

Figure 8: First Iteration of Refinement Strategy

The final iteration, presented in Figure 9, aims at transforming the stateful
process into a stateless process. For that, we first make a data refinement to
transform the state from a state with multiple components into a state with a
single binding component that maps the original state component names into
their values. Next, an action refinement transforms the centralised stateful
main action into a stateless main action in which the transformed main action

83

D24.1 - Comp. Anal. of CML Models (Public Document)

ΩA(A) interacts with a memory that stores the values of the state components
from the original process. Finally, since the state components are no longer
referenced in the resulting main action, we apply a process refinement that
completely removes the process state.

Figure 9: Second Iteration of Refinement Strategy

The function ΩA rewrites the Circus actions into their corresponding stateless
Circus actions that considers the interaction with the memory process. In
what follows, we present its definition by induction on the syntax of Circus
actions. The correctness of the rewriting function Ω is proved using the
Circus refinement calculus as we discuss in Section 5.3.2.

84

D24.1 - Comp. Anal. of CML Models (Public Document)

Rewriting Circus Actions (Definition of ΩA) The main principle of
ΩA is to change only actions that access state components and local vari-
ables (memory components). Its definition uses an auxiliary function Ω′A
that is very similar to ΩA, but does not retrieve any value (get) and replaces
references to x by its local copy vx , except when used as the identifier in mem-
ory access (i.e. set .x !e(x) becomes set .x !e(vx)). For sequential composition,
the difference is more substantial as we discuss later in this section.

The main principle behind the definition of the function ΩA for Circus ac-
tions is to change only those actions that access state components and local
variables either by reading or writing on them. Actions that do not present
such behaviour remain unchanged. For instance, the three basic functions
Skip, Stop and Chaos remain unchanged.

ΩA(Skip) =̂ Skip

ΩA(Stop) =̂ Stop

ΩA(Chaos) =̂ Chaos

The transformation of prefixing actions differs according to the communi-
cation. Simple prefixing does not refer to state components and local vari-
ables: its rewriting leaves the communication unchanged and propagates the
transformation to the action that follows the communication.

ΩA(c → A) =̂ c → ΩA(A)

Nevertheless, output communications (c!e) and synchronisation (c.e) might
refer to state components (v0, . . . , vn) and local variables (l0, . . . , lm) in the
expression used to define the communicated values. For this reason, before
the original communication, the rewritten action needs to receive their values
from the memory before the actual communication, which uses these values
to define the communicated values.

ΩA(c.e(v0, . . . , vn , l0, . . . , lm)→ A) =̂
get .v0?vv0 → · · · → get .vn?vvn →
get .l0?vl0 → · · · → get .ln?vln →
c.e(vv0, . . . , vvn , vl0, . . . , vlm)→ Ω′A(A)

ΩA(c!e(v0, . . . , vn , l0, . . . , lm)→ A) =̂
ΩA(c.e(v0, . . . , vn , l0, . . . , lm)→ A)

This approach is used to rewrite all Circus actions that need a read access to
state components and local variables. For instance, guarded actions use the

85

D24.1 - Comp. Anal. of CML Models (Public Document)

values received from the memory in the predicate that guards the referred
action.

ΩA(g(v0, . . . , vn , l0, . . . , lm) & A) =̂
get .v0?vv0 → · · · → get .vn?vvn →
get .l0?vl0 → · · · → get .ln?vln →
g(vv0, . . . , vvn , vl0, . . . , vlm) & Ω′A(A)

On the other hand, the input prefixing c?x : P → A(x) defines the current
value of the input variable. We, however, restrict the access mode to input
variables like x in the action A(x) that follows the input prefixing: x cannot
be written by A(x) (x /∈ wrtV (A)). In the presence of such use of input vari-
able, the Circus refinement calculus might be used to introduce an auxiliary
variable and use it accordingly as a means to remove the direct writing to x .
The input prefixing may be associated with a condition P that determines
the values that may be communicated by restricting them to only those that
satisfy P . For this reason, input prefixing also needs read access to the state
components and local variables. Hence, the rewritten action also receives
these values before the actual input communication.

ΩA(c?x : P(x , v0, . . . , vn , l0, . . . , lm)→ A) =̂
get .v0?vv0 → · · · → get .vn?vvn →
get .l0?vl0 → · · · → get .ln?vln →
c?x : P(x , vv0, . . . , vvn , vl0, . . . , vlm)→ Ω′A(A)

provided x /∈ wrtV (A)

It is important to notice that, because input variables are not part of the
memory, there is no need to write x to it.

The rewriting of sequential composition and internal choice simply propa-
gates to the composing actions.

ΩA(A1; A2) =̂ ΩA(A1); ΩA(A2)

ΩA(A1 u A2) =̂ ΩA(A1) u ΩA(A2)

It is important to notice that the memory model used in our approach allowed
the distribution of ΩA over sequential composition.

The rewriting of external choice requires the actions involved to be pre-
fixed. The noise of the mget events is avoided by performing them before

86

D24.1 - Comp. Anal. of CML Models (Public Document)

the choice.

ΩA(A1 2 A2) =̂
get .v0?vv0 → · · · → get .vn?vvn →
get .l0?vl0 → · · · → get .ln?vln →
(Ω′A(A1) 2 Ω′A(A2))

provided A1 and A2 are prefixed actions as defined in Appendix C

In parallel composition (and interleaving), Circus avoids conflicts in the ac-
cess to the variables by declaring two disjoint sets of variables. In A1 |[ns1 |
cs | ns2]|A2, both A1 and A2 have access to the initial values of all variables,
but A1 may modify only the variables in ns1, and A2, the variables in ns2.
Our rewriting function uses two copies of the main memory, one for each par-
allel branch. A merge writes the final values to the main memory according
to the state partition.

ΩA(A1 |[ns1 | cs | ns2]| A2) =̂
get .v0?vv0 → · · · → get .l0?vl0 → · · · →

 (Ω′A(A1); terminate → Skip)
|[∅ | MEMI | ∅]|
MemoryMerge({v0 7→ vv0, . . . },LEFT)

 \ MEMI

|[∅ | cs | ∅]| (Ω′A(A2); terminate → Skip)
|[∅ | MEMI | ∅]|
MemoryMerge({v0 7→ vv0, . . . },RIGHT)

 \ MEMI

|[∅ | MRGI | ∅]|
Merge

\ {| mleft ,mright |}

where Merge =̂ (mleft?l → (o
9 n : ns1 • set .n!l(n)→ Skip))

||| (mright?r → (o
9 n : ns2 • set .n!r(n)→ Skip))

The local memory MemoryMerge behaves like Memory , but writes its final
bindings either to mleft or to mright after termination, based on the side

87

D24.1 - Comp. Anal. of CML Models (Public Document)

given as argument.

MemoryMerge =̂
vres b : BINDING ; s : SIDE •

(2 n : dom b • get .n!b(n)→ MemoryMerge(b, s))

2

 2 n : dom b •
set .n?nv : (nv ∈ δ(n))→
MemoryMerge(b ⊕ {n 7→ nv}, s)

2 terminate →

(s = LEFT) & mleft !b → Skip
2 (s = RIGHT) & mright !b → Skip

Before termination, each parallel branch communicates with Merge using
mleft and mright , which are hidden from the environment.

MRGI =̂ {| mleft ,mright |}

The Merge receives the bindings and writes to the main memory based on
the partitions.

Next, rewriting simply propagates through hiding, instantiation of unnamed
parameterised actions and recursion.

ΩA(A \ cs) =̂ ΩA(A) \ cs

ΩA((x : T • A(x))(e)) =̂ ΩA(A[e/x])

ΩA(µX • A(X)) =̂ µX • ΩA(A(X))

The transformation of iterated actions simply rewrites the expanded versions

88

D24.1 - Comp. Anal. of CML Models (Public Document)

of the actions.

ΩA(o
9 x : 〈v1, . . . , vn〉 • A(x)) =̂ ΩA(A(v1); . . . ; A(vn))

ΩA(2 x : T • A(x)) =̂ ΩA(A(v1) 2 · · · 2 A(vn))

ΩA(u x : T • A(x)) =̂ ΩA(A(v1) u · · · u A(vn))

ΩA(|[cs]| x : {v1, . . . , vn} • |[ns(x)]| A(x)) =̂

ΩA

A(v1))
|[ns(v1) | cs |

⋃
{x : {v2, . . . , vn} • ns(x)}]| . . .

 ΩA(A(vn−1))
|[ns(vn−1) | cs | ns(vn)]|
A(vn)

ΩA(||| x : {v1, . . . , vn} •||[ns(x)]|| A(x)) =̂

ΩA

A(v1)
||[ns(v1) |

⋃
{x : {v2, . . . , vn} • ns(x)}]|| . . .

 A(vn−1)
||[ns(vn−1) | ns(vn)]||
A(vn)

This concludes the definition of the rewriting function ΩA for Circus CSP-
based actions. We now turn to the Circus commands.

In the semantic model for Circus processes presented in [Oli06], nothing
is explicitly stated about the invariant. We assume specifications that ini-
tially contain no commands and, therefore, change the state using only Z
operations, which explicitly include the state invariant and guarantee that
it is maintained. For this reason, the semantics ignores any existing state
invariants, since they are considered in the refinement process, just as in
Z. Hence, the translation of the commands that follows also ignores state
invariants.

In general, the commands that might potentially change the state need to be
completely rewritten as its potential change need to be written to the newly
introduced memory. This is the case, for instance, for an assignment, which
is rewritten as a sequence of gets and the respective sets.

ΩA

(
x0, . . . , xn := e0

(
v0, . . . , vn ,
l0, . . . , lm

)
, . . . , en

(
v0, . . . , vn ,
l0, . . . , lm

))
=̂

get .v0?vv0 → · · · → get .vn?vvn →
get .l0?vl0 → · · · → get .ln?vln →
set .x0!e0(vv0, . . . , vvn , vl0, . . . , vlm)→
· · · →
set .xn !en(vv0, . . . , vvn , vl0, . . . , vlm)→ Skip

89

D24.1 - Comp. Anal. of CML Models (Public Document)

The definition for alternation is relatively simple. As its conditions might re-
fer to state components (v0, . . . , vn) and local variables (l0, . . . , lm) the rewrit-
ten action needs to receive their values from the memory before the rewritten
alternation which uses these values to define the conditions.

ΩA

if g0(v0, . . . , vn , l0, . . . , lm)→ A0

[] . . .
[] gn(v0, . . . , vn , l0, . . . , lm)→ An

fi

 =̂

get .v0?vv0 → · · · → get .vn?vvn →
get .l0?vl0 → · · · → get .ln?vln →
if g0(vv0, . . . , vvn , vl0, . . . , vlm)→ Ω′A(A0)

[] . . .
[] gn(vv0, . . . , vvn , vl0, . . . , vlm)→ Ω′A(An)

fi

Specification statements might define a miraculous behaviour. We, however,
remove this from the domain of the ΩA function as we are not able to describe
such behaviours in CSP. For that, however, we define proof obligations in
the definition of ΩA, which need to be discharged to validate the function
application. The stateless action resulting from rewriting a specification
statement, after getting the values of the variables in scope, might diverge if
the precondition is not satisfied. Otherwise, the action non-deterministically
chooses values for the variables in scope such that: (1) the postcondition is
satisfied; (2) the values of the variables that are not in the frame w (w) are
not changed; and the invariant is respected. These values are finally written
to the memory. In order to guarantee feasibility, the rewriting may only take

90

D24.1 - Comp. Anal. of CML Models (Public Document)

place if such values exist.

ΩA

 w :

 pre(v0, . . . , vn , l0, . . . , lm),

post

(
v0, . . . , vn , l0, . . . , lm ,
v ′0, . . . , v

′
n , l
′
0, . . . , l

′
m

) =̂

get .v0?vv0 → · · · → get .vn?vvn →
get .l0?vl0 → · · · → get .ln?vln →

¬ pre(vv0, . . . , vvn , vl0, . . . , vlm) & Chaos
2 pre(vv0, . . . , vvn , vl0, . . . , vlm) &

u vv :

x0 : Γ(v0); . . . ; xn : Γ(vn);
xn+1 : Γ(l0); . . . xm : Γ(lm)

| post

(
vv0, . . . , vvn , vl0, . . . , vlm ,
x0, . . . , xn , xn+1, . . . , xm

)
∧ w ′ = w
• (x0, . . . , xn , xn+1, . . . , xm)

•

set .v0!(vv .0)→ · · · →
set .vn !(vv .n)→
set .l0!(vv .n + 1)→ · · · →
set .lm !(vv .m)→
Skip

provided

∃ x0 : Γ(v0); . . . ; xn : Γ(vn); xn+1 : Γ(l0); . . . xm : Γ(lm) •
post(x0, . . . , xn , xn+1, . . . , xm)
∧ w ′ = w

where
w ′ = v ′0, . . . , v

′
n , l
′
0, . . . , l

′
m \ w ′

w = v0, . . . , vn , l0, . . . , lm \ w

In [Oli06], the semantics of assertions, coercions and (normalised) schema
expressions is given in terms of specification statements. This is reflected
in the definition of the rewriting function ΩA of theses Circus constructs
presented below.

ΩA({g}) =̂ ΩA(: [g , true])

ΩA([g]) =̂ ΩA(: [g])

ΩA([udecl ; ddecl ′ | pred]) = ΩA(ddecl : [∃ ddecl ′ • pred , pred])

In Circus the renaming at the level of actions works on state components
and local variables, not on channel names. For this reason, the rewriting of

91

D24.1 - Comp. Anal. of CML Models (Public Document)

a renamed action is simply defined as the rewriting of the action resulting
from the application of the rewriting.

ΩA(A[old1, . . . , oldn := new1, . . . , newn]) =
ΩA(A[new1, . . . , newn/old1, . . . , oldn])

This concludes the definition of the rewriting function ΩA for Circus ac-
tions.

The auxiliary function Ω′A is very similar to ΩA. It, however, does not read
values from the memory and replaces references to variables by references to
their local copies. For this reason, Ω′A is the same as ΩA for actions in which
no values are retrieved like in Ω′A(c → A).

Ω′A(c → A) =̂ c → Ω′A(A)

For conciseness, we omit most of the definitions of Ω′A, and present only those
that differ from ΩA.

In c.e → A, the expression e might refer to memory components. The
function Ω′A, however, does not read them from the memory.

Ω′A(c.e(v0, . . . , vn , l0, . . . , lm)→ A) =̂
c.e(vv0, . . . , vvn , vl0, . . . , vlm)→ Ω′A(A)

The most important difference is for sequential compositions A1; A2: vari-
ables read in A1 are not in the scope of A2, which needs to access the memory
again.

Ω′A(A1; A2) =̂ Ω′A(A1); ΩA(A2)

Syntactically, state updates in Circus can only be achieved by actions that

92

D24.1 - Comp. Anal. of CML Models (Public Document)

require any subsequent action to be sequentially composed. The definition
above guarantees that the rewritten version of A2 reads the updated values
before any reference to memory components.

Mapping Circus Stateless Actions into CSP Processes (Definition
of Υ) The definition of the function Υ that maps Circus processes into
CSP processes is extremely direct for most of the cases. In Appendix B we
present the full definition of this translation function. Here, we focus on the
most interesting parts of its definition.

For the vast majority of the Circus actions that are inherited from CSP, the
translation is very straightforward. Among them, however, the restricted
input prefixing c?x : P → A slightly differs from that of CSP. In Circus,
the restriction P is given as a predicate on the state components and local
variables, whereas in CSP this is given as a set. The mapping function Υ
needs to take this difference into account: it returns a CSP prefixing restricted
by the set we build based on the Circus predicate restriction.

Υ (c?x : P → A) =̂ c?x : {x | x← δ(c),ΥB(P(x))} →Υ(A)

Here, δ(c) returns the type of c and ΥB(P) is a specialisation of the mapping
function for predicates, whose details are also presented in Appendix B.

The other non-trivial definition of the mapping function is that of alternation.
In this mapping, we make use of a special event choose, which is used to
guarantee that the non-deterministic choice is maintained in cases where
more than one guard is valid. After retrieving all the variable values, the
rewritten action offers a choice among those actions whose guards are valid,
prefixed by the special event choose. If more than one guard is valid, as we
are hiding this special event, the expected non-determinism takes place. If
none of the guards are valid, as expected, the action diverges.

Υ

if g0 → A0

[] . . .
[] gn → An

fi

 =̂

 g0 & choose → ΩA(A0)
2 . . .
2 gn & choose → ΩA(An)

\ {| choose |}

provided
∨

gi

93

D24.1 - Comp. Anal. of CML Models (Public Document)

Here, the proviso just reinforces that we are dealing with divergent free pro-
cess; hence, at least one of the guards must be true.

In CSP, the if − then − else is available. Nevertheless, this construct is
completely deterministic as it provides a sequence of conditional checking in
nested alternations. The use of the solution above allows us to define ΩA as
an equality rather than a refinement, which would be the case if we had used
CSP’s if − then − else here.

As previously discussed, the correctness of both the mapping from Circus
to CSP and the rewriting from Circus stateful actions to Circus stateless
actions ought to be achieved in order to make our transformation strategy
applicable. This is the subject of the next section.

5.3.2 Correctness

Proof of Correctness of Rewriting Function Ω The soundness of this
transformation is achieved by induction on the syntax of Circus using the
Circus refinement calculus presented in [Oli06]. For each element in the
Circus syntax, we demonstrate that the refinement of Figure 9 is valid.

By way of illustration, we present below the proof for transforming a process
with Skip as its main action. In what follows, PS .A denotes a process named
P whose state is S and main action is A.

Theorem K.1

PS .Skip
=
Ω(PS .Skip)

Proof. Starting from the right-hand side, we start the proof by simply
applying the definition of Ω and ΩA.

Ω(PS .Skip) [Ω]

= P .var b :

{
x : BINDING | b(v0) ∈ T0 ∧ . . .

∧ inv(b(v0), . . . , b(vn))

}
• (ΩA(Skip); terminate → Skip)

|[∅ | MEMI | ∅]|
Memory(b)

 \ MEMI

94

D24.1 - Comp. Anal. of CML Models (Public Document)

[ΩA]

= P .var b :

{
x : BINDING | b(v0) ∈ T0 ∧ . . .

∧ inv(b(v0), . . . , b(vn))

}
• (Skip; terminate → Skip)

|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

Next, the application of the refinement law of sequence unit removes the Skip
action.

[Law 8]

= P .var b :

{
x : BINDING | b(v0) ∈ T0 ∧ . . .

∧ inv(b(v0), . . . , b(vn))

}
• (terminate → Skip)

|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

We then unfold the recursive action Memory .

[Law 9]

= P .var b :

{
x : BINDING | b(v0) ∈ T0 ∧ . . .

∧ inv(b(v0), . . . , b(vn))

}
•

(terminate → Skip)
|[∅ | MEMI | {b}]|

vres b : BINDING •(
2 n : NAME •

get .n!b(n)→ Cell(b)

)
2

 2 n : NAME •
set .n?nv →
Cell(b ⊕ {n 7→ nv})

2 terminate → Skip

(b)

\ MEMI

Our intention is to expand the definition of Memory . In order to avoid
conflicts in variable names, we rename the outermost b.

[Law 49]

95

D24.1 - Comp. Anal. of CML Models (Public Document)

= P .var sb :

{
x : BINDING | sb(v0) ∈ T0 ∧ . . .

∧ inv(sb(v0), . . . , sb(vn))

}
•

(terminate → Skip)
|[∅ | MEMI | {sb}]|

vres b : BINDING •(
2 n : NAME •

get .n!b(n)→ Cell(b)

)
2

 2 n : NAME •
set .n?nv →
Cell(b ⊕ {n 7→ nv})

2 terminate → Skip

(sb)

\ MEMI

We may now use the semantics of vres.

[Semantics of vres]

= P .var sb :

{
x : BINDING | sb(v0) ∈ T0 ∧ . . .

∧ inv(sb(v0), . . . , sb(vn))

}
•

(terminate → Skip)
|[∅ | MEMI | {sb}]|

var b : BINDING •
b := sb;

(
2 n : NAME •

get .n!b(n)→ Cell(b)

)
2

 2 n : NAME •
set .n?nv →
Cell(b ⊕ {n 7→ nv})

2 terminate → Skip

 ;

sb := b

\ MEMI

The local variable b is not referenced in the left-hand side of the parallel

96

D24.1 - Comp. Anal. of CML Models (Public Document)

composition. Hence, this variable block may be expanded.

[Law 1]

= P .var sb :

{
x : BINDING | sb(v0) ∈ T0 ∧ . . .

∧ inv(sb(v0), . . . , sb(vn))

}
•

var b : BINDING •

(terminate → Skip)
|[∅ | MEMI | {sb}]|

b := sb;

(
2 n : NAME •

get .n!b(n)→ Cell(b)

)
2

 2 n : NAME •
set .n?nv →
Cell(b ⊕ {n 7→ nv})

2 terminate → Skip

 ;

sb := b

\ MEMI

Next, we may use the Law 47 to remove the first assignment.

[Law 47]

= P .var sb :

{
x : BINDING | sb(v0) ∈ T0 ∧ . . .

∧ inv(sb(v0), . . . , sb(vn))

}
•

var b : BINDING •

(terminate → Skip)
|[∅ | MEMI | {sb}]|

(
2 n : NAME •

get .n!sb(n)→ Cell(b)

)
2

 2 n : NAME •
set .n?nv →
Cell(sb ⊕ {n 7→ nv})

2 terminate → Skip

 ;

sb := sb

\ MEMI

When replacing b for sb, we are left with an innocuous assignment, which

97

D24.1 - Comp. Anal. of CML Models (Public Document)

can be removed as follows.

[Laws 48 and 8]

= P .var sb :

{
x : BINDING | sb(v0) ∈ T0 ∧ . . .

∧ inv(sb(v0), . . . , sb(vn))

}
•

var b : BINDING •

(terminate → Skip)
|[∅ | MEMI | {sb}]|

(
2 n : NAME •

get .n!sb(n)→ Cell(b)

)
2

 2 n : NAME •
set .n?nv →
Cell(sb ⊕ {n 7→ nv})

2 terminate → Skip

\ MEMI

Next, since the variable b is no longer referenced, the variable block may be
removed.

[Laws 6]

= P .var sb :

{
x : BINDING | sb(v0) ∈ T0 ∧ . . .

∧ inv(sb(v0), . . . , sb(vn))

}
•

(terminate → Skip)
|[∅ | MEMI | {sb}]|

(
2 n : NAME •

get .n!sb(n)→ Cell(b)

)
2

 2 n : NAME •
set .n?nv →
Cell(sb ⊕ {n 7→ nv})

2 terminate → Skip

\ MEMI

Just for the sake of naming conventions, we rename the outermost variable

98

D24.1 - Comp. Anal. of CML Models (Public Document)

sb back to b.

[Law 49]

= P .var b :

{
x : BINDING | b(v0) ∈ T0 ∧ . . .

∧ inv(b(v0), . . . , b(vn))

}
•

(terminate → Skip)
|[∅ | MEMI | {b}]|

(
2 n : NAME •

get .n!b(n)→ Cell(b)

)
2

 2 n : NAME •
set .n?nv →
Cell(b ⊕ {n 7→ nv})

2 terminate → Skip

\ MEMI

Because all channels are in the synchronisation channel set, the only possible
synchronisation is on terminate. We use the Law 10 to remove the external
choice in the parallel composition.

[Law 10]

provided

{terminate} ⊆ MEMI

{get , set} ⊆ MEMI

{get , set} ∩ {terminate} = ∅

= P .var b :

{
x : BINDING | b(v0) ∈ T0 ∧ . . .

∧ inv(b(v0), . . . , b(vn))

}
• (terminate → Skip)

|[∅ | MEMI | {b}]|
(terminate → Skip)

 \ MEMI

Next, since the synchronisation on terminate is the only option and hidden
from the environment, we may ignore it.

[Law 25]

provided

[terminate ∈ MEMI]

= P .var b :

{
x : BINDING | b(v0) ∈ T0 ∧ . . .

∧ inv(b(v0), . . . , b(vn))

}
• Skip

|[∅ | MEMI | {b}]|
Skip

 \ MEMI

99

D24.1 - Comp. Anal. of CML Models (Public Document)

We are left with the parallel composition on Skip, which may be removed
using the unit law for parallel composition.

[Law 28]

provided

[terminate ∈ MEMI]

= P .var b :

{
x : BINDING | b(v0) ∈ T0 ∧ . . .

∧ inv(b(v0), . . . , b(vn))

}
•

Skip \ MEMI

The hiding may be ignore because it has no effect on Skip.

[Law 15]

provided

[MEMI ∩ usedC (Skip) = ∅]

= P .var b :

{
x : BINDING | b(v0) ∈ T0 ∧ . . .

∧ inv(b(v0), . . . , b(vn))

}
•

Skip

Finally, we promote the variable b to a state component of a stateless process.
This concludes the proof since we are left with the left-hand side of the
theorem.

[Law 26(b is the only component of S)]

= PS .Skip

2

Proofs of other Circus actions can be found in Appendix K.

Proof of Correctness of the Mapping Function Υ. In [CG10], Cav-
alcanti et al present the following definitions that provide a link between
Circus and CSP theories within the UTP.

The predicate An defined below gives the behaviour of the action A when
its preceding action has not diverged and has terminated, and when A itself
does not lead to divergence.

An =̂ okay ∧ ¬ wait ∧ A ∧ okay ′

This is the normal behaviour of A; behaviour in other situations is defined
by healthiness conditions.

100

D24.1 - Comp. Anal. of CML Models (Public Document)

The terminating, non-diverging behaviour of A is At as presented below.

At =̂ An ∧ ¬ wait ′

Finally, the diverging behaviour of A is

Ad =̂ okay ∧ ¬ wait ∧ A ∧ ¬ okay ′.

The function tracesUT P defined in [CG10] and presented below gives the set
of traces of a Circus action defined as a UTP predicate A. This gives a traces
model to A compatible with that adopted in the failures-divergences model
of CSP.

As already said, the behaviour of the action itself is that prescribed when
okay and ¬ wait . The behaviour in the other cases is determined by health-
iness conditions of the UTP theory. For example, in the presence of diver-
gence, that is, when ¬ okay , every action can only guarantee that the trace
is only extended, so that past history is not modified. This behaviour is not
recorded by tracesUT P(A).

tracesUT P(A) = {tr ′ − tr | An} ∪ {(tr ′ − tr)a 〈X〉 | At}

As mentioned in Section 2.4, tr records the history of interactions before
the start of the action; tr ′carries this history forward. Therefore, the traces
in tracesUT P(A) are sequences tr ′ − tr obtained by removing from tr ′ its
prefix tr . In addition, if tr ′− tr leads to termination, then tracesUT P(A) also
includes (tr ′− tr)a 〈X〉, since X is used in the failures-divergences model to
signal termination.

In this document, we follow the syntactic sugaring used in [CG10] to express
set comprehension. In this notation, we implicitly have an outermost set com-
prehension which existentially quantifies all UTP observational variables and
their dashed counterparts. For instance, in the definition of tracesUT P above
we write {tr ′−tr | An} as the set of all traces executed by the process in which
the condition An is satisfied. Strictly speaking, this set comprehension con-
tains tr and tr ′ as free-variables. However, this notation is used in [CG10] to
denote the Z set-comprehension {tr , tr : seq(EVENT) | An • tr ′−tr}, hence,
tr and tr ′ are actually not free-variables but existentially quantified.

The divergencesUT P are those traces that lead the action to divergence.

divergencesUT P(A) = {tr ′ − tr | Ad}

101

D24.1 - Comp. Anal. of CML Models (Public Document)

In [CG10], the authors have actually introduced the set tracesUT P⊥ (A), which
is defined as follows to include all traces that lead to divergence.

tracesUT P⊥ (A) = tracesUT P(A) ∪ divergencesUT P(A)

The function defined below gives the set of failures of a divergence-free action
A.

failuresUT P(A) = {(tr ′ − tr , ref ′) | An}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | An ∧ wait ′}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | At}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | At}

In a state that is not terminating, for every refusal set ref ′, there is an extra
set ref ′ ∪ {X}. This is because X is not part of the UTP model and is not
considered in the definition of ref ′, just as it is not considered in the definition
of tr ′. As before, for a terminating state, the extra trace (tr ′ − tr)a 〈X〉 is
recorded. Finally, after termination, X is also refused, and so ref ′ ∪ {X} is
included.

The following definition was not in [CG10], but it is based on a similar defini-
tion from [CW06]; it includes all refusals in the presence of divergence.

failuresUT P⊥ (A) =
failuresUT P(A) ∪ {(s , ref) | s ∈ divergencesUT P(P) ∧ ref ∈ Σ∗X}

Furthermore, in [CW06], traces and failures refinement are defined in the
expected way as presented below.

P vT
UT P Q ⇔ tracesUT P(Q) ⊆ tracesUT P(P)

P vF
UT P Q ⇔ tracesUT P(Q) ⊆ tracesUT P(P)

∧ failuresUT P(Q) ⊆ failuresUT P(P)

Since we are dealing with divergent free processes we have that:

P vFD
UT P Q

⇔
failuresUT P⊥ (Q) ⊆ failuresUT P⊥ (P)
∧ divergencesUT P(Q) ⊆ divergencesUT P(Q)

⇔
P vF

UT P Q

In [CG07, CG10], Cavalcanti et al demonstrated that provided P1 and P2

are divergence-free Circus processes with main actions A1 and A2, we can
characterise refinement as follows.

102

D24.1 - Comp. Anal. of CML Models (Public Document)

• P1 vP P2 ⇔ A1 vT
UT P A2 ∧ A2 conf A1 (from [CG10])

• A1 vF
UT P A2 ⇔ A1 vT

UT P A2 ∧ A2 conf A1 (from [CG07])

where

A2 conf A1 =̂ ∀ t : traces(A1) ∩ traces(A2) • Ref (A2, t) ⊆ Ref (A1, t)

Ref (A, t) =̂ {X | (t ,X) ∈ failures(A)}

For non-divergent processes F refinement corresponds to FD refinement. So,
previous results guarantee that, for non-divergent processes:

• P1 vP P2 ⇔ A1 vF
UT P A2

• P1 vP P2 ⇔ A1 vFD
UT P A2

Based on these results on linking the semantic domains, we establish the cor-
rectness of a translation Υ, that maps Circus processes into CSP processes.
The soundness of this mapping from Circus to CSP is established for the
traces and the failures models.

The proof of this theorem is achieved by induction on the syntax of Circus
that has a corresponding action in CSP (such actions are in the domain
CircusCSP of Υ, presented in Appendix B). For every Circus action A that
it is mapped into a CSP process P we prove that the set of traces of A
generated by the UTP function is equal to the set of traces of P in CSP as
defined in [Ros98].

Theorem 5.1 For every Circus process P in dom(Υ)

tracesUT P(P) = traces(Υ(P))

where traces is the original traces CSP semantic function as defined in [Ros98].
We do the same for the failures model.

Theorem 5.2 For every Circus process P in dom(Υ)

failuresUT P(P) = failures(Υ(P))

where failures is the original failures CSP semantic function as defined in [Ros98].

By way of illustration, we present below the first part of the proof for the
Skip action, in which we prove that the traces of the UTP semantics of the
Circus Skip is the same as the traces of the CSP SKIP.

103

D24.1 - Comp. Anal. of CML Models (Public Document)

Theorem J.2 tracesUT P(Skip) = traces(Υ(Skip))

Here, we make use Ab
c to denote A[b/okay ′][c/wait]. Furthermore, we take

into consideration that the special event X used in [Ros98] is not allowed in
the UTP traces tr and tr ′.

Proof. Starting from the left-hand side, we start the proof by simply ap-
plying the definition of the UTP traces.

tracesUT P(Skip) [tracesUT P]

= {tr ′ − tr | (Skip)n}
∪ {(tr ′ − tr)a 〈X〉 | (Skip)t}

[At]

Next, the behaviour of a terminating action is defined in terms of its normal
behaviour.

= {tr ′ − tr | (Skip)n}
∪ {(tr ′ − tr)a 〈X〉 | ¬ wait ′ ∧ (Skip)n}

[An]

The normal behaviour of an action corresponds to those situations in which
the action stars in a non-divergent state (okay ∧ ¬ wait) and does not
diverge (okay ′).

= {tr ′ − tr | okay ∧ ¬ wait ∧ okay ′ ∧ Skip}
∪ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ Skip}

[PC]

Using the predicate calculus, we may transform the predicate in order to use
the same notation as in [Oli06].

= {tr ′ − tr | okay ∧ (Skip)tf }
∪ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ (Skip)tf }

[Lemma J.12]

Now, we may use a theorem proved in [Oli06], which gives the behaviour of
the Skip action when it is not waiting and does not diverge.

= {tr ′ − tr | okay ∧ CSP1(tr ′ = tr ∧ ¬ wait ′ ∧ v ′ = v)}

∪
{

(tr ′ − tr)a 〈X〉
| okay ∧ ¬ wait ′ ∧ CSP1(tr ′ = tr ∧ ¬ wait ′ ∧ v ′ = v)

}[Lemma J.4]

A CSP1 action that starts on a divergent state (¬ okay) is only guaranteed
not the forget the traces (CSP1(A) =̂ (¬ okay ∧ tr ≤ tr ′) ∨ A). Nev-
ertheless, in our case, we have okay in the context; hence, CSP1 might be
ignored.

= {tr ′ − tr | okay ∧ tr ′ = tr ∧ ¬ wait ′ ∧ v ′ = v}
∪ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ tr ′ = tr ∧ ¬ wait ′ ∧ v ′ = v}

[SS. and −]

104

D24.1 - Comp. Anal. of CML Models (Public Document)

In both set comprehensions, we have that tr ′ = tr must be satisfied. Hence,
the sequence subtraction yields, in both cases, an empty sequence.

= {〈〉 | okay ∧ tr ′ = tr ∧ ¬ wait ′ ∧ v ′ = v}
∪ {〈X〉 | okay ∧ tr ′ = tr ∧ ¬ wait ′ ∧ v ′ = v}

[Cases and SC]

Finally, a simple case analysis on the boolean conditions gives us the resulting
set below since we have a constant sequence in the production of the set
comprehension. Here, it is important to remind readers of the syntactic
sugaring we inherited from [CG10]. Hence, the set comprehension above
contains no free-variables since all UTP observational variables are implicitly
existentially quantified.

= {〈〉, 〈X〉} [traces]

This corresponds exactly to the semantic definition of SKIP in the traces
model of [Ros98].

= traces(SKIP) [Υ]

The definition of the Υ function concludes this proof..

= traces(Υ(Skip))

2

The same proof strategy is used for proving the correctness of the mapping
of Skip in the failures model. Proofs of other Circus constructs that are
directly mapped into CSP can be found in Appendix J.

With this proof, based on [CG07, CG10], we are able to establish a connection
between traces refinement and failures refinement in the UTP and CSP.

• P vT Q ⇔ P vT
UT P Q

• P vF Q ⇔ P vF
UT P Q

As previously said, we consider only divergent free processes. For this reason,
we take only the T and F models into consideration. For divergent free
processes, we have that the latter is equivalent to FD.

5.4 From CML to Circus

As already indicated, Circus and CML are similar languages in many ways.
First of all, they are both based on a language for data-modelling and CSP.

105

D24.1 - Comp. Anal. of CML Models (Public Document)

In the case of Circus the data language is Z, and in the case of CML, it
is VDM. In addition, CML also includes constructs for object orientation
based on VDM++ and an object-oriented extension of Circus [CSW05b],
and constructs for time modelling based on Timed CSP and a timed exten-
sion of Circus [SCHS10]. When, however, we restrict CML to the subset
currently considered in this work, namely the untimed language without
object-orientation, the correspondence with Circus is rather direct. It is
strengthened by the fact that both Circus and CML have a semantic model
based on the UTP, and an extra assumption: the CML models does not have
any undefined expression. In this section, we discuss the translation from
CML to Circus, so that the results previously discussed can be applied to
CML specifications.

5.4.1 Mapping CML into Circus

All in all, untimed CML models without object-oriented constructs and with-
out undefined expressions can be translated to Circus using a mapping func-
tion ρ. Given the closeness of the two notations, it is a simple function that
distributes through the structure of processes and actions. Table 3 describes
how the process operators of CML, as defined in [WCC+12], map to those
of Circus. We use different fonts to distinguish elements of the CML syn-
tax from the corresponding element obtained by applying ρ. For example,
if P is a process described using the CML (ASCII-based) syntax, which is
supported by the COMPASS tools, the corresponding Circus process ρ(P) is
written P .

Given the close relationship between the process notations of CML and Cir-
cus, it is not surprising that the translation is simple. Table 3 does not give
the details of the translation of declarations d and channel set expressions
cse; this is a rather simple matter. For expressions in general, the main issue
is the possibility of undefined expressions, which are treated in very different
ways in VDM and Z. For models without such expressions, the translation
is just a syntactic issue as well, as explained and proved in the COMPASS
Deliverable [BBC+12]. We omit the definition of the translation of the CML
replicated operators, which are also available in Circus.

We use Stop to denote the Circus stateless process with main action Stop. We
use that to define alphabetised parallelism in terms of generalised parallelism.
This is a standard definition, that uses the set Σ of all channels in scope.

Circus does not have renaming comprehensions or renaming of events. In

106

D24.1 - Comp. Anal. of CML Models (Public Document)

CML Process Circus Process (ρ)
‘begin’, begin

[‘state’, d], [state d]
‘@’, •

A, A
‘end’ end

P1, ‘;’, P2 P1;P2

P, ‘[]’, P P1 2 P2

P1, ‘|~|’, P2 P1 u P2

P2, ‘[|’, cse, ‘|]’, P2 P1 |[cse]| P2

P1, ‘[’, cse1, ‘||’, cse2, ‘]’, P2 (P1 |[Σ \ cse1]| Stop)
|[cse1 ∩ cse2]|
(P2 |[Σ \ cse2]| Stop)

P1 , ‘||’, P2 P1 |[Σ]| P2

P1, ‘|||’, P2 P1 ||| P2

P, ‘\’, cse P \ cse

‘(’, d, ‘@’, P, ‘)’, ‘(’, { E }, ‘)’ (d • P)(E)

N, [‘(’,{ E }, ‘)’] N (E)

P ‘[[’, N1 ‘<-’ N2, ‘]]’ P [N1 := N2]

Table 3: Mapping between CML and Circus process operators
.

107

D24.1 - Comp. Anal. of CML Models (Public Document)

Circus, renaming is only available for channels, rather than individual events.
This reflects the view that channels (rather than events) are used to model
interaction points that have a direct correspondence to elements of the pro-
grams or systems described. This means that the use of channels can be
implemented in a direct way. Only when multi-synchronisation is required,
protocols are usually necessary to generate concrete systems. CML takes
the more abstract view of CSP. In this case, a channel potentially models an
array or matrix of interaction points, which can be used independently.

To translate CML models that take advantage of such facility, we require a
(non-compositional) pre-processing before the application of ρ. It is necessary
to identify all events used as an independent channel: an individual target of
a renaming, or in a channel set expression that does not necessarily include
all other events on the same channel. For each of these, we need to declare
a new channel, and rewrite the whole CML model to use the new channel
instead of the event. We, therefore, rule out this facility of CML.

Tables 4, 5, and 6 define ρ for actions. Since the language of processes (of
both CML and Circus) is just a lift of some of the action operators to the
component and system level of processes, some of the translations are rather
similar to those in Table 3, and equally simple. We again do not include
the replicated operators, which are also available in Circus. The same issues
related to renaming arise for actions as well.

CML includes versions of the Circus action parallelism operators without
name set expressions. For these, the name sets are assumed to be empty.
Translation of name-set expressions nse is trivial.

Like with Circus processes, without loss of generality, we are considering
CML processes whose all local action definitions are removed (using the copy
rule). The let action constructor, on the other hand, introduces local defi-
nitions of its own, and has no equivalent in Circus. Translation, therefore,
requires that all occurrences of let are removed simply by flattening the local
scopes, and later removing all auxiliary action definitions so introduced.

Multiple assignments are listed individually in CML as atomic assignments.
We need to collect all assigned variables and assigning expressions together
to form two lists and compose a Circus assignment. In Table 5 we show the
result for a multiple assignment with two components. In the translation of
an implicit operation body, the function δ applies to a frame f and extracts the
list of variables that can be changed: those associated with a mode wr.

Circus includes the nondeterministic conditional of CML. Table 5 shows
the translation of conditionals with two guards. Similarly, to define the

108

D24.1 - Comp. Anal. of CML Models (Public Document)

CML Action Circus Action (ρ)
‘Skip’ Skip
‘Stop’ Stop
‘Chaos’ (µX • 2 c : Σ • c?x → X) u Stop
‘Div’ Chaos
c, ‘->’, A c → A
E, ‘&’, A E & A
A1, ‘;’, A2 A1;A2

A1, ‘[]’, A2 A1 2 A2

A1, ‘|~|’, A2 A1 u A2

A1, ‘\’, cse A1 \ cse
A ‘[[’, N1 ‘<-’ N2, ‘]]’ A[N1 := N2]
‘mu’, N, ‘@’, A µN • A
A1, ‘[||’, nse1, ‘|’, nse2, ‘||]’, A2 A1 ||[nse1 | nse2]|| A2

A1, ‘|||’, A2 A1 ||[{} | {}]|| A2

A1‘[|’, nse1, ‘|’, ns2, ‘|]’, A2 A1 |[nse1 | Σ | nse2]| A2

A1 ‘||’ A2, A1 |[{} | Σ | {}]| A2

A1 ‘[’, nse1, ‘|’, cse1,
‘||’,

cse2, ‘|’, nse2, ‘]’, A2

(A1 |[nse1 | Σ \ cse1 | {}]| Stop)
|[nse1 | cse1 ∩ cse2 | nse2]|

(A2 |[nse2 | Σ \ cse2 | {}]| Stop)

A1 ‘[’, cse1, ‘||’, cse2, ‘]’, A2
(A1 |[{} | Σ \ cse1 | {}]| Stop)
|[{} | cse1 ∩ cse2 | {}]|

(A2 |[{} | Σ \ cse2 | {}]| Stop)
A1 ‘[|’, nse1, ‘|’, cse, ‘|’,

nse2, ‘|]’, A2 A1 |[nse1 | cse | nse2]| A2

A1 ‘[|’, cse, ‘|]’, A2 A1 |[{} | Σ | {}]| A2

d ‘@’, A d • A
‘(’, d, ‘@’, A, ‘)’, ‘(’, E, ‘)’ (d • A)(E)
A ‘(’, E, ‘)’ A(E)

Table 4: Mapping between CML and Circus action CSP-based operators

109

D24.1 - Comp. Anal. of CML Models (Public Document)

CML Action Circus Action (ρ)
N, ‘:=’, E N := E
‘atomic’, ‘(’, N1 := E1, ‘;’, N2 := E2, ‘)’ N1,N2 := E1,E2

‘[’,[‘frame’ f], [‘pre’, E1], ‘post’, E2, ‘]’, δ(f) : [E1,E2]
‘if’ E1, ‘->’, A1, ‘|’, E2, ‘->’, A2, ‘end’ if E1 → A1[]E2 → A2 fi

‘do’ E1, ‘->’, A1, ‘|’, E2, ‘->’, A2, ‘end’

µX •
if E1 → A1;X
[]E2 → A2;X
[]¬ (E1 ∨ E2)→ Skip
fi

‘if’, E1, ‘then’, A1,
‘elseif’, E2, ‘then’, A2

if E1 → A1

[]E2 → A2

[]¬ (E1 ∨ E2)→ Skip
fi

‘if’, E1, ‘then’, A1,
‘elseif’, E2, ‘then’, A2,
‘else’, A3

if E1 → A1

[]E2 → A2

[]¬ (E1 ∨ E2)→ A3

fi
‘cases’, E, ‘:’,

p1, ‘->’, A1, ‘,’ p2, ‘->’, A2,
‘others’, ‘->’, A3,

‘end’

ifγ(E , p1)→ A1[]γ(E , p2)→ A2

[]¬ (γ(E , p1) ∨ γ(E , p2))→ A3

fi

Table 5: Mapping between CML and Circus action command operators

110

D24.1 - Comp. Anal. of CML Models (Public Document)

translation of deterministic conditionals, we consider those with one elseif
clause. The generalisation of the translation approach for any number of
guards and elseif clauses is straightforward. For the nondeterministic loop,
we use recursion in the usual way.

For translation of case statements, we use a function γ that takes an expres-
sion E and a pattern p as parameters. It defines a condition that captures
whether E takes the form described by p. For a pattern (,), for instance,
we get a condition ∃ f1 : T1, f2 : T2 • E = (f1, f2). To define γ, by induction on
the structure of the pattern, we need information about the type of E .

It is possible to optimise the translation described by ρ by a pre-processing
of the model. For example, the several forms of parallelism can be defined
in terms of the generalised parallel. This is the case for both parallelism of
processes and parallelism of actions. Similarly, the several forms of loop can
all be written using the nondeterministic loop construct. We, however, give
a more direct translation for the individual constructs.

5.4.2 Correctness

As already explained, the semantics of CML, just like that of Circus, is given
in the UTP. In [BBC+12], a semantics is given to the timed version of CML, in
terms of a UTP theory. That theory is very similar to the UTP Circus theory,
but its traces are enriched with information about time and incorporates the
information about refusals. To establish the correctness of the translation
presented above, what we need is to establish the relationship between the
timed semantic model of CML and the untimed theory of Circus.

Such work has already been carried out for a different, but closely related,
UTP timed theory: that of CircusTime, the timed extension of Circus [SCHS10].
In the spirit of the UTP, the relationship is established in the form of a Galois
connection: a pair of functions that associate establish a correspondence be-
tween the elements of the different theories [SCHS10]. These functions do not
define a bijection, because the timed model embeds more information.

CML theory We recall that the CML UTP theory has, besides the pro-
gramming variables, okay , and wait , a single observation variable rt (and
their dashed counterparts okay ′, wait ′, and rt ′) [BBC+12]. This is a timed
trace: an element of the set defined as follows.

timedTrace =̂ (Σ + P(Σ).tock)∗

111

D24.1 - Comp. Anal. of CML Models (Public Document)

CML Action Circus Action (ρ)

‘for’, N, ‘in’, S, ‘do’, A

(µX • (seq : seq T •
ifseq = 〈〉 → Skip
[]seq 6= 〈〉 → N := head seq;

A;
X (tail seq)

fi)
)(S)

‘for’, E, ‘in’, [‘reverse’], s, ‘do’, A

(µX • (seq : seq T •
ifseq = 〈〉 → Skip
[]seq 6= 〈〉 → N := head seq;

A;
X (tail seq)

fi)
)(reverse S)

‘for’, ‘all’, N, ‘in set’, S, ‘do’, A

(µX • (set : PT •
ifset = ∅ → Skip
[]set 6= ∅ → N : [N ′ ∈ set];

A;
X (set \ {N })

fi)
)(reverse S)

‘for’, N, ‘=’, E1, ‘to’, E2, [‘by’, E3], ‘do’, A

N := E1;µX •
if N ≤ E2→ A;N := N + E3;X
[]N > E2→ Skip
fi

‘while’, E , ‘do’, A µX • if E → A;X []¬ E → Skip fi

Table 6: Mapping between CML and Circus action loop operators

112

D24.1 - Comp. Anal. of CML Models (Public Document)

A timed trace uses a special event tock to mark the end of each time unit.
Just before the tock , a set of events records the refusals at the end of that
time unit. The trace before the first tock or since the previous tock identifies
the sequence of events that happened in that time unit.

Galois connection As discussed at length in [SCHS10], and hinted in the
paper [BBC+12], translation from the timed model to the untimed model
can be defined as follows.

Definition 5.1

L(P) =̂ ∃ rt , rt ′, tt , tt ′ : timedTrace •
tr = tracestt(rt) ∧ ref = refusalstt(rt)
∧ tr ′ = tracestt(rt ′) ∧ ref ′ = refusalstt(rt ′)

The function L maps a predicate P of the CML timed theory to a predicate
in the untimed Circus theory. This is achieved by hiding rt and rt ′ as well
as the derived variables tt and tt ′, while introducing the untimed observa-
tion variables: tr , tr ′, ref , and ref ′ are obtained by applying the trace and
refusalstt projection functions to the timed traces. The programming vari-
ables, okay , and wait , and their dashed counterparts, are not affected by L.
It establishes a very direct correspondence between the predicates.

The definition of tracestt is simple. It is just a projection that keeps all
elements of the trace that are events.

tracestt(tt) = tt � Σ

For refusalstt , we consider that trace that has only the refusal sets: all values
that are subsets of Σ, and take the last of them.

refusalstt(tt) = last (tt � (PΣ))

The function L is an abstraction; L(P) hides time information and gives a
weaker representation of P in the untimed theory. As a result, L(P) can only
give a best approximation of the meaning of P , and there might not be an
exact inverse of L. It is possible, however, to find a function R which as far
as possible undoes the effect of L. Given an untimed predicate Q , R gives
the weakest timed predicate with the same behaviour.

Definition 5.2

R(Q) =̂u {P | L(P) w Q}

113

D24.1 - Comp. Anal. of CML Models (Public Document)

Because R is a weak inverse of L, then there is an unavoidable loss of infor-
mation when applying R to the result of an application of L. The following
theorem captures this fact based on the refinement order.

Theorem 5.3 P w R(L(P))

Proof:

R(L(P)) [definition of R]

=u {Q | L(Q) w L(P)}
[L is monotonic, and property of greatest lower bound]

w u {Q | Q w P} [property of greatest lower bound]

= P

If we apply the weakening function R to a predicate Q and then apply the
strengthening function L to the result, this may yield a predicate stronger
than Q in the untimed theory, as established below.

Theorem 5.4 L(R(Q)) w Q

Proof:

L(R(Q)) [definition of R]

= L(u {P | L(P) w Q} [L is monotonic]

w u {L(P) | L(P) w Q} [property of greatest lower bound]

w Q

These results mean that the functions L and R form a Galois connection. This
property guarantees that the timed theory of CML preserves the untimed
semantics of programs defined in the Circus theory.

As indicated in [SCHS10], the abstraction function L above, when applied
to a wait statement, which is available in CML, gives a nondeterministic
choice between Skip and Stop. This actually introduces a deadlock state
into the program, and therefore liveness properties cannot be explored after
the application of this abstraction function. The program that results from
the application of L may deadlock, even when the original program does
not.

114

D24.1 - Comp. Anal. of CML Models (Public Document)

For our purposes, this is not a problem, since we do not relate timed CML
models to Circus models. As already explained, we consider just an untimed
subset of CML. This is an issue when, like in [SCHS10], we are interested in
analysing the simpler untimed model as a way of obtaining results about the
timed model. This kind of technique is of interest in the context of CML, as
well as of Circus, but is not in the scope of COMPASS.

Soundness of the translations in Tables 3, 4, 5, and 6 requires us showing
that L(P) = ρ(P), using the CML semantics of P and the Circus semantics
of ρ(P). For the action subset in [BBC+12], the proofs are similar to those
in [SCHS10].

As a consequence of these results, we now have two alternatives for applying
the systematic approach to build trustworthy CML SoS presented in this
document:

1. Translate the CML processes into CSP processes and apply the strategy
at the CSP level using CSP tools like FDR, or;

2. Apply the strategy directly at the CML level using the CML model-
checker to discharge the side conditions of the rules. This is due to
the fact that, besides proving the correspondence between CML and
CSP constructs, we have also demonstrated the correspondence be-
tween CML and CSP refinement relations for the subset of CML con-
sidered here.

115

D24.1 - Comp. Anal. of CML Models (Public Document)

6 Case Study

In this section, we describe the specification of a bounded, reactive, buffer as
a means of introducing the systematic development approach proposed in this
document. This specification is strongly based on that presented in [CSW03]
using Circus. First, in Section 6.1 we present the basic CML processes.
They are then used in Section 6.2 to define the basic contracts, which are
systematically composed in order to generate the overall buffer.

The main purpose of this case study is to provide a didactic account of our
approach in the context of CML. It is, however, not a realistic example in
the context of SoS. As we discuss in Section 7, the application of the strategy
to the case studies of COMPASS are planned for Deliverable D24.4 (due in
Month 36).

6.1 CML Ring Buffer

In [CSW03], the development of a reactive bounded buffer using the Circus
refinement calculus resulted in a decentralised buffer that is composed by a
ring of cells with a central controller and a cached head. Each single storage
cell has its own identification and is able to store one value. The controller
is responsible to receive inputs and outputs request from the environment
and interacting accordingly with the ring of storage cells. For example, in
Figure 10 we present the design of a distributed ring buffer of size 4 (hence,
three cells and one place in cache) to which the values 2, 9 and 8 have been
written in this order.

It is out of the scope of this document to present the whole development of a
centralised buffer into a distributed one as presented in [CSW03]. Here, we
focus on the final composition of the basic processes.

First, we assume that the values stored in the buffer are natural numbers.
Furthermore, storage cells are identified by natural numbers that range from
1 up to the size of the buffer decremented by one. This is due to the use of a
cache in the controller as we will describe later in this section. Finally, every
communication between the controller and the storage cells has a direction
which is either a request (req) or an ancknowledgment (ack). All the types
are declared in the types section of the CML specification.

types

Value = nat

116

D24.1 - Comp. Anal. of CML Models (Public Document)

Figure 10: Design of a Distributed Ring Buffer

CellId = nat inv id == id > 0 and id <= maxring

Direction = <req> | <ack>

The next section of our CML specification of the distributed buffer defines
two constants: the size of the buffer, maxbuff (for illustration purposes 4),
and the number of storage cells in the ring maxring.

values

maxbuff = 4;

maxring = maxbuff - 1

The channels section specifies the channels used in the specification. The
environment is able to interact with the buffer using channels input and
output that carry the value to be stores and retrieved, respectively.

channels

input, output : Value

The channels write and read are used by the controller to exchange values
with the ring cells.

write, read: CellId * Direction * Value

On the other hand, each individual cell is unaware of the existence of other
cells. Hence, from the perspective of the cells, the interaction is via channels
wrt and rrd.

rrd, wrt: Direction * Value

117

D24.1 - Comp. Anal. of CML Models (Public Document)

We also need to introduce channels that communicate the position of the cell
in the ring, as well as the value of the cell, as rd and wrt do. These channels
are used later to make instances of the contract that encapsulates the process
RingCell; each instance represents an individual storage cell.

rd_i, wrt_i: CellId * Direction * Value

We are now able to specify the two basic processes which are used later to
define the contracts of our example.

The ring cell is implemented as the following CML process, which has a single
state component, v, the value stored (if any).

process RingCell =

begin

state v:Value

This process has a single operation setV(x:Value) that is used to set its
component v to the value received as argument.

operations

setV(x:Value)

frame wr v

post v = x

The ring cell has a single behavioural action, Act, in which the cell receives
a request to store a value through channel wrt, sets its value to the received
value using its only operation, acknowledges the writing and then is ready
to be read. After receiving a request for a reading, it sends the stored value
through an acknowledgment in channel rrd.

actions

Act = wrt.req?x -> setV(x); wrt.ack.x -> Act

[]

rrd.req?dumb -> rrd.ack!v -> Act

This action defines the main behaviour of the storage cell.

@ Act

end

This concludes the specification of the storage cell. We now turn to the last
basic process, which has a more elaborate specification, the Controller.

The controller has four state components: the cache that stores the head
of the buffer, when the buffer is non-empty; the size of the list stored in
the buffer; and two indices bottom and top, to delimit the relevant values.

118

D24.1 - Comp. Anal. of CML Models (Public Document)

Modulo arithmetic is used to increment bot and top. The constant maxring,
defined as maxbuff - 1, gives the bound for the ring.

process Controller =

begin

state cache:Value;

size:nat;

top:CellId;

bot:CellId

The initialization operation receives the initial values of the four components
and initialises the components accordingly.

operations

Init(c:Value, s:nat, t:CellId, b:CellId)

post cache=c and size=s and top=t and bot=b

Furthermore, one operation for each state components is provided for setting
their values.

SetCache(x:Value)

frame wr cache:Value

post cache = x

SetSize(x:nat)

frame wr size:nat

post size = x

SetTop(x:CellId)

frame wr top:CellId

post top = x

SetBot(x:CellId)

frame wr bot:CellID

post bot = x

We now describe the Controller’s behavioural actions. If the buffer has
not reached its maximum size, the action Input gets the new input. In the
case the buffer is empty, an input is cached. The ring indices do not change
and the buffer now contains a single item. If the buffer is not empty, the
Controller sends the input value to the ring along with the position top in
which the input is to be stored. This communication is through the channel
write. In this case, the cache is not changed, but the indices and the size
of the ring are updated.

119

D24.1 - Comp. Anal. of CML Models (Public Document)

actions

Input =

[size < maxbuff] &

input?x ->

([size = 0] & SetCache(x); SetSize(1)

[]

[size > 0] &

write.top.req!x ->

write.top.ack?dumb ->

SetSize(size+1);

SetTop((top mod maxring)+1))

Concerning output, which is only enabled if the buffer is not empty, the
value in the cache is always the one which is communicated. If the buffer
has a single element, communicating this element and updating the size are
the only relevant actions. Nevertheless, if there are elements stored in any
storage cell, the value x at position bot must be recovered. In this case,
the cache is updated with this value and bot is incremented. The following
action captures the necessary case analysis for output. The channel read is
used to recover the element x at position bot in the ring.

Output =

[size > 0] &

output!cache ->

([size > 1] &

(|~| dumb:Value @

read.bot.req.dumb ->

read.bot.ack?x -> SetCache(x));

SetSize(size-1);

SetBot((bot mod maxring)+1)

[]

[size = 1] &

SetSize(0))

The behaviour of the controller is as follows.

@ Init(0,0,1,1); mu X @ ((Input [] Output); X)

end

After initialisation for an empty buffer, inputs and outputs are offered re-
peatedly, whenever possible.

The ring buffer example, while being appropriate to illustrate the compo-
sitional approach described here, is not a realistic example in the context

120

D24.1 - Comp. Anal. of CML Models (Public Document)

Figure 11: RingCell Contract

of SoS: typically, the controller, as a constituent system, would not block
because the ring buffer, which would be deployed as another constituent sys-
tem, is full (recall that the Input action will block inputs if the buffer is
full). Instead, it would always be allowed to send an input request, and re-
sponses (success/failures) would be sent from the constituent system handling
the buffer to the constituent system trying the input. Again, our main pur-
pose with this case study is to illustrate the use of the approach in CML. More
complex and SoS related case studies are planned for Deliverable D24.4 (due
in Month 36).

6.2 BRIC Ring Buffer

Based on both basic processes presented above, we are able to systematically
build a process network based on the systematic approach presented in Sec-
tion 3. First, we define the contracts that encapsulate both processes, which
constitute the building blocks of our systematic development approach. As
explained in Section 3, a component contract encapsulates a component: it
is defined in terms of the component’s behaviour (represented as a CML pro-
cess), ports (represented as channels) and respective interfaces (types).

The contract that encapsulates the RingCell, depicted in Figure 11 is defined
below.

CtrRingCell =̂

〈 RingCell,{
rd 7→ Direction × Value,
wrt 7→ Direction × Value

}
,

{Direction × Value},
{rd, wrt}

〉

The contract behaviour is that of the CML process RingCell. This compo-
nent communicates via two channels rd and wrt, whose types are determined
by the second component of the contract.

121

D24.1 - Comp. Anal. of CML Models (Public Document)

As explained in Section 3, our model has a higher-level granularity by com-
plementing the syntactical information of a component with behaviour. In
our case, we explicitly separated inputs and outputs. The contract CtrRingCell

has the requests as inputs and the acknowledgments as outputs.

inputs(rd,CtrRingCell) = {| rd.req |}

inputs(wrt,CtrRingCell) = {| wrt.req |}

outputs(rd,CtrRingCell) = {| rd.ack |}

outputs(wrt,CtrRingCell) = {| wrt.ack |}

Besides the restrictions on the R, I, C, which are satisfied, in order for the
CtrRingCell to be a valid component contract, the RingCell needs to be an
I/O process. This depends on 5 conditions, which are:

1. whenever c.x ∈ α(RingCell), then c is an I/O channel;

• This is correct, since the definitions of the functions inputs and
outputs for channels rd and wrt above makes it clear that, for both
channels, their results are within the productions of the channels
on req and ack, separately, and their intersection is empty.

2. RingCell has infinite traces;

• This is correct because the process has an infinite recursion

3. RingCell is divergent-free;

• This is correct because the process has no hiding.

4. RingCell is input deterministic;

• This is correct because the process does not have internal choice
among input events.

5. RingCell is strong output decisive.

• This is correct because there is no choice on outputs; when offered,
there is only a single option on outputs.

Hence, we may conclude that CtrRingCell is a valid contract.

The second contract encapsulates the Controller and is depicted in Fig-

122

D24.1 - Comp. Anal. of CML Models (Public Document)

Figure 12: Controller Contract

ure 12 is defined below.

CtrController =̂

〈 Controller,
input 7→ Value, output 7→ Value,
read 7→ CellId × Direction × Value,
write 7→ CellId × Direction × Value

 ,

{Value, CellId × Direction × Value},
{input, output, read, write}

〉

This contract’s behaviour is that of the CML process Controller, which
communicates via channels input, output, read and write, whose types are
determined by the second component of the contract.

As for the CtrRingCell contract, we also separated inputs and outputs of the
Controller’s contract. First, this component inputs on channel input and
outputs on channel output. The reading and writing of values is complemen-
tary to the RingCell: it has the requests as outputs and acknowledgments
as inputs.

inputs(input,CtrController) = {| input |}

inputs(output,CtrController) = {| |}

inputs(read,CtrController) =
⋃

i :CellId {| read.i.ack |}

inputs(write,CtrController) =
⋃

i :CellId {| write.i.ack |}

outputs(input,CtrController) = {| |}

outputs(output,CtrController) = {| output |}

outputs(read,CtrController) =
⋃

i :CellId {| read.i.req |}

outputs(write,CtrController) =
⋃

i :CellId {| write.i.req |}

Besides the restrictions on the R, I, C, which are satisfied, in order to be
a valid component contract, the Controller needs to be an I/O process.
This depends on the same conditions as those for the RingCell presented
above.

123

D24.1 - Comp. Anal. of CML Models (Public Document)

1. whenever c.x ∈ α(Controller), then c is an I/O channel;

• This is correct, since the definitions of the functions inputs and
outputs presented above clearly have an empty intersection.

2. Controller has infinite traces;

• This is correct because the process has an infinite recursion

3. Controller is divergent-free;

• This is correct because the process has no hiding.

4. Controller is input deterministic;

• This is correct because the process does not have internal choice
among input events.

5. Controller is strong output decisive.

• This is only correct because the dumb value communicated in
read.bot.req.dumb is non-deterministically chosen. Otherwise,
if an external choice on such value or an input read.bot.req?dumb
were offered, the process would not satisfy this property.

Hence, we may conclude that CtrRingCell is a valid contract.

We are now able to systematically compose the basic contracts in order to
generate the overall buffer.

The contracts related to each individual storage cell are defined as instanti-
ations of the contract CtrRingCell .

Cell1 =̂ COMPInst(CtrRingCell , {rd 7→ rd_i.1, wrt 7→ wrt_i.1})
Cell2 =̂ COMPInst(CtrRingCell , {rd 7→ rd_i.2, wrt 7→ wrt_i.2})
Cell3 =̂ COMPInst(CtrRingCell , {rd 7→ rd_i.3, wrt 7→ wrt_i.3})

Each instance renames the channels for reading and writing in order to iden-
tify the cells in the communication accordingly. We are left with the com-
ponent contracts presented in Figure 13. For the same reasons as those
described for the generic ring cell above, each of the contract instantiation
above is indeed a valid component contract.

6.2.1 BRIC Composition

The next step is to verify the application of the composition rules that can be
used to compose the distributed ring. The first composition is an interleave

124

D24.1 - Comp. Anal. of CML Models (Public Document)

Figure 13: Contracts Before Composition

between cells 1 and 2.

DRing1 2 =̂ Cell1 [|||] Cell2

Since their alphabets are different (see the instantiation above) the rule ap-
plication is valid.

The result of this composition is the contract DRing1 2. Our systematic
development approach proposed in this document guarantees the deadlock-
freedom of the resulting contract based on the deadlock-free of the com-
posing contracts. The same applies to the remaining compositions in this
section.

For the same reasons as the first composition, the interleave composition of
the resulting process with the last cell is also valid.

DRing =̂ DRing1 2 [|||] Cell3

We are left with the structure presented in Figure 14, in which we have
two independent component contracts: one that represents the storage cells,
DRing and the one the represented the Controller.

Next, we use the communication rule to link both contracts together on
events write.1 and wrt i .1.

CRingCell1 wrt =̂ CtrController [write.1 ↔ wrt i .1]DRing

This composition is only valid if the channels are in the corresponding pro-
cess’ alphabets and these alphabets do not intersect; both conditions are

125

D24.1 - Comp. Anal. of CML Models (Public Document)

Figure 14: Contracts Before Communication

satisfied. The next conditions are related with the port protocols, which are
defined in the sequel.

The protocol implementation of the cells on channel wrt i .1, as expected,
is deterministic on the inputs and non-deterministic on the outputs. It is
important to notice that the protocol has control on the values that are read
and written (to and from the cell). It only enforces req before ack .

ProtIMP(DRing ,wrt i .1)
= DRing � {| wrt i .1 |}
= u v2 : Value •

wrt i .1.req?v1→ wrt i .1.ack .v2→ ProtIMP(DRing ,wrt i .1)

Furthermore, we also define the corresponding sets on inputs and outputs .

inputs(ProtIMP(DRing ,wrt i .1),wrt i .1) = {| wrt i .1.req |}
inputs(ProtIMP(DRing , rd i .1), rd i .1) = {| rd i .1.req |}
outputs(ProtIMP(DRing ,wrt i .1),wrt i .1) = {| wrt i .1.ack |}
outputs(ProtIMP(DRing , rd i .1), rd i .1) = {| rd i .1.ack |}

Using the definition for protocol implementation presented in Section 4, we
have that the protocol is valid if, and only if:

1. ProtIMP(DRing ,wrt i .1) is an I/O Process, that is, as explained before.

126

D24.1 - Comp. Anal. of CML Models (Public Document)

(a) whenever c.x ∈ αProtIMP(DRing ,wrt i .1), then c is an I/O chan-
nel;

(b) ProtIMP(DRing ,wrt i .1) has infinite traces;

(c) ProtIMP(DRing ,wrt i .1) is divergent-free;

(d) ProtIMP(DRing ,wrt i .1) is input deterministic;

(e) ProtIMP(DRing ,wrt i .1) is strong output decisive.

2. inputs(ProtIMP(DRing ,wrt i .1),wrt i .1) ⊆ inputs(DRing ,wrt i .1)

3. outputs(ProtIMP(DRing ,wrt i .1),wrt i .1) ⊆ outputs(DRing ,wrt i .1)

4. α(ProtIMP(DRing ,wrt i .1)) ⊆ {| wrt i .1 |}

5. DRing
≡T

DRing |[Σ]| (ProtIMP(DRing ,wrt i .1) ||| RUN (Σ \ {| wrt i .1 |}))

Next, we need to apply the rename (RIO) to the protocol as follows:

ProtIMP(DRing ,wrt i .1) |[Rwrt i .17→write.1
IO]|

= u v2 : Value •
wrt i .1.req?v1→ wrt i .1.ack .v2→
ProtIMP(DRing ,wrt i .1) |[Rwrt i .17→write.1

IO]|
= µX • u v2 : Value •

wrt i .1.req?v1→ wrt i .1.ack .v2→ X |[Rwrt i .17→write.1
IO]|

= µX • u v2 : Value •
wrt i .1.req?v1→ write.1.ack .v2→ X

Let us call this process, PR DRing .

The next condition for the composition is that PR DRing must satisfy the
Finite Output Property (FOP). That is true if, and only if, PRRing \
(outputs(PRRing)) is divergence-free. By definition of inputs and outputs

127

D24.1 - Comp. Anal. of CML Models (Public Document)

of processes to which RIO has been applied, we have:

inputs(ProtIMP(DRing ,wrt i .1) |[Rwrt i .17→write.1
IO]|)

= inputs(ProtIMP(DRing ,wrt i .1 7→ write.1))
= {| wrt i .1.req |}
and
outputs(ProtIMP(DRing ,wrt i .1) |[Rwrt i .17→write.1

IO]|)
= outputs(ProtIMP(DRing ,wrt i .1)) [wrt i .1← write.1]
= {| wrt i .1.ack |} [wrt i .1← write.1]
= {| write.1.ack |}

That means, it satisfies FOP, if, and only if, PR DRing \ {| write.1.ack |} is
divergence-free, which is clearly true.

At this point, it is extremely important to highlight the reasons for having
separated the communications on requests and acknowledgments. Clearly,
from the analysis above, if we did not have this separation, we would not be
able to define port protocols with the finite output property.

Finally, the protocol ProtIMP(DRing ,wrt i .1) is clearly I/O Confluent since
there are no alternative choices on different channels. This is automatically
checked by a model checker, by checking that

InBufferProt(ProtIMP(DRing ,wrt i .1),wrti .1)

is deterministic, where InBufferProt performs a data forgetful renaming on
the given process and then places an input one-place inwards pointing buffer
on every individual event of the renamed process. The process InBufferProt
below represents these steps altogether.

CP(a, b) = a → b → CP(a, b)
C (a,P) = (P [[a ← mid]] |[{| mid |}]| CP(a,mid)) \ {| mid |}
CIO(P) = C (in,C (out ,P))

InBufferProt(P , c) =
CIO(P [[x ← in, y ← out | x ← inputs(P), y ← outputs(P)]])

In a very similar manner, we define the protocol implementation of the con-
troller on channel write.1.

ProtIMP(CtrController ,write.1)
= DRing � {| wrt i .1 |}
= u v1 : Value •

wrt i .1.req .v1→ wrt i .1.ack?v2→ ProtIMP(DRing ,wrt i .1)

128

D24.1 - Comp. Anal. of CML Models (Public Document)

Its definition is very similar to that of the ring cell; however, since it outputs
on the requests and inputs on the acknowledgments, the internal choice is
left to the value communicated on the request. For the same reasons as
discussed above, which we omit here for conciseness, this protocol is also a
valid one, and its renamed version (RIO) satisfies the finite output property.
Furthermore, the protocol is also I/O Confluent since there are no alternative
choices on different channels.

The final requirement of the rule application is the strong compatibility of
the renamed versions of the protocols. Our experiments demonstrated that
the protocols are strong compatible, since at every possible trace there is an
output from either one of the protocols and the other protocol accepts the
existing output as an input. More precisely, we have that:

inputs (ProtIMP(DRing ,wrt i .1) |[Rwrt i .17→write.1
IO]|) =

{| wrt i .1.req |}
outputs(ProtIMP(DRing ,wrt i .1) |[Rwrt i .17→write.1

IO]|) =
{| write.1.ack |}

inputs (ProtIMP(CtrController ,write.1) |[Rwrite.1 7→wrt i .1
IO]|) =

{| write.1.ack |}
outputs(ProtIMP(CtrController ,write.1) |[Rwrite.1 7→wrt i .1

IO]|) =
{| wrt i .1.req |}

Hence, the renamed versions of the protocols are strong compatible because
the following conditions are, indeed, satisfied.

• outputs(ProtIMP(DRing ,wrt i .1) |[Rwrt i .17→write.1
IO]|)

⊆ inputs(ProtIMP(CtrController ,write.1) |[Rwrite.17→wrt i .1
IO]|)

• outputs(ProtIMP(CtrController ,write.1) |[Rwrite.1 7→wrt i .1
IO]|)

⊆ inputs(ProtIMP(DRing ,wrt i .1) |[Rwrt i .1 7→write.1
IO]|)

• outputs(ProtIMP(DRing ,wrt i .1) |[Rwrt i .17→write.1
IO]|)

∩ outputs(ProtIMP(CtrController ,write.1) |[Rwrite.17→wrt i .1
IO]|) = ∅

• inputs(ProtIMP(DRing ,wrt i .1) |[Rwrt i .17→write.1
IO]|)

∩ inputs(ProtIMP(CtrController ,write.1) |[Rwrite.17→wrt i .1
IO]|) = ∅

This concludes the verification of the conditions that validate the communi-
cation composition of DRing and the CtrController .

After the communication composition, we are left with a single component
depicted in Figure 15. Further compositions require the application of rules
that allow the connection of channels of a same component. In our approach,
we have two options: feedback and reflection. The former is cheaper regarding

129

D24.1 - Comp. Anal. of CML Models (Public Document)

Figure 15: CRingCell1 wrt Contract

verification costs and for this reasons, we first try to apply it before using
the latter.

The first feedback composition connects channels rd i .1 and read .1.

CRingCell1 =̂ CRingCell1 wrt [read .1 ↪→ rd i .1]

The vast majority of the conditions that validate the application of this rule
are the extremely similar to those of the last rule application. The only dif-
ference is on the channels used. For conciseness, we omit a discussion about
these conditions here since it would be almost a repetition of the discussion
presented above. The feedback composition, however, has a further condi-
tion: the channels that are being connected ought to be decoupled, that is,
communication through both channels of a same process behaves as commu-
nications between channels of distinct processes (channels are independent).
In this case, our experiments demonstrate that the channels are indeed de-
coupled; hence, the rule application is valid. Intuitively, the channels are
decoupled because by connecting rd i .1 and read .1 we have not introduced
any cycle of dependence.

Similarly, we might make further use of the feedback composition as long as
we do not introduce such cycles of dependence.

CRingCell2 wrt =̂ CRingCell1[write.2 ↪→ wrt i .2]

CRingCell2 =̂ CRingCell2 wrt [read .2 ↪→ rd i .2]

The application of all feedback composition leave us with CRingCell2 de-
picted in Figure 16. By looking at this figure and bearing in mind the

130

D24.1 - Comp. Anal. of CML Models (Public Document)

Figure 16: CRingCell2 Contract

behaviour of a circular buffer, we might intuitively conclude that any fur-
ther communication will not be among decoupled channels because we will
be introducing a cycle of behavioural dependence. In fact, our experiments
demonstrate that the channels write.3 and wrt i .3 are not decoupled. The
same conclusion applies to channels read .3 and rd i .3. For this reason, the
conclusion of the systematic development of our case study uses the last
composition rule, the reflexive rule.

Our first use of the reflexive rule connects channels write.3 and wrt i .3.
Rather than requiring channels to be decoupled like the feedback rule, the
reflexive rule requires the projection of the overall process on both channels
to be buffering self-injection compatible (which includes being strong com-
patible) and to satisfy the finite output property. In our work, we use the
following lemma, originally presented and proved in [Ram11], which shows
that a buffering self injection compatible process can establish a communi-
cation between its channels via a one-place buffer without deadlock. Again,
the application of this result at the level of CML is only allowed because of
the results presented in Section 5.

Lemma 6.1 Let P be an deadlock-free I/O process, c and z communication
channels, and LR1 and LR2 bijections, such that:

1. LR1 : outputs(P , c)↔ inputs(P , z);

2. LR2 : outputs(P , z)↔ inputs(P , c);

3. ProtIMP(P , c) |[LR1]| and ProtIMP(Q , z) |[LR2]| are strong compatible,
and;

131

D24.1 - Comp. Anal. of CML Models (Public Document)

Figure 17: CRingCell Contract

4. ProtIMP(P , c) and ProtIMP(Q , z) satisfy the finite output property.

Then, P � {c, z} is buffering self-injection compatible if, and only if, the
following process is deadlock-free:

P � {c, z} |[{c, z}]| BUFF 1
IO(LR1,LR2)

The verification of strong compatibility and the finite output property is
achieved in the same manner as previously discussed in this section. Finally,
the verification that the process can communicate via a one-place buffer
without deadlock is achieved simply by model checking. In our experiments,
both rule applications below satisfy all these properties; hence, they are
valid.

CRingCell3 wrt =̂ CRingCell2[write.3 ¯↪→wrt i .3]

DBuffer =̂ CRingCell3 wrt [read .3 ¯↪→ rd i .3]

2

It is important to point out that the verification of that the process can
communicate via a one-place buffer without deadlock is non-compositional.
For this reason, the application of the reflexive rule has a very high cost of
verification and is currently our bottleneck. We are developing alternatives
for the application of this rule that are not in the context of this document.
So far, the alternatives have proved to be extremely efficient.

This concludes the systematic development of a distributed buffer depicted
in Figure 17. This buffer interacts only via channels input and output . This

132

D24.1 - Comp. Anal. of CML Models (Public Document)

interaction is only on these channels because the composition rules removes
the connecting channels from the contracts interfaces. This prunes the pos-
sibility of further connections on these channels.

Using a CSP version that corresponds to the CML buffer, we demonstrated
in FDR that this CSP BRIC version of the buffer is indeed a refinement of an
abstract buffer. The verification of the correctness of the CML BRIC version
of the buffer requires the implementation of the CML model checker which
is currently under development.

133

D24.1 - Comp. Anal. of CML Models (Public Document)

7 Conclusion

Although compositional approaches provide mechanisms and tools for con-
structing systems by plugging components together, the safe construction of
these systems is still a research challenge. Trustworthiness is required dur-
ing several development activities, such as safe composition of third-party
components or the correct adaptation of library components.

In this document, we have proposed a correct-by-construction approach for
building trustworthy CML SoS. The approach focuses on performing analyses
that are intended to address engineering concerns on compositional develop-
ment. In special, we focus on component integration. The entire approach is
based on the original approach from [Ram11] that is underpinned by the CSP
process algebra, which offers rich semantic models that support a wide range
of process verifications, and comparisons. The strategy for lifting the entire
approach from CSP to CML (via Circus) provides a general theoretical link
between these three formal languages that fosters the reuse of practical results
achieved in any of them. These results contribute with the development of
compositional design and analysis techniques, based on sophisticated archi-
tectural patterns (WP24); they will help to realise the potential and promise
of SoS.

Another account of the soundness of our compositional analysis technique is
being developed in the form of a Hoare Logic for CML. It supports rigorous
reasoning about CML programs using rules like those we presented, which
are, however, expressed as inference rules proved directly in the CML UTP
theory. It is a formal logic system used to prove Hoare Triples: statements
of the form {P}C{Q}, asserting that a precondition (P) and postcondition
(Q) is applicable to the model C of a CML program (an element of the
CML UTP theory). It consists of axioms for SKIP, STOP and assignment,
and inference rules prefixing, parallel and sequential composition, internal
and external choice, timeout, recursion, and hiding operators. These can be
combined to develop proofs for composite programs.

The axioms determine P , in terms of an arbitrary Q , such that RT (P `
Q) v C holds, where RT is the healthiness condition of the CML UTP
theory. Given a hypothesis containing Hoare triples for the constituent pro-
grams of C , the inference rules give P and Q , in terms of the hypothesis
assertions. Side conditions on hypothesis assertions are used to reduce the
overall complexity of a rule. The rules are proved sound in the same UTP
theory of the programs, that of CML, and also exact in the sense that the
precondition is both necessary and sufficient for the command establishing

134

D24.1 - Comp. Anal. of CML Models (Public Document)

the postcondition. For cases when only sufficiency is needed, simpler rules
will also be given as part of our future work.

The CML BRIC component model is aligned to other models with behaviour
descriptions. It focuses on (re)active components that are input determin-
istic and output decisive. Reuse and compositions are allowed not only to
components, but also to connectors. Furthermore, it considers not only com-
positions between two distinct components, but also the assembly between
ports of the same component. This brings more flexibility to design decisions
at development. An operation for hiding information to pack components
into black-boxes is also presented.

We present a comprehensive set of composition rules that can be regarded
as safe steps in the development. The application of the rules can be used to
systematically develop a wide variety of trustworthy component systems, and
guarantees, by construction, the absence of deadlock. The approach covers
not only tree-topologies, but also topologies with cycles in a compositional
method, without being aware of needing to know the overall structure of the
system. Port protocols play an important role in the approach, and, in con-
junction with other properties, help to alleviate verifications by supporting
local analyses.

We improve the verification using enriched components with metadata. We
propose an integrated correct-by-construction approach for component con-
tracts using metadata, which extends our approach for arbitrary components
with improved and lightweight side conditions. Metadata are derived from
component-contract elements and are used in substitution to heavier verifi-
cations in the version without metadata. Additionally, metadata of compo-
sitions can be easily derived from the metadata of its constituting compo-
nents. As a result, the order of complexity of the verifications is drastically
reduced.

Finally, the application of our approach has been illustrated in a case study
in Section 6: the Ring Buffer.

Despite these contributions, the proposed approach has some limitations:

1. The benefits of using metadata are limited to the application of com-
position and feedback composition rules. Although this corresponds to
two of the four basic proposed composition rules, the application of the
other composition rules is compatible with our strategy with metadata.
Moreover, one of these composition rules, the interleave one, is already
very simple, and does not need further improvements.

135

D24.1 - Comp. Anal. of CML Models (Public Document)

2. The strategy with metadata indicates that some compatible communi-
cations between components, as incompatible (false-negatives). This is
an intrinsic problem in local analysis methods, which is acceptable con-
sidering the advantages that it brings in scalability. In these scenarios,
the developers have to use traditional verification methods to comple-
ment our strategy. Furthermore, the strategy with metadata must be
adopted as a technique that guides the attention of the integrator to
the most crucial compositions, and not as a ‘silver bullet’ method for
the composition problem in general.

7.1 Related work

The topic of this document expands over fields of architecture and reliability
modelling. We have studied a variety of approaches in each domain, and
identified a few approaches that span both domains. Here, we first present
a summary of related approaches to architectural modelling. We then pro-
vide an overview of existing reliability models. The former focuses on the
characteristics of our component model, and the latter on the constructive
constraints to ensure properties of component-based systems. Since there is
an extensive number of works in these fields, we focus on the works being
most influential and related to our work.

There are several different approaches to component models. As pointed
out in [Wal03], each component model is designed to achieve specific goals.
Furthermore, each one has its benefits and deficiencies, depending on the
context in which it is analysed. In this section, we consider related works
and compare them according to the context of this document. For instance,
there are multiple (modelling) aspects for component [RM04].

To begin with, we do not relate our work with other component models that
define low-level granularity components, in which contracts/interfaces cap-
ture solely syntactical information (like method signatures). Low-level gran-
ularity component models are associated to component technologies found in
industry that are usually designed to support quick development or to permit
the use of different programming languages in development. These are fur-
thermore not designed for reasoning. In order to get around this limitation
concerning interface representation, several authors [FLF01, LD00, LW94]
propose the specification of the ‘behaviour’ part via pre- and post conditions
and invariants. According to [Pla05], one of the key obstacles in applying
these approaches to components is that they require an explicit capturing

136

D24.1 - Comp. Anal. of CML Models (Public Document)

of (object) state - this may be both a very hard-to-achieve and, potentially,
limiting decision at an early stage of a component design.

We focus on works that support behaviour description of entities. The idea
of expressing behaviour of an object as a regular process (via traces as se-
quences of method calls) has been published in [Nie93]. It even considers the
role of client calls (in a simple case) via parallel composition. The impor-
tance of capturing behaviour of components as sequences of events for COTS
components (commercial off the shelf) is emphasized also in [DR02] where a
way of identifying behaviour via monitoring experiments is described.

There have been a huge number of publications on behaviour description
of components and connectors [ADG98, BCD02, HLL06b, BHP06, Arb04,
Sif10, CZ07]. Our approach integrates aspects from different but closely
related domains. The target concrete syntax of our work is CSP, but the
elements within BRIC component contracts (see Definition 3.1) are not di-
rectly represented by this notation. CSP is used to give the underlying
semantics of our component model, and to help verifications. However, there
are more suitable concrete syntaxes to represent our notions at development
phase, such as Architectural Description Languages (ADLs) [MT00] or the
modelling languages UML-RT [SR98] and UML2 [Obj07]. The concepts in
these languages are highly compatible with our component model, and one
can benefit from using both approaches, like modelling in one language and
performing verifications in another.

Our component model is based on I/O transition systems, has explicit ar-
chitectural structure, and presents connectors as first class design elements.
These characteristics resemble several ADL approaches, such as Wright [All97b,
ADG98], Darwin [MK96], PADL [BCD02], and ROOM [SGW94]. Our com-
ponent model focuses on design elements, and does not take into considera-
tion the expressiveness of programming languages as architectural program-
ming models, such as ArchJava [ACN02], SOFA [BHP06], Fractal [BCL+06],
rCOS [HLL06a, CHLZ07] and BIP [Sif10]; the design concepts in these ADLs
are, however, compatible with concepts in our component model. Another
related ADL is ROOM [SGW94], which later evolved to UML-RT [SR98],
which in the meantime has been incorporated into UML2 [Obj07].

Despite their similarities, the representation of components in these works
differs in some extent. Some consider the internal behaviour of compo-
nents, e.g. [BCL+06, HLL06a], other the external behaviour, e.g. [ADG98].
Some component models represent components solely by their port protocols,
e.g. [CZ07], other neglects this kind of behaviour, e.g. [HLL06a]. In our work,
we discriminate the external behaviour of components and their points of in-

137

D24.1 - Comp. Anal. of CML Models (Public Document)

teractions (port protocols). Component contracts have the whole external
component behaviour, or are enriched with port protocols (see component
contracts and metadata in Chapter 3). Each kind of behaviour has its ben-
efits in reasoning. Port protocols alleviate verifications, whereas the whole
behaviour of components is essential for structural analysis of larger systems.
The comparison with approaches to verify component-based systems is pre-
sented in the next section. Our component model also has operations to
hide information in component contracts. The wrapping operation hides the
part of the component behaviour that is not available for composition (the
interaction between the sub-components of the composition). This is, how-
ever, different from the concept of publication presented in rCOS [ZKL10] for
creating ‘black-box components’. In rCOS, a publication is an abstraction of
a contract that removes behavioural information from the contract.

Another important issue is the representation of connectors. Some works
have an explicit representation for connectors, e.g. [ADG98], others connec-
tors are not distinct from components, e.g. [HLL06a]. In some approaches
both in components and connectors can be reused. Our approach is clos-
est to that of [Spi04], in which, at the design level, connectors are repre-
sented as parametrised CSP processes, called connector wrapper templates.
At the integration phase, connectors have the same representation as compo-
nents [ADG98, Spi04]. This provides means of enhancing existing connectors
at different levels of abstraction, which is aligned with practical approaches
of connector representation [MB05]. The more abstract one is used at design
and it is meant for reuse. The more concrete one has the same structure of
components, and it can, therefore, be used as units of compositions.

This issue is related to coordination languages. In these languages, connec-
tors are used to coordinate component interactions. Compared to ADL con-
nectors, these connectors can represent much more sophisticated coordination
policies for sets of components. In the coordination language Reo [Arb04],
complex connectors are constructed from a composition of a comprehensive
set of basic connectors. The computational aspects of the connectors are
therefore limited to these basic connectors. In our work, we do not focus on
coordination issues. Apart from that, one can build exogenous coordination
on the top of our component model. Connectors can also be built from more
basic ones, and, at any level, connectors can have complex behaviours.

Most of these component models [All97b, BCD02, HLL06b, Sif10, CZ07] have
an underlying semantics, which allows verifications; most of these compo-
nent models are classified as ADL, and typically subsumes a formal semantic
theory [MT00]. In the next section, we discuss the relations between our

138

D24.1 - Comp. Anal. of CML Models (Public Document)

approach and the verification methods in these works.

There are several efforts on the verification of Component-based
Systems [BCD02, MCM08, HJK10b, MW97, All97b]. The scalability issue
in compositional verification has been actively addressed in this field; com-
positional verification is based on the idea that the correctness check of a
complex system can be divided into smaller verification tasks for its com-
ponents. Here, we compare our work, not only with approaches with an
explicit component model, but also with others that focus on the verification
of behavioural elements (which may not be fully aligned with a component
development method).

The work reported in [GGMC+07, MCMM07, MCM07] presents an exten-
sive study of quality properties in CBS. It discusses liveness, local progress,
deadlock, fairness and robustness. We implicitly discuss these properties, ex-
cept fairness and robustness. The deadlock property is locally addressed by
our compatibility notion, which is an important condition of our composition
rules. Therefore, deadlock is preserved by our composition rules for BRIC
components, and local progress is also preserved when composition rules are
applied for BRICK components (components with metadata). None of the
composition rules introduce livelock. Relating to fairness (of process sched-
ules or of internal event choices), we believe that it must be performed by
coordinators, which mediate component interactions. As a consequence, fair-
ness is a property associated to a coordination purpose and that requires a
specific verification, which is out of the scope of this work. Robustness is a
desirable property which is not addressed by our work.

Even though there are many approaches to formally model component based
systems (CBS) [ADG98, AB03, IM08, HLL06b, PV02], to our knowledge the
question of preserving, by construction, behavioural properties has not yet
been fully systematised as we have done in this work. Despite the fact that
our black-box component contracts are compatible with most component-
based approaches, especially those based on CSP or CSP-like notations [Ros98,
HLL06b], most approaches to date aim at verifying the entire component-
based systems before implementation, but not predicting behavioural prop-
erties by construction during design. We can ensure deadlock freedom in
a constructive way, as a result of applying composition rules, as opposed
to performing model checking verification after the system has been built.
The compositional approach can be applied in heterogeneous systems (syn-
chronous and asynchronous) with different topologies (tree or cyclic).

Approaches to verifying a system tend to use abstraction techniques to reduce
the state space. They map a set of states of the actual system to an abstract,

139

D24.1 - Comp. Anal. of CML Models (Public Document)

and a smaller set of states in a way that preserve the behaviours of the sys-
tem. [ZM10] adopts counterexample guided abstraction refinement scheme
to alleviate the state explosion problem of deadlock detection. It extends the
classical labelled transition system models by qualifying transitions as certain
and uncertain to make deadlock freedom conservative. A similar approach
is presented in [Kwi07]. It determines their sets of ‘conflict-free’ actions,
called untangled actions. Untangled actions are compositional; synchronisa-
tion on untangled actions will not destroy their ‘conflict-freedom’. Following
the same approach, [CCH+09] proposes a deadlock detection algorithm based
on navigating and marking transitions on a dynamic synchronization depen-
dency graph.

Other approaches tend to design components and interactions using strict
component models in order to avoid undesirable properties, such as dead-
lock. [DZL10] builds up a service interaction model and analyses the deadlock
problem related with shared internet resources. It proposes some interaction
solutions to effectively prevent deadlocks. In this context, our approach can
also be specialised for a specific architectural style. In [RSM09], we com-
bine side conditions presented in this document to propose specific compo-
sition rules for interaction components. In this work, all verifications and
notions support the analysis of partitions of the component (and composi-
tion) behaviour in space (protocols) and time (interaction patterns). This ap-
proach combines the advantages of the approaches presented in [VVR06] and
in [BBT01], where physical and temporal partitions are realised, respectively.
Protocols are observed as a particular type in [VVR06], which permits the
verification of compatibility. However, concerns about the entire component
behaviour are ignored in the definitions of [VVR06]. Interaction patterns are
also defined in [BBT01], however without defining any conformance notion
for components or compositions. None of these works defines test character-
isations that can mechanically be performed in verification tools.

The study of deadlock freedom is related to the analysis of component in-
compatibilities. In this context, component compatibility is established by
determining those components which, when connected, are free of deadlock.
The study of behavioural compatibility helps to reduce the cost of analysing
deadlocks in compositions. The criterion exploits compositionality in the
sense that a condition is locally checked on pairs of neighbouring compo-
nents. If the condition is satisfied we can derive the property of deadlock
freedom. Thus, the state space construction related complexity is O(n) in
the case of the architectural compatibility check, and O(αn) in the case of
the direct check.

140

D24.1 - Comp. Anal. of CML Models (Public Document)

In PADL [BCD02] and in [MCM08] compatibility is used to detect architec-
tural mismatches and it is shown that pairwise compatibility is a sufficient
criterion to derive deadlock freedom of an acyclic assembly from the deadlock
freedom of its local components. These approaches consider the whole be-
haviour of the constituting components in the composition. Differently, our
approach is centred on the use of port protocols to alleviate compatibility
verifications.

Closer to our approach is the work presented in [LMC10, CZ07] that per-
forms architectural compatibility verifications based on compatibility of port
protocols. The restriction in [LMC10] is that only deterministic protocols
are considered. [CZ07] proposes a formal model of component interaction, in
which component compatibility is verified using labelled Petri nets. In this
work, the behaviour of components is represented solely by their port proto-
cols, called interface languages, which contains either possible sequences of
required or provided services. A request (rich) interface is compatible with
a provider (rich) interface if and only if all sequences of services requested
by the former can be provided by the latter. This condition reassembles our
denotation definition of compatibility. However, as we deal with bidirectional
I/O channels, these conditions are verified in each state of the protocol for
both directions.

A notion similar to behavioural compatibility is used by [HJK10b] under the
name of neutrality. The verification of properties for the whole component
then follows from the verification step that uses only weakly deterministic
port protocols. Behavioural neutrality is defined in terms of observational
equivalence between the behaviour of an assembly with two connected com-
ponents and the behaviour of an assembly with a single component and the
binary connector replaced by a unary one. This notion plays an important
role in its reduction strategy. A component neutral to another can be re-
moved from the analysis of composition because they do not contribute with
any change in the external observable behaviour of the composition. There
are two restrictions in the approach: components must be weakly determin-
istic and in order to be neutral their input and output labels must mutually
coincide. As verified in [CZ07], it is possible that one component does not
use all services of another, and, therefore, that one component might output
fewer events than the other one may possibly input.

Another notion related to behavioural compatibility is used in [CK96] under
the name of transparency. In [CK96] automatically derived context con-
straints (restrictions imposed by the environment on subsystem behaviour)
are used to construct the LTS behaviour of composed systems more efficiently.

141

D24.1 - Comp. Anal. of CML Models (Public Document)

Context constraints take the form of interface processes, which capture the
interplay of the environment of a single fixed component as part of the com-
position with other components. If the composition of the interface process
and the fixed process results in a smaller transition system, it is substituted
in the overall analysis. The correctness of the approach relies on a trans-
parency property which requires a strong semantic equivalence between the
fixed process and its composition with its interface process. Compatibility
is verified by checking if the interface process is well-formed. In [All97b],
the interface process associated to a port is called a deterministic process
of a process. Compatibility of two processes is checked by verifying the re-
finement relationship between a process and the synchronisation of another
process and the deterministic process of the former. In our work, the in-
terface process and deterministic versions are called contextual process, and
similarly to [All97b] is used solely in compatibility checks, rather than in a
more general analysis as in [CK96]. Similarly to [All97b], we check compati-
bility of two protocols as the refinement of a protocol by its context process
synchronised with the dual protocol of the other. A dual protocol represents
the most nondeterministic process that is compatible with a protocol. We
use this notion as we deal with I/O processes in this work.

Our component model considers I/O processes that implicitly support bidi-
rectional communications. The possible existence of non-determinism in I/O
processes and of bidirectional communication brings more complexity to our
verifications than the works related to the notion of compatibility mentioned
above [CK96, All97b, BCD02, MCM08, HJK10b, LMC10]. For instance, in
[LMC10, BCD02] components must be deterministic. This prevents designer
from considering situations where the components take internal decision (see
output decisiveness, Definition 3.12). Bidirectional communication may im-
plicitly introduce small cycles (with two components), and furthermore is not
addressed by the works above, since they use compatibility in component-
based systems with tree-topology structures of unidirectional channels. How-
ever, bidirectional communication is implicit in our component model, and
is furthermore directly support by our compatibility notion. Except for the
work on PADL [BCD02, AB03], none of the works cited above deal with
cyclic topologies. Even this approach does not present a solution to allevi-
ate the verification of applications in such topologies. In [BCD02, AB03] to
verify deadlock freedom, deadlock freedom is locally considered in the rela-
tionship of each component with the others in the whole cycle. Similarly to
the seminal work on deadlock freedom [Ros98], the approach needs to know
the internal structure of the entire system (which is also a component) a
priori, which is in the opposite direction of a compositional method. In our

142

D24.1 - Comp. Anal. of CML Models (Public Document)

work, cyclic topologies are verified in compositional correct-by-construction
approach, as soon as the cycle appears. A detailed comparison between the
basic concepts in [Ros98] and the study on protocol compatibility is pre-
sented in [Ram11]. Means to alleviate the verification are presented by the
notion of decoupled channels (see Section 3).

A further important difference between checking compatibility of port proto-
cols (as done in our work) and checking the compatibility of entire component
behaviours is that the use of explicit port behaviours makes the check for com-
patibility more efficient. Furthermore, as mentioned in [LMC10], this sup-
ports a gray box view of the components that is desired in CBD similar to the
principle of information hiding. Despite the benefits of port-protocol repre-
sentation, representing the whole component is also necessary. For instance,
the approach in [CZ07] abstracts the internal behaviour of components, and
concentrates solely upon the behaviour exhibited by port protocols. Concen-
trating solely upon the behaviour exhibited by port protocols, these works
indirectly restrict the structure of their systems to tree-topologies, without
cycles. For the same reason, it is forbidden to assembly multiple points of
interaction between components, which implicitly introduce minor cycles.
Similarly, the approach forbids the verification of other emerging properties
of the system, such as livelock, which emerges from the interaction of the
components.

Some approaches [IM08, MW97] do predict some system properties based
on the properties of its constituting components. This is performed by cat-
egorising components and their communication patterns in order to prevent
scenarios in which the interaction among components would introduce im-
proper states. These works focus on different properties. The work reported
in [IM08] does not focus on behavioural properties; rather, it presents some
results on performance. The approach presented in [MW97] proposes rules
to guarantee the absence of deadlocks by construction. However, it presents
rules for specific protocol patterns, such as resource sharing and client-server,
using simple data communication; for instance, a component must always ac-
cept any input data value. As far as we are aware, there is no well-established
compositional approach for developing or reasoning about an SoS based on
properties of its constituent systems

7.2 Future work (Deliverable 24.4)

The correct-by-construction approach proposed in this document can be ex-
tended in many ways. There are several directions for building on the results

143

D24.1 - Comp. Anal. of CML Models (Public Document)

of this work. Moreover, there are opportunities for new interesting related
research directions. Here we focus on the extensions that are planned for
Deliverable D24.4 (due in Month 36). They are as follows.

More complex Case Studies. In order to better support the process of
SoS development, it is necessary to develop further case studies and
carefully analyse what is the support needed by the developers to apply
the proposed rules. The case studies will also contribute to identify
architectural patterns for systems of systems.

Evaluation of the time complexity of the approach. An important is-
sue is to perform a comparative study of the performance of our ap-
proach and other existing approaches in the literature as that presented
in Section 3.4, but in the context of CML and its model-checker, which
is currently under development. This is essential to reinforce the ben-
efits of our approach. More specifically, dealing with time complexity
issues is essential for modelling and analysing large systems of systems.

Increased breadth of architectural styles support. This is both in the
number of styles and in the specialised constructive constraints to sup-
port their development. This requires the study of the specialities of
each style and how these would help to alleviate verifications in a com-
positional approach, particularly considering the reflexive composition
rule.

Adopt a concrete syntax. It is essential to adopt a more convenient con-
crete syntax to the use of our notions. SysML [FMS08] introduces
notions of components, ports and structured classifiers which are, not
surprisingly, a perfect match with the syntactic requirements of our
component model. Within the COMPASS project, SysML has been
given a CML semantics. This allows us to try and adopt the approach
at the SysML level.

Incorporate new metadata to enrich component contracts that can im-
prove our approach. Other metadata can be identified and incorporated
to our approach. We strongly believe that this will be needed for fur-
ther optimisations to the approach. For instance, by getting rid of some
additional side conditions we might improve even more the verification
time of our approach. One of the conditions related to our rule on
reflexive composition, which allows the connection of two independent
channels of a same component, is the only non-compositional condition.
The use of properties that are inherent to architectural styles may be
used to address some of these conditions. For instance, a star topology

144

D24.1 - Comp. Anal. of CML Models (Public Document)

would not require the use of the reflexive composition. A thorough
analysis of the remaining side conditions and architectural styles is in
our research agenda for Deliverable 24.4.

Incorporating livelock treatment (Wrapping operators). In this doc-
ument, we focused on assuring only deadlock freedom by construction.
Nevertheless, in [Ram11], we have presented a means to guarantee also
livelock-freedom by construction by providing wrappings to perform
safe hidings. The lift of this result to CML is an interesting point of
further investigation.

Substitutability. Besides composition, substitution is another important
aspect in the development of SoSs. Most works on substitutability are
based on the notions of behavioural subtyping [LW94, Weh03], which
is a strong form of relationship between two (component) types. It
requires instances of a subtype and of a supertype to fulfil the principle
of type substitutability [LW94]:

An instance of the subtype should be usable wherever an
instance of the supertype is expected, without a client being
able to tell the difference.

This suggests the use of some form of refinement [Ros98] to formalise
behavioural subtyping. Refinement guarantees substitutability in an
even stronger form: a system can always be replaced by its refinement
without any noticeable difference. For subtyping, we want only a re-
placement to be unnoticeable at places where a supertype is expected.
This is a weaker form of substitutability, but that nevertheless can be
characterised in terms of refinement [Weh03]. Different substitutabil-
ity relations can be defined if we are aware of the context in which the
component is.

In contrast with composition, substitutability relates constituents that
are not currently presented in the system (it relates a present config-
uration with a future one). As a consequence, besides the definition
of substitutability notions, it is also necessary to establish its relation
with other constructive relations, as the composition rules presented
here.

Service conformance Service conformance can be understood as a design
principle to be followed: unused services of a component should be still
available after composition. The degree of satisfaction of this notion
may vary from preserving all services (strong conformance) to at least
one (weak conformance). In principle, it is easy to characterise these

145

D24.1 - Comp. Anal. of CML Models (Public Document)

notions in our CSP setting, by projecting the behaviour of the com-
posed system and comparing with the behaviour of each constituent.
Nevertheless, this projection involves hiding and, as already discussed,
can lead to divergent behaviour. So, more investigation is necessary,
particularly in the context of SoS.

146

D24.1 - Comp. Anal. of CML Models (Public Document)

Appendix

A Refinement Laws

The following refinement laws are taken from [Oli06] and [OZC11].

Law 1 (var-exp-par)

(var d : T • A1) |[ns1 | cs | ns2]| A2 = (var d : T • A1 |[ns1 | cs | ns2]| A2)

provided { d , d ′ } ∩ FV (A2) = ∅

Law 2 (var-exp-par-2)

(var d • A1) |[ns1 | cs | ns2]| (var d • A2) = (var d • A1 |[ns1 | cs | ns2]| A2)

Law 3 (var-exp-rec) µX • (var x : T • F (X)) = var x : T • (µX •
F (X))

provided x is initialised before use in F

Law 4 (var-exp-seq) A1;(var x : T • A2);A3 = (var x : T • A1;A2;A3)

provided { x , x ′ } ∩ (FV (A1) ∪ FV (A3)) = ∅

Law 5 (Variable Substitution)

A(x) = var y • y : [y ′ = x]; A(y)

provided y is not free in A

Law 6 (Variable block introduction∗)

A = var x : T • A

provided x /∈ FV (A)

Law 7 (join-blocks) var x : T1 • var y : T2 • A = var x : T1; y : T2 •
A

147

D24.1 - Comp. Anal. of CML Models (Public Document)

Law 8 (Sequence unit)

(A)Skip; A = A
(B)A = A; Skip

Law 9 (Recursion unfold)

µX • F (X) = F (µX • F (X))

Law 10 (Parallelism composition/External choice—expansion)

(2 i • ai → Ai) |[ns1 | cs | ns2]| (2 j • bj → Bj)
=
(2 i • ai → Ai) |[ns1 | cs | ns2]| ((2 j • bj → Bj) 2 (c → C))

provided
•
⋃

i{ai} ⊆ cs
• c ∈ cs
• c /∈

⋃
i{ai}

• c /∈
⋃

j{bj}

Law 11 (Parallelism composition introduction 1)

c → A = (c → A |[ns1 | {| c |} | ns2]| c → Skip)

c.e → A = (c.e → A |[ns1 | {| c |} | ns2]| c.e → Skip)

provided
• c /∈ usedC (A)
• wrtV (A) ⊆ ns1

Law 12 (Channel extension 1)

A1 |[ns1 | cs | ns2]| A2 = A1 |[ns1 | cs ∪ {|c|} | ns2]| A2

provided c /∈ usedC (A1) ∪ usedC (A2)

Law 13 (Hiding expansion 2)

148

D24.1 - Comp. Anal. of CML Models (Public Document)

A \ cs = A \ cs ∪ {c}

provided c /∈ usedC (A)

Law 14 (Prefix/Hiding)

(c → Skip) \ {c} = Skip

(c.e → Skip) \ {c} = Skip

Law 15 (Hiding Identity)

A \ cs = A

provided cs ∩ usedC (A) = ∅

Law 16 (Parallelism composition/External choice—exchange)

(A1 |[ns1 | cs | ns2]| A2) 2 (B1 |[ns1 | cs | ns2]| B2)
=
(A1 2 B1) |[ns1 | cs | ns2]| (A2 2 B2)

provided A1 |[ns1 | cs | ns2]| B2 = A2 |[ns2 | cs | ns1]| B1 = Stop

Law 17 (Parallelism composition/External choice—distribution∗)

2 i • (Ai |[ns1 | cs | ns2]| A) = (2 i • Ai) |[ns1 | cs | ns2]| A

provided
• initials(A) ⊆ cs
• A is deterministic

Law 18 (External choice unit)

Stop 2 A = A

Law 19 (External choice/Sequence—distribution)

(2 i • gi & ci → Ai); B = 2 i • gi & ci → Ai ; B

149

D24.1 - Comp. Anal. of CML Models (Public Document)

Law 20 (Hiding/External choice—distribution)

(A1 2 A2) \ cs = (A1 \ cs) 2 (A2 \ cs)

provided (initials(A1) ∪ initials(A2)) ∩ cs = ∅

Law 21 (Parallelism composition Deadlocked 1)

(c1 → A1) |[ns1 | cs | ns2]| (c2 → A2) = Stop = Stop |[ns1 | cs | ns2]| (c2 → A2)

provided
• c1 6= c2

• {c1, c2} ⊆ cs

Law 22 (Sequence zero)

Stop; A = Stop

Law 23 (Communication/Parallelism composition—distribution)

(c!e → A1) |[ns1 | cs | ns2]| (c?x → A2(x)) = c.e → (A1 |[ns1 | cs | ns2]| A2(e))

provided
• c ∈ cs
• x /∈ FV (A2).

Law 24 (Channel extension 3∗)

(A1 |[ns1 | cs1 | ns2]| A2(e)) \ cs2

=
((c!e → A1) |[ns1 | cs1 | ns2]| (c?x → A2(x))) \ cs2

provided
• c ∈ cs1

• c ∈ cs2

• x /∈ FV (A2)

Law 25 (Channel extension 4∗)

150

D24.1 - Comp. Anal. of CML Models (Public Document)

(A1 |[ns1 | cs1 | ns2]| A2) \ cs2 = ((c → A1) |[ns1 | cs1 | ns2]| (c → A2)) \ cs2

(A1 |[ns1 | cs1 | ns2]| A2) \ cs2 = ((c.e → A1) |[ns1 | cs1 | ns2]| (c.e → A2)) \ cs2

provided
• c ∈ cs1

• c ∈ cs2

The reference to L() denotes the fact that declarations of x (and x ′) in
schemas, which were used to put the local variable x of the main action into
scope, may now be removed, as x is a state component.

Law 26 (prom-var-state)

begin (state S) L(x : T) • (var x : T •MA) end
=
begin (state S ∧ [x : T]) L() •MA end

Law 27 (prom-var-state-2)

begin L(x : T) • (var x : T •MA) end
=
begin (state [x : T]) L() •MA end

Law 28 (Parallelism composition unit)

Skip |[ns1 | cs | ns2]| Skip = Skip

Law 29 (Parallelism composition/Interleaving Equivalence)

A1 ||[ns2 | ns2]|| A2 = A1 |[ns2 | ∅ | ns2]| A2

Law 30 (Parallelism composition/Sequence—step)

151

D24.1 - Comp. Anal. of CML Models (Public Document)

(A1; A2) |[ns1 | cs | ns2]| A3 = A1; (A2 |[ns1 | cs | ns2]| A3)

provided
• initials(A3) ⊆ cs
• cs ∩ usedC (A1) = ∅
• wrtV (A1) ∩ usedV (A3) = ∅
• A3 is divergence-free
• wrtV (A1) ⊆ ns1

Law 31 (Hiding/Sequence—distribution∗)

(A1; A2) \ cs = (A1 \ cs); (A2 \ cs)

Law 32 (Guard/Sequence—associativity)

(g & A1); A2 = g & (A1; A2)

Law 33 (Input prefix/Parallelism composition—distribution 2∗)

c?x → (A1 |[ns1 | cs | ns2]| A2) = (c?x → A1) |[ns1 | cs | ns2]| A2

provided
• c /∈ cs
• x /∈ usedV (A2)
• initials(A2) ⊆ cs
• A2 is deterministic

Law 34 (Prefix/Skip∗)

c → A = (c → Skip); A

c.e → A = (c.e → Skip); A

Law 35 (Prefix/Parallelism composition—distribution)

c → (A1 |[ns1 | cs | ns2]| A2) = (c → A1) |[ns1 | cs ∪ {|c|} | ns2]| (c → A2)

c.e → (A1 |[ns1 | cs | ns2]| A2) = (c.e → A1) |[ns1 | cs ∪ {|c|} | ns2]| (c.e → A2)

provided c /∈ usedC (A1) ∪ usedC (A2) or c ∈ cs

152

D24.1 - Comp. Anal. of CML Models (Public Document)

Law 36 (External choice/Sequence—distribution 2∗)

((g1 & A1) 2 (g2 & A2)); B = ((g1 & A1); B) 2 ((g2 & A2); B)

provided g1 ⇒ ¬ g2

Law 37 (True guard)

true & A = A

Law 38 (False guard)

false & A = Stop

Law 39 (Hiding/Chaos–distribution)

Chaos \ cs = Chaos

Law 40 (Sequence zero 2)

Chaos ; A = Chaos

Law 41 (Parallelism composition Zero)

Chaos |[ns1 | cs | ns2]| A = Chaos

Law 42 (Internal choice/Parallelism composition Distribution)

(A1 u A2) |[ns1 | cs | ns2]| A3

=
(A1 |[ns1 | cs | ns2]| A3) u (A2 |[ns1 | cs | ns2]| A3)

Law 43 (Sequence/Internal choice—distribution)

A1; (A2 u A3) = (A1; A2) u (A1; A3)

Law 44 (Hiding/Parallelism composition—distribution∗)

153

D24.1 - Comp. Anal. of CML Models (Public Document)

(A1 |[ns1 | cs1 | ns2]| A2) \ cs2 = (A1 \ cs2) |[ns1 | cs1 | ns2]| (A2 \ cs2)

provided cs1 ∩ cs2 = ∅

Law 45 (Hiding combination)

(A \ cs1) \ cs2 = A \ (cs1 ∪ cs2)

The following refinement laws are novel and a further contribution of this
document.

Law 46 (Parallelism composition Deadlocked 3∗)

(2
i
ci → Ai) |[ns1 | cs | ns2]| (2

j
cj → Aj)

= Stop
= Stop |[ns1 | cs | ns2]| (2

j
cj → Aj)

provided
•
⋃

i{ci} ∩
⋃

j{cj} = ∅
•
⋃

i{ci} ∪
⋃

j{cj} ⊆ cs

Law 47 (Assignment Removal∗)

x := e; A(x) = A(e)

provided x is not free in A(e)

Law 48 (Innocuous Assignment∗)

x := x = Skip

Law 49 (Variable Substitution 2∗)

var x • A(x) = var y • A(y)

provided
• x /∈ FV (A(y))
• y /∈ FV (A(x))

Law 50 (Input Prefix/Sequence Distribution∗)

154

D24.1 - Comp. Anal. of CML Models (Public Document)

(c?x → A1); A2 = c?x → (A1; A2)

provided x /∈ FV (A2)

Law 51 (Input Prefix/Hiding Identity∗)

(c?x → A) \ cs = c?x → (A \ cs)

provided c /∈ cs

Law 52 (Guard/Parallelism composition–distribution*))

(g & A1) |[ns1 | cs | ns2]| A2 = g & (A1 |[ns1 | cs | ns2]| A2)

provided
• (initials(A2) ⊆ cs)

Law 53 (Internal choice/Hiding composition Distribution)

(A1 u A2) \ cs = (A1 \ cs) u (A2 \ cs)

Law 54 (Alternation Zero)

if [] i • gi → Ai fi
=
Chaos

provided
∨

i • gi ≡ false

Law 55 (Alternation)

if [] i : S • gi → Ai fi
=

u i : T • Ai

provided
• T ⊆ S
•
∧

i : T • gi ≡ true
•
∨

i : S \ T • gi ≡ false

155

D24.1 - Comp. Anal. of CML Models (Public Document)

Law 56 (Assignment Skip)

var x • x := e
=
var x • Skip

B Mapping Functions

B.1 Mapping Function for Actions

The mapping function is defined as follows:

Υ (Skip) =̂ SKIP

Υ (Stop) =̂ STOP

Υ (c → Skip) =̂ c→ SKIP

Υ (c → A) =̂ c→Υ(A)
Υ (c.v → A) =̂ c.v→Υ(A)
Υ (c!v → A) =̂ c!v→Υ(A)
Υ (c?x : P → A) =̂ c?x : {x | x← δ(c),ΥB(P(x))} →Υ(A)
Υ (c?x → A) =̂ c?x→Υ(A)
Υ (A 2 B) =̂ Υ(A) 2 Υ(B)
Υ (A u B) =̂ Υ(A) u Υ(B)
Υ (g & A) =̂ ΥB(g) & Υ(A)
Υ (A; B) =̂ Υ(A); Υ(B)
Υ (A |[ns1 | cs | ns2]| B) =̂ Υ(A)[|ΥPcs (cs)|]Υ(B)
Υ (A ||[ns1 | ns2]|| B) =̂ Υ(A)|||Υ(B)
Υ (A \ cs) =̂ Υ(A)\ΥPcs (cs)
Υ (2 x : S • A) =̂ 2 x : ΥP(S) • Υ(A)
Υ (u x : S • A) =̂ u x : ΥP(S) • Υ(A)
Υ (o9 x : S • A) =̂ ; x : Υseq(S) • Υ(A)
Υ (|[cs]| x : S • |[∅]| A) =̂ [|ΥPcs (cs)|] x :ΥP(S) •Υ(A)
Υ (||| x : S •||[∅]|| A) =̂ ||| x :ΥP(S) •Υ(A)
Υ (µX • A(X)) =̂ let Arec = Υ(A(Arec)) within Arec

156

D24.1 - Comp. Anal. of CML Models (Public Document)

B.2 Mapping Function for Numbers

The mapping function for set expressions is defined as follows:

ΥZ (n) =̂ n

ΥZ (0) =̂ 0 . . .
ΥZ (n + m) =̂ ΥZ(n)+ΥZ(m)
ΥZ (n −m) =̂ ΥZ(n)−ΥZ(m)
ΥZ (−n) =̂ −ΥZ(m)
ΥZ (n ∗m) =̂ ΥZ(n)∗ΥZ(m)
ΥZ (n div m) =̂ ΥZ(n)/ΥZ(m)
ΥZ (n mod m) =̂ ΥZ(n)%ΥZ(m)

B.3 Mapping Function for Predicates

The mapping function for predicates is defined as follows:

ΥB (n) =̂ n

ΥB (true) =̂ true

ΥB (false) =̂ false

ΥB (a ∧ b) =̂ ΥB(a) andΥB(b)
ΥB (a ∨ b) =̂ ΥB(a) orΥB(b)
ΥB (¬ a) =̂ notΥB(a)
ΥB (a = b) =̂ Υ(a) = Υ(b)
ΥB (a 6= b) =̂ Υ(a) ! = Υ(b)
ΥB (a < b) =̂ ΥZ(a)<ΥZ(b)
ΥB (a ≤ b) =̂ ΥZ(a)<= ΥZ(b)
ΥB (a > b) =̂ ΥZ(a)>ΥZ(b)
ΥB (a ≥ b) =̂ ΥZ(a)>= ΥZ(b)
ΥB (if b then x1 else x2) =̂ ifΥ(b) thenΥ(x1) elseΥ(x2)

157

D24.1 - Comp. Anal. of CML Models (Public Document)

B.4 Mapping Function for Set Expressions

The mapping function for set expressions is defined as follows:

ΥP (n) =̂ n

ΥP ({}) =̂ {}
ΥP ({a, . . . , b}) =̂ {Υ(a), . . . ,Υ(a)}
ΥP (n . . m) =̂ {Υ(n)..Υ(m)}
ΥP (a ∪ b) =̂ union(ΥP(a),ΥP(b))
ΥP (a ∩ b) =̂ inter(ΥP(a),ΥP(b))
ΥP (a \ b) =̂ diff(ΥP(a),ΥP(b))
ΥP (

⋃
A) =̂ Union(ΥP(A))

ΥP (
⋂

A) =̂ Inter(ΥP(A))
ΥP (x ∈ A) =̂ member(ΥP(x),ΥP(A))
ΥP (#A) =̂ card(ΥP(a))
ΥP (ran s) =̂ set(ΥP(s))
ΥP (PA) =̂ Set(ΥP(A))
ΥP (seq A) =̂ Seq(ΥP(A))
ΥP ({x1 : a1; . . . ; xn : an | b • E (x1, ..., xn)}) =̂
{Υ(E (x1, ..., xn))|Υ(xi)← Υ(ai),Υ(b)}

B.5 Mapping Function for Channel Set Expressions

The mapping function for channel set expressions is defined as follows:

ΥPcs (cs) =̂
⋃
{{| c |} | c ← ΥP(cs)}

B.6 Mapping Function for Sequence Expressions

The mapping function for sequence expressions is defined as follows:

Υseq (n) =̂ n

Υseq (〈〉) =̂ 〈〉
Υseq (〈a, . . . , b〉) =̂ 〈Υ(a), . . . ,Υ(b)〉
Υseq (s a t) =̂ Υseq(s)Υ

seq(t)
Υseq (#s) =̂ #(Υseq(s))
Υseq (head(s)) =̂ head(Υseq(s))
Υseq (tail(s)) =̂ tail(Υseq(s))
Υseq (a/(S)) =̂ concat(Υseq(S))

158

D24.1 - Comp. Anal. of CML Models (Public Document)

C Prefixed Actions

Definition C.1 (Prefixed Actions) Prefixed actions are initially allowed
only to synchronise on some event. They have one the following structure:

• A, where the definition of A is a Circus prefixed action;

• A[old0, . . . , oldn := new0, . . . , newn], where the definition of A is a Cir-
cus prefixed action;

• c → A, where c has any communication structure allowed by Circus;

• g & A, where A is a Circus prefixed action;

• A1; A2, where A1 is a Circus prefixed action;

• A1 2 A2, where A1 and A2 are Circus prefixed actions;

• A1 u A2, where A1 and A2 are Circus prefixed actions;

• A1 |[ns1 | cs | ns2]| A2, where A1 and A2 are Circus prefixed actions;

• A1 ||[ns1 | cs | ns2]|| A2, where A1 and A2 are Circus prefixed actions;

• A \ cs, where A is a Circus prefixed action and initials(A) ∩ cs = ∅;

• (x : T • A(x))(e), where A is a Circus prefixed action;

• µX • A(X), where A is a Circus prefixed action;

• o
9 x : 〈v1, . . . , vn〉 • A(x), where A(v1) is a Circus prefixed action

• 2 x : T • A(x), where A(x) is a Circus prefixed action, for all x : T

• u x : T • A(x), where A(x) is a Circus prefixed action, for all x : T

• |[cs]| x : {v1, . . . , vn} •]| ns(x)]| A(x), where A(x) is a Circus prefixed
action, for all x : T

• ||| cs]|x : {v1, . . . , vn} •||[ns(x)]|| A(x), where A(x) is a Circus prefixed
action, for all x : T

• if g0 → A0[] . . . []gn → Anfi, where Ai is a Circus prefixed action, for
all i : 0 . . . n

• var decl • A, where A is a Circus prefixed action

159

D24.1 - Comp. Anal. of CML Models (Public Document)

D RingBuffer : from CML to CSP

D.1 CML RingBuffer

types

Value = nat

CellId = nat inv id == id > 0 and id <= maxring

Direction = <req> | <ack>

values

maxbuff = 4;

maxring = maxbuff - 1

Ctr_I = { rd_i, wrt_i }

channels

input, output : Value

write, read: CellId * Direction * Value

rrd, wrt: Direction * Value

rd_i, wrt_i: CellId * Direction * Value

process RingCell =

begin

state v:Value

operations

setV(x:Value)

frame wr v

post v = x

actions

Act = wrt.req?x -> setV(x); wrt.ack.x -> Act

[]

rrd.req?dumb -> rrd.ack!v -> Act

@ Act

end

process IRCell =

i:CellId @ RingCell [[rrd <- rd_i.i, wrt <- wrt_i.i]]

process DRing = ||| i: CellId @ IRCell(i)

160

D24.1 - Comp. Anal. of CML Models (Public Document)

process Controller =

begin

state cache:Value;

size:nat;

top:CellId;

bot:CellId

operations

Init(c:Value, s:nat, t:CellId, b:CellId)

post cache=c and size=s and top=t and bot=b

SetCache(x:Value)

frame wr cache:Value

post cache = x

SetSize(x:nat)

frame wr size:nat

post size = x

SetTop(x:CellId)

frame wr top:CellId

post top = x

SetBot(x:CellId)

frame wr bot:CellID

post bot = x

actions

Input =

[size < maxbuff] &

input?x ->

([size = 0] & SetCache(x); SetSize(1)

[]

[size > 0] &

write.top.req!x ->

write.top.ack?dumb ->

SetSize(size+1);

SetTop((top mod maxring)+1))

Output =

[size > 0] &

output!cache ->

([size > 1] &

161

D24.1 - Comp. Anal. of CML Models (Public Document)

(|~| dumb:Value @

read.bot.req.dumb ->

read.bot.ack?x -> SetCache(x));

SetSize(size-1);

SetBot((bot mod maxring)+1)

[]

[size = 1] &

SetSize(0))

@ Init(0,0,1,1); mu X @ ((Input [] Output); X)

end

process ControllerR =

Controller [[read <- rd_i, write <- wrt_i]]

process DBuffer = (ControllerR [| Ctr_I |] DRing) \ Ctr_I

162

D24.1 - Comp. Anal. of CML Models (Public Document)

D.2 Circus State-rich RingBuffer

maxbuff : N1

maxring = maxbuff − 1
Value = N
CellId = 1 . . maxring
Direction ::= req | ack

channel input , output : Value
channel write, read , rd i ,wrt i : CellId × Direction × Value
channel rrd ,wrt : Direction × Value
chanset CtrI = {| rd i ,wrt i |}
process RingCell = begin state CellState =̂ [v : Value]

InitCell =̂ u x : Value • setV (x)
setV =̂ [∆CellState; x? : N | v ′ = x?]
Cell = wrt .req?x → setV (x); wrt .ack .x → Skip

2 rrd .req?dumb → rrd .ack !v → Skip
• InitCell ; (µX • Cell ; X)

end
IRCell(i) = RingCell [rrd ,wrt := rd i .i ,wrt i .i]
DRing = ||| i : CellId • IRCell(i)

process Controller =
begin state CtrState =̂ [cache : Value; size : N; top : CellId ; bot : CellId]

InitCtr =̂ [CtrState ′ | cache ′ = 0 ∧ size ′ = 0 ∧ top ′ = 1 ∧ bot ′ = 0]
Input =̂

(size < maxbuff) &
input?x → (size = 0) & cache := x ; size := 1

2 (size > 0) &
write.top.req !x → write.top.ack?dumb →
size := size + 1; top := (top mod maxring) + 1

Output =̂
(size > 0) &

output !cache →
(size > 1) & (u dumb : Value •

read .bot .req .dumb → read .bot .ack?x → Skip);
size := size − 1; bot := (bot mod maxring) + 1

2 (size = 1) & size := 0
• InitCtr ; µX • ((Input 2 Output); X)

end
ControllerR =̂ Controller [read ,write := rd i ,wrt i]
DBuffer =̂ (ControllerR |[CtrI]| DRing) \ CtrI

163

D24.1 - Comp. Anal. of CML Models (Public Document)

D.3 Circus Stateless RingBuffer

maxbuff : N1

maxring = maxbuff − 1
Value = N
CellId = 1 . . maxring
Direction ::= req | ack

channel input , output : Value
channel write, read , rd i ,wrt i : CellId × Direction × Value
channel rrd ,wrt : Direction × Value
chanset CtrI = {| rd i ,wrt i |}

NAME ::= v | top | bot | cache | size
BINDING =̂ NAME → U
δ = {v 7→ Value, top 7→ CellId , bot 7→ CellId , cache 7→ Value, size 7→ N}

channel mget ,mset : NAME × U
channel terminate
MEMI =̂ {| mset ,mget , terminate |}

process RingCell =
begin

Memory =̂
vres b : BINDING •

(2 n : dom b • mget .n!b(n)→ Memory(b))
2 (2 n : dom b • mset .n?nv : (nv ∈ δ(n))→ Memory(b ⊕ {n 7→ nv}))
2 terminate → Skip

• var b : {x : BINDING | v ∈ Value} •

(u v : Value • mget .v?vv : (δ(v))→ mset .v !vv → Skip); µX •

mget .v?vv : (δ(v))→ rd .req?dumb → rd .ack !v → Skip

2 wrt .req?x → mset .v !x →
wrt .ack?dumb → Skip

 ; X

|[∅ | MEMI | {b}]|
Memory(b)

\ MEMI

end
IRCell(i) = RingCell [rrd ,wrt := rd i .i ,wrt i .i]
DRing = ||| i : CellId • IRCell(i)

164

D24.1 - Comp. Anal. of CML Models (Public Document)

process Controller =
begin

Memory =̂
vres b : BINDING •

(2 n : dom b • mget .n!b(n)→ Memory(b))
2 (2 n : dom b • mset .n?nv : (nv ∈ δ(n))→ Memory(b ⊕ {n 7→ nv}))
2 terminate → Skip

• var b :

{
x : BINDING | cache ∈ Value ∧ size ∈ N

∧ top ∈ CellId ∧ bot ∈ CellId

}
•

mget .cache?vcache : (δ(cache))→ mget .size?vsize : (δ(size))→
mget .top?vtop : (δ(top))→ mget .bot?vbot : (δ(bot))→
mset .cache.0→ mset .size.0→ mset .top.1→ mset .bot .1→
µX •

mget .cache?vcache : (δ(cache))→
mget .size?vsize : (δ(size))→
mget .top?vtop : (δ(top))→
mget .bot?vbot : (δ(bot))→
(vsize < maxbuff) &

input?x →
(vsize = 0) &

mset .cache.x → mset .size.1→ Skip
2 (vsize > 0) &

write.vtop.req !x →
write.vtop.ack?dumb →
mset .size.(vsize + 1)→
mset .top.(vtop mod vmaxring)→
Skip

2 (vsize > 0) &
output !cache →

(vsize > 1) &
u dumb : Value •

read .vbot .req .dumb →
read .vbot .ack?x →
mset .cache.x → Skip

 ;

mset .size.(vsize − 1)→
mset .bot .((vbot mod maxring) + 1)→
Skip

2 (vsize = 1) & mset .size.0→ Skip

;

X

|[∅ | MEMI | {b}]|
Memory(b)

\ MEMI

end 165

D24.1 - Comp. Anal. of CML Models (Public Document)

ControllerR =̂ Controller [read ,write := rd i ,wrt i]
DBuffer =̂ (ControllerR |[CtrI]| DRing) \ CtrI

D.4 CSP RingBuffer

--

--

-- Function auxiliary operations

--

--

-- Function is a set {(x1, y1),...,(xn, yn)}

-- Transforms a singleton set into the element itself

pick({x}) = x

-- Returns the function return

-- Raises error if z is not in the domain of the function

apply(f,x) = pick({ v | (n,v) <- f, n==x})

-- domain antirestriction

ddres(f,xs) = {(n,v) | (n,v) <- f, not member(n,xs)}

-- domain restriction

dres(f,xs) = {(n,v) | (n,v) <- f, member(n,xs)}

-- Overwrites the fuction

over(f,n,v) = union(ddres(f,{n}),{(n,v)})

-- Returns the domain of a relation

dom(f) = {n | (n,v) <- f}

-- Returns the domain of a relation

ran(f) = {v | (n,v) <- f}

--

--

-- Sequence auxiliary operations

--

--

-- Overriding

166

D24.1 - Comp. Anal. of CML Models (Public Document)

insert(<>,i,x) = <>

insert(<y>^s,n,x) = if (n==1) then <x>^s else <y>^insert(s,n-1,x)

--

-- Indexing

at(<x>^s,n) = if (n==1) then x else at(s,n-1)

--

-- Sequence of 0s

zeroSeq(n) = if (n==1) then <0> else <0>^zeroSeq(n-1)

--

map(f,<>) = <>

map(f,<x>^xs) = <f(x)>^(map(f,xs))

e2l(x) = <x>

addHead(e,<>) = <>

addHead(e,<x>^xs) = <<e>^x>^(addHead(e,xs))

seqCons(<>,xxs) = <>

seqCons(<x>^xs,xss) = (addHead(x,xss))^(seqCons(xs,xss))

distCartProd(<>) = <>

distCartProd(<xs>) = map(e2l,xs)

distCartProd(<xs>^xxs) = seqCons(xs, distCartProd(xxs))

-- GENERAL DEFINITIONS

-- The maximum size of the buffer is a strictly positive constant.

maxbuff = 3

-- The values buffered are numbers.

Value = {0..2}

-- The ring is a circular array, modelled as a sequence whose two

-- ends are considered to be joined.

-- The constant maxring, defined as (maxbuff - 1), gives the bound for

167

D24.1 - Comp. Anal. of CML Models (Public Document)

-- the ring.

maxring = maxbuff - 1

-- The communication is bi-directional

datatype Direction = req | ack

CellId = {1 .. maxring}

-- THE ABSTRACT BUFFER

-- It takes its inputs and supplies its outputs on two different

-- typed channels.

channel input, output: Value

ABuffer =

let BufferState(s)= #s > 0 & output!head(s) -> BufferState(tail(s))

[]

#s < maxbuff & input?x -> BufferState(s ^ <x>)

within

BufferState(<>)

-- BINDINGS

-- Set of names

datatype NAME = RingCell_v | Controller_top | Controller_bot

| Controller_cache | Controller_size

-- Nat

NatValue = {0..maxbuff}

-- The universe of values

datatype UNIVERSE = Boolean.Bool | Nat.NatValue | Val.Value | Cel.CellId

168

D24.1 - Comp. Anal. of CML Models (Public Document)

-- Conversions

subtype U_BOOL = Boolean.Bool

subtype U_NAT = Nat.NatValue

subtype U_VALUE = Val.Value

subtype U_CELL = Cel.CellId

value(Nat.v) = v

value(Boolean.v) = v

value(Val.v) = v

value(Cel.v) = v

type(x) =

if x== RingCell_v then U_VALUE

else if x == Controller_top then U_CELL

else if x == Controller_bot then U_CELL

else if x == Controller_cache then U_VALUE

else if x == Controller_size then U_NAT

else {}

tag(x) =

if x== RingCell_v then Val

else if x == Controller_top then Cel

else if x == Controller_bot then Cel

else if x == Controller_cache then Val

else if x == Controller_size then Nat

else Nat

-- All possible bidings

NAMES_VALUES = seq({seq({(n,v) | v <- type(n)}) | n <- NAME})

BINDINGS = {set(b) | b <- set(distCartProd(NAMES_VALUES))}

-- MEMORY

channel mget, mset : NAME.UNIVERSE

channel terminate

MEM_I = {| mset, mget, terminate |}

169

D24.1 - Comp. Anal. of CML Models (Public Document)

Memory(b) =

([] n:dom(b) @ mget.n!(apply(b,n)) -> Memory(b))

[] ([] n:dom(b) @ mset.n?x:type(n) -> Memory(over(b,n,x)))

[] terminate -> SKIP

Memorise(P, b) =

((P; terminate -> SKIP) [| MEM_I |] Memory(b)) \ MEM_I

-- STATELESS RING

channel rd, wrt: Direction . Value

RingCellMain =

(|~| v:Value @

mget.RingCell_v?vRingCell_v:(type(RingCell_v)) ->

mset.RingCell_v!((tag(RingCell_v)).v) ->

SKIP);

(let

MuCellX =

(mget.RingCell_v?vRingCell_v:(type(RingCell_v)) ->

(

rd.req?dumb ->

rd.ack!(value(vRingCell_v)) ->

SKIP

[]

wrt.req?x ->

mset.RingCell_v!((tag(RingCell_v)).x) ->

wrt.ack?dumb ->

SKIP

));

MuCellX

within

MuCellX)

MemoryRingCell =

let restrict(bs) = dres(bs,{RingCell_v})

within

|~| b:BINDINGS @ Memorise(RingCellMain, restrict(b))

170

D24.1 - Comp. Anal. of CML Models (Public Document)

-- An indexed cell

channel rd_i, wrt_i: CellId . Direction . Value

MemoryIRCell(i) = MemoryRingCell [[rd <- rd_i.i, wrt <- wrt_i.i]]

-- The distributed ring

MemoryDRing = ||| i: CellId @ MemoryIRCell(i)

-- STATELESS CONTROLLER

channel write, read: CellId . Direction . Value

ControllerMain =

(mget.Controller_cache?vController_cache:(type(Controller_cache)) ->

mget.Controller_size?vController_size:(type(Controller_size)) ->

mget.Controller_top?vController_top:(type(Controller_top)) ->

mget.Controller_bot?vController_bot:(type(Controller_bot)) ->

mset.Controller_cache.((tag(Controller_cache)).0) ->

mset.Controller_size.((tag(Controller_size)).0) ->

mset.Controller_top.((tag(Controller_top)).1) ->

mset.Controller_bot.((tag(Controller_bot)).1) ->

SKIP);

let

MuControllerX =

(

mget.Controller_cache?vController_cache:(type(Controller_cache)) ->

mget.Controller_size?vController_size:(type(Controller_size)) ->

mget.Controller_top?vController_top:(type(Controller_top)) ->

mget.Controller_bot?vController_bot:(type(Controller_bot)) ->

(

(value(vController_size) < maxbuff) &

input?x ->

(

(value(vController_size) == 0) &

mset.Controller_cache.((tag(Controller_cache)).x) ->

mset.Controller_size.((tag(Controller_size)).1) ->

SKIP

[]

(value(vController_size) > 0) &

write.(value(vController_top)).req!x ->

171

D24.1 - Comp. Anal. of CML Models (Public Document)

write.(value(vController_top)).ack?dumb ->

mset.Controller_size.((tag(Controller_size))

.((value(vController_size))+1)) ->

mset.Controller_top.((tag(Controller_top))

.(((value(vController_top))

% maxring)+1)) ->

SKIP

)

[]

(value(vController_size) > 0) &

output!(value(vController_cache)) ->

(

(value(vController_size) > 1) &

(|~| dumb:Value @

read.(value(vController_bot)).req.dumb ->

read.(value(vController_bot)).ack?x ->

mset.Controller_cache.((tag(Controller_cache)).x) ->

SKIP);

(mset.Controller_size.((tag(Controller_size))

.((value(vController_size))-1)) ->

mset.Controller_bot.((tag(Controller_bot))

.(((value(vController_bot))

% maxring)+1)) ->

SKIP)

[]

(value(vController_size) == 1) &

mset.Controller_size.((tag(Controller_size)).0) ->

SKIP

)

)

);

MuControllerX

within

MuControllerX

MemoryController =

let restrict(bs) = dres(bs,{Controller_cache, Controller_size,

Controller_top, Controller_bot})

within

|~| b:BINDINGS @ Memorise(ControllerMain, restrict(b))

172

D24.1 - Comp. Anal. of CML Models (Public Document)

-- THE RING BUFFER

MemoryControllerR = MemoryController[[read <- rd_i, write <- wrt_i]]

MemoryDBuffer =

(MemoryControllerR [| {| rd_i, wrt_i |} |] MemoryDRing)

\ {| rd_i, wrt_i |}

E Lifting the Approach to Circus and CML

In this section, we present some important definitions that are referenced
elsewhere in this document.

Definition E.1 (Naive client-server component) Let Ctr be a compo-
nent contract. Then Ctr is a naive client-server component if, and only
if: ∀ c,P | c ∈ CCtr ∧ P = ProtIMP(Ctr , c) • StrictProt(P , c, in, out) ∨
StrictProt(P , c, out , in) where

StrictProt(P , c, d1, d2) = ∀ s : traces(P) • (s ↓ {c.d1} ≥ s ↓ {c.d2}) ∧
(s ↓ {c.d1} ≤ s ↓ {c.d2}+ 1)

Definition E.2 (Communication protocol) We say a CSP process P is
a communication protocol if :

• ∃ c1, c2 • inputs(P) ⊆ {c1} ∧ outputs(P) ⊆ {c2};

Definition E.3 (Dual protocol) Let P be a deadlock-free communication
protocol. The dual protocol of P is defined as a deadlock-free communication
protocol DP such that:

inputs(P) = outputs(DP)
∧ outputs(P) = inputs(DP)
∧ traces(DP) = traces(P)

E.1 Propositions

Proposition E.1 (Renaming and I/O Processes) Let P be an I/O pro-
cess, c and z I/O channels, and R a bijection from all input and outputs
events of P in c into events of z . Then, P |[R]| is also an I/O process.

173

D24.1 - Comp. Anal. of CML Models (Public Document)

Since R is a bijection, there is strong bisimulation relation among states of
P and P |[R]|. Furthermore, all properties directly related to the traces and
failures of P , are also valid to P |[R]|. Moreover, the channel z replaces c in all
properties that takes the I/O channels used by P . As a consequence, P |[R]|
satisfy all properties that P satisfies to be an I/O process. This is an impor-
tant proposition that underpins the notions of component instantiation and
protocol equivalences. Based on this, the result of proved properties about
an I/O process (or protocol) can also be applied to a renamed version of it,
which satisfy the statement in this proposition. Similarly, more elaborated
observations about a component can be applied to renaming versions of it,
like the property of a component belongs to an client-server style architec-
ture.

E.2 Theorems

Theorem E.1 (Protocol Implementation and Deadlock freedom)
If P is deadlock-free, then ProtIMP(P , ic) is also deadlock-free, for any ic and
oc.

Proof. If P is deadlock free, there is no trace tr such that (tr , αP) is in
failures(P); the failures of the projection of P over channel ic is a subset of
failures(P); ProtIMP(P , ic) is a failures-divergence refinement of the projec-
tion of P over channel ic; hence, its failures is a subset of the failures of the
projection; finally, if in a bigger set of failures there is no trace such that
(tr , αP) is in failures(P), the smaller set also has this property.

Theorem E.2 (Divergence freedom)
If a process P has no hiding and no unguarded recursion then P is divergence-
free.

Proof: This theorem is straightforward result of the semantic calculation of
the standard CSP operators in [Ros98]. According to him, these are the
operators that cause divergences.

Theorem E.3 (Client-Server Architectures Properties)
If Q is a client-server protocol, then it satisfies the finite output property and
is I/O Confluent, for any ic and oc.

Proof. We prove this theorem in two parts. The first part is dedicated to
prove that Q satisfies the Finite Output Property, and the second one to
prove that Q is I/O confluent.

174

D24.1 - Comp. Anal. of CML Models (Public Document)

According to Definition E.2, a protocol is a process that communicates all
inputs through a unique channel, as well as, all outputs through a unique
channel. These can be two distinct channels, or same channel to communi-
cate inputs and outputs. However, in order to be a näıve client-server, the
communications via a channel must follow a strict pattern of communications
of inputs and outputs. So, all inputs and outputs of Q are performed via a
same channel.

1. As Q is näıve client-server and all inputs and outputs are communicated
via a same channel in a strict pattern - in which inputs and outputs
must be interspersed - after an output being communicated, an input
is mandatory. As a consequence, we conclude that the Finite Output
Property is satisfied.

2. According to Definition E.1, and as explained above, a näıve client-
server process cannot perform two subsequent outputs, neither it can
perform subsequent inputs. So, it does not present a choice among in-
puts and outputs. Moreover, as already explained, inputs and outputs
are communicated through a same channel. As a consequence, we can
state following, which implies in I/O confluence.

Theorem E.4 (Renaming and Dual Protocols Distribution)
ProtDUAL((ProtIMP(P , ic)) |[R ic→oc

IO]|) = ProtDUAL(ProtIMP(P , ic)) |[R ic→oc
IO]|

Proof. As the properties of a process being a protocol is closed over renaming
(Proposition E.1), we only have to proof the following three things, according
to Definition E.3. To easy the reading, consider Q = ProtIMP(P , ic), R′ =
R ic→oc

IO .

• inputs(Q |[R′]|) = outputs(ProtDUAL(Q) |[R′]|)

outputs(ProtDUAL(Q) |[R′]|)
= {e | e ∈ outputs(ProtDUAL(Q) |[R′]|)}
= {R′(e) | e ∈ outputs(ProtDUAL(Q))}
= {R′(e) | e ∈ inputs(Q)}
= {e | e ∈ inputs(Q |[R′]|)}
= inputs(Q |[R′]|)

• outputs(Q |[R′]|) = inputs(ProtDUAL(Q) |[R′]|)

Similar to the proof of inputs(Q |[R′]|)

175

D24.1 - Comp. Anal. of CML Models (Public Document)

• traces(Q |[R′]|) = traces(ProtDUAL(Q) |[R′]|)

traces(ProtDUAL(Q) |[R′]|)
= {e | e ∈ traces(ProtDUAL(Q) |[R′]|)}
= {R′(e) | e ∈ traces(ProtDUAL(Q))}
= {R′(e) | e ∈ traces(Q)}
= {e | e ∈ traces(Q |[R′]|)}
= traces(Q |[R′]|)

Theorem E.5 (Protocol Implementation Instantiation for Forks)
ProtFK (c) is a valid protocol implementation of any instantiation of FORK
that renames either fk1 or fk2 to c.

Proof. Direct result of Proposition E.1.

Theorem E.6 (Protocol Implementation Instantiation for Philosophers)
ProtPH (c) is a valid protocol implementation of any instantiation of PHIL
that renames either pfk1 or pfk2 to c.

Proof. Direct result of Proposition E.1.

Theorem E.7 (Finite Buffers and Finite Output Property)
The composition operator considers the existence of infinite buffers in the
medium. In case, we know the medium can be specified as a buffer of finite
size, satisfying the finite output property is immaterial.

Proof. From [Ram11].

F Mechanisation of the Composition Rules

Side Conditions in CSP

In this section we list the CSP assertions that mechanise the side conditions
of the composition rules.

F.1 Interleave composition (P [|||] Q)

A.1 Alphabets are disjoint
assert STOP [T= RUN(inter(events(P),events(Q)))2

2Assertions painted in red can be solved by SAT solvers (Removed at Level 2)

176

D24.1 - Comp. Anal. of CML Models (Public Document)

A.2 P is an I/O Process

A.2.1 : Every channel in P is an I/O Channel
assert not Test(inter(inputs(P),outputs(P)) == {})

[T= ERROR

A.2.2 : P has infinite traces
assert not HideAll(P):[divergence free [FD]]3

A.2.3 : P is divergence-free
assert P:[divergence free [FD]]4

A.2.4 : P is input deterministic
assert LHS_InputDet(P) [F= RHS_InputDet(P)

A.2.5 : P is strong output decisive
assert LHS_OutputDec_A(P) [F= RHS_OutputDec_A(P)

assert LHS_OutputDec_B(P,c1) [F= RHS_OutputDec_B(P,c1)

. . .
assert LHS_OutputDec_B(P,cn) [F= RHS_OutputDec_B(P,cn)

A.3 : Q is an I/O Process
Similar to A.2

F.2 Communication composition (P [ip ↔ oq]Q)

D.0 : Both are an I/O Process

D.0.1 : P is an I/O Process
Similar to A.2

D.0.2 : Q is an I/O Process
Similar to A.2

D.1 : ip is in the alphabet of P
assert not P \ {| ip |} [T= P

D.2 : iq is in the alphabet of Q
Similar to D.1

3Assertions painted in orange may be discarded if they are applied to components
resulting from previous compositions. They are achieved by composition using Theorems
4.1 to 4.4 from [RSM09] (Removed at Level 2)

4Assertions painted in blue may be discarded using syntactic restrictions based on
Theorem E.2 (Removed at Level 2)

177

D24.1 - Comp. Anal. of CML Models (Public Document)

D.3 : Alphabets are disjoint
Similar to A.1

D.4 : ProtIMP(P , ip) |[R ip→iq
IO]| is I/O Confluent

– Finding a valid protocol implementation

D.4.1 : It is divergence-free
assert apply(PROT_IMP, (P,ip)) :[divergence free [FD]]

D.4.2 : It is refined by the projection on the channel
assert apply(PROT_IMP, (P,ip))[F= PROT_IMP_def(P,ip)5

D.4.3 : It is a refinement of the projection on the channel
assert PROT_IMP_def(P,ip) [FD= apply(PROT_IMP, (P,ip))

D.4.4 : It is a port-protocol (communication protocol)

D.4.4.1 : inputs
assert not Test(subseteq(apply(inputs_PROT_IMP,(P,ip)),

{| fk |}))

[T= ERROR

D.4.4.2 : outputs
assert not Test(subseteq(apply(outputs_PROT_IMP,(P,ip)),

{| fk |}))

[T= ERROR

D.4.5 : The renamed version is I/O Confluent
assert InBufferProt(PROT_IMP_R(P,ip, RP), ip)

:[deterministic [F]]

D.5 : ProtIMP(P , iq) |[R iq→ip
IO]| is I/O Confluent

Similar to D.4

D.6 : Protocols are Strong Compatible

D.6.1 : Protocols are deadlock-free

D.6.1.1 : Left
assert PROT_IMP_R(P,ip,RP) :[deadlock free [FD]]6

D.6.1.2 : Right
assert PROT_IMP_R(Q,iq,RQ) :[deadlock free [FD]]

5Assertions painted in dark green may be discarded by using metadata to calculate
protocol implementations and dual protocols (Removed at Level 4)

6Assertions painted in magenta may be discarded if P (and Q) is a result from previous
compositions based on Theorems 3.1 and E.1 (Removed at Level 2)

178

D24.1 - Comp. Anal. of CML Models (Public Document)

D.6.2 : Protocols are communication protocols

D.6.2.1 : Left inputs
assert not Test(subseteq(inputs_PROT_IMP_R(P,ip,R),

{| fk |})) [T= ERROR

D.6.2.2 : Left outputs
assert not Test(subseteq(outputs_PROT_IMP_R(P,ip,R),

{| pfk |}))[T= ERROR

D.6.2.3 : Right Inputs
assert not Test(subseteq(inputs_PROT_IMP_R(Q,iq,RQ),

{| pfk |}))[T= ERROR

D.6.2.4 : Right Outputs
assert not Test(subseteq(outputs_PROT_IMP_R(Q,iq,RQ),

{| fk |}))[T= ERROR

D.6.3 : We have a Dual Protocol

D.6.3.1 : inputs and outputs
assert not Test(outputs_DUAL_PROT_IMP_R(P,ip,DUAL_R)

== inputs_PROT_IMP_R(P,ip,R))[T= ERROR

D.6.3.2 : inputs and outputs
assert not Test(inputs_DUAL_PROT_IMP_R(P,ip,DUAL_R)

== outputs_PROT_IMP_R(P,ip,R))[T= ERROR

D.6.3.3 : are trace equivalent

D.6.3.3.1 : Left
assert DUAL_PROT_IMP_R(P,ip,DUAL_RP)

[T= PROT_IMP_R(P,ip,RP)

D.6.3.3.2 : Right
assert PROT_IMP_R(P,ip,RP)

[T= DUAL_PROT_IMP_R(P,ip,DUAL_RP)

D.6.4 assert DUAL_PROT_IMP_R(P,ip,DUAL_RP)

[F= PROT_IMP_R(Q,iq,RQ)

D.6.5 : Matching Compatibility
assert DUAL_PROT_IMP_R(P,ip,DUAL_RP)7

[F= PROT_IMP_R(Q,iq,RQ)

D.7 : Protocols have Finite Output Property

7Assertions marked in apricot should be included only at Levels 4 and 5

179

D24.1 - Comp. Anal. of CML Models (Public Document)

D.7.1 : Left
assert PROT_IMP_R(P,ip,R) \ allOutputs8

:[divergence free [FD]]

D.7.2 : Right
assert PROT_IMP_R(Q,iq,RQ) \ allOutputs

:[divergence free [FD]]

F.3 Feedback composition (P [ip ↪→ oq])

E.0 : P is an I/O Process
Similar to D.0

E.1 : ip is in the alphabet of P
Similar to D.1

E.2 : oq is in the alphabet of Q
Similar to D.1

E.3 : ProtIMP(P , ip) |[R ip→oq
IO]| is I/O Confluent

Similar to D.4

E.4 : ProtIMP(P , oq) |[R oq→ip
IO]| is I/O Confluent

Similar to D.4

E.5 : Protocols are Strong Compatible
Similar to D.6

E.6 : Protocols have Finite Output Property
Similar to D.7

E.7 : Channels ip and oq are decoupled in P

E.7.1 Left
assert INTER_PROT_IMP(P,{ip, oq})9

[F= PROJECTION(P,{ip, oq})

E.7.2 Right
assert PROJECTION(P,{ip, oq})

[FD= INTER_PROT_IMP(P,{ip, oq})

8Assertions painted in purple may be discarded if we are using finite buffers based on
Theorem E.7 (Removed at Level 3)

9Assertions painted in brown may be discarded by using metadata to calculate decou-
pled channels (Removed at Level 4)

180

D24.1 - Comp. Anal. of CML Models (Public Document)

F.4 Reflexive composition (P [ip ¯↪→ op])

I.1 : ip is in the alphabet of P
Similar to D.1

I.2 : op is in the alphabet of Q
Similar to D.1

I.3 : P � {ip, op} is buffering self-injection compatible

I.3.1 : P is deadlock-free
assert P :[deadlock free [FD]]

I.3.2 : P is an I/O Process
Similar to A.2

I.3.3 ProtIMP(P , ip) |[LR1]| and ProtIMP(P , op) |[LR2]| are strong com-
patible

I.3.3.1-2 Finding a valid protocol implementation for P on ip: Similar
do D.4.1 to D.4.3

I.3.3.3-4 Finding a valid protocol implementation for P on op: Similar
do D.4.1 to D.4.3

I.3.3.5 Protocols are communication protocols: Similar do D.6.2 re-
placing Q by P

I.3.3.6 : Protocols (with renaming) are Strong Compatible
Similar to D.6

I.3.3.7 : ProtIMP(P , ip) |[LR1]| and ProtIMP(P , op) |[LR2]| have finite
output property Similar to D.7

I.3.3.8 P in parallel with the BUFFERIO using the renaming is deadlock-
free
assert not PROJECTION(P,{pi, po})

[| {| pi, po |} |]

BUFF_IO_1(P_LR1, P_LR2) :[deadlock free [F]]

181

D24.1 - Comp. Anal. of CML Models (Public Document)

G An Exercise on the New Definition of Chan-

nel Projection

In this section, we present an exercise on the new definition of channel pro-
jection. All the discussion is based on CSP, since the theoretical background
of the overall approach is also CSP based.

In this section we use the following examples:

P1(x,y) =

c1.out.x -> c3.in -> P1(x,y)

[]

c2.in -> P1(x,y)

[]

c1.in.x ->

(

c1.out.y -> (P1(x,y) |~| P1(not x, not y))

|~|

c3.out -> P1(x,y)

)

Prot(x,y) =

c1.out.x -> Prot(x,y)

[]

c1.in.x ->

(

c1.out.y -> (P1(x,y) |~| P1(not x, not y))

|~|

Prot(x,y)

)

This gives us a protocol Prot(x,y) that satisfies the conditions under which
a projection of P1 on c1 is valid.

We need to redefine projection P � C in order to remove the hiding, which
is currently defined as follows:

P � C =̂ P \ (Σ \
⋃

c:C{| c |})

There are two options for that:

1. using lazy abstraction as proposed by Bill Roscoe in [Ros98], or;

182

D24.1 - Comp. Anal. of CML Models (Public Document)

2. Find another way to express using the traces model together with I/O
Process properties

In what follows, we present a discussion on both approaches.

G.1 Lazy Abstraction

Every process will have some environment interacting with it on the events
you are not concentrating on. We need to build a model of what that inter-
action looks like:

• Hiding assumes that the other events are always available: the envi-
ronment always offers them to the process.

• Lazy abstraction implies that the environment might always accept or
refuse any event.

• Mixed abstraction partitions them into events that the environment
can refuse and ones it can’t.

Using lazy abstraction, we might use one of the three proposals in [Ros98].
However, the option on the traces model (T) cannot be expressed in FDR. We
are left with the infinite traces model (U) and the failures model (F).

G.1.1 Lazy Abstraction in the Failures Model (F).

The proposal for the failures model is defined as follows:

LAZY_F(L,H,P) = (P [| H |] CHAOS(H)) \ H

assert P1(true,false) \ {| c2, c3 |}

[FD= LAZY_F({| c1 |},{| c2, c3 |}, P1(true,false))

assert LAZY_F({| c1 |},{| c2, c3 |},P1(true,false))

[F= P1(true,false) \ {| c2, c3 |}

assert LAZY_F({| c1 |},{| c2, c3 |} ,P1(true,false))

:[livelock free]

assert LAZY_F({| c1 |},{| c2, c3 |}, P1(true,false))

:[deadlock free [FD]]

Although it works in the behavioural checking, there are two problems with
this approach:

183

D24.1 - Comp. Anal. of CML Models (Public Document)

1. It is not divergence free: it might still have an infinite loop with inter-
nal (eager) events, that is, events in H.

2. It in not deadlock free: CHAOS might refuse events that are in H causing
a deadlock.

Lazy Abstraction in the Infinite Traces Model (U). The infinite
traces model proposal has the expected behaviour and is livelock free; how-
ever it is not deadlock free.

LAZY_U(L,H,P) = (P [| Events |] SemiFair(L,H)) \ H

assert P1(true,false) \ {| c2, c3 |}

[FD= LAZY_U({| c1 |},{| c2, c3 |},P1(true,false))

assert LAZY_U({| c1 |},{| c2, c3 |},P1(true,false))

[F= P1(true,false) \ {| c2, c3 |}

assert LAZY_U({| c1 |},{| c2, c3 |},P1(true,false))

:[livelock free]

assert LAZY_U({| c1 |},{| c2, c3 |},P1(true,false))

:[deadlock free]

The possibility of deadlock comes from the fairness used to avoid infinite
internal loops. The approach to establish fairness forces at some point the
hidden events not to be offered. That might be the exact point in which
the process actually wants to synchronise only on those events causing a
deadlock.

Finally, because hiding might introduce divergence and lazy abstraction
might introduce deadlock, mixed approaches might introduce both.

In a draft of ”Fairness analysis through priority”, Bill Roscoe faces the same
problem when trying to abstract from a clock event Me.Clock; the solution
is given using the priority model:

”In the CSP models, the modelling event Me.Clock cannot be lazily abstracted,
since that would imply that it could choose never to happen. On the other
hand, simply hiding it means that it is eager and therefore could occur in-
stantaneously. This in turn can cause a divergence in the model exploiting
the eager modelling event, which at runtime is not regarded as erroneous be-
haviour under the assumed circumstances.
...
We therefore need CSP models such that the benign divergences are ignored,
without losing any behaviour, including genuine divergences called malign

184

D24.1 - Comp. Anal. of CML Models (Public Document)

divergences, in the design that may result in genuine errors that need to
be found. Conventional CSP cannot solve this problem, but a solution is
achieved using the priority-based techniques described in Section 8.”

In our context, we do not want to move away from the ”standard” models
T , F , and FD because we want to reuse previous results from [CG10, CG07]
that relates CSP refinement and Circus refinement. Since, we cannot specify
the abstracted process algebraically, we proposed a solution in which we
define properties that needs to be satisfied by a candidate abstracted process.
The withdraw is that given a process P , we do not have an algebraic definition
of what its abstraction is - this would constitute a function F (P , c) that would
return such abstraction - instead, the user will propose a candidate that will
need to satisfy these properties.

G.2 Traces Model and I/O Process Properties

We propose the projection plays a role simply in the traces of a process.
Hence, we would have that the projection on c of process P is a process
that:

• Does not have any event other than c

• Has exactly the same traces as P on c; the behaviour on the other
events are irrelevant.

For that, instead of calculating a given projection, the user of the strategy
needs to propose a projection that satisfies these properties. This, however,
might be automated by a syntactic function that removes the channel. Nev-
ertheless, we also need to guarantee that the communication directions (input
and output) are not changed and that the properties of strong output de-
cisiveness and input determinism are maintained. Overall, these properties
would be characterised as follows:

New Definition 4.3 (Projection) Let P be an I/O Process, and C a set
of communication channels. The projection of P over C (denoted by P � C)
satisfies the following properties:

1. P � C is an I/O Process

2. ∀ c : C • inputs(P � C , c) ⊆ inputs(P , c)

3. ∀ c : C • outputs(P � C , c) ⊆ outputs(P , c)

185

D24.1 - Comp. Anal. of CML Models (Public Document)

4. α(P � C) ⊆
⋃

c:C{| c |}

• The new CSP test characterisation is checking that ProtCheck(P �
C ,C) is deadlock-free, where:

ProtCheck(P ,C) = P |[NOT (C)]| PRUNE (NOT (C))

PRUNE (A) = 2 ev : A • ev → Stop

NOT (C) = Σ \
⋃

c:C{| c |}

5. P ≡T P |[Σ]| ((P � C) ||| RUN (NOT (C)))

RUN (CS) = 2 c : CS • c → RUN (CS)

Properties 1 - 3 guarantees that the communication direction (input and
output) are not changed and that the properties of strong output decisiveness
and input determinism are maintained. This ensures that we are neither
removing not introducing non-determinism. Property four ensures that the
projection process refers only to channels in C . Finally, together with the
previous properties, property 5 guarantees that the process behaviour on the
projected channels is not changed.

H Z Formalisation of BRIC

In what follows we present a Z type-checked formalisation of the composi-
tional model from [Ram11].

section csp circus toolkit parents standard toolkit

H.1 Embedding Circus Syntax into Z

First, some Z syntax constructs are irrelevant for the definition of presented
here. Namely, they are the Z names, declarations, expressions, predicates,
schema expressions, and the left-hand side of definitions [Spi92]. Therefore,
they are defined as Z given sets.

[N ,Pred , SchemaExp,DefLHS]

BOOL ::= TRUE | FALSE

186

D24.1 - Comp. Anal. of CML Models (Public Document)

First, some Circus syntax constructs are also irrelevant for the definition of
this work. They are channel declarations, name set expressions and commu-
nications.

[CDecl ,NSExp,CHANNEL]

On the other hand, channel set expressions may be a set display of channel
names, a reference to a previously defined channel set, or a composition of
two other channel set (union, intersection, or difference).

CSExp ::= CSDisplay〈〈PCHANNEL〉〉
| CSName〈〈N 〉〉
| ∪〈〈CSExp × CSExp〉〉
| ∩〈〈CSExp × CSExp〉〉
| \〈〈CSExp × CSExp〉〉

VALUE ::= Bool〈〈BOOL〉〉
| Int〈〈Z〉〉
| Seq〈〈seq VALUE 〉〉
| Pair〈〈(VALUE × VALUE)〉〉
| Set〈〈PVALUE 〉〉
| Ev〈〈CHANNEL × VALUE 〉〉
| OtherValue

Exp ::= Value〈〈VALUE 〉〉
| Var〈〈N 〉〉
| SeqExp〈〈SeqExpression〉〉
| FunExp〈〈N × seq Exp〉〉
| OtherExpression

&

SeqExpression ::= SeqDisplay〈〈seq Exp〉〉
| a〈〈SeqExpression × SeqExpression〉〉
| #〈〈SeqExpression〉〉
| head〈〈SeqExpression〉〉
| tail〈〈SeqExpression〉〉
| last〈〈SeqExpression〉〉
| front〈〈SeqExpression〉〉
| SeqName〈〈N 〉〉
| OtherSeqExpression

187

D24.1 - Comp. Anal. of CML Models (Public Document)

EVENT == CHANNEL × VALUE

Type ::= B
| A
| E
| P〈〈Type〉〉
| seq〈〈Type〉〉
| dom〈〈N 〉〉
| 7→ 〈〈Type × Type〉〉
| Others

CParameter ::= inputc〈〈N 〉〉
| inputpc〈〈N × Pred〉〉
| outputc〈〈Exp〉〉
| syncc〈〈Exp〉〉

Comm ::= BasicComm〈〈CHANNEL × seq CParameter〉〉
| RefComm〈〈N 〉〉
| ExpComm〈〈Exp〉〉

Decl == seq1(N × Type)

We assume the existence of an undefined name.

UNDEFINED : N

We also assume the existence of a function that returns the name of a
DefLHS .

GetDefLHSName : DefLHS → N

An schema definition can be given as a schema box or as an horizontal
schema. Both have a name and a sequence of generic variables; nevertheless
they differ in that the former has also a declaration part and a predicate
part, and the later has also a schema expression.

ZSchemaDef ::= SchBox 〈〈N × seq N × Decl × seq Pred〉〉
| SchHor〈〈N × seq N × SchemaExp〉〉

We assume the existence of a function that returns the name of a given Z
schema definition as defined below.

188

D24.1 - Comp. Anal. of CML Models (Public Document)

GetZSchemaDefName : ZSchemaDef → N

∀ name : N ; names : seq N ; decl : Decl ; preds : seq Pred ; sexp : SchemaExp •
GetZSchemaDefName(SchBox (name, names , decl , preds)) = name
∧ GetZSchemaDefName(SchHor(name, names , sexp)) = name

In a datatype definition, we have a sequence of branches; each of these
branches is either a basic branch (a name) or a constructor branch (the
constructor name and an expression).

ZBranch ::= BasicBranch〈〈N 〉〉 | ConstBranch〈〈N × Exp〉〉

Finally, a Z paragraph is either a basic type (a name), or an axiomatic
definition that has a declaration and a predicate part, a generic axiomatic
definition that besides the declaration and predicate part has a sequence of
generic variable names, or an schema, or a constant definition, or a datatype
that has a sequence of branches, or finally, a predicate.

ZParagraph ::= BasicType〈〈N × seq N 〉〉
| AxBox 〈〈N × Decl × seq Pred〉〉
| GenAxBox 〈〈N × seq N × Decl × seq Pred〉〉
| Schema〈〈ZSchemaDef 〉〉
| Const〈〈DefLHS × Exp〉〉
| Datatype〈〈N × seq ZBranch〉〉
| Predicate〈〈Pred〉〉

We assume the existence of a function that returns the name of a given Z
Paragraph as defined below.

GetZParagraphName : ZParagraph → N

∀ name : N ; names : seq N ; decl : Decl ; pred : Pred ; preds : seq Pred ;
sch : ZSchemaDef ; exp : Exp; branches : seq ZBranch; defLHS : DefLHS •

GetZParagraphName(BasicType(name, names)) = name
∧ GetZParagraphName(AxBox (name, decl , preds)) = name
∧ GetZParagraphName(GenAxBox (name, names , decl , preds)) = name
∧ GetZParagraphName(Schema(sch)) = GetZSchemaDefName(sch)
∧ GetZParagraphName(Const(defLHS , exp)) = GetDefLHSName(defLHS)
∧ GetZParagraphName(Datatype(name, branches)) = name
∧ GetZParagraphName(Predicate(pred)) = UNDEFINED

This concludes the syntax of the Z part of Circus. We now turn into the
Circus’ CSP and commands part.

189

D24.1 - Comp. Anal. of CML Models (Public Document)

Before defining the syntax of an action body, we define the sets of valid
arguments that are used in assignments, renaming, and alternation. The
first one is composed by pairs of non-empty sequences of same length, where
the first contains names and the second contains expressions; the second one
is composed by pairs of non-empty sequences of same length, where both
contains names.

AssignArgs == {vars : seq1 N ; exps : seq1 Exp
| #vars = #exps • (vars , exps)}

RenArgs == {new , old : seq1 N | #new = #old • (new , old)}

We can now define the syntax of action bodies. It corresponds to the syntactic
category Action presented in [Oli06], but we expand the syntactic categories
SchemaExp, Command, and CSPAction. Besides, in the definition below,
we have that ActBody and ParAct, the syntactic category that corresponds
to the parametrised actions, are mutually recursive; this is indicated using a
& between their definitions.

GuardedCommands ::=
GC 〈〈{s : ((seq1 Pred) × (seq1 ActBody)) | #s .1 = #s .2 • s}〉〉&

ActBody ::= ZSchExp〈〈SchemaExp〉〉 | •instA〈〈seq1 Exp × ParAct〉〉
| AInst〈〈N 〉〉
| AInstArgs〈〈N × seq1 Exp〉〉
| Skip | Stop | Chaos | → 〈〈Comm × ActBody〉〉
| & 〈〈Pred × ActBody〉〉 | ;A〈〈ActBody × ActBody〉〉
| 2A 〈〈ActBody × ActBody〉〉 | uA 〈〈ActBody × ActBody〉〉
| ‖A 〈〈(NSExp × CSExp × NSExp) × ActBody × ActBody〉〉
| |||A 〈〈(NSExp × NSExp) × ActBody × ActBody〉〉
| \A 〈〈CSExp × ActBody〉〉
| µ〈〈N × ActBody〉〉 | Assig〈〈AssignArgs〉〉
| iffi〈〈GuardedCommands〉〉
| var〈〈Decl × ActBody〉〉 | val〈〈Decl × ActBody〉〉
| res〈〈Decl × ActBody〉〉 | vres〈〈Decl × ActBody〉〉
| SpecStmt〈〈seq N × Pred × Pred〉〉
| Assump〈〈Pred〉〉 | Coercion〈〈Pred〉〉
| :=A 〈〈RenArgs × ActBody〉〉 | ;iA〈〈Decl × ActBody〉〉
| 2iA〈〈Decl × ActBody〉〉 | uiA〈〈Decl × ActBody〉〉
| ‖iA〈〈(CSExp × Decl × NSExp) × ActBody〉〉
| |||iA〈〈(Decl × NSExp) × ActBody〉〉

&

ParAct ::= •A 〈〈Decl × ParAct〉〉 | BAct〈〈ActBody〉〉

190

D24.1 - Comp. Anal. of CML Models (Public Document)

A parametrised action is represented by the constructor •A; if, however, the
action in not parametrised, we have a base action (BAct). Many of the con-
structors used above are subscripted with an A. This is used to differentiate
between these constructors and a similar one used for processes, which are
subscripted with a P . For instance, as we know, we may sequentially com-
pose actions and processes; hence, the sequential composition of actions is
represented by the constructor ;A.

We now present the syntax for processes. First, a process paragraph can ei-
ther be a Z paragraph, an action definition that gives a name to a parametrised
action, or a name set definition that gives a name to a name set expres-
sion.

ProcPar ::= ProcZPar〈〈ZParagraph〉〉
| ActDef 〈〈N × ParAct〉〉
| nameset〈〈N × NSExp〉〉

We assume the existence of a function that returns the name of a given
process paragraph as defined below.

GetProcParName : ProcPar → N

∀ zpar : ZParagraph; name : N ; p : ParAct ; ns : NSExp •
GetProcParName(ProcZPar(zpar)) = GetZParagraphName(zpar)
∧ GetProcParName(ActDef (name, p)) = name
∧ GetProcParName(nameset(name, ns)) = name

Next, we have the set that contains the arguments that can be used in an
explicit process definition. This set is composed by tuples (st , ppars ,main),
where st is a Z schema definition that represents the state, ppars is a sequence
of process paragraph, and main is an action body that represents the main
action of the process.

ExProcDefArgs ::= Statefull〈〈ZSchemaDef × seq ProcPar × ActBody〉〉
| Stateless〈〈seq ProcPar × ActBody〉〉

As we did for actions, we define the syntax of process bodies. It corresponds
to the syntactic category Proc presented in [Oli06]. Besides, in the definition
below, we have that ProcBody and ParProc, the syntactic category that cor-
responds to the parametrised actions, are mutually recursive; this indicated

191

D24.1 - Comp. Anal. of CML Models (Public Document)

using a & between their definitions.

ProcBody ::= beginend 〈〈ExProcDefArgs〉〉
| ;P〈〈ProcBody × ProcBody〉〉
| 2P 〈〈ProcBody × ProcBody〉〉
| uP 〈〈ProcBody × ProcBody〉〉
| ‖P 〈〈CSExp × ProcBody × ProcBody〉〉
| |||P 〈〈ProcBody × ProcBody〉〉
| \P 〈〈CSExp × ProcBody〉〉
| •instP〈〈seq1 Exp × ParProc〉〉
| �inst〈〈seq1 Exp × ParProc〉〉
| PName〈〈N 〉〉 | :=P 〈〈RenArgs × ProcBody〉〉
| ginst 〈〈N × seq1 Exp〉〉
| ;i P〈〈Decl × ProcBody〉〉
| 2i P〈〈Decl × ProcBody〉〉
| ui P〈〈Decl × ProcBody〉〉
| ‖i P〈〈(CSExp × Decl) × ProcBody〉〉
| |||i P〈〈Decl × ProcBody〉〉

&

ParProc ::= •P 〈〈Decl × ParProc〉〉
| �〈〈Decl × ParProc〉〉
| BProc〈〈ProcBody〉〉

A parametrised process is represented by the constructor •A and an indexing
process is represented by the contructor �; if, however, the process in neither
parametrised nor indexing, we have a base process (BProc).

Circus programs are composed by paragraphs; these can be either a Z para-
graph, or a channel declaration, or a channel set declaration, or a (possi-
bly generic) process definition, in which case, we define the process name,
the sequence of generic variable names, and a (possibly parametrised) pro-
cess.

ProgPar ::= ProgZPar〈〈ZParagraph〉〉 | channel〈〈CDecl〉〉
| chanset〈〈N × CSExp〉〉
| process〈〈(N × (seq N)) × ParProc〉〉

Program == seq ProgPar

We assume the existence of a function that returns the name of a given
program paragraph as defined below.

192

D24.1 - Comp. Anal. of CML Models (Public Document)

GetProgParName : ProgPar → N

∀ zpar : ZParagraph; cdecl : CDecl ; name : N ;
names : seq N ; p : ParProc; cs : CSExp •
GetProgParName(ProgZPar(zpar)) = GetZParagraphName(zpar)
∧ GetProgParName(channel(cdecl)) = UNDEFINED
∧ GetProgParName(chanset(name, cs)) = name
∧ GetProgParName(process((name, names), p)) = name

H.2 Z Auxiliary Functions

function 30 leftassoc(−)

[X]
− : (seq X × seq X) 7→ seq X

∀ xs : seq X ; ys : seq X
| ys prefix xs
• xs − ys = squash((dom ys)−C xs)

function 30 leftassoc(remove)

[X]
remove : (seq X × X)→ seq X

∀ xs : seq X ; x : X
• (x ∈ ran(xs)⇒ xs remove x =

squash({min (dom(xs B {x}))} −C xs))
∧ (x /∈ ran(xs)⇒ xs remove x = xs)

function 30 leftassoc(−m)

[X]
−m : (seq X × seq X)→ seq X

∀ xs : seq X ; ys : seq X
• (ys = 〈〉 ⇒ xs −m ys = xs)
∧ (ys 6= 〈〉 ⇒

xs −m ys = (xs remove (head(ys))) −m (tail(ys)))

193

D24.1 - Comp. Anal. of CML Models (Public Document)

function 30 leftassoc(↓)

[X]
↓ : (seq X × X)→ N

∀ xs : seq X ; x : X • xs ↓ x = #(xs � {x})

function 30 leftassoc(↓S)

[X]
↓S : (seq X × PX)→ N

∀ seqs : seq X ; sets : PX •
#sets = 0⇒ seqs ↓S sets = 0
∧ #sets > 0⇒
∃ s : sets •

seqs ↓S sets = (seqs ↓ s) + (seqs ↓S (sets \ {s}))

[X]
replaces : (seq X × (X 7→ X)) 7→ seq X

∀ xs : seq X ; f : X 7→ X
• replaces (xs , f) =
xs ⊕ {i : dom(xs) | xs(i) ∈ dom(f) • i 7→ f (xs(i))}

[X]
replacet : ((P(seq X)) × (X 7→ X)) 7→ P(seq X)

∀ xs : P(seq X); f : X 7→ X
• replacet (xs , f) = {s : xs • replaces(s , f)}

[X]
replacer : ((PX) × (X 7→ X)) 7→ PX

∀ xs : PX ; f : X 7→ X
• replacer (xs , f) =

(xs \ dom(f)) ∪ {x : xs | x ∈ dom(f) • f (x)}

194

D24.1 - Comp. Anal. of CML Models (Public Document)

[X]
replacef : ((P(seq X × PX)) × (X 7→ X)) 7→ (P(seq X × PX))

∀ fs : P(seq X × PX); f : X 7→ X
• replacef (fs , f) =
{fail : fs • (replaces(fail .1, f), replacer(fail .2, f))}

H.3 Circus UTP Model

H.3.1 General Types

In Some of the definitions that follows we use the following notation:

[NAME]
[PREDICATE]
[TYPE]

PROCESS == ProcBody

X : EVENT

τ : EVENT

BOOL VAL == {Bool(TRUE),Bool(FALSE)}

INT VAL == {i : Z • Int(i)}

SEQ VAL == {s : seq VALUE • Seq(s)}

SET VAL == {s : PVALUE • Set(s)}

EVENT VAL == {e : EVENT • Ev(e)}

TRACEM == {s : SEQ VAL | ran((Seq∼) s) ⊆ EVENT VAL}

195

D24.1 - Comp. Anal. of CML Models (Public Document)

REFUSALM == {s : SET VAL | ((Set∼) s) ⊆ EVENT VAL}

FAILUREM == {s : TRACEM; r : REFUSALM • Pair(s , r)}

TRACE == seq EVENT

REFUSAL == PEVENT

FAILURE == TRACE × REFUSAL

function({| |})

{| |} : CHANNEL→ PEVENT

∀ c : CHANNEL • {| c |} = {e : EVENT | e.1 = c}

function({| | | |})

{| | | |} : PCHANNEL→ PEVENT

∀ cs : PCHANNEL • {| | cs | |} =
⋃
{c : cs • {| c |}}

production : CSExp → PEVENT

∀ cs : PCHANNEL; csexp1, csexp2 : CSExp •
production(CSDisplay(cs)) = {| | cs | |}
∧ production(∪(csexp1, csexp2)) =

production(csexp1) ∪ production(csexp2)
∧ production(∩(csexp1, csexp2)) =

production(csexp1) ∩ production(csexp2)
∧ production(\(csexp1, csexp2)) =

production(csexp1) \ production(csexp2)

196

D24.1 - Comp. Anal. of CML Models (Public Document)

H.3.2 Model Auxiliary Functions

function 30 leftassoc(−M)

−M : (SEQ VAL × SEQ VAL) 7→ SEQ VAL

∀ xs : SEQ VAL; ys : SEQ VAL
| ((Seq∼) xs) prefix ((Seq∼) ys)
• xs −M ys = Seq(((Seq∼) xs) − ((Seq∼) ys))

relation(inM)

inM : VALUE ↔ SEQ VAL

∀ v : VALUE ; s : SEQ VAL
• v inM s ⇔ v ∈ ran((Seq∼) s)

relation(∈M)

∈M : VALUE ↔ SET VAL

∀ v : VALUE ; s : SET VAL
• v ∈M s ⇔ v ∈ ((Set∼) s)

function 30 leftassoc(aM)

a
M : (SEQ VAL × SEQ VAL)→ SEQ VAL

∀ xs : SEQ VAL; ys : SEQ VAL
• xs aM ys = Seq(((Seq∼) xs) a ((Seq∼) ys))

Ctrace : TRACEM → TRACE

∀ t : TRACEM
• Ctrace t = {i : dom((Seq∼) t) • i 7→ ((Ev∼)(((Seq∼) t)(i)))}

Ctraces : PTRACEM → P TRACE

∀ ts : PTRACEM
• Ctraces ts = {t : ts • Ctrace t}

197

D24.1 - Comp. Anal. of CML Models (Public Document)

Crefusal : REFUSALM → REFUSAL

∀ r : REFUSALM
• Crefusal r = {i : ((Set∼) r) • ((Ev∼)r)}

Cfailure : FAILUREM → FAILURE

∀ f : FAILUREM
• Cfailure f = (Ctrace (((Pair∼) f).1), Crefusal (((Pair∼) f).2))

Cfailures : PFAILUREM → P FAILURE

∀ fs : PFAILUREM
• Cfailures fs = {f : fs • Cfailure f }

function 30 leftassoc(∪M)

∪M : (SET VAL × SET VAL)→ SET VAL

∀ xs : SET VAL; ys : SET VAL
• xs ∪M ys = Set(((Set∼) xs) ∪ ((Set∼) ys))

H.3.3 Predicate Model

Model == NAME 7 7→ VALUE

trueM : PModel

trueM = Model

¬ M : PModel → PModel

∀m1 : PModel • ¬ Mm1 = Model \m1

function 40 leftassoc(∧M)

∧M : PModel × PModel → PModel

∀m1,m2 : PModel • m1 ∧M m2 = m1 ∩m2

function 40 leftassoc(∨M)

∨M : PModel × PModel → PModel

∀m1,m2 : PModel • m1 ∨M m2 = m1 ∪m2

198

D24.1 - Comp. Anal. of CML Models (Public Document)

H.3.4 Observational Variables

ok , ok ′ : NAME
OK ,OK ′ : PModel

∀m : Model • {m(ok),m(ok ′)} ⊆ BOOL VAL
OK = {m : Model | m(ok) = Bool(TRUE)}
OK ′ = {m : Model | m(ok ′) = Bool(TRUE)}

wt ,wt ′ : NAME
WT ,WT ′ : PModel

∀m : Model • {m(wt),m(wt ′)} ⊆ BOOL VAL
WT = {m : Model | m(wt) = Bool(TRUE)}
WT ′ = {m : Model | m(wt ′) = Bool(TRUE)}

tr , tr ′ : NAME

∀m : Model •
{m(tr),m(tr ′)} ⊆ TRACEM
∧ ((Seq∼) (m(tr))) prefix ((Seq∼) (m(tr ′)))

ref , ref ′ : NAME

∀m : Model • {m(ref),m(ref ′)} ⊆ REFUSALM

H.3.5 Semantic Functions

function(|[]|C)

|[]|C : PROCESS → PREDICATE

function(|[]|P)

|[]|P : PREDICATE → PModel

Circus Healthy : PPROCESS

∀ p : PROCESS •
p ∈ Circus Healthy
⇔
∀m : |[(|[p]|C)]|P •

((Seq∼) (m(tr))) prefix ((Seq∼) (m(tr ′)))

199

D24.1 - Comp. Anal. of CML Models (Public Document)

CIRCUS PROCESS : PPROCESS

∀ p : PROCESS •
p ∈ CIRCUS PROCESS
⇔
p ∈ Circus Healthy

H.4 Linking UTP Model to FD Model

Normal : CIRCUS PROCESS → PModel

∀P : CIRCUS PROCESS •
Normal(P) = OK ∧M ¬ MWT ∧M OK ′ ∧M |[(|[P]|C)]|P

Terminate : CIRCUS PROCESS → PModel

∀P : CIRCUS PROCESS • Terminate(P) = Normal(P) ∧M ¬ MWT ′

Diverge : CIRCUS PROCESS → PModel

∀P : CIRCUS PROCESS • Diverge(P) =

OK ∧M ¬ MWT ∧M ¬ MOK ′ ∧M |[(|[P]|C)]|P

tracesM : CIRCUS PROCESS → PTRACEM

∀P : CIRCUS PROCESS •
tracesM(P) =
{m : Normal(P) • m(tr ′)−M m(tr)}
∪ {m : Normal(P) •

(m(tr ′)−M m(tr))aM Seq(〈Ev(X)〉)}

traces : CIRCUS PROCESS → PTRACE

∀P : CIRCUS PROCESS • traces(P) = Ctraces (tracesM(P))

divergencesM : CIRCUS PROCESS → PTRACEM

∀P : CIRCUS PROCESS •
divergencesM(P) = {m : Diverge(P) • m(tr ′)−M m(tr)}

200

D24.1 - Comp. Anal. of CML Models (Public Document)

divergences : CIRCUS PROCESS → PTRACE

∀P : CIRCUS PROCESS • divergences(P) = Ctraces (divergencesM(P))

traces⊥ : CIRCUS PROCESS → PTRACE

∀P : CIRCUS PROCESS • traces⊥(P) = traces(P) ∪ divergences(P)

failuresM : CIRCUS PROCESS → PFAILUREM

∀P : CIRCUS PROCESS •
failuresM(P) =
{m : Normal(P) • Pair(m(tr ′)−M m(tr),m(ref ′))}
∪ {m : Normal(P) ∧M WT ′ •

Pair(m(tr ′)−M m(tr),m(ref ′) ∪M Set({Ev(X)}))}
∪ {m : Terminate(P) •

Pair(m(tr ′)aM Seq(〈Ev(X)〉),m(ref ′))}
∪ {m : Terminate(P) •

Pair(m(tr ′)aM Seq(〈Ev(X)〉),m(ref ′) ∪M Set({Ev(X)}))}

failures : CIRCUS PROCESS → PFAILURE

∀P : CIRCUS PROCESS • failures(P) = Cfailures (failuresM(P))

The following definition was not in [CG10], but it is based on a similar
definition from [CW06].

failures⊥(A) = failures(A) ∪ {(s , ref) | s ∈ divergences(P)∧ ref ∈ Σ∗X}

failures⊥ : CIRCUS PROCESS → PFAILURE

∀P : CIRCUS PROCESS • failures⊥(P) =
failures(P) ∪ {s : divergences(P); r : PEVENT • (s , r)}

H.5 Properties

DeadlockFree : PCIRCUS PROCESS

∀ p : CIRCUS PROCESS •
p ∈ DeadlockFree
⇔
∀ s : traces(p) • (s ,EVENT) /∈ failures(p)

201

D24.1 - Comp. Anal. of CML Models (Public Document)

InfTraces : PCIRCUS PROCESS

∀ p : CIRCUS PROCESS •
p ∈ InfTraces ⇔ (traces(p) /∈ FTRACE)

DivergenceFree : PCIRCUS PROCESS

∀ p : CIRCUS PROCESS •
p ∈ DivergenceFree ⇔ (divergences(p) = ∅)

Deterministic : PCIRCUS PROCESS

∀ p : CIRCUS PROCESS •
p ∈ Deterministic
⇔
(p ∈ DivergenceFree
∧ ∀ t : TRACE ; a : EVENT •

t a 〈a〉 ∈ traces(p)⇒
(t , {a}) /∈ failures(p))

H.6 Refinement

relation(vT)

vT : CIRCUS PROCESS ↔ CIRCUS PROCESS

∀ p1, p2 : CIRCUS PROCESS •
p1 vT p2

⇔
traces(p2) ⊆ traces(p1)

relation(≡T)

≡T : CIRCUS PROCESS ↔ CIRCUS PROCESS

∀ p1, p2 : CIRCUS PROCESS •
p1 ≡T p2

⇔
(p1 vT p2 ∧ p2 vT p1)

202

D24.1 - Comp. Anal. of CML Models (Public Document)

relation(vF)

vF : CIRCUS PROCESS ↔ CIRCUS PROCESS

∀ p1, p2 : CIRCUS PROCESS •
p1 vF p2

⇔
failures(p2) ⊆ failures(p1)

relation(≡F)

≡F : CIRCUS PROCESS ↔ CIRCUS PROCESS

∀ p1, p2 : CIRCUS PROCESS •
p1 ≡F p2

⇔
(p1 vF p2 ∧ p2 vF p1)

relation(vFD)

vFD : CIRCUS PROCESS ↔ CIRCUS PROCESS

∀ p1, p2 : CIRCUS PROCESS •
p1 vFD p2

⇔
(failures⊥(p2) ⊆ failures⊥(p1) ∧ divergences(p2) ⊆ divergences(p2))

relation(≡FD)

≡FD : CIRCUS PROCESS ↔ CIRCUS PROCESS

∀ p1, p2 : CIRCUS PROCESS •
p1 ≡FD p2

⇔
(p1 vFD p2 ∧ p2 vFD p1)

relation(vP)

203

D24.1 - Comp. Anal. of CML Models (Public Document)

vP : CIRCUS PROCESS ↔ CIRCUS PROCESS

∀ p1, p2 : CIRCUS PROCESS
| divergences(p1) = divergences(p2) = ∅
• p1 vP p2

⇔
(p1 vF p2 ∧ p1 vFD p2)

relation(≡P)

≡P : CIRCUS PROCESS ↔ CIRCUS PROCESS

∀ p1, p2 : CIRCUS PROCESS •
p1 ≡P p2

⇔
(p1 vP p2 ∧ p2 vP p1)

I Z Formalisation of Circus BRIC

section circus bric toolkit parents csp circus toolkit

I.1 Basic Definitions

The function α returns the alphabet of events of a given process.

α : CIRCUS PROCESS → PEVENT

∀ p : CIRCUS PROCESS • α p =
⋃
{t : traces(p) • ran(t)}

inputs , outputs : CHANNEL × CIRCUS PROCESS → PEVENT

∀ c : CHANNEL; p : CIRCUS PROCESS •
inputs(c, p) ⊆ {| c |}
∧ outputs(c, p) ⊆ {| c |}

inputsP , outputsP : CIRCUS PROCESS → PEVENT

∀ p : CIRCUS PROCESS •
inputsP(p) =

⋃
{c : CHANNEL • inputs(c, p)}

∧ outputsP(p) =
⋃
{c : CHANNEL • outputs(c, p)}

204

D24.1 - Comp. Anal. of CML Models (Public Document)

channel : EVENT → CHANNEL

∀ e : EVENT • channel(e) = e.1

channels : PEVENT → PCHANNEL

∀ es : PEVENT • channels(es) = {e : es • channel(e)}

function 30 leftassoc(/)

/ : (CIRCUS PROCESS × TRACE) 7→ CIRCUS PROCESS

∀ p : CIRCUS PROCESS ; s : TRACE
| s ∈ traces(p)
• traces(p/s) = {t : TRACE | s a t ∈ traces(p)}
∧ failures(p/s) =
{f : failures(p); t : TRACE | f .1 = s a t • (t , f .2)}

∧ divergences(p/s) = {t : TRACE | s a t ∈ divergences(p)}

I.2 Component Model

I.2.1 I/O channels

Definition I.1 (I/O channels) We say a channel c is an I/O channel if
there exists two functions, inputs(c,P) and outputs(c,P), for every process
P, such that:

inputs(c,P) ∪ outputs(c,P) ⊆ {| c |}
∧ inputs(c,P) ∩ outputs(c,P) = ∅

Formally

IOChannels : PCHANNEL

∀ c : CHANNEL •
c ∈ IOChannels
⇔
(∀ p : CIRCUS PROCESS •

inputs(c, p) ∪ outputs(c, p) ⊆ {| c |}
∧ inputs(c, p) ∩ outputs(c, p) = ∅)

205

D24.1 - Comp. Anal. of CML Models (Public Document)

I.2.2 Input determinism

Definition 3.11 (Input determinism) We say a process P is input de-
terministic if

∀ s a 〈c.a〉 : traces(P) | c.a ∈ inputs(c,P) • (s , {c.a}) /∈ failures(P)

Formally

inputdet : PCIRCUS PROCESS

∀ p : CIRCUS PROCESS •
p ∈ inputdet
⇔
(∀ e : EVENT ; s : TRACE
| s a 〈e〉 ∈ traces(p) ∧ e ∈ inputsP(p)
• (s , {e}) /∈ failures(p))

I.2.3 Strong output decisiveness

Definition 3.12 (Strong output decisiveness) We say a process P is
strong output decisive if:

∀ s a 〈c.b〉 : traces(P) | c.b ∈ outputs(c,P) •
(s , outputs(c,P)) /∈ failures(P)
∧ (s , outputs(c,P) \ {c.b}) ∈ failures(P)

Formally

strongoutputdec : PCIRCUS PROCESS

∀ p : CIRCUS PROCESS •
p ∈ strongoutputdec
⇔
(∀ e : EVENT ; s : TRACE
| s a 〈e〉 ∈ traces(p) ∧ e ∈ outputsP(p)
• (∃ c : CHANNEL
| e ∈ outputs(c, p)
• (s , outputs(c, p)) /∈ failures(p)
∧ (s , outputs(c, p) \ {e}) ∈ failures(p)))

206

D24.1 - Comp. Anal. of CML Models (Public Document)

I.2.4 I/O Process

New Definition 4.2 (I/O process) We say P is an I/O process if:

• P only uses I/O Channels and αP = inputs(P) ∪ outputs(P);

• P has infinite traces;

• P is divergent-free;

• P is input deterministic;

• P is strong output decisive.

Formally

IOProcess : PCIRCUS PROCESS

∀ p : CIRCUS PROCESS •
p ∈ IOProcess
⇔
({e : α(p) • channel(e)} ⊆ IOChannels
∧ α(p) = inputsP(p) ∪ outputsP(p)
∧ p ∈ InfTraces
∧ p ∈ DivergenceFree
∧ p ∈ inputdet
∧ p ∈ strongoutputdec)

207

D24.1 - Comp. Anal. of CML Models (Public Document)

I.2.5 Component Contract

Definition 4.1 (Component contract) A component contract Ctr com-
prises an observational behaviour B (a Circus process), a set of communi-
cation channels C, a set of interfaces I, and a total function R : C → I
between channels and interfaces:

Ctr : 〈B,R, I, C〉

such that

• B is an I/O process

• dom R = C ∧ ranR = I

Formally

CTR : P(CIRCUS PROCESS × (CHANNEL→ TYPE) ×
(PTYPE) × (PCHANNEL))

∀B : CIRCUS PROCESS ; R : CHANNEL→ TYPE ;
I : PTYPE ; C : PCHANNEL •

(B ,R, I ,C) ∈ CTR
⇔
B ∈ IOProcess ∧ dom R = C ∧ ran R = I

B : CTR → CIRCUS PROCESS

∀ p : CTR • B(p) = p.1

R : CTR → (CHANNEL→ TYPE)

∀ p : CTR • R(p) = p.2

I : CTR → PTYPE

∀ p : CTR • I(p) = p.3

C : CTR → PCHANNEL

∀ p : CTR • C(p) = p.4

208

D24.1 - Comp. Anal. of CML Models (Public Document)

I.2.6 Asynchronous Composition

Definition I.2 (Asynchronous Composition)

PS = |||
P∈S P

AsyncComp(S ,F) = PS ‖dom F

(
|||

c∈dom F
BUFF∞IO(c,F (c))

)
BUFF 1

IO(c, z) = BUFFIO(COPY ,R c→z
IO ,R z→c

IO)
BUFF n

IO(c, z) = BUFFIO(Bn ,R c→z
IO ,R z→c

IO)
BUFF∞IO(c, z) = BUFFIO(B∞〈〉 ,R

c→z
IO ,R z→c

IO)

BUFFIO(BF ,LR1,LR2) = (BF (LR1) ||| BF (LR2))

COPY (LR) =?x : dom LR → LR(x)→ COPY (LR)

LR = {left .x 7→ right .x | x ∈ T}

B∞〈 〉 (LR) =?x : dom LR → B∞〈x〉
B∞sa〈y〉(LR) = (?x : dom LR → B∞〈x〉as

a〈y〉(LR)) 2 (LR(y)→ B∞s (LR))

Bn(LR) = COPY (LR) 〉〉LRCOPY (LR) 〉〉LR . . . 〉〉LRCOPY (LR)

P 〉〉LRQ = (P |[RM]| ‖mid Q |[LM]|) \ mid

where LR, RM and LM are bijections and mid is a set of events, such that:

• (αP ∪ αQ) ⊆ (dom LR ∪ ran LR)

• (dom LR ∩ ran LR) = ∅

• (dom LR ∪ ran LR) ∩mid = ∅

• ran RM = mid

• ran ML = mid

• dom RM = ran LR

• dom LM = dom LR.

209

D24.1 - Comp. Anal. of CML Models (Public Document)

Formally For simplicity we slightly changed AsyncComp.

• It receive as arguments two processes instead of a set of process

• The mapping is no longer from channel to channel, but from pairs to
pairs (a pair has a process and a channel)

This makes it easier to correctly use the renaming function P |[R a→b
IO]| used

in the definition, sice its definition is now parameterised by the process to
which it is being applied.

BRIO : (CIRCUS PROCESS × CHANNEL) × (CIRCUS PROCESS × CHANNEL)
→ (EVENT → EVENT)

∀P ,Q : CIRCUS PROCESS ; c, z : CHANNEL •
BRIO((P , c), (Q , z)) =
{e : outputsP(P) | channel(e) = c • e 7→ (z , e.2)}

We also need to change and formalise the definition of BUFF∞IO . The Circus
processes are:

process BUFF∞IO =̂
pc, qz : CIRCUS PROCESS × CHANNEL •

B∞(〈〉,BRIO(pc, pz)) ||| B∞(〈〉,BRIO(pz , pc))

process B∞ =̂
s : TRACE ; LR : EVENT → EVENT •
begin
• (2 x : dom LR • x → B∞(〈x 〉a s ,LR))
2 (#s > 0) & LR(last(s))→ B∞(front(s),LR)

end

process Bn =̂
n : N; s : TRACE ; LR : EVENT → EVENT •
begin
• (#s < n) & (2 x : dom LR • x → B∞(n + 1, 〈x 〉a s ,LR))
2 (#s > 0) & LR(last(s))→ B∞(n − 1, front(s),LR)

end

process AsyncComp =̂
P ,Q : CIRCUS PROCESS ;
F : (CIRCUS PROCESS × CHANNEL)→ (CIRCUS PROCESS × CHANNEL) •

(P ||| Q)
|[{| αP ∪ αQ |}]|
(||| pc ∈ dom F • BUFF∞IO(pc,F (pc)))

210

D24.1 - Comp. Anal. of CML Models (Public Document)

Formally

fun2ValueAux : (EVENT 7→ EVENT) 7→ PVALUE

∀ f : EVENT 7→ EVENT •
∃ e1, e2 : EVENT
| e1 ∈ dom(f) ∧ f (e1) = e2

• (#f = 1⇒ fun2ValueAux (f) = {Pair(Ev(e1),Ev(e2))})
∧ (#f > 1⇒ fun2ValueAux (f) =
{Pair(Ev(e1),Ev(e2))} ∪ fun2ValueAux ({e1} −C f))

fun2Value : (EVENT 7→ EVENT) 7→ VALUE

∀ f : EVENT 7→ EVENT • fun2Value(f) = Set(fun2ValueAux (f))

B∞ : (EVENT 7→ EVENT) 7→ CIRCUS PROCESS

∀LR : EVENT 7→ EVENT • ∃ x ,B , f , s : N •
B∞(LR) =

beginend (Stateless(
〈ActDef (B , •A (〈(s , seq(E)), (f , 7→ (E,E))〉,

BAct(2A (2iA(〈(x , dom(f))〉,
→ (RefComm(x),

AInstArgs(B , 〈SeqExp(a(SeqDisplay(〈Var(x)〉),
SeqName(s))),

Var(f)〉))),
→ (ExpComm(FunExp(f , 〈SeqExp(last(SeqName(s)))〉)),

AInstArgs(B , 〈SeqExp(front(SeqName(s))),
Var(f)〉))))))〉,

AInstArgs(B , 〈SeqExp(SeqDisplay(〈〉)),Value(fun2Value(LR))〉)))

B∞IO : ((CIRCUS PROCESS × CHANNEL) ×
(CIRCUS PROCESS × CHANNEL)) 7→ CIRCUS PROCESS

∀ p1, p2 : CIRCUS PROCESS ; c1, c2 : CHANNEL •
B∞IO((p1, c1), (p2, c2)) =
|||P (B∞(BRIO((p1, c1), (p2, c2))),B∞(BRIO((p2, c2), (p1, c1))))

211

D24.1 - Comp. Anal. of CML Models (Public Document)

||| B∞IO : ((CIRCUS PROCESS × CHANNEL) 7→
(CIRCUS PROCESS × CHANNEL)) 7→ CIRCUS PROCESS

∀ f : (CIRCUS PROCESS × CHANNEL) 7→
(CIRCUS PROCESS × CHANNEL) •
∃ pc, fpc : CIRCUS PROCESS × CHANNEL
| pc ∈ dom(f) ∧ f (pc) = fpc
• (#f = 1⇒ ||| B∞IO(f) = B∞IO(pc, fpc))
∧ (#f > 1⇒ ||| B∞IO(f) = |||P (B∞IO(pc, fpc), ||| B∞IO({pc} −C f)))

AsyncCompb : (CIRCUS PROCESS × CIRCUS PROCESS ×
((CIRCUS PROCESS × CHANNEL) 7→

(CIRCUS PROCESS × CHANNEL)))→
CIRCUS PROCESS

∀ p, q : CIRCUS PROCESS ;
f : (CIRCUS PROCESS × CHANNEL)→

(CIRCUS PROCESS × CHANNEL) •
AsyncCompb(p, q , f) =
‖P (CSDisplay(channels(α(p) ∪ α(q))), |||P (p, q), ||| B∞IO(f))

AsyncCompu : (CIRCUS PROCESS ×
((CIRCUS PROCESS × CHANNEL) 7→

(CIRCUS PROCESS × CHANNEL)))→
CIRCUS PROCESS

∀ p : CIRCUS PROCESS ;
f : (CIRCUS PROCESS × CHANNEL)→

(CIRCUS PROCESS × CHANNEL) •
AsyncCompu(p, f) =
‖P (CSDisplay(channels(α(p))), p, ||| B∞IO(f))

Definition I.3 (Asynchronous binary composition) Let P and Q be
two distinct component contracts, and 〈c1, .., cn〉 and 〈z1, .., zn〉 sequences
of distinct channels within C(P) and C(Q), respectively, such that C(P) ∩
C(Q) = ∅. Then, the asynchronous binary composition of P and Q (namely
P 〈c1,..,cn 〉 � 〈z1,..,zn 〉Q) is given by:

P 〈c1,..,cn 〉 � 〈z1,..,zn 〉Q =
〈AsyncComp({B(P),B(Q)}, {ci 7→ zi | i ∈ 1..n}),R(PQ), I(PQ), C(PQ)〉

where

212

D24.1 - Comp. Anal. of CML Models (Public Document)

• C(PQ) = (C(P) ∪ C(Q)) \ {c1, .., cn , z1, .., zn}

• R(PQ) = C(PQ) C (R(P) ∪R(Q))

• I(PQ) = ranR(PQ)

Formally

function 30 leftassoc([�])

[�] : CTR × (iseq CHANNEL) × (iseq CHANNEL) × CTR 7→ CTR

∀P ,Q : CTR; s , t : iseq CHANNEL
| #s = #t ∧ ran s ⊆ C(P) ∧ ran t ⊆ C(Q) ∧ ran s ∩ ran t = ∅
• ∃BricCPQ : PCHANNEL
| BricCPQ = (C(P) ∪ C(Q)) \ (ran s ∪ ran t)
• ∃BricRPQ : (CHANNEL→ TYPE)
| BricRPQ = BricCPQ C (R(P) ∪R(Q))
• P [s � t] Q =

(AsyncCompb (B(P),B(Q),
{i : 0 . . (#s) • (B(P), s(i)) 7→ (B(P), t(i))}),

BricRPQ ,
ran BricRPQ ,
BricCPQ)

Notice that we have injective sequences in the function domain. Furthermore,
we have changed the definition of AsyncComp for the reasons we explain
below.

I.2.7 Asynchronous Unary Composition

Definition I.4 (Asynchronous unary composition) Let P be a compo-
nent contract, and 〈c1, .., cn〉 and 〈z1, .., zn〉 sequences of distinct channels
within C(P), such that {c1, .., cn} ∩ {z1, .., zn} = ∅. Then, the asynchronous

unary composition of P (namely P �
∣∣〈c1,..,cn 〉
〈z1,..,zn 〉

) is given by:

P �
∣∣〈c1,..,cn 〉
〈z1,..,zn 〉

= 〈(AsyncComp({B(P)}, {ci 7→ zi | i ∈ 1..n}),R(PQ), I(PQ), C(PQ)〉

where

213

D24.1 - Comp. Anal. of CML Models (Public Document)

• C(PQ) = C(P) \ {c1, .., cn , z1, .., zn}

• R(PQ) = C(PQ) C R(P)

• I(PQ) = ranR(PQ)

Formally

function 30 leftassoc(�
∣∣)

�
∣∣ : (CTR × (iseq CHANNEL × iseq CHANNEL)) 7→ CTR

∀P : CTR; s , t : seq CHANNEL
| #s = #t ∧ ran(s) ∪ ran(t) ⊆ C(P) ∧ ran s ∩ ran t = ∅
• ∃BricCPQ : PCHANNEL
| BricCPQ = C(P) \ (ran s ∪ ran t)
• ∃BricRPQ : (CHANNEL→ TYPE)
| BricRPQ = BricCPQ CR(P)
• P �

∣∣ (s , t) =
(AsyncCompu (B(P), {i : 0 . . (#s) • (B(P), s(i)) 7→ (B(P), t(i))}),

BricRPQ ,
ran BricRPQ ,
BricCPQ)

214

D24.1 - Comp. Anal. of CML Models (Public Document)

I.2.8 Projection

New Definition I.1 (Projection) Let P be an I/O Process, and C a set
of communication channels. The projection of P over C (denoted by P � C)
satisfies the following properties:

1. P � C is an I/O Process

2. ∀ c : C • inputs(P � C , c) ⊆ inputs(P , c)

3. ∀ c : C • outputs(P � C , c) ⊆ outputs(P , c)

• Test characterisation: as before

4. α(P � C) ⊆
⋃

c:C{| c |}

• Test characterisation: ProtCheck(P � C ,C) is deadlock-free

ProtCheck(P ,C) = P |[NOT (C)]| PRUNE (NOT (C))

PRUNE (A) = 2 ev : A • ev → Stop

NOT (C) = Σ \
⋃

c:C{| c |}

5. P ≡T P |[Σ]| ((P � C) ||| RUN (NOT (C)))

RUN (CS) = 2 c : CS • c → RUN (CS)

Formally

2 : F1 EVENT → ActBody

∀ es : P1 EVENT •
∃ e : es •

#es = 1⇒ 2(es) =
→ (BasicComm(e.1, 〈syncc(Value(e.2))〉), Skip)

∧ #es > 1⇒ 2(es) =
2A (→ (BasicComm(e.1, 〈syncc(Value(e.2))〉), Skip),2(es \ {e}))

RUN : F1 CHANNEL→ CIRCUS PROCESS

∀ cs : F1 CHANNEL •
∃X : N •

RUN (cs) =
beginend (Stateless(〈〉, µ(X , ;A(2({| | cs | |}),AInst(X)))))

215

D24.1 - Comp. Anal. of CML Models (Public Document)

function 30 leftassoc(�B)

�B : CIRCUS PROCESS × PCHANNEL→ CIRCUS PROCESS

∀ p : CIRCUS PROCESS ; cs : PCHANNEL •
p �B cs ∈ IOProcess
∧ ∀ c : cs • inputs(c, p �B cs) ⊆ inputs(c, p)
∧ ∀ c : cs • outputs(c, p �B cs) ⊆ outputs(c, p)
∧ α(p �B cs) ⊆ {| | cs | |}
∧ p ≡T‖P (CSDisplay(CHANNEL), p, |||P (p �B cs ,RUN (CHANNEL \ cs)))

I.2.9 Communication protocol

Definition E.2 (Communication protocol) We say a Circus process P
is a communication protocol if:

• ∃ c1, c2 • inputs(P) ⊆ {| c1 |} ∧ outputs(P) ⊆ {| c2 |};

Formally

CommProt : P(CIRCUS PROCESS)

∀P : CIRCUS PROCESS •
P ∈ CommProt
⇔
∃ c1, c2 : CHANNEL • inputsP(P) ⊆ {| c1 |} ∧ outputsP(P) ⊆ {| c2 |}

I.2.10 Protocol Implementation

New Definition 4.1 (Protocol implementation) Let P be an I/O pro-
cess, and ch a communication channel. The communication protocol, namely
ProtIMP(P , ch), implemented by P over ch is a protocol that satisfies the fol-
lowing property:

ProtIMP(P , ch) ≡F P � ch

Formally

216

D24.1 - Comp. Anal. of CML Models (Public Document)

ProtIMP : (CIRCUS PROCESS × CHANNEL)→ CIRCUS PROCESS

∀P : CIRCUS PROCESS ; c : CHANNEL •
ProtIMP(P , c) = P �B {c}
∧ ProtIMP(P , c) ∈ CommProt

I.2.11 Dual Protocol

Definition E.3 (Dual protocol) Let P be a deadlock-free communication
protocol. The dual protocol of P is defined as a deadlock-free communication
protocol DP, such that:

inputs(P) = outputs(DP)
∧ outputs(P) = inputs(DP)
∧ traces(DP) = traces(P)

Formally

DP : CIRCUS PROCESS → CIRCUS PROCESS

∀P : CIRCUS PROCESS
| P ∈ CommProt ∧ P ∈ DeadlockFree
• inputsP(P) = outputsP(DP(P))
∧ outputsP(P) = inputsP(DP(P))
∧ traces(P) = traces(DP(P))

I.2.12 Dual Protocol

Definition I.5 (Communication context process) Let P be a deadlock-
free communication protocol. The communication context process of P (de-
noted by CTXP) is defined as a deadlock-free deterministic process, such that
traces(CTXP) = traces(P).

Formally

217

D24.1 - Comp. Anal. of CML Models (Public Document)

CTX : CIRCUS PROCESS → CIRCUS PROCESS

∀P : CIRCUS PROCESS
| P ∈ CommProt ∧ P ∈ DeadlockFree
• CTX (P) ∈ DeadlockFree
∧ CTX (P) ∈ Deterministic
∧ traces(P) = traces(CTX (P))

I.2.13 Renaming I/O

RIO : (CIRCUS PROCESS × CHANNEL × CHANNEL)→ CIRCUS PROCESS

∀P : CIRCUS PROCESS ; a, b : CHANNEL
• ∃ f : (EVENT → EVENT)
| f = BRIO((P , a), (P , b))
• traces(RIO (P , a, b)) = replacet(traces(P), f)
∧ divergences(RIO (P , a, b)) = replacet(divergences(P), f)
∧ failures(RIO (P , a, b)) = replacef (failures(P), f)

RIMP : (CIRCUS PROCESS × CHANNEL × CHANNEL)→ CIRCUS PROCESS

∀P : CIRCUS PROCESS ; a, b : CHANNEL
• RIMP(P , a, b) = RIO(ProtIMP(P , a), a, b)

I.2.14 I/O confluence

Definition I.6 (I/O confluence) Let P be an I/O process. Then P is I/O
confluent if and only if :

∀ s a 〈c1.a〉a t , s a 〈c2.b〉 : traces(P) | c1.a 6= c2.b •
(c1.a ∈ inputs(P) ∧
∃ i : inputs(P , c1) | s a 〈c2.b, i〉a (t − 〈c2.b〉) ∈ traces(P))

∨ (c1.a ∈ outputs(P) ∧
∃ o : outputs(P , c1) | s a 〈c2.b, o〉a (t − 〈c2.b〉) ∈ traces(P))

∨ (c1 = c2 ∧ ({c1.a, c2.b} ⊆ outputs(P) ∨ {c1.a, c2.b} ⊆ inputs(P)))

Formally

218

D24.1 - Comp. Anal. of CML Models (Public Document)

IOConfluent : PCIRCUS PROCESS

∀ p : CIRCUS PROCESS •
p ∈ IOConfluent
⇔
(p ∈ IOProcess
∧ (∀ e1, e2 : EVENT
| e1 6= e2

• ∀ s , t : TRACE
| {s a 〈e1〉a t , s a 〈e2〉} ⊆ traces(p)
• (e1 ∈ inputsP(p)
∧ ∃ i : inputs(channel(e1), p)
• s a 〈e2, i〉a (t −m 〈e2〉) ∈ traces(p))

∨ (e1 ∈ outputsP(p)
∧ ∃ o : outputs(channel(e1), p)
• s a 〈e2, o〉a (t −m 〈e2〉) ∈ traces(p))

∨ (channel(e1) = channel(e2)
∧ {e1, e2} ⊆ outputsP(p) ∨ {e1, e2} ⊆ inputsP(p))))

I.2.15 Conjugate protocols

Definition I.7 (Conjugate protocols) Let P and Q be two communica-
tion protocols. P and Q are conjugate if, and only if:

• outputs(P) ⊆ inputs(Q) ∧ outputs(Q) ⊆ inputs(P)

• outputs(P) ∩ outputs(Q) = ∅ ∧ inputs(P) ∩ inputs(Q) = ∅

Formally

ConjugateProtocols : CIRCUS PROCESS ↔ CIRCUS PROCESS

∀ p, q : CIRCUS PROCESS •
(p, q) ∈ ConjugateProtocols
⇔
(outputsP(p) ⊆ inputsP(q)
∧ outputsP(q) ⊆ inputsP(p)
∧ outputsP(p) ∩ outputsP(q) = ∅
∧ inputsP(p) ∩ inputsP(q) = ∅)

219

D24.1 - Comp. Anal. of CML Models (Public Document)

I.2.16 Strong protocol compatibility

Definition I.8 (Strong protocol compatibility) Let P and Q be two deadlock-
free communication protocols, such that P and Q are conjugate. The proto-
cols P and Q are strong compatible (denoted P ≈̃Q) if, and only if:

∀ s : traces(P) ∩ traces(Q) • (O s
P 6= ∅ ∨ O s

Q 6= ∅) ∧ O s
P ⊆ I s

Q ∧ O s
Q ⊆ I s

P

I s
P = {a : inputs(P) | s a 〈a〉 ∈ traces(P)}

O s
P = {a : outputs(P) | s a 〈a〉 ∈ traces(P)}

Formally

I ,O : TRACE × CIRCUS PROCESS → PEVENT

∀ s : TRACE ; p : CIRCUS PROCESS •
I (s , p) = {a : inputsP(p) | s a 〈a〉 ∈ traces(p)}
∧ O (s , p) = {a : outputsP(p) | s a 〈a〉 ∈ traces(p)}

relation(≈̃)

≈̃ : CIRCUS PROCESS ↔ CIRCUS PROCESS

∀ p, q : CIRCUS PROCESS •
p ≈̃ q
⇔
({p, q} ⊆ DeadlockFree
∧ (p, q) ∈ ConjugateProtocols
∧ ∀ s : traces(p) ∩ traces(q)
• (O(s , p) 6= ∅ ∨ O(s , q) 6= ∅)
∧ O(s , p) ⊆ I (s , q)
∧ O(s , q) ⊆ I (s , p))

I.2.17 Finite output property

Definition I.9 (Finite output property) Let P be an I/O process, and
C the set of channels used in P. P satisfies the finite output property (FOP)
if, and only if, for all c ∈ C the process P \ outputs(P , c) is divergence-free.

220

D24.1 - Comp. Anal. of CML Models (Public Document)

Formally

FOP : PCIRCUS PROCESS

∀ p : CIRCUS PROCESS •
p ∈ FOP
⇔
(p ∈ IOProcess ∧
\P (CSDisplay(channels(outputsP(p))), p) ∈ DivergenceFree)

I.2.18 Decoupled Channels

Definition I.10 (Decoupled channels) Let P be an I/O process and Ch
a set of channels. Then, the channels within Ch are decoupled in P (denoted
by Ch DecoupledIn P) if, and only, if:

P � Ch ≡F |||z∈cs ProtIMP(p, z)

Formally

relation(DecoupledIn)

||| ProtIMP : (CIRCUS PROCESS × P1 CHANNEL)→ CIRCUS PROCESS

∀ p : CIRCUS PROCESS ; cs : P1 CHANNEL •
∃ c : cs •

#cs = 1⇒ ||| ProtIMP(p, cs) = ProtIMP(p, c)
∧ #cs > 1⇒ ||| ProtIMP(p, cs) =|||P (ProtIMP(p, c), ||| ProtIMP(p, cs \ {c}))

DecoupledIn : PCHANNEL↔ CIRCUS PROCESS

∀ cs : PCHANNEL; p : CIRCUS PROCESS •
cs decoupled p
⇔
(p ∈ IOProcess ∧ p �B cs ≡F ||| ProtIMP(p, cs))

I.2.19 Buffering self-injection compatibility

Definition I.11 (Buffering self-injection compatibility) Let P be a deadlock-
free I/O process, and c and z channels. Then Pj = P � {c, z} is buffering
self-injection compatible if, and only if:

221

D24.1 - Comp. Anal. of CML Models (Public Document)

1. ∀(s ,X) : failures(Pj) | (s ↓ Oc = s ↓ Iz) ∧ (s ↓ Oz = s ↓ Ic) •
X ∩ (Oc ∪Oz) = ∅

2. ∀(s ,X) : failures(Pj) | s ↓ Oc > s ↓ Iz • (s � z ,X ∪ {c}) ∈
failures(Pj � z)

3. ∀(s ,X) : failures(Pj) | s ↓ Oz > s ↓ Ic • (s � c,X ∪ {z}) ∈
failures(Pj � c)

where Oc = outputs(P , c), Oz = outputs(P , z), Ic = inputs(P , c) and Iz =
inputs(P , z)

relation(buffSelfInjComp)

buffSelfInjComp : CIRCUS PROCESS ↔ (CHANNEL × CHANNEL)

∀ p : CIRCUS PROCESS ; c, z : CHANNEL •
p buffSelfInjComp (c, z)
⇔
(p ∈ IOProcess ∧ p ∈ DeadlockFree
∧ ∀ t : TRACE ; r : REFUSAL | (t , r) ∈ failures(p �B {c, z}) •

((t ↓S outputs(c, p) = t ↓S inputs(z , p)
∧ t ↓S outputs(z , p) = t ↓S inputs(c, p))⇒

r ∩ (outputs(c, p) ∪ outputs(z , p)) = ∅)
∧ (t ↓S outputs(c, p) > t ↓S inputs(z , p)⇒

(t � {| z |}, r ∪ {| c |}) ∈ failures((p �B {c, z}) �B {z}))
∧ (t ↓S outputs(z , p) > t ↓S inputs(c, p)⇒

(t � {| c |}, r ∪ {| z |}) ∈ failures((p �B {c, z}) �B {c})))

I.2.20 Interaction patterns

Definition I.12 (Interaction patterns) Let P be a CSP process.

InteractionPatterns(P) = {s : traces(P) | P vFD (P/s) ∧ s is finite}

Formally

InteractionPatterns : CIRCUS PROCESS 7→ PTRACE

∀P : CIRCUS PROCESS
• InteractionPatterns(P) =
{s : TRACE | s ∈ traces(P) ∧ P vFD (P/s)}

222

D24.1 - Comp. Anal. of CML Models (Public Document)

I.2.21 Interaction process

Definition I.13 (Interaction process) A divergence-free CSP process P
is an interaction process if, and only if:

∀ s ∈ traces(P) • ∃ p : InteractionPatterns(P) • s � p

Formally

InteractionProcess : PCIRCUS PROCESS

∀ p : CIRCUS PROCESS
• p ∈ InteractionProcess
⇔
∀ s : traces(p) • ∃ t : InteractionPatterns(p) • s prefix t

I.2.22 Interaction component

Definition I.14 (Interaction component) Let C be a component with
contract Ctr. Then C is an interaction component if, and only if, BCtr

is an interaction process.

Formally

InteractionComponent : PCTR

∀ c : CTR
• c ∈ InteractionComponent
⇔
B(c) ∈ InteractionProcess

I.2.23 Interaction channels

Definition I.15 (Interaction channels) Let Ctr be an interaction com-
ponent contract. Then its interaction channels are:

IntChCtr = {chans(t) | t ∈ InteractionPatterns(BCtr)}

223

D24.1 - Comp. Anal. of CML Models (Public Document)

Formally

IntCh : CTR → PCHANNEL

∀ c : CTR
• IntCh(c) =

⋃
{t : InteractionPatterns(B(c)) • channels(ran(t))}

I.2.24 Wrapping

Definition I.16 (Wrapping) Let P be a component contract, and CC a
set of channels. Then, a wrapping of P with respect to CC is given by:

P \ CC = 〈(BP \ {| CC \ CP |},RP , IP , CP〉

Formally

function 30 leftassoc(dd)

dd : CTR × PCHANNEL 7→ CTR

∀ c : CTR; CC : PCHANNEL •
c ddCC = (\P (CSDisplay(channels({| | CC \ C(c) | |})),B(c)),

R(c), I(c), C(c))

I.3 Composition Rules

I.3.1 Interleave Composition

Definition I.17 (Interleave composition) Let P and Q be two compo-
nent contracts, such that P and Q have disjoint channels, CP ∩ CQ = ∅.
Then, the interleave composition of P and Q (namely P [|||] Q) is given by:

P [|||] Q = P 〈〉 � 〈〉Q

Formally

function 30 leftassoc([|||])

[|||] : (CTR × CTR) 7→ CTR

∀P ,Q : CTR
| C(P) ∩ C(Q) = ∅
• P [|||] Q = P [〈〉 � 〈〉] Q

224

D24.1 - Comp. Anal. of CML Models (Public Document)

I.3.2 Communication Composition

Definition 3.3 (Communication composition) Let P and Q be two
component contracts, and ic and oc two communication channels, such that
ic ∈ CP ∧ oc ∈ CQ , CP ∩ CQ = ∅, and the port-protocols ProtIMP(P , ic) |[
R ic→oc

IO]| and ProtIMP(Q , oc) |[R oc→ic
IO]| are I/O confluent strong compatible

and satisfy the finite output property. Then, the communication composition
of P and Q (namely P [ic ↔ oc]Q) via ic and oc is defined as follows:

P [ic ↔ oc]Q = P 〈ic〉 � 〈oc〉Q

Formally

function 30 leftassoc([↔])

[↔] : CTR × CHANNEL × CHANNEL × CTR 7→ CTR

∀P ,Q : CTR; ic, oc : CHANNEL
| (ic ∈ C(P) ∧ oc ∈ C(Q)
∧ C(P) ∩ C(Q) = ∅
∧ {RIMP(P .1, ic, oc),RIMP(Q .1, oc, ic)} ⊆ IOConfluent
∧ {RIMP(P .1, ic, oc),RIMP(Q .1, oc, ic)} ⊆ FOP
∧ RIMP(P .1, ic, oc) ≈̃RIMP(Q .1, oc, ic))

• P [ic ↔ oc] Q = P [〈ic〉 � 〈oc〉] Q

I.3.3 Feedback Composition

Definition 3.4 (Feedback composition) Let P be a component contract,
and ic and oc two communication channels, such that ProtIMP(P , ic)|[R ic→oc

IO]|
and the protocols ProtIMP(P , oc)|[R oc→ic

IO]| are I/O confluent strong compatible
and satisfy the finite output property, {ic, oc} ⊆ CP and decoupled in P.
Then, the feedback composition P (namely P [oc ↪→ ic]) hooking oc to ic is
defined as follows:

P [oc ↪→ ic] = P �
∣∣〈ic〉
〈oc〉

Formally

function([↪→])

225

D24.1 - Comp. Anal. of CML Models (Public Document)

[↪→] : CTR × CHANNEL × CHANNEL 7→ CTR

∀P ,Q : CTR; ic, oc : CHANNEL
| (ic 6= oc ∧ {ic, oc} ⊆ C(P)
∧ {oc, ic} DecoupledIn P .1
∧ {RIMP(P .1, ic, oc),RIMP(P .1, oc, ic)} ⊆ IOConfluent
∧ {RIMP(P .1, ic, oc),RIMP(P .1, oc, ic)} ⊆ FOP
∧ RIMP(P .1, ic, oc) ≈̃RIMP(P .1, oc, ic))

• P [oc ↪→ ic] = P �
∣∣ (〈oc〉, 〈ic〉)

I.3.4 Reflexive Composition

Definition 3.5 (Reflexive composition) Let P be a component contract,
and ic and oc two communication channels, such that {ic, oc} ⊆ C(P), and
P � {c, z} buffering self-injection compatible and satisfies the finite output
property. Then, the reflexive composition P (namely P [oc ¯↪→ ic]) hooking oc
to ic is defined as follows:

P [ic ¯↪→ oc] = P �
∣∣〈ic〉
〈oc〉

Formally

function([¯↪→])

[¯↪→] : CTR × CHANNEL × CHANNEL 7→ CTR

∀P : CTR; ic, oc : CHANNEL
| ({ic, oc} ⊆ C(P)
∧ P .1 buffSelfInjComp (ic, oc)
∧ P .1 �B {ic, oc} ∈ FOP)

• P [ic ¯↪→ oc] = P �
∣∣ (〈ic〉, 〈oc〉)

I.3.5 Extended Communication Composition

Definition I.18 (Extended communication composition) Let P and Q
be two component contracts, and chseqP and chseqQ two nonempty sequences
of distinct communication channels, such that:

• CP ∩ CQ = ∅ ∧ ran chseqP ⊆ CP ∧ ran chseqQ ⊆ CQ ;

226

D24.1 - Comp. Anal. of CML Models (Public Document)

• ran chseqP DecoupledIn P ∧ ran chseqQ DecoupledIn Q ∧ #chseqP =
#chseqQ ;

• ∀ i , z , c | c = chseqP(i) ∧ z = chseqQ(i) ProtIMP(P , c) |[R c→z
IO]|

and ProtIMP(Q , z) |[R z→c
IO]| are I/O confluent strong compatible port-

protocols and satisfy the finite output property;

Then, the extended communication composition of P and Q (namely P [chseqP ↔
chseqQ]Q) via the channels within chseqP and chseqQ is defined as follows:

P [chseqP ↔ chseqQ]Q = P chseqP � chseqQ Q

Formally

function 30 leftassoc([↔+])

[↔+] : CTR × iseq CHANNEL × iseq CHANNEL × CTR 7→ CTR

∀P ,Q : CTR; ics , ocs : iseq CHANNEL
| (ran ics ⊆ C(P) ∧ ran ocs ⊆ C(Q)
∧ C(P) ∩ C(Q) = ∅
∧ ran ics DecoupledIn P .1
∧ ran ocs DecoupledIn Q .1
∧ #ics = #ocs
∀ i : dom ics ; ic, oc : CHANNEL
| ic = ics(i) ∧ oc = ocs(i)
• {RIMP(P .1, ic, oc),RIMP(Q .1, oc, ic)} ⊆ IOConfluent
∧ {RIMP(P .1, ic, oc),RIMP(Q .1, oc, ic)} ⊆ FOP
∧ RIMP(P .1, ic, oc) ≈̃RIMP(Q .1, oc, ic))

• P [ics ↔+ ocs] Q = P [ics � ocs] Q

I.3.6 Extended Feedback Composition

Definition I.19 (Extended feedback composition) Let P be a compo-
nent contract, and chseq1 and chseq2 two nonempty sequences of distinct
communication channels, such that:

• (ran chseq1 ∪ ran chseq2) ⊆ CP ∧ (ran chseq1 ∩ ran chseq2) = ∅;

• (ran chseq1 ∪ ran chseq2) DecoupledIn P ∧ #chseq1 = #chseq2;

227

D24.1 - Comp. Anal. of CML Models (Public Document)

• ∀ i , z , c | c = chseq1(i) ∧ z = chseq2(i) • ProtIMP(P , c) |[R c→z
IO]| and

ProtIMP(P , z)|[R z→c
IO]| are I/O confluent strong compatible port-protocols

and satisfy the finite output property;

Then, the extended feedback composition of P (namely P [chseq1 ↪→ chseq2])
via the channels within chseqP and chseqQ is defined as follows:

P [chseq1 ↪→ chseq2] = P �
∣∣chseq1
chseq2

Formally

function([↪→+])

[↪→+] : CTR × iseq CHANNEL × iseq CHANNEL 7→ CTR

∀P : CTR; ics , ocs : seq CHANNEL
| (ran ics ∪ ran ocs ⊆ C(P)
∧ ran ics ∩ ran ocs = ∅
∧ ran ics ∪ ran ocs DecoupledIn P .1
∧ #ics = #ocs
∀ i : dom ics ; ic, oc : CHANNEL
| ic = ics(i) ∧ oc = ocs(i)
• {RIMP(P .1, ic, oc),RIMP(P .1, oc, ic)} ⊆ IOConfluent
∧ {RIMP(P .1, ic, oc),RIMP(P .1, oc, ic)} ⊆ FOP
∧ RIMP(P .1, ic, oc) ≈̃RIMP(P .1, oc, ic))

• P [ocs ↪→+ ics] = P �
∣∣ (ocs , ics)

I.3.7 Wrapping interaction

Definition I.20 (Wrapping interaction) Let Ctr be an interaction com-
ponent contract, and CC a set of communication channels, such that CC /∈
IntChCtr . Then the wrapping interaction version of Ctr (denoted by CtrddCC)
is given by:

CtrddCC = Ctr \ CC

Formally

function 30 leftassoc(ddi)

228

D24.1 - Comp. Anal. of CML Models (Public Document)

ddi : CTR × PCHANNEL 7→ CTR

∀ c : CTR; CC : PCHANNEL
| CC ⊆ IOChannels ∧ CC ∩ IntCh(c) = ∅
• c ddi CC = c ddCC

229

D24.1 - Comp. Anal. of CML Models (Public Document)

I.4 Extending the Model with Metadata

I.4.1 Enriched component contract

Definition 3.6 (Enriched component contract) Let Ctr be a protocol
oriented component contract, and K a metadata derived from its elements.
An enriched component contract that includes Ctr is represented by:

〈BCtr ,RCtr , ICtr , CCtr ,K〉

where K comprises the following information:

K : 〈ProtK,CTXK, DProtK, DecK〉

such that:

• dom ProtK ⊆ CCtr ∧ ∀ c : dom ProtK • ProtK(c) vF ProtIMP(Ctr , c)

• dom DProtK ⊆ CCtr ∧ ∀ c : dom DProtK • DProtK(c) is the dual
protocol of ProtK(c)

• dom CTXK ⊆ CCtr ∧ ∀ c : dom CTXK • CTXK(c) is the context
process of ProtK(c)

• dom DecK ⊆ CCtr ∧ ran DecK ⊆ CCtr ∧
∀ c1, c2 : CCtr • c1 DecK c2 ⇒ {c1, c2}DecoupledIn Ctr ∧ c2 DecK c1

Formally

K : P((CHANNEL 7→ CIRCUS PROCESS)
× (CHANNEL 7→ CIRCUS PROCESS)
× (CHANNEL 7→ CIRCUS PROCESS)
× (CHANNEL↔ CHANNEL))

Prot : K → (CHANNEL 7→ CIRCUS PROCESS)

∀ k : K • Prot(k) = k .1

DProt : K → (CHANNEL 7→ CIRCUS PROCESS)

∀ k : K • DProt(k) = k .2

230

D24.1 - Comp. Anal. of CML Models (Public Document)

CTX : K → (CHANNEL 7→ CIRCUS PROCESS)

∀ k : K • CTX (k) = k .3

Dec : K → (CHANNEL↔ CHANNEL)

∀ k : K • Dec(k) = k .4

CTR+ : P(CIRCUS PROCESS × (CHANNEL→ TYPE) ×
(PTYPE) × (PCHANNEL) × K)

∀B : CIRCUS PROCESS ; R : CHANNEL→ TYPE ;
I : PTYPE ; C : PCHANNEL; K : K
| (B ,R, I ,C) ∈ CTR
• (B ,R, I ,C ,K) ∈ CTR+

⇔
(dom(Prot(K)) ⊆ C ∧
∀ c : dom(Prot(K)) • (Prot(K))(c) vF ProtIMP(B , c))

∧ (dom(DProt(K)) ⊆ C ∧
∀ c : dom(DProt(K)) • (DProt(K))(c) = DP((Prot(K))(c)))

∧ (dom(CTX (K)) ⊆ C ∧
∀ c : dom(CTX (K)) • (CTX (K))(c) = CTX ((Prot(K))(c)))

∧ (dom(Dec(K)) ⊆ C ∧ ran(Dec(K)) ⊆ C
∀ c1, c2 : C • (c1, c2) ∈ Dec(K)⇒ {c1, c2} DecoupledIn B)

B+ : CTR+ → CIRCUS PROCESS

∀ p+ : CTR+ • B+(p+) = p+.1

R+ : CTR+ → (CHANNEL→ TYPE)

∀ p+ : CTR+ • R+(p+) = p+.2

I+ : CTR+ → PTYPE

∀ p+ : CTR+ • I+(p+) = p+.3

C+ : CTR+ → PCHANNEL

∀ p+ : CTR+ • C+(p+) = p+.4

K+ : CTR+ → K

∀ p+ : CTR+ • K+(p+) = p+.5

231

D24.1 - Comp. Anal. of CML Models (Public Document)

I.4.2 Enrich component contract

Definition I.21 (Enrich Component Contract) Let Ctr be a protocol
oriented component contract, and K a metadata derived from its elements.
Then:

Enrich(Ctr ,K) = 〈BCtr ,RCtr , ICtr , CCtr ,K〉

enrich : (CTR × K) 7→ CTR+

∀ ctr : CTR; K : K
| (B(ctr),R(ctr), I(ctr), C(ctr),K) ∈ CTR+

• enrich (ctr ,K) = (B(ctr),R(ctr), I(ctr), C(ctr),K)

I.4.3 Enriched interleaving composition

Definition 3.7 (Enriched interleaving composition) Let P and Q be
two enriched component contracts, such that P and Q have disjoint channels,
CP∩CQ = ∅. Then, the enriched interleaving composition of P and Q (namely
P [|||] Q) is given by:

P [|||] Q = Enrich(〈BP ,RP , IP , CP〉〈〉 � 〈〉〈BQ ,RQ , IQ , CQ〉,
〈ProtKPQ ,CTXKPQ ,DProtKPQ ,DecKPQ〉)

where

(i) ProtKPQ = ProtKP ∪ ProtKQ

(ii) CTXKPQ = CTXKP ∪ CTXKQ (c)

(iii) DProtKPQ = DProtKP ∪ DProtKQ

(iv) DecKPQ = DecKP ∪ DecKQ ∪ {(c1, c2) | (c1 ∈ CQ ∧ c2 ∈ CP) ∨ (c1 ∈ CP ∧
c2 ∈ CQ)}

Formally

function 30 leftassoc([|||] +)

232

D24.1 - Comp. Anal. of CML Models (Public Document)

[|||] + : (CTR+ × CTR+) 7→ CTR+

∀P ,Q : CTR+

| C+(P) ∩ C+(Q) = ∅
• ∃ProtPQ ,DProtPQ ,CTXPQ : CHANNEL 7→ CIRCUS PROCESS ;

DecPQ : CHANNEL↔ CHANNEL
| ProtPQ = Prot(K+(P)) ∪ Prot(K+(Q))
∧ DProtPQ = DProt(K+(P)) ∪ DProt(K+(Q))
∧ CTXPQ = CTX (K+(P)) ∪ CTX (K+(Q))
∧ DecPQ = Dec(K+(P)) ∪ Dec(K+(Q))∪

{c1, c2 : CHANNEL | (c1 ∈ C+(P) ∧ c2 ∈ C+(Q))
∨ (c1 ∈ C+(Q) ∧ c2 ∈ C+(P))}

• P [|||] +Q =
enrich((B+(P),R+(P), I+(P), C+(P))

[〈〉 � 〈〉]
(B+(Q),R+(Q), I+(Q), C+(Q)),
(ProtPQ ,DProtPQ ,CTXPQ ,Dec(K+(P))))

I.4.4 Enriched Communication Composition

Definition 3.8 (Enriched Communication composition) Let P and
Q be two enriched component contracts, and ic and oc two communication
channels, such that ic ∈ CP ∧ oc ∈ CQ , CP ∩ CQ = ∅, and the port-protocols
ProtKP (ic) |[R ic→oc

IO]| and ProtKQ (oc) |[R oc→ic
IO]| are I/O confluent strong com-

patible and satisfy the finite output property. Then, the communication com-
position of P and Q (namely P [ic ↔ oc]Q) via ic and oc is defined as
follows:

P [ic ↔ oc]Q = Enrich(〈BP ,RP , IP , CP〉〈ic〉 � 〈oc〉〈BQ ,RQ , IQ , CQ〉,
〈ProtKPQ ,CTXKPQ ,DProtKPQ ,DecKPQ〉)

where

ProtKPQ = {c 7→ ProtKP (c) | c ∈ dom(ProtKP (c)) \ {ic}}
∪ {c 7→ ProtKQ (c) | c ∈ dom(ProtKQ (c)) \ {oc}}

DProtKPQ = {c 7→ DProtKP (c) | c ∈ dom(DProtKP (c)) \ {ic}}
∪ {c 7→ DProtKQ (c) | c ∈ dom(DProtKQ (c)) \ {oc}}

CTXKPQ = {c 7→ CTXKP (c) | c ∈ dom(CTXKP (c)) \ {ic}}
∪{c 7→ CTXKQ (c) | c ∈ dom(CTXKQ (c)) \ {oc}}

DecKPQ = {(c1, c2) | {c1, c2} ∩ {ic, oc} = ∅
∧ (((c1 DecKP ic ∨ ic DecKP c1) ∧ (c2 ∈ CQ ∨ c1 DecKP c2))
∨ ((oc DecKQ c2 ∨ c2 DecKQ oc) ∧ (c1 ∈ CP ∨ c1 DecKQ c2)))}

233

D24.1 - Comp. Anal. of CML Models (Public Document)

Formally

function 30 leftassoc([↔+])

[↔+] : CTR+ × CHANNEL × CHANNEL × CTR+ 7→ CTR+

∀P ,Q : CTR+; ic, oc : CHANNEL
| (ic ∈ C+(P) ∧ oc ∈ C+(Q) ∧ C+(P) ∩ C+(Q) = ∅
∧ {RIMP(B+(P), ic, oc),RIMP(B+(Q), oc, ic)} ⊆ IOConfluent
∧ {RIMP(B+(P), ic, oc),RIMP(B+(Q), oc, ic)} ⊆ FOP
∧ RIMP(B+(P), ic, oc) ≈̃RIMP(B+(Q), oc, ic))

• ∃ProtPQ ,DProtPQ ,CTXPQ : CHANNEL 7→ CIRCUS PROCESS ;
DecPQ : CHANNEL↔ CHANNEL
| ProtPQ = {c : dom(Prot(K+(P))) \ {ic} • c 7→ (Prot(K+(P))(c))}

∪ {c : dom(Prot(K+(Q))) \ {oc} • c 7→ (Prot(K+(Q))(c))}
∧ DProtPQ = {c : dom(DProt(K+(P))) \ {ic} • c 7→ (DProt(K+(P))(c))}

∪ {c : dom(DProt(K+(Q))) \ {oc} • c 7→ (DProt(K+(Q))(c))}
∧ CTXPQ = {c : dom(CTX (K+(P))) \ {ic} • c 7→ (CTX (K+(P))(c))}

∪ {c : dom(CTX (K+(Q))) \ {oc} • c 7→ (CTX (K+(Q))(c))}
∧ DecPQ = { c1, c2 : CHANNEL |

{c1, c2} ∩ {ic, oc} = ∅
∧ ((((c1, ic) ∈ Dec(K+(P)) ∨ (ic, c1) ∈ Dec(K+(P)))

∧ (c2 ∈ C+(Q) ∨ (c1, c2) ∈ Dec(K+(P))))
∨ (((oc, c2) ∈ Dec(K+(Q)) ∨ (c2, oc) ∈ Dec(K+(Q)))
∧ (c1 ∈ C+(P) ∨ (c1, c2) ∈ Dec(K+(Q))))) }

• P [ic ↔+ oc] Q =
enrich((B+(P),R+(P), I+(P), C+(P))

[〈ic〉 � 〈oc〉]
(B+(Q),R+(Q), I+(Q), C+(Q)),
(ProtPQ ,DProtPQ ,CTXPQ ,Dec(K+(P))))

I.4.5 Enriched Feedback Composition

Definition I.22 (Enriched Feedback composition) Let P be an enriched
component contract, and ic and oc two communication channels, such that
{ic, oc} ⊆ CP , and the port-protocols ProtKP (ic) |[R ic→oc

IO]| and ProtKP (oc) |[
R oc→ic

IO]| are I/O confluent strong compatible and satisfy the finite output prop-
erty, and ic DecKP oc. Then, the feedback composition P (namely P [oc ↪→ ic])
hooking oc to ic is defined as follows:

P [oc ↪→ ic] = Enrich(〈BP ,RP , IP , CP〉 �
∣∣〈ic〉
〈oc〉,

〈ProtKS ,CTXKS ,DProtKS ,DecKS 〉)

234

D24.1 - Comp. Anal. of CML Models (Public Document)

where

ProtKS = {c 7→ ProtKP (c) | c ∈ dom(ProtKP (c)) \ {ic, oc}}

DProtKS = {c 7→ DProtKP (c) | c ∈ dom(DProtKP (c)) \ {ic, oc}}

CTXKS = {c 7→ CTXKP (c) | c ∈ dom(CTXKP (c)) \ {ic, oc}}

DecKS = {(c1, c2) | {c1, c2} ∩ {ic, oc} = ∅ ∧ c1 DecKP c2

∧ (((c1 DecKP ic ∧ c1 DecKP oc))
∨ ((ic DecKP c2 ∧ oc DecKP c2)))}

Formally

function([↪→+])

[↪→+] : CTR+ × CHANNEL × CHANNEL 7→ CTR+

∀P : CTR+; ic, oc : CHANNEL
| ({ic, oc} ⊆ C+(P)
∧ {RIMP(B+(P), ic, oc),RIMP(B+(P), oc, ic)} ⊆ IOConfluent
∧ {RIMP(B+(P), ic, oc),RIMP(B+(P), oc, ic)} ⊆ FOP
∧ RIMP(B+(P), ic, oc) ≈̃RIMP(B+(P), oc, ic)
∧ (ic, oc) ∈ Dec(K+(P)))

• ∃ProtS ,DProtS ,CTXS : CHANNEL 7→ CIRCUS PROCESS ;
DecS : CHANNEL↔ CHANNEL
| ProtS = {c : dom(Prot(K+(P))) \ {ic, oc} • c 7→ (Prot(K+(P))(c))}
∧ DProtS = {c : dom(DProt(K+(P))) \ {ic, oc} • c 7→ (DProt(K+(P))(c))}
∧ CTXS = {c : dom(CTX (K+(P))) \ {ic, oc} • c 7→ (CTX (K+(P))(c))}
∧ DecS = { c1, c2 : CHANNEL |

{c1, c2} ∩ {ic, oc} = ∅
∧ (ic, oc) ∈ Dec(K+(P))
∧ ((((c1, ic) ∈ Dec(K+(P)) ∧ (c1, oc) ∈ Dec(K+(P))))
∨ (((ic, c2) ∈ Dec(K+(P)) ∧ (oc, c2) ∈ Dec(K+(P))))) }

• P [oc ↪→+ ic] =
enrich((B+(P),R+(P), I+(P), C+(P)) �

∣∣ (〈oc〉, 〈ic〉),
(ProtS ,DProtS ,CTXS ,Dec(K+(P))))

I.4.6 Enriched Reflexive Composition

Definition I.23 (Enriched Reflexive composition) Let P be an enriched
component contract, and ic and oc two communication channels, such that

235

D24.1 - Comp. Anal. of CML Models (Public Document)

{ic, oc} ⊆ CP , and P � {c, z} buffering self-injection compatible and satis-
fies the finite output property. Then, the reflexive composition P (namely
P [oc ¯↪→ ic]) hooking oc to ic is defined as follows:

P [oc ¯↪→ ic] = Enrich(〈BP ,RP , IP , CP〉 �
∣∣〈ic〉
〈oc〉,

〈ProtKS ,CTXKS ,DProtKS ,DecKS 〉)

where

ProtKS = {c 7→ ProtKP (c) | c ∈ dom(ProtKP (c)) \ {ic, oc}}

DProtKS = {c 7→ DProtKP (c) | c ∈ dom(DProtKP (c)) \ {ic, oc}}

CTXKS = {c 7→ CTXKP (c) | c ∈ dom(CTXKP (c)) \ {ic, oc}}

DecKS = {(c1, c2) | {c1, c2} ∩ {ic, oc} = ∅ ∧ c1 DecKP c2

∧ (((c1 DecKP ic ∧ c1 DecKP oc))
∨ ((ic DecKP c2 ∧ oc DecKP c2)))}

Formally

function([¯↪→+])

[¯↪→+] : CTR+ × CHANNEL × CHANNEL 7→ CTR+

∀P : CTR+; ic, oc : CHANNEL
| ({ic, oc} ⊆ C+(P)
∧ B+(P) buffSelfInjComp (ic, oc)
∧ B+(P) �B {ic, oc} ∈ FOP)

• ∃ProtS ,DProtS ,CTXS : CHANNEL 7→ CIRCUS PROCESS ;
DecS : CHANNEL↔ CHANNEL
| ProtS = {c : dom(Prot(K+(P))) \ {ic, oc} • c 7→ (Prot(K+(P))(c))}
∧ DProtS = {c : dom(DProt(K+(P))) \ {ic, oc} • c 7→ (DProt(K+(P))(c))}
∧ CTXS = {c : dom(CTX (K+(P))) \ {ic, oc} • c 7→ (CTX (K+(P))(c))}
∧ DecS = { c1, c2 : CHANNEL |

{c1, c2} ∩ {ic, oc} = ∅
∧ (ic, oc) ∈ Dec(K+(P))
∧ ((((c1, ic) ∈ Dec(K+(P)) ∧ (c1, oc) ∈ Dec(K+(P))))
∨ (((ic, c2) ∈ Dec(K+(P)) ∧ (oc, c2) ∈ Dec(K+(P))))) }

• P [oc ¯↪→+ ic] =
enrich((B+(P),R+(P), I+(P), C+(P)) �

∣∣ (〈oc〉, 〈ic〉),
(ProtS ,DProtS ,CTXS ,Dec(K+(P))))

236

D24.1 - Comp. Anal. of CML Models (Public Document)

J Proofs on Model Equivalence

In this section, we demonstrate the correctness of the mapping function Υ
that translates Circus into CSP processes. We consider Skip, Stop, Chaos ,
prefixing, external and internal choice, guarded actions, sequence, parallel
composition and interleaving.

We make use of the following:

• The definition of traces and failures are those from [Ros98]

• The definition of Σ is from [Ros98]: the set containing all events but X

• The definition of ΣX is from [Ros98]: the set containing all events and
X

• The definition of C is that from [Oli06]

• We adopt the notation from [Oli06]: Ab
c denotes A[b/okay ′][c/wait].

• In the UTP theory, X is not allowed as an event.

The UTP observational variables are defined as follows:

• tr , tr ′ : seq Σ

• ref , ref ′ : PΣ

• wait ,wait ′, okay , okay ′ : B

Abbreviations in Proofs:

• PC: Predicate Calculus

• ST: Set Theory

• SC: Set Comprehension

• SS: Sequence Substitution

• IH: Inductive Hypothesis

Definitions from [Ros98]:

failures(c→ SKIP) =̂
{(〈〉,X) | c /∈ X∧ X ⊆ ΣX} ∪ {(〈c〉a s ,X) | (s ,X) ∈ failures(SKIP)}

237

D24.1 - Comp. Anal. of CML Models (Public Document)

J.1 Lemmas from Oliveira’s Phd

These lemmas are proved in [Oli06].

Lemma J.1 (P ∧ g ′); Q = P; (g ∧ Q) provided g is a UTP condition.

Lemma J.2

c?x : P → A(x) =̂ 2 x : {v : δ(c) | P} • c.x → A(x)

provided {v : δ(c) | P} is finite.

Lemma J.3 (c → Skip)f = CSP1(okay ′ ∧ doC(c, Sync) ∧ v ′ = v)

Lemma J.4 okay ∧ CSP1(P) = okay ∧ P.

Lemma J.5 okay ∧ (CSP1(P); Q) = okay ∧ (P; Q)

Lemma J.6 (c → A)tf = CSP1(okay ′ ∧ doC(c, Sync) ∧ v ′ = v); At

Lemma J.7

R(P1 ` Q1); R(P2 ` Q2)
=
R(P1 ∧ ¬ ((okay ′ ∧ ¬ wait ′ ∧ Q1); ¬ P2) ` ((wait ′ ∧ Q1) ∨ ((okay ′ ∧ ¬ wait ′ ∧ Q1); Q2)))

provided

• P1 does not mention any dashed variable

• P1, Q1, P2 and Q2 are R2

Lemma J.8 (R(P ` Q))tf = CSP1(R1(R2(P ⇒ Q)))

Lemma J.9 (R(P ` Q))ff = R1(¬ okay ∧ R2(P))

Lemma J.10 p ∧ R2(P) = R2(p ∧ P) provided p does not mention tr and
tr ′

Lemma J.11

Skipt = (¬ okay ∧ tr ≤ tr ′)
∨ (tr ′ = tr ∧ wait ′ = wait ∧ v ′ = v ∧ (ref ′ = ref ∨ ¬ wait))

Lemma J.12 Skipt
f = CSP1(tr ′ = tr ∧ ¬ wait ′ ∧ v ′ = v)

Lemma J.13 Stopt
f = CSP1(tr ′ = tr ∧ wait ′)

238

D24.1 - Comp. Anal. of CML Models (Public Document)

Lemma J.14

(R(∃ s • P [s , cs ∪ ref ′/tr ′, ref ′] ∧ tr ′ − tr = s − tr � EVENT − cs))f
= ∃ s • P [〈〉, s , cs ∪ ref ′/tr , tr ′, ref ′]

∧ tr ′ − tr = s � EVENT − cs
∧ tr ≤ tr ′

J.2 Laws from UTP Tutorial Phd

These Laws are proved in [CW04].

UTP Law J.1 R1(P ; Q) = P ; Q provided P and Q are R1-healthy.

UTP Law J.2 R1(P ∨ Q) = P ∨ Q provided P and Q are R1-healthy.

UTP Law J.3 R1(P) ∧ Q = R1(P ∧ Q)

UTP Law J.4 R2(P ; Q) = P ; Q provided P and Q are R2-healthy.

UTP Law J.5 R2(P ∨ Q) = P ∨ Q provided P and Q are R2-healthy.

J.3 New Lemmas

Lemma J.15 For every Circus action A such that A = R(P ` Q):

〈〉 ∈ {tr ′ − tr | okay ∧ Q}

Proof. By induction on the syntax of Circus and the semantic functions.
Informally, the semantics of all Circus actions are given as reactive designs
whose post condition has at least one disjunct that keeps the traces un-
changed tr ′ = tr .

Lemma J.16 For every Circus action A.

okay ∧ ((okay ′ ∧ tr ′ = tr a s ∧ ¬ wait ′ ∧ v ′ = v); A)
=
okay ∧ Af [tr a s/tr]

Proof.

okay ∧ ((okay ′ ∧ tr ′ = tr a s ∧ ¬ wait ′ ∧ v ′ = v); A) [Lemma J.1]

= okay ∧ ((tr ′ = tr a s ∧ v ′ = v); (okay ∧ ¬ wait ∧ A)) [Definition of ;]

239

D24.1 - Comp. Anal. of CML Models (Public Document)

= okay ∧
∃ okay0, tr0,wait0, ref0, v0 •

tr0 = tr a s ∧ v0 = v
∧ okay0 ∧ ¬ wait0 ∧ A[okay0, tr0,wait0, ref0, v0/okay , tr ,wait , ref , v]

[PC]

= okay ∧ ∃ ref0 • A[true, tr a s , false, ref0/okay , tr ,wait , ref] [PC]

= okay ∧ A[true, tr a s , false/okay , tr ,wait] [PC]

= okay ∧ Af [tr a s/tr]

Lemma J.17

(A 2 B)tf
=

CSP1

 (¬ A1
f
f ∧ ¬ A2

f
f)

⇒
((A1

t
f ∧ A2

t
f)C tr ′ = tr ∧ wait ′ B (A1

t
f ∨ A2

t
f))

provided A1 and A2 are R1, R2.

(A 2 B)tf [Choice]

=

 R

 (¬ A1
f
f ∧ ¬ A2

f
f)

`
((A1

t
f ∧ A2

t
f)C tr ′ = tr ∧ wait ′ B (A1

t
f ∨ A2

t
f))

 t

f

[Lemma J.8]

= CSP1

 R1

 R2

 (¬ A1
f
f ∧ ¬ A2

f
f)

⇒
((A1

t
f ∧ A2

t
f)C tr ′ = tr ∧ wait ′ B (A1

t
f ∨ A2

t
f))

[Tutorial - Laws 49 and 50 (proviso)]

= CSP1

 R1

 (¬ A1
f
f ∧ ¬ A2

f
f)

⇒
((A1

t
f ∧ A2

t
f)C tr ′ = tr ∧ wait ′ B (A1

t
f ∨ A2

t
f))

[Predicate calculus]

= CSP1

R1

A1
f
f

∨ A2
f
f

∨ (tr ′ = tr ∧ wait ′ ∧ A1
t
f ∧ A2

t
f)

∨ (¬ tr ′ = tr ∧ A1
t
f)

∨ (¬ tr ′ = tr ∧ A2
t
f)

∨ (¬ wait ′ ∧ A1
t
f)

∨ (¬ wait ′ ∧ A2
t
f)

240

D24.1 - Comp. Anal. of CML Models (Public Document)

[Tutorial - Laws 37 and 38 (proviso)]

= CSP1

A1
f
f

∨ A2
f
f

∨ (tr ′ = tr ∧ wait ′ ∧ A1
t
f ∧ A2

t
f)

∨ (¬ tr ′ = tr ∧ A1
t
f)

∨ (¬ tr ′ = tr ∧ A2
t
f)

∨ (¬ wait ′ ∧ A1
t
f)

∨ (¬ wait ′ ∧ A2
t
f)

[Predicate calculus]

= CSP1

 (¬ A1
f
f ∧ ¬ A2

f
f)

⇒
((A1

t
f ∧ A2

t
f)C tr ′ = tr ∧ wait ′ B (A1

t
f ∨ A2

t
f))

Lemma J.18 (R(P ` Q))n = ok ∧ CSP1(R1(R2(P ⇒ Q)))

Proof.

(R(P ` Q))n [An]

= ok ∧ ¬ wt ∧ ok ′ ∧ R(P ` Q) [PC]

= ok ∧ (R(P ` Q))tf [PC]

= ok ∧ CSP1(R1(R2(P ⇒ Q))) [Lemma J.8]

Lemma J.19

(P ; Q)tf = CSP1

(
(wait ′ ∧ Ppost)
∨ ((okay ′ ∧ ¬ wait ′ ∧ Ppost); Qpost)

)

provided

1. P and Q are divergence-free

2. P = R(Ppre ` Ppost) and Q = R(Qpre ` Qpost)

3. Ppre does not mention any dashed variable

4. Ppost and Qpost are R1 and R2

241

D24.1 - Comp. Anal. of CML Models (Public Document)

Proof.

(P ; Q)tf [Assumption 2]

= (R(Ppre ` Ppost); R(Qpre ` Qpost))
t
f [Assumption 1]

= (R(true ` Ppost); R(true ` Qpost))
t
f

[Lemma J.7 (Assumptions 3, and 4)]

=

 R

 true ∧

¬
(

(okay ′ ∧ ¬ wait ′ ∧ Ppost);
¬ true

)
(̀

(wait ′ ∧ Ppost)
∨ ((okay ′ ∧ ¬ wait ′ ∧ Ppost); Qpost)

)

t

f

[Sequence and PC]

=

 R

 true `(
(wait ′ ∧ Ppost)
∨ ((okay ′ ∧ ¬ wait ′ ∧ Ppost); Qpost)

) t

f

[Lemma J.8 and PC]

= CSP1

(
R1

(
R2

(
(wait ′ ∧ Ppost)
∨ ((okay ′ ∧ ¬ wait ′ ∧ Ppost); Qpost)

)))
[Lemma J.10 and UTP Laws J.4 and J.5 (Assumption 4)]

= CSP1

(
R1

(
(wait ′ ∧ Ppost)
∨ ((okay ′ ∧ ¬ wait ′ ∧ Ppost); Qpost)

))
[UTP Laws J.3, J.1 and J.2 (Assumption 4)]

= CSP1

(
(wait ′ ∧ Ppost)
∨ ((okay ′ ∧ ¬ wait ′ ∧ Ppost); Qpost)

)

Lemma J.20 For every R2 predicate A

{tr ′ − tr | P [tr a s/tr]} = {s a (tr ′ − tr) | P}

Proof.

{tr ′ − tr | P [tr a s/tr]} [Notation]

= {tr ′ − tr | P(tr , tr ′)[tr a s/tr]} [R2]

= {tr ′ − tr | P(〈〉, tr ′ − tr)[tr a s/tr]} [Substitution]

= {tr ′ − tr | P(〈〉, tr ′ − (tr a s))} [SC and Sequences]

242

D24.1 - Comp. Anal. of CML Models (Public Document)

= {s a (tr ′ − tr) | P}

Lemma J.21

{tr ′ − tr | okay ∧ ¬ (tr ′ = tr ∧ wait ′) ∧ (A)tf }
= {tr ′ − tr | okay ∧ (A)tf }

Proof.

{tr ′ − tr | okay ∧ ¬ (tr ′ = tr ∧ wait ′) ∧ (A)tf } [Cases (wait ′)]

= {tr ′ − tr | okay ∧ ¬ (tr ′ = tr ∧ true) ∧ (A)tf }
∪ {tr ′ − tr | okay ∧ ¬ (tr ′ = tr ∧ false) ∧ (A)tf }

[PC and SC]

= {tr ′ − tr | okay ∧ ¬ tr ′ = tr ∧ (A)tf }
∪ {tr ′ − tr | okay ∧ A)tf }

[Cases (tr ′ = tr)]

= {tr ′ − tr | okay ∧ ¬ true ∧ (A)tf }
∪ {tr ′ − tr | okay ∧ ¬ false ∧ (A)tf }
∪ {tr ′ − tr | okay ∧ A)tf }

[PC and SC]

= {tr ′ − tr | okay ∧ (A)tf }

Lemma J.22

{(〈〉,X) | (〈〉,X) ∈ failures(Υ(A)) ∩ failures(Υ(B))}
=
{(〈〉, ref ′) | tr ′ = tr ∧ okay ∧ (A)tf ∧ (B)tf }
∪ {(〈〉, ref ′ ∪ {X}) | tr ′ = tr ∧ okay ∧ wait ′ ∧ (A)tf ∧ (B)tf }

provided

1. A and B are R

2. A and B are divergence-free

3. failuresUT P(A) = failures(Υ(A))

4. failuresUT P(B) = failures(Υ(B))

Proof.

{(〈〉,X) | (〈〉,X) ∈ failures(Υ(A)) ∩ failures(Υ(B))} [Provisos 3 and 4]

243

D24.1 - Comp. Anal. of CML Models (Public Document)

= {(〈〉,X) | (〈〉,X) ∈ failuresUT P(A) ∩ failuresUT P(B)}
[failuresUT P]

=

(〈〉,X) |

(〈〉,X) ∈

{(tr ′ − tr , ref ′) | (A)n}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | (A)n ∧ wait ′}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | (A)t}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | (A)t}

∩

{(tr ′ − tr , ref ′) | (B)n}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | (B)n ∧ wait ′}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | (B)t}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | (B)t}

[At]

=

(〈〉,X)
| (〈〉,X) ∈

{(tr ′ − tr , ref ′) | (A)n}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | (A)n ∧ wait ′}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | ¬ wait ′ ∧ (A)n}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | ¬ wait ′ ∧ (A)n}

∩

{(tr ′ − tr , ref ′) | (B)n}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | (B)n ∧ wait ′}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | ¬ wait ′ ∧ (B)n}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | ¬ wait ′ ∧ (B)n}

[An]

244

D24.1 - Comp. Anal. of CML Models (Public Document)

=

(〈〉,X)
| (〈〉,X) ∈

{
(tr ′ − tr , ref ′)
| okay ∧ ¬ wait ∧ okay ′ ∧ A

}
∪
{

(tr ′ − tr , ref ′ ∪ {X})
| okay ∧ ¬ wait ∧ okay ′ ∧ wait ′ ∧ A

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′)
| okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ A

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X})
| okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ A

}

∩

{
(tr ′ − tr , ref ′)
| okay ∧ ¬ wait ∧ okay ′ ∧ B

}
∪
{

(tr ′ − tr , ref ′ ∪ {X})
| okay ∧ ¬ wait ∧ okay ′ ∧ wait ′ ∧ B

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′)
| okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ B

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X})
| okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ B

}

[PC]

=

(〈〉,X)
| (〈〉,X) ∈

{(tr ′ − tr , ref ′) | okay ∧ (A)tf }
∪ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (A)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (A)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ′ ∧ (A)tf }

∩

{(tr ′ − tr , ref ′) | okay ∧ (B)tf }
∪ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (B)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (B)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ′ ∧ (B)tf }

[ST and SC (tick /∈ ran(tr ′) ∪ ran(tr) ∪ ref ′)]

245

D24.1 - Comp. Anal. of CML Models (Public Document)

=

(〈〉,X)
| (〈〉,X) ∈{

(tr ′ − tr , ref ′)
| okay ∧ (A)tf ∧ (B)tf

}
∪
{

(tr ′ − tr , ref ′ ∪ {X})
| okay ∧ wait ′ ∧ (A)tf ∧ (B)tf

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′)
| okay ∧ ¬ wait ′ ∧ (A)tf ∧ (B)tf

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X})
| okay ∧ ¬ wait ′ ∧ (A)tf ∧ (B)tf

}

[SC and −]

= {(〈〉, ref ′) | tr ′ = tr ∧ okay ∧ (A)tf ∧ (B)tf }
∪ {(〈〉, ref ′ ∪ {X}) | tr ′ = tr ∧ okay ∧ wait ′ ∧ (A)tf ∧ (B)tf }

Lemma J.23

{(s ,X) | (s ,X) ∈ failures(Υ(A)) ∪ failures(Υ(B)) ∧ s 6= 〈〉}
=
{(tr ′ − tr , ref ′) | tr ′ = tr ∧ okay ∧ (A)tf }
∪ {(tr ′ − tr , ref ′ ∪ {X}) | tr ′ = tr ∧ okay ∧ wait ′ ∧ (A)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (A)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ′ ∧ (A)tf }
∪ {(tr ′ − tr , ref ′) | tr ′ = tr ∧ okay ∧ (B)tf }
∪ {(tr ′ − tr , ref ′ ∪ {X}) | tr ′ = tr ∧ okay ∧ wait ′ ∧ (B)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (B)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ′ ∧ (B)tf }

provided

1. A and B are R

2. A and B are divergence-free

3. failuresUT P(A) = failures(Υ(A))

4. failuresUT P(B) = failures(Υ(B))

Proof.

{(s ,X) | (s ,X) ∈ failures(Υ(A)) ∪ failures(Υ(B)) ∧ s 6= 〈〉} [Provisos 3 and 4]

= {(s ,X) | (s ,X) ∈ failuresUT P(A) ∪ failuresUT P(B) ∧ s 6= 〈〉}
[failuresUT P]

246

D24.1 - Comp. Anal. of CML Models (Public Document)

=

(s ,X)
| s 6= 〈〉

∧ (s ,X) ∈

{(tr ′ − tr , ref ′) | (A)n}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | (A)n ∧ wait ′}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | (A)t}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | (A)t}

∪

{(tr ′ − tr , ref ′) | (B)n}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | (B)n ∧ wait ′}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | (B)t}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | (B)t}

[At]

=

(s ,X)
| s 6= 〈〉

∧ (s ,X) ∈

{(tr ′ − tr , ref ′) | (A)n}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | (A)n ∧ wait ′}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | ¬ wait ′ ∧ (A)n}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | ¬ wait ′ ∧ (A)n}

∪

{(tr ′ − tr , ref ′) | (B)n}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | (B)n ∧ wait ′}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | ¬ wait ′ ∧ (B)n}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | ¬ wait ′ ∧ (B)n}

[An]

=

(s ,X)
| s 6= 〈〉

∧ (s ,X) ∈

{
(tr ′ − tr , ref ′)
| okay ∧ ¬ wait ∧ okay ′ ∧ A

}
∪
{

(tr ′ − tr , ref ′ ∪ {X})
| okay ∧ ¬ wait ∧ okay ′ ∧ wait ′ ∧ A

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′)
| okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ A

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X})
| okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ A

}

∪

{
(tr ′ − tr , ref ′)
| okay ∧ ¬ wait ∧ okay ′ ∧ B

}
∪
{

(tr ′ − tr , ref ′ ∪ {X})
| okay ∧ ¬ wait ∧ okay ′ ∧ wait ′ ∧ B

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′)
| okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ B

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X})
| okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ B

}

247

D24.1 - Comp. Anal. of CML Models (Public Document)

[PC]

=

(s ,X)
| s 6= 〈〉 ∧ (s ,X) ∈

{(tr ′ − tr , ref ′) | okay ∧ (A)tf }
∪ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (A)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (A)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ′ ∧ (A)tf }

∪

{(tr ′ − tr , ref ′) | okay ∧ (B)tf }
∪ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (B)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (B)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ′ ∧ (B)tf }

[ST and SC]

= {(tr ′ − tr , ref ′) | tr ′ − tr 6= 〈〉 ∧ okay ∧ (A)tf }
∪ {(tr ′ − tr , ref ′ ∪ {X}) | tr ′ − tr 6= 〈〉 ∧ okay ∧ wait ′ ∧ (A)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (A)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ′ ∧ (A)tf }
∪ {(tr ′ − tr , ref ′) | tr ′ − tr 6= 〈〉 ∧ okay ∧ (B)tf }
∪ {(tr ′ − tr , ref ′ ∪ {X}) | tr ′ − tr 6= 〈〉 ∧ okay ∧ wait ′ ∧ (B)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (B)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ′ ∧ (B)tf }

[−]

= {(tr ′ − tr , ref ′) | tr ′ = tr ∧ okay ∧ (A)tf }
∪ {(tr ′ − tr , ref ′ ∪ {X}) | tr ′ = tr ∧ okay ∧ wait ′ ∧ (A)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (A)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ′ ∧ (A)tf }
∪ {(tr ′ − tr , ref ′) | tr ′ = tr ∧ okay ∧ (B)tf }
∪ {(tr ′ − tr , ref ′ ∪ {X}) | tr ′ = tr ∧ okay ∧ wait ′ ∧ (B)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (B)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ′ ∧ (B)tf }

Lemma J.24

{(〈〉,X) | X ⊆ Σ ∧ 〈X〉 ∈ traces(Υ(A 2 B))}
=
{(〈〉, ref ′) | tr ′ = tr ∧ okay ∧ ¬ wait ′ ∧ (A)tf }}
∪ {(〈〉, ref ′) | tr ′ = tr ∧ okay ∧ ¬ wait ′ ∧ (B)tf }}

provided

1. A and B are R

248

D24.1 - Comp. Anal. of CML Models (Public Document)

2. A and B are divergence-free

Proof.

{(〈〉,X) | X ⊆ Σ ∧ 〈X〉 ∈ traces(Υ(A 2 B))} [Theorem J.10 (Provisos)]

= {(〈〉,X) | X ⊆ Σ ∧ 〈X〉 ∈ tracesUT P(A 2 B)}
[tracesUT P]

=
(〈〉,X)
| X ⊆ Σ ∧

〈X〉 ∈
{
{tr ′ − tr | (A 2 B)n}
∪ {(tr ′ − tr)a 〈X〉 | (A 2 B)t}

}
 [At]

=
(〈〉,X)
| X ⊆ Σ ∧
〈X〉 ∈ {tr ′ − tr | (A 2 B)n}

∪ {(tr ′ − tr)a 〈X〉 | ¬ wait ′ ∧ (A 2 B)n}

[An]

=

(〈〉,X) | X ⊆ Σ ∧

〈X〉 ∈
{

tr ′ − tr | okay ∧ ¬ wait ∧ okay ′ ∧
(A 2 B)

}
∪
{

(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧
A 2 B

}
[PC]

=

(〈〉,X) | X ⊆ Σ ∧

〈X〉 ∈
{

tr ′ − tr
| okay ∧ (A 2 B)tf

}
∪
{

(tr ′ − tr)a 〈X〉
| okay ∧ ¬ wait ′ ∧ (A 2 B)tf

}

[Lemma J.17]

249

D24.1 - Comp. Anal. of CML Models (Public Document)

=

(〈〉,X) | X ⊆ Σ ∧

〈X〉 ∈

tr ′ − tr
| okay ∧

CSP1

(¬ (A)ff ∧ ¬ (B)ff)

⇒ ((A)tf ∧ (B)tf)
Ctr ′ = tr ∧ wait ′B
((A)tf ∨ (B)tf)

∪

(tr ′ − tr)a 〈X〉
| okay ∧ ¬ wait ′ ∧

CSP1

(¬ (A)ff ∧ ¬ (B)ff)

⇒ ((A)tf ∧ (B)tf)
Ctr ′ = tr ∧ wait ′B
((A)tf ∨ (B)tf)

[Lemma J.4]

=

(〈〉,X) | X ⊆ Σ ∧

〈X〉 ∈

tr ′ − tr
| okay ∧

(¬ (A)ff ∧ ¬ (B)ff)

⇒ ((A)tf ∧ (B)tf)
Ctr ′ = tr ∧ wait ′B
((A)tf ∨ (B)tf)

∪

(tr ′ − tr)a 〈X〉
| okay ∧ ¬ wait ′ ∧

(¬ (A)ff ∧ ¬ (B)ff)

⇒ ((A)tf ∧ (B)tf)
Ctr ′ = tr ∧ wait ′B
((A)tf ∨ (B)tf)

[Proviso 2 and PC]

250

D24.1 - Comp. Anal. of CML Models (Public Document)

=

(〈〉,X) | X ⊆ Σ ∧

〈X〉 ∈

tr ′ − tr
| okay ∧ ((A)tf ∧ (B)tf)
Ctr ′ = tr ∧ wait ′B
((A)tf ∨ (B)tf)

∪

(tr ′ − tr)a 〈X〉
| okay ∧ ¬ wait ′ ∧ ((A)tf ∧ (B)tf)
Ctr ′ = tr ∧ wait ′B
((A)tf ∨ (B)tf)

[PC and SC]

=

(〈〉,X) | X ⊆ Σ ∧

〈X〉 ∈
{

tr ′ − tr
| okay ∧ tr ′ = tr ∧ wait ′ ∧ (A)tf ∧ (B)tf

}
∪
{

tr ′ − tr
| okay ∧ ¬ (tr ′ = tr ∧ wait ′) ∧ (A)tf

}
∪
{

tr ′ − tr
| okay ∧ ¬ (tr ′ = tr ∧ wait ′) ∧ (B)tf

}
∪
{

(tr ′ − tr)a 〈X〉
| okay ∧ ¬ wait ′ ∧ (A)tf

}
∪
{

(tr ′ − tr)a 〈X〉
| okay ∧ ¬ wait ′ ∧ (B)tf

}

[Cases, −, PC and SC]

=

(〈〉,X) | X ⊆ Σ ∧
〈X〉 ∈ {〈〉}

∪
{

tr ′ − tr
| okay ∧ ¬ (tr ′ = tr ∧ wait ′) ∧ (A)tf

}
∪
{

tr ′ − tr
| okay ∧ ¬ (tr ′ = tr ∧ wait ′) ∧ (B)tf

}
∪
{

(tr ′ − tr)a 〈X〉
| okay ∧ ¬ wait ′ ∧ (A)tf

}
∪
{

(tr ′ − tr)a 〈X〉
| okay ∧ ¬ wait ′ ∧ (B)tf

}

[Lemma J.21]

251

D24.1 - Comp. Anal. of CML Models (Public Document)

=

(〈〉,X) | X ⊆ Σ ∧
〈X〉 ∈ {〈〉}

∪ {tr ′ − tr | okay ∧ (A)tf }
∪ {tr ′ − tr | okay ∧ (B)tf }
∪ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ (A)tf }
∪ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ (B)tf }

[ST and SC]

= {(〈〉,X) | X ⊆ Σ ∧ 〈X〉 ∈ {tr ′ − tr | okay ∧ (A)tf }}
∪ {(〈〉,X) | X ⊆ Σ ∧ 〈X〉 ∈ {tr ′ − tr | okay ∧ (B)tf }}
∪ {(〈〉,X) | X ⊆ Σ ∧ 〈X〉 ∈ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ (A)tf }}
∪ {(〈〉,X) | X ⊆ Σ ∧ 〈X〉 ∈ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ (B)tf }}

[ref ′]

= {(〈〉, ref ′) | 〈X〉 ∈ {tr ′ − tr | okay ∧ (A)tf }}
∪ {(〈〉, ref ′) | 〈X〉 ∈ {tr ′ − tr | okay ∧ (B)tf }}
∪ {(〈〉, ref ′) | 〈X〉 ∈ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ (A)tf }}
∪ {(〈〉, ref ′) | 〈X〉 ∈ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ (B)tf }}

[SC (tick /∈ ran(tr ′) ∪ ran(tr))]

= {(〈〉, ref ′) | 〈X〉 ∈ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ (A)tf }}
∪ {(〈〉, ref ′) | 〈X〉 ∈ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ (B)tf }}

[SC and −]

= {(〈〉, ref ′) | tr ′ = tr ∧ okay ∧ ¬ wait ′ ∧ (A)tf }}
∪ {(〈〉, ref ′) | tr ′ = tr ∧ okay ∧ ¬ wait ′ ∧ (B)tf }}

Theorem J.1

{(〈〉, ref ′) | okay ∧ tr ′ = tr ∧ wait ′ ∧ (A)tf ∧ (B)tf }
∪ {(〈〉, ref ′ ∪ {X}) | okay ∧ wait ′ ∧ tr ′ = tr ∧ (A)tf ∧ (B)tf }
∪ {(tr ′ − tr , ref ′) | okay ∧ ¬ (tr ′ = tr ∧ wait ′) ∧ (A)tf }
∪ {(tr ′ − tr , ref ′) | okay ∧ ¬ (tr ′ = tr ∧ wait ′) ∧ (B)tf }
=
{(〈〉, ref ′) | tr ′ = tr ∧ okay ∧ (A)tf ∧ (B)tf }
∪ {(〈〉, ref ′) | tr ′ = tr ∧ okay ∧ ¬ wait ′ ∧ (A)tf }}
∪ {(〈〉, ref ′) | tr ′ = tr ∧ okay ∧ ¬ wait ′ ∧ (B)tf }}
∪ {(tr ′ − tr , ref ′) | ¬ tr ′ = tr ∧ okay ∧ (A)tf }
∪ {(tr ′ − tr , ref ′) | ¬ tr ′ = tr ∧ okay ∧ (B)tf }
∪ {(〈〉, ref ′ ∪ {X}) | tr ′ = tr ∧ okay ∧ wait ′ ∧ (A)tf ∧ (B)tf }

252

D24.1 - Comp. Anal. of CML Models (Public Document)

Proof. This proof is achieved by case analysis on the conditions that de-
termines the choice, that is, tr ′ = tr ∧ wait ′. Both actions A and B either
imply on this condition or not. We have four cases.

Case 1.

(A)tf ⇒ tr ′ = tr ∧ wait ′

∧
(B)tf ⇒ tr ′ = tr ∧ wait ′

Proof.

{(〈〉, ref ′) | okay ∧ tr ′ = tr ∧ wait ′ ∧ (A)tf ∧ (B)tf }
∪ {(〈〉, ref ′ ∪ {X}) | okay ∧ wait ′ ∧ tr ′ = tr ∧ (A)tf ∧ (B)tf }
∪ {(tr ′ − tr , ref ′) | okay ∧ ¬ (tr ′ = tr ∧ wait ′) ∧ (A)tf }
∪ {(tr ′ − tr , ref ′) | okay ∧ ¬ (tr ′ = tr ∧ wait ′) ∧ (B)tf }

[Assumption and PC]

= {(〈〉, ref ′) | okay ∧ true ∧ (A)tf ∧ (B)tf }
∪ {(〈〉, ref ′ ∪ {X}) | okay ∧ true ∧ (A)tf ∧ (B)tf }
∪ {(tr ′ − tr , ref ′) | okay ∧ false ∧ (A)tf }
∪ {(tr ′ − tr , ref ′) | okay ∧ false ∧ (B)tf }

[PC, SC, and ST]

= {(〈〉, ref ′) | okay ∧ (A)tf ∧ (B)tf }
∪ {(〈〉, ref ′ ∪ {X}) | okay ∧ (A)tf ∧ (B)tf }

[PC, SC, and ST]

= {(〈〉, ref ′) | okay ∧ (A)tf ∧ (B)tf }
∪ {(〈〉, ref ′) | okay ∧ false ∧ (A)tf }}
∪ {(〈〉, ref ′) | okay ∧ false ∧ (B)tf }}
∪ {(tr ′ − tr , ref ′) | false ∧ okay ∧ (A)tf }
∪ {(tr ′ − tr , ref ′) | false ∧ okay ∧ (B)tf }
∪ {(〈〉, ref ′ ∪ {X}) | okay ∧ true ∧ (A)tf ∧ (B)tf }

[Assumption and PC]

= {(〈〉, ref ′) | tr ′ = tr ∧ okay ∧ (A)tf ∧ (B)tf }
∪ {(〈〉, ref ′) | tr ′ = tr ∧ okay ∧ ¬ wait ′ ∧ (A)tf }}
∪ {(〈〉, ref ′) | tr ′ = tr ∧ okay ∧ ¬ wait ′ ∧ (B)tf }}
∪ {(tr ′ − tr , ref ′) | ¬ tr ′ = tr ∧ okay ∧ (A)tf }
∪ {(tr ′ − tr , ref ′) | ¬ tr ′ = tr ∧ okay ∧ (B)tf }
∪ {(〈〉, ref ′ ∪ {X}) | tr ′ = tr ∧ okay ∧ wait ′ ∧ (A)tf ∧ (B)tf }

253

D24.1 - Comp. Anal. of CML Models (Public Document)

Case 2.

(A)tf ⇒ ¬ (tr ′ = tr ∧ wait ′)
∧
(B)tf ⇒ tr ′ = tr ∧ wait ′

Proof.

{(〈〉, ref ′) | okay ∧ tr ′ = tr ∧ wait ′ ∧ (A)tf ∧ (B)tf }
∪ {(〈〉, ref ′ ∪ {X}) | okay ∧ wait ′ ∧ tr ′ = tr ∧ (A)tf ∧ (B)tf }
∪ {(tr ′ − tr , ref ′) | okay ∧ ¬ (tr ′ = tr ∧ wait ′) ∧ (A)tf }
∪ {(tr ′ − tr , ref ′) | okay ∧ ¬ (tr ′ = tr ∧ wait ′) ∧ (B)tf }

[Assumption and PC]

= {(〈〉, ref ′) | okay ∧ false ∧ (A)tf ∧ (B)tf }
∪ {(〈〉, ref ′ ∪ {X}) | okay ∧ false ∧ (A)tf ∧ (B)tf }
∪ {(tr ′ − tr , ref ′) | okay ∧ true ∧ (A)tf }
∪ {(tr ′ − tr , ref ′) | okay ∧ false ∧ (B)tf }

[PC, SC, and ST]

= {(tr ′ − tr , ref ′) | okay ∧ (A)tf } [Assumption, PC, SC, and ST]

= {(tr ′ − tr , ref ′) | okay ∧ ¬ tr ′ = tr ∧ (A)tf }
∪ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (A)tf }

[Cases on tr ′ = tr , PC, SC, ST]

= {(tr ′ − tr , ref ′) | okay ∧ ¬ tr ′ = tr ∧ (A)tf }
∪ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ tr ′ = tr ∧ (A)tf }
∪ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ ¬ tr ′ = tr ∧ (A)tf }

[−, PC and ST]

= {(〈〉, ref ′) | okay ∧ tr ′ = tr ∧ ¬ wait ′ ∧ (A)tf }
∪ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ ¬ tr ′ = tr ∧ (A)tf }
∪ {(tr ′ − tr , ref ′) | okay ∧ ¬ tr ′ = tr ∧ (A)tf }

[SC and ST]

= {(〈〉, ref ′) | okay ∧ tr ′ = tr ∧ ¬ wait ′ ∧ (A)tf }}
∪ {(tr ′ − tr , ref ′) | okay ∧ ¬ tr ′ = tr ∧ (A)tf }

[PC, SC, and ST]

= {(〈〉, ref ′) | tr ′ = tr ∧ okay ∧ false ∧ (A)tf ∧ (B)tf }
∪ {(〈〉, ref ′) | tr ′ = tr ∧ okay ∧ ¬ wait ′ ∧ (A)tf }}
∪ {(〈〉, ref ′) | tr ′ = tr ∧ okay ∧ false ∧ (B)tf }}
∪ {(tr ′ − tr , ref ′) | ¬ tr ′ = tr ∧ okay ∧ (A)tf }
∪ {(tr ′ − tr , ref ′) | false ∧ okay ∧ (B)tf }
∪ {(〈〉, ref ′ ∪ {X}) | tr ′ = tr ∧ okay ∧ wait ′ ∧ false ∧ (A)tf ∧ (B)tf }

[Assumption and PC]

254

D24.1 - Comp. Anal. of CML Models (Public Document)

= {(〈〉, ref ′) | tr ′ = tr ∧ okay ∧ (A)tf ∧ (B)tf }
∪ {(〈〉, ref ′) | tr ′ = tr ∧ okay ∧ ¬ wait ′ ∧ (A)tf }}
∪ {(〈〉, ref ′) | tr ′ = tr ∧ okay ∧ ¬ wait ′ ∧ (B)tf }}
∪ {(tr ′ − tr , ref ′) | ¬ tr ′ = tr ∧ okay ∧ (A)tf }
∪ {(tr ′ − tr , ref ′) | ¬ tr ′ = tr ∧ okay ∧ (B)tf }
∪ {(〈〉, ref ′ ∪ {X}) | tr ′ = tr ∧ okay ∧ wait ′ ∧ (A)tf ∧ (B)tf }

Case 3.

(A)tf ⇒ tr ′ = tr ∧ wait ′

∧
(B)tf ⇒ ¬ (tr ′ = tr ∧ wait ′)

Proof. Analogous to Case 2 above.

Case 4.

(A)tf ⇒ ¬ (tr ′ = tr ∧ wait ′)
∧
(B)tf ⇒ ¬ (tr ′ = tr ∧ wait ′)

Proof.

255

D24.1 - Comp. Anal. of CML Models (Public Document)

{(〈〉, ref ′) | okay ∧ tr ′ = tr ∧ wait ′ ∧ (A)tf ∧ (B)tf }
∪ {(〈〉, ref ′ ∪ {X}) | okay ∧ wait ′ ∧ tr ′ = tr ∧ (A)tf ∧ (B)tf }
∪ {(tr ′ − tr , ref ′) | okay ∧ ¬ (tr ′ = tr ∧ wait ′) ∧ (A)tf }
∪ {(tr ′ − tr , ref ′) | okay ∧ ¬ (tr ′ = tr ∧ wait ′) ∧ (B)tf }

[Assumption and PC]

{(〈〉, ref ′) | okay ∧ false ∧ (A)tf ∧ (B)tf }
∪ {(〈〉, ref ′ ∪ {X}) | okay ∧ false ∧ (A)tf ∧ (B)tf }
∪ {(tr ′ − tr , ref ′) | okay ∧ true ∧ (A)tf }
∪ {(tr ′ − tr , ref ′) | okay ∧ true ∧ (B)tf }

[PC, SC, and ST]

= {(tr ′ − tr , ref ′) | okay ∧ (A)tf }
∪ {(tr ′ − tr , ref ′) | okay ∧ (B)tf }

[Assumption, PC, SC, ST]

= {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (A)tf }
∪ {(tr ′ − tr , ref ′) | okay ∧ ¬ tr ′ = tr ∧ (A)tf }
∪{(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (B)tf }
∪ {(tr ′ − tr , ref ′) | okay ∧ ¬ tr ′ = tr ∧ (B)tf }

[Cases on tr ′ = tr , PC, SC, ST]

= {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ tr ′ = tr ∧ (A)tf }
∪ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ ¬ tr ′ = tr ∧ (A)tf }
∪ {(tr ′ − tr , ref ′) | okay ∧ ¬ tr ′ = tr ∧ (A)tf }
∪ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ tr ′ = tr ∧ (B)tf }
∪ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ ¬ tr ′ = tr ∧ (B)tf }
∪ {(tr ′ − tr , ref ′) | okay ∧ ¬ tr ′ = tr ∧ (B)tf }

[SC and ST]

= {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ tr ′ = tr ∧ (A)tf }
∪ {(tr ′ − tr , ref ′) | okay ∧ ¬ tr ′ = tr ∧ (A)tf }
∪ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ tr ′ = tr ∧ (B)tf }
∪ {(tr ′ − tr , ref ′) | okay ∧ ¬ tr ′ = tr ∧ (B)tf }

[− and PC]

= {(〈〉, ref ′) | tr ′ = tr ∧ okay ∧ ¬ wait ′ ∧ (A)tf }}
∪ {(tr ′ − tr , ref ′) | ¬ tr ′ = tr ∧ okay ∧ (A)tf }
∪ {(〈〉, ref ′) | tr ′ = tr ∧ okay ∧ ¬ wait ′ ∧ (B)tf }}
∪ {(tr ′ − tr , ref ′) | ¬ tr ′ = tr ∧ okay ∧ (B)tf }

[SC and ST]

= {(〈〉, ref ′) | tr ′ = tr ∧ okay ∧ ¬ wait ′ ∧ (A)tf ∧ (B)tf }
∪ {(〈〉, ref ′) | tr ′ = tr ∧ okay ∧ ¬ wait ′ ∧ (A)tf }}
∪ {(〈〉, ref ′) | tr ′ = tr ∧ okay ∧ ¬ wait ′ ∧ (B)tf }}
∪ {(tr ′ − tr , ref ′) | ¬ tr ′ = tr ∧ okay ∧ (A)tf }
∪ {(tr ′ − tr , ref ′) | ¬ tr ′ = tr ∧ okay ∧ (B)tf }

[Assumption and PC]

256

D24.1 - Comp. Anal. of CML Models (Public Document)

= {(〈〉, ref ′) | tr ′ = tr ∧ okay ∧ (A)tf ∧ (B)tf }
∪ {(〈〉, ref ′) | tr ′ = tr ∧ okay ∧ ¬ wait ′ ∧ (A)tf }}
∪ {(〈〉, ref ′) | tr ′ = tr ∧ okay ∧ ¬ wait ′ ∧ (B)tf }}
∪ {(tr ′ − tr , ref ′) | ¬ tr ′ = tr ∧ okay ∧ (A)tf }
∪ {(tr ′ − tr , ref ′) | ¬ tr ′ = tr ∧ okay ∧ (B)tf }

[PC, SC, and ST]

= {(〈〉, ref ′) | tr ′ = tr ∧ okay ∧ (A)tf ∧ (B)tf }
∪ {(〈〉, ref ′) | tr ′ = tr ∧ okay ∧ ¬ wait ′ ∧ (A)tf }}
∪ {(〈〉, ref ′) | tr ′ = tr ∧ okay ∧ ¬ wait ′ ∧ (B)tf }}
∪ {(tr ′ − tr , ref ′) | ¬ tr ′ = tr ∧ okay ∧ (A)tf }
∪ {(tr ′ − tr , ref ′) | ¬ tr ′ = tr ∧ okay ∧ (B)tf }
∪ {(〈〉, ref ′ ∪ {X}) | okay ∧ false ∧ (A)tf ∧ (B)tf }

[Assumption and PC]

= {(〈〉, ref ′) | tr ′ = tr ∧ okay ∧ (A)tf ∧ (B)tf }
∪ {(〈〉, ref ′) | tr ′ = tr ∧ okay ∧ ¬ wait ′ ∧ (A)tf }}
∪ {(〈〉, ref ′) | tr ′ = tr ∧ okay ∧ ¬ wait ′ ∧ (B)tf }}
∪ {(tr ′ − tr , ref ′) | ¬ tr ′ = tr ∧ okay ∧ (A)tf }
∪ {(tr ′ − tr , ref ′) | ¬ tr ′ = tr ∧ okay ∧ (B)tf }
∪ {(〈〉, ref ′ ∪ {X}) | tr ′ = tr ∧ okay ∧ wait ′ ∧ (A)tf ∧ (B)tf }

Lemma J.25

(okay ′ ∧ v ′ = v ∧ wait ′ ∧ tr ′ = tr ∧ (c, Sync) /∈ ref ′); At

=
v ′ = v ∧ wait ′ ∧ tr ′ = tr ∧ (c, Sync) /∈ ref ′

provided A is R3.

Proof.

(okay ′ ∧ v ′ = v ∧ wait ′ ∧ tr ′ = tr ∧ (c, Sync) /∈ ref ′); At [Proviso]

= (okay ′ ∧ v ′ = v ∧ wait ′ ∧ tr ′ = tr ∧ (c, Sync) /∈ ref ′);
(R3(A))t

[R3]

= (okay ′ ∧ v ′ = v ∧ wait ′ ∧ tr ′ = tr ∧ (c, Sync) /∈ ref ′);
(II rea C wait B A)t

[PC]

= (okay ′ ∧ v ′ = v ∧ wait ′ ∧ tr ′ = tr ∧ (c, Sync) /∈ ref ′);
(II t

rea C wait B At)
[PC]

= (okay ′ ∧ v ′ = v ∧ wait ′ ∧ tr ′ = tr ∧ (c, Sync) /∈ ref ′);
II t

rea

[II rea]

257

D24.1 - Comp. Anal. of CML Models (Public Document)

= (okay ′ ∧ v ′ = v ∧ wait ′ ∧ tr ′ = tr ∧ (c, Sync) /∈ ref ′);(
(¬ okay ∧ tr ≤ tr ′)
∨ (okay ′ ∧ tr ′ = tr ∧ wait ′ = wait ∧ ref ′ = ref ∧ v ′ = v)

)t
[PC]

= (okay ′ ∧ v ′ = v ∧ wait ′ ∧ tr ′ = tr ∧ (c, Sync) /∈ ref ′);
(tr ′ = tr ∧ wait ′ = wait ∧ ref ′ = ref ∧ v ′ = v)

[PC]

= v ′ = v ∧ wait ′ ∧ tr ′ = tr ∧ (c, Sync) /∈ ref ′

Lemma J.26

R1

((
(A1

t
f ; U 1(outαA1))

∧ (A2
t
f ; U 2(outαA2))

)
+{v ,tr}

; M‖cs

)
=(

(A1
t
f ; U 1(outαA1))

∧ (A2
t
f ; U 2(outαA2))

)
+{v ,tr}

; M‖cs

provided

1. A and B are R

Proof.

R1

((
(A1

t
f ; U 1(outαA1))

∧ (A2
t
f ; U 2(outαA2))

)
+{v ,tr}

; M‖cs

)
[+{v , tr} and M‖cs]

= R1

(
(A1

t
f ; U 1(outαA1))

∧ (A2
t
f ; U 2(outαA2)) ∧ v ′ = v ∧ tr ′ = tr

)
;

tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)
∧ 1.tr � cs = 2.tr � cs

∧

(

(1.wait ∨ 2.wait)
∧ ref ′ ⊆ ((1.ref ∪ 2.ref) ∩ cs) ∪ ((1.ref ∩ 2.ref) \ cs)

)
Cwait ′B
(¬ 1.wait ∧ ¬ 2.wait ∧ MSt)

[Notation (NonTrTr ′)]

= R1

(

(A1
t
f ; U 1(outαA1))

∧ (A2
t
f ; U 2(outαA2)) ∧ v ′ = v ∧ tr ′ = tr

)
; tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)

∧ 1.tr � cs = 2.tr � cs
∧ NonTrTr ′

[Assumption, U 1, U 2, R1, Sequence and PC]

258

D24.1 - Comp. Anal. of CML Models (Public Document)

= R1

 (A1
t
f ; U 1(outαA1))

∧ (A2
t
f ; U 2(outαA2)) ∧ v ′ = v ∧ tr ′ = tr

∧ tr ≤ 1.tr ′ ∧ tr ≤ 2.tr ′

 ; tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)
∧ 1.tr � cs = 2.tr � cs
∧ NonTrTr ′

[Lemma J.46]

= R1

 (A1
t
f ; U 1(outαA1))

∧ (A2
t
f ; U 2(outαA2)) ∧ v ′ = v ∧ tr ′ = tr

∧ tr ≤ 1.tr ′ ∧ tr ≤ 2.tr ′

 ; tr ′ ∈ (1.tr ‖cs 2.tr)
∧ 1.tr � cs = 2.tr � cs
∧ NonTrTr ′

[Sequence, Lemma J.47 and PC]

= R1

 (A1
t
f ; U 1(outαA1))

∧ (A2
t
f ; U 2(outαA2)) ∧ v ′ = v ∧ tr ′ = tr

∧ tr ≤ 1.tr ′ ∧ tr ≤ 2.tr ′

 ; tr ′ ∈ (1.tr ‖cs 2.tr)
∧ 1.tr � cs = 2.tr � cs
∧ NonTrTr ′

∧ tr ≤ tr ′

[R1 and PC]

=

 (A1
t
f ; U 1(outαA1))

∧ (A2
t
f ; U 2(outαA2)) ∧ v ′ = v ∧ tr ′ = tr

∧ tr ≤ 1.tr ′ ∧ tr ≤ 2.tr ′

 ; tr ′ ∈ (1.tr ‖cs 2.tr)
∧ 1.tr � cs = 2.tr � cs
∧ NonTrTr ′

∧ tr ≤ tr ′

[Apply all steps from two above backwards]

=

. . .

=

(
(A1

t
f ; U 1(outαA1))

∧ (A2
t
f ; U 2(outαA2))

)
+{v ,tr}

; M‖cs

259

D24.1 - Comp. Anal. of CML Models (Public Document)

Lemma J.27

R2

((
(A1

t
f ; U 1(outαA1))

∧ (A2
t
f ; U 2(outαA2))

)
+{v ,tr}

; M‖cs

)
=(

(A1
t
f ; U 1(outαA1))

∧ (A2
t
f ; U 2(outαA2))

)
+{v ,tr}

; M‖cs

provided

1. A and B are R

Proof.

R2

((
(A1

t
f ; U 1(outαA1))

∧ (A2
t
f ; U 2(outαA2))

)
+{v ,tr}

; M‖cs

)
[+{v , tr} and M‖cs]

= R2

(
(A1

t
f ; U 1(outαA1))

∧ (A2
t
f ; U 2(outαA2)) ∧ v ′ = v ∧ tr ′ = tr

)
;

tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)
∧ 1.tr � cs = 2.tr � cs

∧

(

(1.wait ∨ 2.wait)
∧ ref ′ ⊆ ((1.ref ∪ 2.ref) ∩ cs) ∪ ((1.ref ∩ 2.ref) \ cs)

)
Cwait ′B
(¬ 1.wait ∧ ¬ 2.wait ∧ MSt)

[Notation (NonTrTr ′)]

= R2

(

(A1
t
f ; U 1(outαA1))

∧ (A2
t
f ; U 2(outαA2)) ∧ v ′ = v ∧ tr ′ = tr

)
; tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)

∧ 1.tr � cs = 2.tr � cs
∧ NonTrTr ′

[R2, PC and Substitution]

=

(
(A1

t
f ; U 1(outαA1))

∧ (A2
t
f ; U 2(outαA2)) ∧ v ′ = v ∧ tr ′ = tr

)
[〈〉/tr]; (tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr))[tr ′ − tr/tr ′]

∧ 1.tr � cs = 2.tr � cs
∧ NonTrTr ′

[Sequence, PC and Substitution]

260

D24.1 - Comp. Anal. of CML Models (Public Document)

=

(
(A1

t
f [〈〉/tr]; U 1(outαA1))

∧ (A2
t
f [〈〉/tr]; U 2(outαA2)) ∧ v ′ = v ∧ tr ′ = 〈〉

)
; ((tr ′ − tr)− tr ∈ (1.tr − tr ‖cs 2.tr − tr))

∧ 1.tr � cs = 2.tr � cs
∧ NonTrTr ′

[Assumption, Substitution]

=

(
(A1

t
f ; U 1(outαA1))

∧ (A2
t
f ; U 2(outαA2)) ∧ v ′ = v ∧ tr ′ = 〈〉

)
; ((tr ′ − tr)− tr ∈ (1.tr − tr ‖cs 2.tr − tr))

∧ 1.tr � cs = 2.tr � cs
∧ NonTrTr ′

[Sequence]

= ∃ okay0, tr0,wait0, ref0, v0,
1.okay0, 1.tr0, 1.wait0, 1.ref0, 1.v0,
2.okay0, 2.tr0, 2.wait0, 2.ref0, 2.v0 •

(A1
t
f ; U 1(outαA1))[1.w0/1.w

′]
∧ (A2

t
f ; U 2(outαA2))[2.w0/2.w

′]
∧ v0 = v ∧ tr0 = 〈〉
∧ (tr ′ − tr0)− tr0 ∈ (1.tr0 ‖cs 2.tr0)
∧ 1.tr0 � cs = 2.tr0 � cs
∧ NonTrTr ′[w0, 1.w0, 2.w0/w , 1.w , 2.w]

[PC and Sequence Property]

= ∃ okay0,wait0, ref0, v0,
1.okay0, 1.tr0, 1.wait0, 1.ref0, 1.v0,
2.okay0, 2.tr0, 2.wait0, 2.ref0, 2.v0 •

(A1
t
f ; U 1(outαA1))[1.w0/1.w

′]
∧ (A2

t
f ; U 2(outαA2))[2.w0/2.w

′]
∧ v0 = v
∧ tr ′ ∈ (1.tr0 ‖cs 2.tr0)
∧ 1.tr0 � cs = 2.tr0 � cs
∧ NonTrTr ′[w0, 1.w0, 2.w0/w , 1.w , 2.w]

[Lemma J.46]

261

D24.1 - Comp. Anal. of CML Models (Public Document)

= ∃ okay0,wait0, ref0, v0,
1.okay0, 1.tr0, 1.wait0, 1.ref0, 1.v0,
2.okay0, 2.tr0, 2.wait0, 2.ref0, 2.v0 •

(A1
t
f ; U 1(outαA1))[1.w0/1.w

′]
∧ (A2

t
f ; U 2(outαA2))[2.w0/2.w

′]
∧ v0 = v
∧ tr ′ − tr ∈ (1.tr0 − tr ‖cs 2.tr0 − tr)
∧ 1.tr0 � cs = 2.tr0 � cs
∧ NonTrTr ′[w0, 1.w0, 2.w0/w , 1.w , 2.w]

[PC]

= ∃ okay0, tr0,wait0, ref0, v0,
1.okay0, 1.tr0, 1.wait0, 1.ref0, 1.v0,
2.okay0, 2.tr0, 2.wait0, 2.ref0, 2.v0 •

(A1
t
f ; U 1(outαA1))[1.w0/1.w

′]
∧ (A2

t
f ; U 2(outαA2))[2.w0/2.w

′] ∧ v0 = v ∧ tr0 = tr
∧ tr ′ − tr0 ∈ (1.tr0 − tr0 ‖cs 2.tr0 − tr0)
∧ 1.tr0 � cs = 2.tr0 � cs
∧ NonTrTr ′[w0, 1.w0, 2.w0/w , 1.w , 2.w]

[Sequence]

=

(
(A1

t
f ; U 1(outαA1))

∧ (A2
t
f ; U 2(outαA2)) ∧ v ′ = v ∧ tr ′ = tr

)
; tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)

∧ 1.tr � cs = 2.tr � cs
∧ NonTrTr ′

[Notation NonTrTr ′]

=

(
(A1

t
f ; U 1(outαA1))

∧ (A2
t
f ; U 2(outαA2)) ∧ v ′ = v ∧ tr ′ = tr

)
;

tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)
∧ 1.tr � cs = 2.tr � cs

∧

(

(1.wait ∨ 2.wait)
∧ ref ′ ⊆ ((1.ref ∪ 2.ref) ∩ cs) ∪ ((1.ref ∩ 2.ref) \ cs)

)
Cwait ′B
(¬ 1.wait ∧ ¬ 2.wait ∧ MSt)

[+{v , tr} and M‖cs]

=

(
(A1

t
f ; U 1(outαA1))

∧ (A2
t
f ; U 2(outαA2))

)
+{v ,tr}

; M‖cs

262

D24.1 - Comp. Anal. of CML Models (Public Document)

Lemma J.28

(P |[ns1 | cs | ns2]|Q)tf
=

CSP1

R1

 ∃ 1.tr ′, 2.tr ′ • (A1
f
f ; 1.tr ′ = tr)

∧ (A2f ; 2.tr ′ = tr)
∧ 1.tr ′ � cs = 2.tr ′ � cs

∨ R1

 ∃ 1.tr ′, 2.tr ′ • (A1f ; 1.tr ′ = tr)

∧ (A2
f
f ; 2.tr ′ = tr)

∧ 1.tr ′ � cs = 2.tr ′ � cs

∨
((

(A1
t
f ; U 1(outαA1))

∧ (A2
t
f ; U 2(outαA2))

)
+{v ,tr}

; M‖cs

)

provided

1. A and B are R

Proof.

(A1 |[ns1 | cs | ns2]| A2)tf [A1 |[ns1 | cs | ns2]| A2]

=

 R

¬ ∃ 1.tr ′, 2.tr ′ • (A1
f
f ; 1.tr ′ = tr) ∧ (A2f ; 2.tr ′ = tr)

∧ 1.tr ′ � cs = 2.tr ′ � cs

∧ ¬ ∃ 1.tr ′, 2.tr ′ • (A1f ; 1.tr ′ = tr) ∧ (A2
f
f ; 2.tr ′ = tr)

∧ 1.tr ′ � cs = 2.tr ′ � cs
`
((A1

t
f ; U 1(outαA1)) ∧ (A2

t
f ; U 2(outαA2)))+{v ,tr}; M‖cs

t

f

[Lemma J.8]

= CSP1

R1

R2

¬ ∃ 1.tr ′, 2.tr ′ • (A1

f
f ; 1.tr ′ = tr)

∧ (A2f ; 2.tr ′ = tr)
∧ 1.tr ′ � cs = 2.tr ′ � cs

∧ ¬ ∃ 1.tr ′, 2.tr ′ • (A1f ; 1.tr ′ = tr)

∧ (A2
f
f ; 2.tr ′ = tr)

∧ 1.tr ′ � cs = 2.tr ′ � cs

⇒
((

(A1
t
f ; U 1(outαA1))

∧ (A2
t
f ; U 2(outαA2))

)
+{v ,tr}

; M‖cs

)

[PC]

263

D24.1 - Comp. Anal. of CML Models (Public Document)

= CSP1

R1

R2

∃ 1.tr ′, 2.tr ′ • (A1
f
f ; 1.tr ′ = tr)

∧ (A2f ; 2.tr ′ = tr)
∧ 1.tr ′ � cs = 2.tr ′ � cs

∨ ∃ 1.tr ′, 2.tr ′ • (A1f ; 1.tr ′ = tr)

∧ (A2
f
f ; 2.tr ′ = tr)

∧ 1.tr ′ � cs = 2.tr ′ � cs

∨
((

(A1
t
f ; U 1(outαA1))

∧ (A2
t
f ; U 2(outαA2))

)
+{v ,tr}

; M‖cs

)

[R2, PC and Substitution]

= CSP1

R1

∃ 1.tr ′, 2.tr ′ • (A1
f
f ; 1.tr ′ = tr)

∧ (A2f ; 2.tr ′ = tr)
∧ 1.tr ′ � cs = 2.tr ′ � cs

∨ ∃ 1.tr ′, 2.tr ′ • (A1f ; 1.tr ′ = tr)

∧ (A2
f
f ; 2.tr ′ = tr)

∧ 1.tr ′ � cs = 2.tr ′ � cs

∨ R2

((
(A1

t
f ; U 1(outαA1))

∧ (A2
t
f ; U 2(outαA2))

)
+{v ,tr}

; M‖cs

)

[R1 and PC]

= CSP1

R1

 ∃ 1.tr ′, 2.tr ′ • (A1
f
f ; 1.tr ′ = tr)

∧ (A2f ; 2.tr ′ = tr)
∧ 1.tr ′ � cs = 2.tr ′ � cs

∨ R1

 ∃ 1.tr ′, 2.tr ′ • (A1f ; 1.tr ′ = tr)

∧ (A2
f
f ; 2.tr ′ = tr)

∧ 1.tr ′ � cs = 2.tr ′ � cs

∨ R1

(
R2

((
(A1

t
f ; U 1(outαA1))

∧ (A2
t
f ; U 2(outαA2))

)
+{v ,tr}

; M‖cs

))

[Lemma J.27 (Assumption)]

= CSP1

R1

 ∃ 1.tr ′, 2.tr ′ • (A1
f
f ; 1.tr ′ = tr)

∧ (A2f ; 2.tr ′ = tr)
∧ 1.tr ′ � cs = 2.tr ′ � cs

∨ R1

 ∃ 1.tr ′, 2.tr ′ • (A1f ; 1.tr ′ = tr)

∧ (A2
f
f ; 2.tr ′ = tr)

∧ 1.tr ′ � cs = 2.tr ′ � cs

∨ R1

((
(A1

t
f ; U 1(outαA1))

∧ (A2
t
f ; U 2(outαA2))

)
+{v ,tr}

; M‖cs

)

[Lemma J.26 (Assumption)]

264

D24.1 - Comp. Anal. of CML Models (Public Document)

= CSP1

R1

 ∃ 1.tr ′, 2.tr ′ • (A1
f
f ; 1.tr ′ = tr)

∧ (A2f ; 2.tr ′ = tr)
∧ 1.tr ′ � cs = 2.tr ′ � cs

∨ R1

 ∃ 1.tr ′, 2.tr ′ • (A1f ; 1.tr ′ = tr)

∧ (A2
f
f ; 2.tr ′ = tr)

∧ 1.tr ′ � cs = 2.tr ′ � cs

∨
((

(A1
t
f ; U 1(outαA1))

∧ (A2
t
f ; U 2(outαA2))

)
+{v ,tr}

; M‖cs

)

Lemma J.29⋃

{s ‖
cs

t | s ∈ SS ∧ t ∈ TT}

=⋃
{s ‖

cs

t | s ∈ SS ∧ t ∈ TT ∧ s � cs = t � cs}

Proof.⋃
{s ‖

cs

t | s ∈ SS ∧ t ∈ TT} [Notation]

=
⋃
{s , t | s ∈ SS ∧ t ∈ TT • s ‖

cs

t} [
⋃

]

= {x , s , t | s ∈ SS ∧ t ∈ TT ∧ x ∈ s ‖
cs

t • x} [ST and PC]

= {x , s , t | s ∈ SS ∧ t ∈ TT ∧ x ∈ s ‖
cs

t ∧ s ‖
cs

t 6= ∅ • x}

[Lemma J.52 and PC]

= {x , s , t | s ∈ SS ∧ t ∈ TT ∧ x ∈ s ‖
cs

t ∧ s ‖
cs

t 6= ∅ ∧ s � cs = t � cs • x}

[ST and PC]

= {x , s , t | s ∈ SS ∧ t ∈ TT ∧ s � cs = t � cs ∧ x ∈ s ‖
cs

t • x} [
⋃

]

=
⋃
{s , t | s ∈ SS ∧ t ∈ TT ∧ s � cs = t � cs • s ‖

cs

t} [Notation]

=
⋃
{s ‖

cs

t | s ∈ SS ∧ t ∈ TT ∧ s � cs = t � cs}

265

D24.1 - Comp. Anal. of CML Models (Public Document)

Lemma J.30
tr ′ − tr | ∃ 1.w0, 2.w0 •

P [1.w0/w ′] ∧ Q [2.w0/w ′]
∧ tr ′ − tr ∈ (1.tr0 − tr ‖cs 2.tr0 − tr)
∧ 1.tr0 � cs = 2.tr0 � cs

=
⋃

s ‖cs t | s ∈ {tr ′ − tr | P}
∧ t ∈ {tr ′ − tr | Q}
∧ s � cs = t � cs

where w contains all UTP observational variables and state components.

Proof.

⋃
s ‖cs t | s ∈ {tr ′ − tr | P}

∧ t ∈ {tr ′ − tr | Q}
∧ s � cs = t � cs

 [Notation]

=
⋃

s , t
| s ∈ {w ,w ′ | P • tr ′ − tr}
∧ t ∈ {w ,w ′ | Q • tr ′ − tr}
∧ s � cs = t � cs
• s ‖cs t

 [
⋃

]

=

s , t , x
| s ∈ {w ,w ′ | P • tr ′ − tr}
∧ t ∈ {w ,w ′ | Q • tr ′ − tr}
∧ s � cs = t � cs
∧ x ∈ s ‖cs t
• x

[Variable Renaming]

=

tr ′, s , t
| s ∈ {w ,w ′ | P • tr ′ − tr}
∧ t ∈ {w ,w ′ | Q • tr ′ − tr}
∧ tr ′ ∈ (s ‖cs t)
∧ s � cs = t � cs
• tr ′

[SC and Property of s ‖cs t]

=

tr , tr ′, s , t
| s ∈ {w ,w ′ | P • tr ′}
∧ t ∈ {w ,w ′ | Q • tr ′}
∧ tr ′ ∈ (s − tr ‖cs t − tr)
∧ s � cs = t � cs
• tr ′

[SC and Property of s ‖cs t]

266

D24.1 - Comp. Anal. of CML Models (Public Document)

=

tr , tr ′, s , t
| s ∈ {w ,w ′ | P • tr ′}
∧ t ∈ {w ,w ′ | Q • tr ′}
∧ tr ′ ∈ (s ‖cs t)
∧ s � cs = t � cs
• tr ′ − tr

[Only tr and tr ′ are quantified]

=

w ,w ′, s , t
| s ∈ {w ,w ′ | P • tr ′}
∧ t ∈ {w ,w ′ | Q • tr ′}
∧ tr ′ ∈ (s ‖cs t)
∧ s � cs = t � cs
• tr ′ − tr

[Lemma J.46]

=

w ,w ′, s , t
| s ∈ {w ,w ′ | P • tr ′}
∧ t ∈ {w ,w ′ | Q • tr ′}
∧ tr ′ − tr ∈ (s − tr ‖cs t − tr)
∧ s � cs = t � cs
• tr ′ − tr

[PC and SC]

=

w ,w ′

| ∃ 1.w0, 2.w0 •
P [1.w0/w ′] ∧ Q [2.w0/w ′]
∧ tr ′ − tr ∈ (1.tr0 − tr ‖cs 2.tr0 − tr)
∧ 1.tr0 � cs = 2.tr0 � cs

• tr ′ − tr

[Notation]

=

tr ′ − tr | ∃ 1.w0, 2.w0 •

P [1.w0/w ′] ∧ Q [2.w0/w ′]
∧ tr ′ − tr ∈ (1.tr0 − tr ‖cs 2.tr0 − tr)
∧ 1.tr0 � cs = 2.tr0 � cs

267

D24.1 - Comp. Anal. of CML Models (Public Document)

Lemma J.31

tr ′ − tr |
okay ∧ ¬ wait ′

∧

(

(P t
f ; U 1(outαP))

∧ (Q t
f ; U 2(outαQ))

)
+{v ,tr}

; tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)
∧ 1.tr � cs = 2.tr � cs
∧ (¬ 1.wait ∧ ¬ 2.wait ∧ MSt)

=⋃{ s ‖

csX
t | s ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ t ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (Q)tf }

}

Proof.

tr ′ − tr |
okay ∧ ¬ wait ′

∧

(

(P t
f ; U 1(outαP))

∧ (Q t
f ; U 2(outαQ))

)
+{v ,tr}

; tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)
∧ 1.tr � cs = 2.tr � cs
∧ (¬ 1.wait ∧ ¬ 2.wait ∧ MSt)

[Case Analysis on wait ′ and PC]

tr ′ − tr |
okay

∧

(

(P t
f ; U 1(outαP))

∧ (Q t
f ; U 2(outαQ))

)
+{v ,tr}

; tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)
∧ 1.tr � cs = 2.tr � cs
∧ (¬ 1.wait ∧ ¬ 2.wait ∧ MSt)

[Un , A+{v ,tr} and Sequence Composition]

268

D24.1 - Comp. Anal. of CML Models (Public Document)

=

tr ′ − tr |
okay

∧

(

P t
f

[
1.okay ′, 1.wait ′, 1.tr ′, 1.ref ′, 1.v ′/
okay ′,wait ′, tr ′, ref ′, v ′

])
∧
(

Q t
f

[
2.okay ′, 2.wait ′, 2.tr ′, 2.ref ′, 2.v ′/
okay ′,wait ′, tr ′, ref ′, v ′

])
v ′ = v ∧ tr ′ = tr

 ;

 tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)
∧ 1.tr � cs = 2.tr � cs
∧ (¬ 1.wait ∧ ¬ 2.wait ∧ MSt)

[Sequence Composition]

=

tr ′ − tr |
okay

∧

∃ okay0,wait0, tr0, ref0, v0,
1.okay0, 1.wait0, 1.tr0, 1.ref0, 1.v0,
2.okay0, 2.wait0, 2.tr0, 2.ref0, 2.v0 •(

P t
f

[
1.okay0, 1.wait0, 1.tr0, 1.ref0, 1.v0/
okay ′,wait ′, tr ′, ref ′, v ′

])
∧
(

Q t
f

[
2.okay0, 2.wait0, 2.tr0, 2.ref0, 2.v0/
okay ′,wait ′, tr ′, ref ′, v ′

])
v0 = v ∧ tr0 = tr
∧ tr ′ − tr0 ∈ (1.tr0 − tr0 ‖cs 2.tr0 − tr0)
∧ 1.tr0 � cs = 2.tr0 � cs
∧ ¬ 1.wait0 ∧ ¬ 2.wait0

∧ MSt [1.v0, 2.v0, v0/1.v , 2.v , v]

[MSt and Substitution]

269

D24.1 - Comp. Anal. of CML Models (Public Document)

=

tr ′ − tr |
okay

∧

∃ okay0,wait0, tr0, ref0, v0,
1.okay0, 1.wait0, 1.tr0, 1.ref0, 1.v0,
2.okay0, 2.wait0, 2.tr0, 2.ref0, 2.v0 •(

P t
f

[
1.okay0, 1.wait0, 1.tr0, 1.ref0, 1.v0/
okay ′,wait ′, tr ′, ref ′, v ′

])
∧
(

Q t
f

[
2.okay0, 2.wait0, 2.tr0, 2.ref0, 2.v0/
okay ′,wait ′, tr ′, ref ′, v ′

])
v0 = v ∧ tr0 = tr
∧ tr ′ − tr0 ∈ (1.tr0 − tr0 ‖cs 2.tr0 − tr0)
∧ 1.tr0 � cs = 2.tr0 � cs
∧ ¬ 1.wait0 ∧ ¬ 2.wait0

∧

 ∀ v • v ∈ ns1 ⇒ v ′ = 1.v0

∧ v ∈ ns2 ⇒ v ′ = 2.v0

∧ v /∈ ns1 ∪ ns2 ⇒ v ′ = v0

[PC]

=

tr ′ − tr |
okay

∧

∃ 1.okay0, 1.wait0, 1.tr0, 1.ref0, 1.v0,
2.okay0, 2.wait0, 2.tr0, 2.ref0, 2.v0 •(

P t
f

[
1.okay0, 1.wait0, 1.tr0, 1.ref0, 1.v0/
okay ′,wait ′, tr ′, ref ′, v ′

])
∧
(

Q t
f

[
2.okay0, 2.wait0, 2.tr0, 2.ref0, 2.v0/
okay ′,wait ′, tr ′, ref ′, v ′

])
∧ tr ′ − tr ∈ (1.tr0 − tr ‖cs 2.tr0 − tr)
∧ 1.tr0 � cs = 2.tr0 � cs
∧ ¬ 1.wait0 ∧ ¬ 2.wait0

∧

 ∀ v • v ∈ ns1 ⇒ v ′ = 1.v0

∧ v ∈ ns2 ⇒ v ′ = 2.v0

∧ v /∈ ns1 ∪ ns2 ⇒ v ′ = v

[PC]

270

D24.1 - Comp. Anal. of CML Models (Public Document)

=

tr ′ − tr |
∃ 1.okay0, 1.wait0, 1.tr0, 1.ref0, 1.v0,

2.okay0, 2.wait0, 2.tr0, 2.ref0, 2.v0 •(
(okay ∧ ¬ wait ′ ∧ P t

f)

[
1.okay0, 1.wait0, 1.tr0, 1.ref0, 1.v0/
okay ′,wait ′, tr ′, ref ′, v ′

])
∧
(

(okay ∧ ¬ wait ′ ∧ Q t
f)

[
2.okay0, 2.wait0, 2.tr0, 2.ref0, 2.v0/
okay ′,wait ′, tr ′, ref ′, v ′

])
∧ tr ′ − tr ∈ (1.tr0 − tr ‖cs 2.tr0 − tr)
∧ 1.tr0 � cs = 2.tr0 � cs

∧

 ∀ v • v ∈ ns1 ⇒ v ′ = 1.v0

∧ v ∈ ns2 ⇒ v ′ = 2.v0

∧ v /∈ ns1 ∪ ns2 ⇒ v ′ = v

[PC (v ′ is implicitly quantified in this notation)]

=

tr ′ − tr |
∃ 1.okay0, 1.wait0, 1.tr0, 1.ref0, 1.v0,

2.okay0, 2.wait0, 2.tr0, 2.ref0, 2.v0 •(
(okay ∧ ¬ wait ′ ∧ P t

f)

[
1.okay0, 1.wait0, 1.tr0, 1.ref0, 1.v0/
okay ′,wait ′, tr ′, ref ′, v ′

])
∧
(

(okay ∧ ¬ wait ′ ∧ Q t
f)

[
2.okay0, 2.wait0, 2.tr0, 2.ref0, 2.v0/
okay ′,wait ′, tr ′, ref ′, v ′

])
∧ tr ′ − tr ∈ (1.tr0 − tr ‖cs 2.tr0 − tr)
∧ 1.tr0 � cs = 2.tr0 � cs

[Lemma J.30]

=
⋃

s ‖cs t | s ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ t ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ s � cs = t � cs

[Lemma J.50]

=
⋃

s ‖
cs

t | s ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ t ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ s � cs = t � cs

[Lemma J.29]

=
⋃{ s ‖

cs

t | s ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ t ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (Q)tf }

}
[Lemma J.51 (tr , tr ′ : seq Σ and X /∈ Σ)]

=
⋃{ s ‖

csX
t | s ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ t ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (Q)tf }

}

271

D24.1 - Comp. Anal. of CML Models (Public Document)

Lemma J.32

(tr ′ − tr)a 〈X〉 |
okay ∧ ¬ wait ′

∧

(

(P t
f ; U 1(outαP))

∧ (Q t
f ; U 2(outαQ))

)
+{v ,tr}

; tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)
∧ 1.tr � cs = 2.tr � cs
∧ (¬ 1.wait ∧ ¬ 2.wait ∧ MSt)

=⋃{ s a 〈X〉 ‖

csX
t a 〈X〉 | s ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (P)tf }

∧ t ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (Q)tf }

}

Proof.

(tr ′ − tr)a 〈X〉 |
okay ∧ ¬ wait ′

∧

(

(P t
f ; U 1(outαP))

∧ (Q t
f ; U 2(outαQ))

)
+{v ,tr}

; tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)
∧ 1.tr � cs = 2.tr � cs
∧ (¬ 1.wait ∧ ¬ 2.wait ∧ MSt)

[Case Analysis on wait ′ and PC]

(tr ′ − tr)a 〈X〉 |
okay

∧

(

(P t
f ; U 1(outαP))

∧ (Q t
f ; U 2(outαQ))

)
+{v ,tr}

; tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)
∧ 1.tr � cs = 2.tr � cs
∧ (¬ 1.wait ∧ ¬ 2.wait ∧ MSt)

[Un , A+{v ,tr} and Sequence Composition]

272

D24.1 - Comp. Anal. of CML Models (Public Document)

=

(tr ′ − tr)a 〈X〉 |
okay

∧

(

P t
f

[
1.okay ′, 1.wait ′, 1.tr ′, 1.ref ′, 1.v ′/
okay ′,wait ′, tr ′, ref ′, v ′

])
∧
(

Q t
f

[
2.okay ′, 2.wait ′, 2.tr ′, 2.ref ′, 2.v ′/
okay ′,wait ′, tr ′, ref ′, v ′

])
v ′ = v ∧ tr ′ = tr

 ;

 tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)
∧ 1.tr � cs = 2.tr � cs
∧ (¬ 1.wait ∧ ¬ 2.wait ∧ MSt)

[Sequence Composition]

=

(tr ′ − tr)a 〈X〉 |
okay

∧

∃ okay0,wait0, tr0, ref0, v0,
1.okay0, 1.wait0, 1.tr0, 1.ref0, 1.v0,
2.okay0, 2.wait0, 2.tr0, 2.ref0, 2.v0 •(

P t
f

[
1.okay0, 1.wait0, 1.tr0, 1.ref0, 1.v0/
okay ′,wait ′, tr ′, ref ′, v ′

])
∧
(

Q t
f

[
2.okay0, 2.wait0, 2.tr0, 2.ref0, 2.v0/
okay ′,wait ′, tr ′, ref ′, v ′

])
v0 = v ∧ tr0 = tr
∧ tr ′ − tr0 ∈ (1.tr0 − tr0 ‖cs 2.tr0 − tr0)
∧ 1.tr0 � cs = 2.tr0 � cs
∧ ¬ 1.wait0 ∧ ¬ 2.wait0

∧ MSt [1.v0, 2.v0, v0/1.v , 2.v , v]

[MSt and Substitution]

273

D24.1 - Comp. Anal. of CML Models (Public Document)

=

(tr ′ − tr)a 〈X〉 |
okay

∧

∃ okay0,wait0, tr0, ref0, v0,
1.okay0, 1.wait0, 1.tr0, 1.ref0, 1.v0,
2.okay0, 2.wait0, 2.tr0, 2.ref0, 2.v0 •(

P t
f

[
1.okay0, 1.wait0, 1.tr0, 1.ref0, 1.v0/
okay ′,wait ′, tr ′, ref ′, v ′

])
∧
(

Q t
f

[
2.okay0, 2.wait0, 2.tr0, 2.ref0, 2.v0/
okay ′,wait ′, tr ′, ref ′, v ′

])
v0 = v ∧ tr0 = tr
∧ tr ′ − tr0 ∈ (1.tr0 − tr0 ‖cs 2.tr0 − tr0)
∧ 1.tr0 � cs = 2.tr0 � cs
∧ ¬ 1.wait0 ∧ ¬ 2.wait0

∧

 ∀ v • v ∈ ns1 ⇒ v ′ = 1.v0

∧ v ∈ ns2 ⇒ v ′ = 2.v0

∧ v /∈ ns1 ∪ ns2 ⇒ v ′ = v0

[PC]

=

(tr ′ − tr)a 〈X〉 |
okay

∧

∃ 1.okay0, 1.wait0, 1.tr0, 1.ref0, 1.v0,
2.okay0, 2.wait0, 2.tr0, 2.ref0, 2.v0 •(

P t
f

[
1.okay0, 1.wait0, 1.tr0, 1.ref0, 1.v0/
okay ′,wait ′, tr ′, ref ′, v ′

])
∧
(

Q t
f

[
2.okay0, 2.wait0, 2.tr0, 2.ref0, 2.v0/
okay ′,wait ′, tr ′, ref ′, v ′

])
∧ tr ′ − tr ∈ (1.tr0 − tr ‖cs 2.tr0 − tr)
∧ 1.tr0 � cs = 2.tr0 � cs
∧ ¬ 1.wait0 ∧ ¬ 2.wait0

∧

 ∀ v • v ∈ ns1 ⇒ v ′ = 1.v0

∧ v ∈ ns2 ⇒ v ′ = 2.v0

∧ v /∈ ns1 ∪ ns2 ⇒ v ′ = v

[PC (v ′ is implicitly quantified in this notation)]

274

D24.1 - Comp. Anal. of CML Models (Public Document)

=

(tr ′ − tr)a 〈X〉 |
okay

∧

∃ 1.okay0, 1.wait0, 1.tr0, 1.ref0, 1.v0,
2.okay0, 2.wait0, 2.tr0, 2.ref0, 2.v0 •(

P t
f

[
1.okay0, 1.wait0, 1.tr0, 1.ref0, 1.v0/
okay ′,wait ′, tr ′, ref ′, v ′

])
∧
(

Q t
f

[
2.okay0, 2.wait0, 2.tr0, 2.ref0, 2.v0/
okay ′,wait ′, tr ′, ref ′, v ′

])
∧ tr ′ − tr ∈ (1.tr0 − tr ‖cs 2.tr0 − tr)
∧ 1.tr0 � cs = 2.tr0 � cs
∧ ¬ 1.wait0 ∧ ¬ 2.wait0

[PC]

=

(tr ′ − tr)a 〈X〉 | ∃ 1.okay0, 1.wait0, 1.tr0, 1.ref0, 1.v0,
2.okay0, 2.wait0, 2.tr0, 2.ref0, 2.v0 • (okay ∧ ¬ wait ′ ∧ P t

f)[
1.okay0, 1.wait0, 1.tr0, 1.ref0, 1.v0/
okay ′,wait ′, tr ′, ref ′, v ′

]
∧

 (okay ∧ ¬ wait ′ ∧ Q t
f)[

2.okay0, 2.wait0, 2.tr0, 2.ref0, 2.v0/
okay ′,wait ′, tr ′, ref ′, v ′

]
∧ tr ′ − tr ∈ (1.tr0 − tr ‖cs 2.tr0 − tr)
∧ 1.tr0 � cs = 2.tr0 � cs

[SC]

=

x a 〈X〉 |

x ∈

(tr ′ − tr) | ∃ 1.okay0, 1.wait0, 1.tr0, 1.ref0, 1.v0,
2.okay0, 2.wait0, 2.tr0, 2.ref0, 2.v0 • (okay ∧ ¬ wait ′ ∧ P t

f)[
1.okay0, 1.wait0, 1.tr0, 1.ref0, 1.v0/
okay ′,wait ′, tr ′, ref ′, v ′

]
∧

 (okay ∧ ¬ wait ′ ∧ Q t
f)[

2.okay0, 2.wait0, 2.tr0, 2.ref0, 2.v0/
okay ′,wait ′, tr ′, ref ′, v ′

]
∧ tr ′ − tr ∈ (1.tr0 − tr ‖cs 2.tr0 − tr)
∧ 1.tr0 � cs = 2.tr0 � cs

[Lemma J.30]

=

x a 〈X〉 |

x ∈
⋃

s ‖cs t | s ∈ {(tr ′ − tr) | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ t ∈ {(tr ′ − tr) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ s � cs = t � cs

275

D24.1 - Comp. Anal. of CML Models (Public Document)

[Lemma J.50]

=

x a 〈X〉 |

x ∈
⋃

s ‖
cs

t | s ∈ {(tr ′ − tr) | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ t ∈ {(tr ′ − tr) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ s � cs = t � cs

[Lemma J.29]

=

x a 〈X〉 |

x ∈
⋃{ s ‖

cs

t | s ∈ {(tr ′ − tr) | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ t ∈ {(tr ′ − tr) | okay ∧ ¬ wait ′ ∧ (Q)tf }

}
[Lemma J.49]

=

{
x | x ∈

⋃{ s a 〈X〉 ‖
csX

t a 〈X〉 | s ∈ {(tr ′ − tr) | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ t ∈ {(tr ′ − tr) | okay ∧ ¬ wait ′ ∧ (Q)tf }

} }
[
⋃

and SC]

=
⋃{ s a 〈X〉 ‖

csX
t a 〈X〉 | s ∈ {(tr ′ − tr) | okay ∧ ¬ wait ′ ∧ (P)tf }

∧ t ∈ {(tr ′ − tr) | okay ∧ ¬ wait ′ ∧ (Q)tf }

}
Lemma J.33

tr ′ − tr |
okay ∧ wait ′

∧

(
(P t

f ; U 1(outαP))
∧ (Q t

f ; U 2(outαQ))

)
+{v ,tr}

;
tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)
∧ 1.tr � cs = 2.tr � cs
∧ (1.wait ∧ 2.wait)

∧ ref ′ ⊆
(

((1.ref ∪ 2.ref) ∩ cs)
∪((1.ref ∩ 2.ref) \ cs)

)

=
⋃{ s ‖

csX
t | s ∈ {tr ′ − tr | okay ∧ wait ′ ∧ (P)tf }
∧ t ∈ {tr ′ − tr | okay ∧ wait ′ ∧ (Q)tf }

}

276

D24.1 - Comp. Anal. of CML Models (Public Document)

Proof.

tr ′ − tr |
okay ∧ ¬ wait ′

∧

(
(P t

f ; U 1(outαP))
∧ (Q t

f ; U 2(outαQ))

)
+{v ,tr}

;
tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)
∧ 1.tr � cs = 2.tr � cs
∧ (1.wait ∧ 2.wait)

∧ ref ′ ⊆
(

((1.ref ∪ 2.ref) ∩ cs)
∪((1.ref ∩ 2.ref) \ cs)

)

[Case Analysis on wait ′ and PC]

tr ′ − tr |
okay

∧

(
(P t

f ; U 1(outαP))
∧ (Q t

f ; U 2(outαQ))

)
+{v ,tr}

;
tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)
∧ 1.tr � cs = 2.tr � cs
∧ (1.wait ∧ 2.wait)

∧ ref ′ ⊆
(

((1.ref ∪ 2.ref) ∩ cs)
∪((1.ref ∩ 2.ref) \ cs)

)

[Un , A+{v ,tr} and Sequence Composition]

=

tr ′ − tr |
okay

∧

(

P t
f

[
1.okay ′, 1.wait ′, 1.tr ′, 1.ref ′, 1.v ′/
okay ′,wait ′, tr ′, ref ′, v ′

])
∧
(

Q t
f

[
2.okay ′, 2.wait ′, 2.tr ′, 2.ref ′, 2.v ′/
okay ′,wait ′, tr ′, ref ′, v ′

])
v ′ = v ∧ tr ′ = tr

 ;

tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)
∧ 1.tr � cs = 2.tr � cs
∧ (1.wait ∧ 2.wait)

∧ ref ′ ⊆
(

((1.ref ∪ 2.ref) ∩ cs)
∪((1.ref ∩ 2.ref) \ cs)

)

[Sequence Composition]

277

D24.1 - Comp. Anal. of CML Models (Public Document)

=

tr ′ − tr |
okay

∧

∃ okay0,wait0, tr0, ref0, v0,
1.okay0, 1.wait0, 1.tr0, 1.ref0, 1.v0,
2.okay0, 2.wait0, 2.tr0, 2.ref0, 2.v0 •(

P t
f

[
1.okay0, 1.wait0, 1.tr0, 1.ref0, 1.v0/
okay ′,wait ′, tr ′, ref ′, v ′

])
∧
(

Q t
f

[
2.okay0, 2.wait0, 2.tr0, 2.ref0, 2.v0/
okay ′,wait ′, tr ′, ref ′, v ′

])
∧ v0 = v ∧ tr0 = tr
∧ tr ′ − tr0 ∈ (1.tr0 − tr0 ‖cs 2.tr0 − tr0)
∧ 1.tr0 � cs = 2.tr0 � cs
∧ (1.wait0 ∧ 2.wait0)

∧ ref ′ ⊆
(

((1.ref0 ∪ 2.ref0) ∩ cs)
∪((1.ref0 ∩ 2.ref0) \ cs)

)

[PC]

=

tr ′ − tr |
okay

∧

∃ 1.okay0, 1.wait0, 1.tr0, 1.ref0, 1.v0,
2.okay0, 2.wait0, 2.tr0, 2.ref0, 2.v0 •(

P t
f

[
1.okay0, 1.wait0, 1.tr0, 1.ref0, 1.v0/
okay ′,wait ′, tr ′, ref ′, v ′

])
∧
(

Q t
f

[
2.okay0, 2.wait0, 2.tr0, 2.ref0, 2.v0/
okay ′,wait ′, tr ′, ref ′, v ′

])
∧ tr ′ − tr ∈ (1.tr0 − tr ‖cs 2.tr0 − tr)
∧ 1.tr0 � cs = 2.tr0 � cs
∧ (1.wait0 ∧ 2.wait0)

∧ ref ′ ⊆
(

((1.ref0 ∪ 2.ref0) ∩ cs)
∪((1.ref0 ∩ 2.ref0) \ cs)

)

[PC]

278

D24.1 - Comp. Anal. of CML Models (Public Document)

=

tr ′ − tr |
∃ 1.okay0, 1.wait0, 1.tr0, 1.ref0, 1.v0,

2.okay0, 2.wait0, 2.tr0, 2.ref0, 2.v0 •(
(okay ∧ wait ′ ∧ P t

f)

[
1.okay0, 1.wait0, 1.tr0, 1.ref0, 1.v0/
okay ′,wait ′, tr ′, ref ′, v ′

])
∧
(

(okay ∧ wait ′ ∧ Q t
f)

[
2.okay0, 2.wait0, 2.tr0, 2.ref0, 2.v0/
okay ′,wait ′, tr ′, ref ′, v ′

])
∧ tr ′ − tr ∈ (1.tr0 − tr ‖cs 2.tr0 − tr)
∧ 1.tr0 � cs = 2.tr0 � cs

∧ ref ′ ⊆
(

((1.ref0 ∪ 2.ref0) ∩ cs)
∪((1.ref0 ∩ 2.ref0) \ cs)

)

[PC (ref ′ is implicitly quantified in this notation)]

=

tr ′ − tr | ∃ 1.okay0, 1.wait0, 1.tr0, 1.ref0, 1.v0,
2.okay0, 2.wait0, 2.tr0, 2.ref0, 2.v0 •(

(okay ∧ wait ′ ∧ P t
f)

[
1.okay0, 1.wait0, 1.tr0, 1.ref0, 1.v0/
okay ′,wait ′, tr ′, ref ′, v ′

])
∧
(

(okay ∧ wait ′ ∧ Q t
f)

[
2.okay0, 2.wait0, 2.tr0, 2.ref0, 2.v0/
okay ′,wait ′, tr ′, ref ′, v ′

])
∧ tr ′ − tr ∈ (1.tr0 − tr ‖cs 2.tr0 − tr)
∧ 1.tr0 � cs = 2.tr0 � cs

[Lemma J.30]

=
⋃

s ‖cs t | s ∈ {tr ′ − tr | okay ∧ wait ′ ∧ (P)tf }
∧ t ∈ {tr ′ − tr | okay ∧ wait ′ ∧ (Q)tf }
∧ s � cs = t � cs

[Lemma J.50]

=
⋃

s ‖
cs

t | s ∈ {tr ′ − tr | okay ∧ wait ′ ∧ (P)tf }
∧ t ∈ {tr ′ − tr | okay ∧ wait ′ ∧ (Q)tf }
∧ s � cs = t � cs

[Lemma J.29]

=
⋃{ s ‖

cs

t | s ∈ {tr ′ − tr | okay ∧ wait ′ ∧ (P)tf }
∧ t ∈ {tr ′ − tr | okay ∧ wait ′ ∧ (Q)tf }

}
[Lemma J.51 (tr , tr ′ : seq Σ and X /∈ Σ)]

=
⋃{ s ‖

csX
t | s ∈ {tr ′ − tr | okay ∧ wait ′ ∧ (P)tf }
∧ t ∈ {tr ′ − tr | okay ∧ wait ′ ∧ (Q)tf }

}

279

D24.1 - Comp. Anal. of CML Models (Public Document)

Lemma J.34

tr ′ − tr |
okay ∧ wait ′

∧

(
(P t

f ; U 1(outαP))
∧ (Q t

f ; U 2(outαQ))

)
+{v ,tr}

;
tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)
∧ 1.tr � cs = 2.tr � cs
∧ (1.wait ∧ ¬ 2.wait)

∧ ref ′ ⊆
(

((1.ref ∪ 2.ref) ∩ cs)
∪((1.ref ∩ 2.ref) \ cs)

)

=
⋃{ s ‖

csX
t | s ∈ {tr ′ − tr | okay ∧ wait ′ ∧ (P)tf }
∧ t ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (Q)tf }

}

Proof. Very similar to that of Lemma J.33

Lemma J.35

tr ′ − tr |
okay ∧ wait ′

∧

(
(P t

f ; U 1(outαP))
∧ (Q t

f ; U 2(outαQ))

)
+{v ,tr}

;
tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)
∧ 1.tr � cs = 2.tr � cs
∧ (¬ 1.wait ∧ 2.wait)

∧ ref ′ ⊆
(

((1.ref ∪ 2.ref) ∩ cs)
∪((1.ref ∩ 2.ref) \ cs)

)

=
⋃{ s ‖

csX
t | s ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ t ∈ {tr ′ − tr | okay ∧ wait ′ ∧ (Q)tf }

}

Proof. Very similar to that of Lemma J.33

280

D24.1 - Comp. Anal. of CML Models (Public Document)

Lemma J.36

(tr ′ − tr , ref ′) | ∃ 1.w0, 2.w0 •
P [1.w0/w ′] ∧ Q [2.w0/w ′]
∧ tr ′ − tr ∈ (1.tr0 − tr ‖cs 2.tr0 − tr)
∧ 1.tr0 � cs = 2.tr0 � cs

∧ ref ′ ⊆
(

((1.ref0 ∪ 2.ref0) ∩ cs)
∪((1.ref0 ∩ 2.ref0) \ cs)

)

=

(u,Y ∪ Z)
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | P}

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | Q}
∧ u ∈ s ‖cs t
∧ s � cs = t � cs

where w contains all UTP observational variables and state components.

Proof.

(u,Y ∪ Z)
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | P}

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | Q}
∧ u ∈ s ‖cs t
∧ s � cs = t � cs

[Notation]

=

u,Y ,Z | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {w ,w ′ | P • (tr ′ − tr , ref ′)}

∧ (t ,Z) ∈ {w ,w ′ | Q • (tr ′ − tr , ref ′)}
∧ u ∈ s ‖cs t
∧ s � cs = t � cs

• (u,Y ∪ Z)

[Variable Renaming]

=

tr ′,Y ,Z | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {w ,w ′ | P • (tr ′ − tr , ref ′)}

∧ (t ,Z) ∈ {w ,w ′ | Q • (tr ′ − tr , ref ′)}
∧ tr ′ ∈ s ‖cs t
∧ s � cs = t � cs

• (tr ′,Y ∪ Z)

[SC and Property of s ‖cs t]

281

D24.1 - Comp. Anal. of CML Models (Public Document)

=

tr , tr ′,Y ,Z | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {w ,w ′ | P • (tr ′, ref ′)}

∧ (t ,Z) ∈ {w ,w ′ | Q • (tr ′, ref ′)}
∧ tr ′ ∈ s − tr ‖cs t − tr
∧ s � cs = t � cs

• (tr ′,Y ∪ Z)

[SC and Property of s ‖cs t]

tr , tr ′,Y ,Z | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {w ,w ′ | P • (tr ′, ref ′)}

∧ (t ,Z) ∈ {w ,w ′ | Q • (tr ′, ref ′)}
∧ tr ′ ∈ s ‖cs t
∧ s � cs = t � cs

• (tr ′ − tr ,Y ∪ Z)

[Only tr and tr ′ are quantified]

=

w ,w ′,Y ,Z | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {w ,w ′ | P • (tr ′, ref ′)}

∧ (t ,Z) ∈ {w ,w ′ | Q • (tr ′, ref ′)}
∧ tr ′ ∈ s ‖cs t
∧ s � cs = t � cs
∧ ref ′ = Y ∪ Z

• (tr ′ − tr , ref ′)

[Lemma J.46]

=

w ,w ′,Y ,Z | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {w ,w ′ | P • (tr ′, ref ′)}

∧ (t ,Z) ∈ {w ,w ′ | Q • (tr ′, ref ′)}
∧ tr ′ − tr ∈ (s − tr ‖cs t − tr)
∧ s � cs = t � cs
∧ ref ′ = Y ∪ Z

• (tr ′ − tr , ref ′)

[PC and SC]

=

w ,w ′,Y ,Z , s , t | (s ,Y) ∈ {w ,w ′ | P • (tr ′, ref ′)}
∧ (t ,Z) ∈ {w ,w ′ | Q • (tr ′, ref ′)}
∧ tr ′ − tr ∈ (s − tr ‖cs t − tr)
∧ s � cs = t � cs
∧ ref ′ = Y ∪ Z
∧ Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

• (tr ′ − tr , ref ′)

[ST (ref , ref ′ : PΣ and X /∈ Σ)]

282

D24.1 - Comp. Anal. of CML Models (Public Document)

=

w ,w ′,Y ,Z , s , t | (s ,Y) ∈ {w ,w ′ | P • (tr ′, ref ′)}
∧ (t ,Z) ∈ {w ,w ′ | Q • (tr ′, ref ′)}
∧ tr ′ − tr ∈ (s − tr ‖cs t − tr)
∧ s � cs = t � cs
∧ ref ′ = Y ∪ Z
∧ Y \ cs = Z \ cs

• (tr ′ − tr , ref ′)

[Lemma J.55]

=

w ,w ′,Y ,Z , s , t | (s ,Y) ∈ {w ,w ′ | P • (tr ′, ref ′)}
∧ (t ,Z) ∈ {w ,w ′ | Q • (tr ′, ref ′)}
∧ tr ′ − tr ∈ (s − tr ‖cs t − tr)
∧ s � cs = t � cs

∧ ref ′ =

(
((Y ∪ Z) ∩ cs)
∪((Y ∩ Z) \ cs)

)
∧ Y \ cs = Z \ cs

• (tr ′ − tr , ref ′)

Here, we use the fact that Circus actions are C2-healthy, which guarantees
that the final sets of refusals ref ′ are subset closed. This guarantees that the
set of values assigned to Y and Z in the production of the set of failures
are subset closed. Because of this, we might change the condition in the
outermost set comprehension by assuring that ref ′ is a subset (not necessarily
equals) of the previous set expression on Y , Z and cs . Furthermore, we might
also drop the condition Y \ cs = Z \ cs.

[P and Q are C2 (ref ′ is subset closed), SC and ST]

=

w ,w ′,Y ,Z , s , t | (s ,Y) ∈ {w ,w ′ | P • (tr ′, ref ′)}
∧ (t ,Z) ∈ {w ,w ′ | Q • (tr ′, ref ′)}
∧ tr ′ − tr ∈ (s − tr ‖cs t − tr)
∧ s � cs = t � cs

∧ ref ′ ⊆
(

((Y ∪ Z) ∩ cs)
∪((Y ∩ Z) \ cs)

)
• (tr ′ − tr , ref ′)

[ST, PC and SC]

283

D24.1 - Comp. Anal. of CML Models (Public Document)

=

w ,w ′,Y ,Z , s , t | (s ,Y) ∈ {w ,w ′ | P • (tr ′, ref ′)}
∧ (t ,Z) ∈ {w ,w ′ | Q • (tr ′, ref ′)}
∧ tr ′ − tr ∈ (s − tr ‖cs t − tr)
∧ s � cs = t � cs

∧ ref ′ ⊆
(

((Y ∪ Z) ∩ cs)
∪((Y ∩ Z) \ cs)

)
• (tr ′ − tr , ref ′)

[PC and SC]

=

w ,w ′ | ∃ 1.w0, 2.w0 •
P [1.w0/w ′] ∧ Q [2.w0/w ′]
∧ tr ′ − tr ∈ (1.tr0 − tr ‖cs 2.tr0 − tr)
∧ 1.tr0 � cs = 2.tr0 � cs

∧ ref ′ ⊆
(

((1.ref0 ∪ 2.ref0) ∩ cs)
∪((1.ref0 ∩ 2.ref0) \ cs)

)
• (tr ′ − tr , ref ′)

[Notation]

=

(tr ′ − tr , ref ′) | ∃ 1.w0, 2.w0 •
P [1.w0/w ′] ∧ Q [2.w0/w ′]
∧ tr ′ − tr ∈ (1.tr0 − tr ‖cs 2.tr0 − tr)
∧ 1.tr0 � cs = 2.tr0 � cs

∧ ref ′ ⊆
(

((1.ref0 ∪ 2.ref0) ∩ cs)
∪((1.ref0 ∩ 2.ref0) \ cs)

)

Lemma J.37

{(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (PQ; MPtQt)}
=

(u,Y ∪ Z)
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

Proof.

{(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (PQ; MPtQt)}
[PQ and MPtQt]

=

284

D24.1 - Comp. Anal. of CML Models (Public Document)

(tr ′ − tr , ref ′) |
okay ∧ wait ′

∧

(
(P t

f ; U 1(outαP))
∧ (Q t

f ; U 2(outαQ))

)
+{v ,tr}

;
tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)
∧ 1.tr � cs = 2.tr � cs
∧ (1.wait ∧ 2.wait)

∧ ref ′ ⊆
(

((1.ref ∪ 2.ref) ∩ cs)
∪((1.ref ∩ 2.ref) \ cs)

)

[Case Analysis on wait ′ and PC]

=

(tr ′ − tr , ref ′) |
okay

∧

(
(P t

f ; U 1(outαP))
∧ (Q t

f ; U 2(outαQ))

)
+{v ,tr}

;
tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)
∧ 1.tr � cs = 2.tr � cs
∧ (1.wait ∧ 2.wait)

∧ ref ′ ⊆
(

((1.ref ∪ 2.ref) ∩ cs)
∪((1.ref ∩ 2.ref) \ cs)

)

[Un , A+{v ,tr} and Sequence Composition]

=

(tr ′ − tr , ref ′) |
okay

∧

(

P t
f

[
1.okay ′, 1.wait ′, 1.tr ′, 1.ref ′, 1.v ′/
okay ′,wait ′, tr ′, ref ′, v ′

])
∧
(

Q t
f

[
2.okay ′, 2.wait ′, 2.tr ′, 2.ref ′, 2.v ′/
okay ′,wait ′, tr ′, ref ′, v ′

])
v ′ = v ∧ tr ′ = tr

 ;

tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)
∧ 1.tr � cs = 2.tr � cs
∧ (1.wait ∧ 2.wait)

∧ ref ′ ⊆
(

((1.ref ∪ 2.ref) ∩ cs)
∪((1.ref ∩ 2.ref) \ cs)

)

[Sequence Composition]

285

D24.1 - Comp. Anal. of CML Models (Public Document)

=

(tr ′ − tr , ref ′) |
okay

∧

∃ okay0,wait0, tr0, ref0, v0,
1.okay0, 1.wait0, 1.tr0, 1.ref0, 1.v0,
2.okay0, 2.wait0, 2.tr0, 2.ref0, 2.v0 •(

P t
f

[
1.okay0, 1.wait0, 1.tr0, 1.ref0, 1.v0/
okay ′,wait ′, tr ′, ref ′, v ′

])
∧
(

Q t
f

[
2.okay0, 2.wait0, 2.tr0, 2.ref0, 2.v0/
okay ′,wait ′, tr ′, ref ′, v ′

])
∧ v0 = v ∧ tr0 = tr
∧ tr ′ − tr0 ∈ (1.tr0 − tr0 ‖cs 2.tr0 − tr0)
∧ 1.tr0 � cs = 2.tr0 � cs
∧ (1.wait0 ∧ 2.wait0)

∧ ref ′ ⊆
(

((1.ref0 ∪ 2.ref0) ∩ cs)
∪((1.ref0 ∩ 2.ref0) \ cs)

)

[PC]

=

(tr ′ − tr , ref ′) |
okay

∧

∃ 1.okay0, 1.wait0, 1.tr0, 1.ref0, 1.v0,
2.okay0, 2.wait0, 2.tr0, 2.ref0, 2.v0 •(

P t
f

[
1.okay0, 1.wait0, 1.tr0, 1.ref0, 1.v0/
okay ′,wait ′, tr ′, ref ′, v ′

])
∧
(

Q t
f

[
2.okay0, 2.wait0, 2.tr0, 2.ref0, 2.v0/
okay ′,wait ′, tr ′, ref ′, v ′

])
∧ tr ′ − tr ∈ (1.tr0 − tr ‖cs 2.tr0 − tr)
∧ 1.tr0 � cs = 2.tr0 � cs
∧ (1.wait0 ∧ 2.wait0)

∧ ref ′ ⊆
(

((1.ref0 ∪ 2.ref0) ∩ cs)
∪((1.ref0 ∩ 2.ref0) \ cs)

)

[PC]

286

D24.1 - Comp. Anal. of CML Models (Public Document)

=

(tr ′ − tr , ref ′) |
∃ 1.okay0, 1.wait0, 1.tr0, 1.ref0, 1.v0,

2.okay0, 2.wait0, 2.tr0, 2.ref0, 2.v0 •(
(okay ∧ wait ′ ∧ P t

f)

[
1.okay0, 1.wait0, 1.tr0, 1.ref0, 1.v0/
okay ′,wait ′, tr ′, ref ′, v ′

])
∧
(

(okay ∧ wait ′ ∧ Q t
f)

[
2.okay0, 2.wait0, 2.tr0, 2.ref0, 2.v0/
okay ′,wait ′, tr ′, ref ′, v ′

])
∧ tr ′ − tr ∈ (1.tr0 − tr ‖cs 2.tr0 − tr)
∧ 1.tr0 � cs = 2.tr0 � cs

∧ ref ′ ⊆
(

((1.ref0 ∪ 2.ref0) ∩ cs)
∪((1.ref0 ∩ 2.ref0) \ cs)

)

[Lemma J.36]

=

(u,Y ∪ Z)
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖cs t
∧ s � cs = t � cs

[Lemma J.50]

=

(u,Y ∪ Z)
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

cs

t

∧ s � cs = t � cs

[ST, Lemma J.52 and PC]

=

(u,Y ∪ Z)
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

cs

t

[Lemma J.51 (tr , tr ′ : seq Σ and X /∈ Σ)]

287

D24.1 - Comp. Anal. of CML Models (Public Document)

=

(u,Y ∪ Z)
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

Lemma J.38

{(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (PQ; MPtQf
)}

=

(u,Y ∪ Z)
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

Proof. Very similar to that of Lemma J.37.

Lemma J.39

{(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (PQ; MPf Qt)}
=

(u,Y ∪ Z)
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

Proof. Very similar to that of Lemma J.37.

Lemma J.40

{(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (PQ; MPf Qf
)}

=

(u,Y ∪ Z)
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

288

D24.1 - Comp. Anal. of CML Models (Public Document)

Proof. Very similar to that of Lemma J.37.

Lemma J.41

{(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (PQ; MPtQt)}
=

(u,Y ∪ Z ∪ {X})
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

Proof.

{(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (PQ; MPtQt)} [SC]

=

{(t , r ∪ {X}) | (t , r) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (PQ; MPtQt)}}
[Lemma J.37]

=

(t , r ∪ {X})

| (t , r) ∈

(u,Y ∪ Z)
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

[SC]

=

(u,Y ∪ Z ∪ {X})
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

289

D24.1 - Comp. Anal. of CML Models (Public Document)

Lemma J.42

{(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (PQ; MPtQf
)}

=

(u,Y ∪ Z ∪ {X})
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

Proof.

{(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (PQ; MPtQf
)} [SC]

=

{(t , r ∪ {X}) | (t , r) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (PQ; MPtQf
)}}

[Lemma J.38]

=

(t , r ∪ {X})

| (t , r) ∈

(u,Y ∪ Z)
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

[SC]

=

(u,Y ∪ Z ∪ {X})
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

290

D24.1 - Comp. Anal. of CML Models (Public Document)

Lemma J.43

{(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (PQ; MPf Qt)}
=

(u,Y ∪ Z ∪ {X})
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

Proof.

{(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (PQ; MPf Qt)} [SC]

=

{(t , r ∪ {X}) | (t , r) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (PQ; MPf Qt)}}
[Lemma J.39]

=

(t , r ∪ {X})

| (t , r) ∈

(u,Y ∪ Z)
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

[SC]

=

(u,Y ∪ Z ∪ {X})
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

291

D24.1 - Comp. Anal. of CML Models (Public Document)

Lemma J.44

{((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ wait ′ ∧ (PQ; MPf Qf
)}

=

(u a 〈X〉,Y ∪ Z)
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

Proof.

{((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ wait ′ ∧ (PQ; MPf Qf
)} [SC]

=

{(t a 〈X〉, r) | (t , r) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (PQ; MPf Qf
)}}

[Lemma J.40]

=

(t a 〈X〉, r)

| (t , r) ∈

(u,Y ∪ Z)
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

[SC]

=

(u a 〈X〉,Y ∪ Z)
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

292

D24.1 - Comp. Anal. of CML Models (Public Document)

Lemma J.45

{((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (PQ; MPf Qf
)}

=

(u a 〈X〉,Y ∪ Z ∪ {X})
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

Proof.

{((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (PQ; MPf Qf
)} [SC]

=

{(t a 〈X〉, r ∪ {X}) | (t , r) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (PQ; MPf Qf
)}}

[Lemma J.40]

=

(t a 〈X〉, r ∪ {X})

| (t , r) ∈

(u,Y ∪ Z)
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

[SC]

=

(u a 〈X〉,Y ∪ Z ∪ {X})
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

J.4 Theorems

All theorems use the operation tr ′−tr . This is only well defined for tr prefix tr ′.
Hence, all theorems below implicitly require the actions involved to be R1.

Theorem J.2 tracesUT P(Skip) = traces(Υ(Skip))

293

D24.1 - Comp. Anal. of CML Models (Public Document)

Proof.

tracesUT P(Skip) [tracesUT P]

= {tr ′ − tr | (Skip)n}
∪ {(tr ′ − tr)a 〈X〉 | (Skip)t}

[At]

= {tr ′ − tr | (Skip)n}
∪ {(tr ′ − tr)a 〈X〉 | ¬ wait ′ ∧ (Skip)n}

[An]

= {tr ′ − tr | okay ∧ ¬ wait ∧ okay ′ ∧ Skip}
∪ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ Skip}

[PC]

= {tr ′ − tr | okay ∧ (Skip)tf }
∪ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ (Skip)tf }

[Lemma J.12]

= {tr ′ − tr | okay ∧ CSP1(tr ′ = tr ∧ ¬ wait ′ ∧ v ′ = v)}
∪ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ CSP1(tr ′ = tr ∧ ¬ wait ′ ∧ v ′ = v)}

[Lemma J.4]

= {tr ′ − tr | okay ∧ tr ′ = tr ∧ ¬ wait ′ ∧ v ′ = v}
∪ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ tr ′ = tr ∧ ¬ wait ′ ∧ v ′ = v}

[PC]

= {tr ′ − tr | okay ∧ tr ′ = tr ∧ ¬ wait ′ ∧ v ′ = v}
∪ {(tr ′ − tr)a 〈X〉 | okay ∧ tr ′ = tr ∧ ¬ wait ′ ∧ v ′ = v}

[SS. and −]

= {〈〉 | okay ∧ tr ′ = tr ∧ ¬ wait ′ ∧ v ′ = v}
∪ {〈X〉 | okay ∧ tr ′ = tr ∧ ¬ wait ′ ∧ v ′ = v}

[Cases and SC]

= {〈〉} ∪ {} ∪ {〈X〉} ∪ {} [ST]

= {〈〉, 〈X〉} [traces]

= traces(SKIP) [Υ]

= traces(Υ(Skip))

Theorem J.3 tracesUT P(Stop) = traces(Υ(Stop))

Proof.

tracesUT P(Stop) [tracesUT P]

= {tr ′ − tr | (Stop)n}
∪ {(tr ′ − tr)a 〈X〉 | (Stop)t}

[At]

= {tr ′ − tr | (Stop)n}
∪ {(tr ′ − tr)a 〈X〉 | ¬ wait ′ ∧ (Stop)n}

[An]

= {tr ′ − tr | ok ∧ ¬ wait ∧ ok ′ ∧ Stop}
∪ {(tr ′ − tr)a 〈X〉 | ok ∧ ¬ wait ∧ ok ′ ∧ ¬ wait ′ ∧ Stop}

[PC]

294

D24.1 - Comp. Anal. of CML Models (Public Document)

= {tr ′ − tr | ok ∧ (Stop)tf }
∪ {(tr ′ − tr)a 〈X〉 | ok ∧ ¬ wait ′ ∧ (Stop)tf }

[Lemma J.13]

= {tr ′ − tr | ok ∧ CSP1(tr ′ = tr ∧ wait ′)}
∪ {(tr ′ − tr)a 〈X〉 | ok ∧ ¬ wait ′ ∧ CSP1(tr ′ = tr ∧ wait ′)}

[Lemma J.4]

= {tr ′ − tr | ok ∧ tr ′ = tr ∧ wait ′}
∪ {(tr ′ − tr)a 〈X〉 | ok ∧ ¬ wait ′ ∧ tr ′ = tr ∧ wait ′}

[PC]

= {tr ′ − tr | ok ∧ tr ′ = tr ∧ wait ′}
∪ {(tr ′ − tr)a 〈X〉 | false}

[SS. and −]

= {〈〉 | ok ∧ tr ′ = tr ∧ ¬ wait ′ ∧ v ′ = v}
∪ {〈X〉 | false}

[Cases and SC]

= {〈〉} ∪ {} ∪ {} [ST]

= {〈〉} [traces]

= traces(STOP) [Υ]

= traces(Υ(Stop))

Theorem J.4 tracesUT P(c → Skip) = traces(Υ(c → Skip))

Proof.

tracesUT P(c → Skip) [tracesUT P]

= {tr ′ − tr | (c → Skip)n}
∪ {(tr ′ − tr)a 〈X〉 | (c → Skip)t}

[At]

= {tr ′ − tr | (c → Skip)n}
∪ {(tr ′ − tr)a 〈X〉 | ¬ wait ′ ∧ (c → Skip)n}

[An]

= {tr ′ − tr | okay ∧ ¬ wait ∧ okay ′ ∧ c → Skip}
∪ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ c → Skip}

[PC]

= {tr ′ − tr | okay ∧ (c → Skip)tf }
∪ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ (c → Skip)tf }

[PC]

= {tr ′ − tr | okay ∧ ((c → Skip)f)
t}

∪ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ ((c → Skip)f)
t}

[Lemma J.3]

= {tr ′ − tr | okay ∧ (CSP1(okay ′ ∧ doC(c, Sync) ∧ v ′ = v))t}
∪ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ (CSP1(okay ′ ∧ doC(c, Sync) ∧ v ′ = v))t}

[PC]

= {tr ′ − tr | (okay ∧ CSP1(okay ′ ∧ doC(c, Sync) ∧ v ′ = v))t}
∪ {(tr ′ − tr)a 〈X〉 | (okay ∧ ¬ wait ′ ∧ CSP1(okay ′ ∧ doC(c, Sync) ∧ v ′ = v))t}

[Lemma J.4]

295

D24.1 - Comp. Anal. of CML Models (Public Document)

= {tr ′ − tr | (okay ∧ okay ′ ∧ doC(c, Sync) ∧ v ′ = v)t}
∪ {(tr ′ − tr)a 〈X〉 | (okay ∧ ¬ wait ′ ∧ okay ′ ∧ doC(c, Sync) ∧ v ′ = v)t}

[PC]

= {tr ′ − tr | okay ∧ doC(c, Sync) ∧ v ′ = v}
∪ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ doC(c, Sync) ∧ v ′ = v}

[PC and doC]

=

{
tr ′ − tr | okay ∧ v ′ = v ∧

(tr ′ = tr ∧ (c, Sync) /∈ ref ′ C wait ′ B tr ′ = tr a 〈 (c, Sync)〉)

}
∪
{

(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ v ′ = v ∧
(tr ′ = tr ∧ (c, Sync) /∈ ref ′ C wait ′ B tr ′ = tr a 〈 (c, Sync)〉)

}
[PC and doC]

= {tr ′ − tr | okay ∧ v ′ = v ∧ wait ′ ∧ tr ′ = tr ∧ (c, Sync) /∈ ref ′}
∪ {tr ′ − tr | okay ∧ v ′ = v ∧ ¬ wait ′ ∧ tr ′ = tr a 〈 (c, Sync)〉}
∪ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ v ′ = v ∧ tr ′ = tr a 〈 (c, Sync)〉}

[SS. and −]

= {〈〉 | okay ∧ v ′ = v ∧ wait ′ ∧ tr ′ = tr ∧ (c, Sync) /∈ ref ′}
∪ {〈(c, Sync)〉 | okay ∧ v ′ = v ∧ ¬ wait ′ ∧ tr ′ = tr a 〈 (c, Sync)〉}
∪ {〈(c, Sync),X〉 | okay ∧ ¬ wait ′ ∧ v ′ = v ∧ tr ′ = tr a 〈 (c, Sync)〉}

[Circus Events (c ≡ (c, Sync))]

= {〈〉 | okay ∧ v ′ = v ∧ wait ′ ∧ tr ′ = tr ∧ c /∈ ref ′}
∪ {〈c〉 | okay ∧ v ′ = v ∧ ¬ wait ′ ∧ tr ′ = tr a 〈 c〉}
∪ {〈c,X〉 | okay ∧ ¬ wait ′ ∧ v ′ = v ∧ tr ′ = tr a 〈 c〉}

[Cases and SC]

= {〈〉} ∪ {}
∪ {〈c〉} ∪ {}
∪ {〈c,X〉} ∪ {}

[ST]

= {〈〉, 〈c〉, 〈c,X〉} [ST]

= {〈〉} ∪ {〈c〉, 〈c,X〉} [SC and a]

= {〈〉} ∪ {〈c〉a s | s ∈ {〈〉, 〈X〉}} [traces]

= {〈〉} ∪ {〈c〉a s | s ∈ traces(SKIP)} [traces]

= traces(c→ SKIP) [Υ]

= traces(Υ(c → Skip))

Theorem J.5 tracesUT P(c → A) = traces(Υ(c → A))
provided c → A is R

Inductive Hypothesis:

tracesUT P(A) = traces(Υ(A))

296

D24.1 - Comp. Anal. of CML Models (Public Document)

Proof.

tracesUT P(c → A) [tracesUT P]

= {tr ′ − tr | (c → A)n}
∪ {(tr ′ − tr)a 〈X〉 | (c → A)t}

[At]

= {tr ′ − tr | (c → A)n}
∪ {(tr ′ − tr)a 〈X〉 | ¬ wait ′ ∧ (c → A)n}

[An]

= {tr ′ − tr | okay ∧ ¬ wait ∧ okay ′ ∧ c → A}
∪ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ c → A}

[PC]

= {tr ′ − tr | okay ∧ (c → A)tf }
∪ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ (c → A)tf }

[Lemma J.6]

= {tr ′ − tr | okay ∧ (CSP1(okay ′ ∧ doC(c, Sync) ∧ v ′ = v); (A)t)}
∪ {(tr ′ − tr)a 〈X〉 |

okay ∧ ¬ wait ′ ∧ (CSP1(okay ′ ∧ doC(c, Sync) ∧ v ′ = v); (A)t)}
[Lemma J.5]

= {tr ′ − tr | okay ∧ ((okay ′ ∧ doC(c, Sync) ∧ v ′ = v); (A)t)}
∪ {(tr ′ − tr)a 〈X〉 |

okay ∧ ¬ wait ′ ∧ ((okay ′ ∧ doC(c, Sync) ∧ v ′ = v); (A)t)}

[doC]

=

tr ′ − tr

| okay ∧

okay ′ ∧ v ′ = v

∧

 tr ′ = tr ∧ (c, Sync) /∈ ref ′

Cwait ′B
tr ′ = tr a 〈 (c, Sync)〉

 ;

(A)t

∪

(tr ′ − tr)a 〈X〉

| okay ∧ ¬ wait ′ ∧

okay ′ ∧ v ′ = v

∧

 tr ′ = tr ∧ (c, Sync) /∈ ref ′

Cwait ′B
tr ′ = tr a 〈 (c, Sync)〉

 ;

(A)t

[PC]

297

D24.1 - Comp. Anal. of CML Models (Public Document)

=

tr ′ − tr

|

 okay ∧

 (
okay ′ ∧ v ′ = v ∧ wait ′

∧ tr ′ = tr ∧ (c, Sync) /∈ ref ′

)
;

(A)t

∨

 okay ∧

 (
okay ′ ∧ v ′ = v ∧ ¬ wait ′

∧ tr ′ = tr a 〈 (c, Sync)〉

)
;

(A)t

∪

(tr ′ − tr)a 〈X〉

|

 okay ∧ ¬ wait ′ ∧

 (
okay ′ ∧ v ′ = v ∧ wait ′

∧ tr ′ = tr ∧ (c, Sync) /∈ ref ′

)
;

(A)t

∨

 okay ∧ ¬ wait ′ ∧

 (
okay ′ ∧ v ′ = v ∧ ¬ wait ′

∧ tr ′ = tr a 〈 (c, Sync)〉

)
;

(A)t

[Lemma J.25 (proviso)]

=

tr ′ − tr
| (okay ∧ v ′ = v ∧ wait ′ ∧ tr ′ = tr ∧ (c, Sync) /∈ ref ′)

∨

 okay ∧

 (
okay ′ ∧ v ′ = v ∧ ¬ wait ′

∧ tr ′ = tr a 〈 (c, Sync)〉

)
;

(A)t

∪

(tr ′ − tr)a 〈X〉
| (okay ∧ ¬ wait ′ ∧ v ′ = v ∧ wait ′ ∧ tr ′ = tr ∧ (c, Sync) /∈ ref ′)

∨

 okay ∧ ¬ wait ′ ∧

 (
okay ′ ∧ v ′ = v ∧ ¬ wait ′

∧ tr ′ = tr a 〈 (c, Sync)〉

)
;

(A)t

[PC and SC]

= {tr ′ − tr | okay ∧ v ′ = v ∧ wait ′ ∧ tr ′ = tr ∧ (c, Sync) /∈ ref ′}

∪

tr ′ − tr

| okay ∧

 (
okay ′ ∧ v ′ = v ∧ ¬ wait ′

∧ tr ′ = tr a 〈 (c, Sync)〉

)
;

(A)t

∪

(tr ′ − tr)a 〈X〉

| okay ∧ ¬ wait ′ ∧

 (
okay ′ ∧ v ′ = v ∧ ¬ wait ′

∧ tr ′ = tr a 〈 (c, Sync)〉

)
;

(A)t

[Lemma J.16]

= {tr ′ − tr | okay ∧ v ′ = v ∧ wait ′ ∧ tr ′ = tr ∧ (c, Sync) /∈ ref ′}
∪ {tr ′ − tr | okay ∧ (A)tf [tr

a 〈(c, Sync)〉/tr]}
∪ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ (A)tf [tr

a 〈(c, Sync)〉/tr]}
[Circus Events (c ≡ (c, Sync))]

298

D24.1 - Comp. Anal. of CML Models (Public Document)

= {tr ′ − tr | okay ∧ v ′ = v ∧ wait ′ ∧ tr ′ = tr ∧ c /∈ ref ′}
∪ {tr ′ − tr | okay ∧ (A)tf [tr

a 〈c〉/tr]}
∪ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ (A)tf [tr

a 〈c〉/tr]}

[Lemma J.20 (proviso)]

= {tr ′ − tr | okay ∧ v ′ = v ∧ wait ′ ∧ tr ′ = tr ∧ c /∈ ref ′}
∪ {〈c〉a (tr ′ − tr) | okay ∧ (A)tf }
∪ {〈c〉a ((tr ′ − tr)a 〈X〉) | okay ∧ ¬ wait ′ ∧ (A)tf }

[SS, − and cases]

= {〈〉} ∪ {}
∪ {〈c〉a (tr ′ − tr) | okay ∧ (A)tf }
∪ {〈c〉a ((tr ′ − tr)a 〈X〉) | okay ∧ ¬ wait ′ ∧ (A)tf }

[ST]

= {〈〉}
∪ {〈c〉a (tr ′ − tr) | okay ∧ (A)tf }
∪ {〈c〉a ((tr ′ − tr)a 〈X〉) | okay ∧ ¬ wait ′ ∧ (A)tf }

[PC]

= {〈〉}
∪{〈c〉a (tr ′ − tr) | okay ∧ ¬ wait ∧ okay ′ ∧ (A)}
∪{〈c〉a (tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ (A)}

[SC]

= {〈〉}
∪{〈c〉a s | s ∈ {tr ′ − tr | okay ∧ ¬ wait ∧ okay ′ ∧ A)}}
∪{〈c〉a s | s ∈ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ A}}

[An]

= {〈〉}
∪{〈c〉a s | s ∈ {tr ′ − tr | (A)n}}
∪{〈c〉a s | s ∈ {(tr ′ − tr)a 〈X〉 | ¬ wait ′ ∧ (A)n}}

[At]

= {〈〉}
∪{〈c〉a s | s ∈ {tr ′ − tr | (A)n}}
∪{〈c〉a s | s ∈ {(tr ′ − tr)a 〈X〉 | (A)t}}

[SC and ST]

= {〈〉}

∪
{
〈c〉a s | s ∈

{
{tr ′ − tr | (A)n}
∪ {(tr ′ − tr)a 〈X〉 | (A)t}

} } [tracesUT P]

= {〈〉} ∪ {〈c〉a s | s ∈ tracesUT P(A)} [IH]

= {〈〉} ∪ {〈c〉a s | s ∈ traces(Υ(A))} [traces]

= traces(c→Υ(A)) [Υ]

= traces(Υ(c → A))

Theorem J.6 tracesUT P(c.v → A) = traces(Υ(c.v → A))
provided A is R

299

D24.1 - Comp. Anal. of CML Models (Public Document)

Inductive Hypothesis:

tracesUT P(A) = traces(Υ(A))

Proof. Identical to that of Theorem J.5, but replacing Sync by v .

Theorem J.7 tracesUT P(c!v → A) = traces(Υ(c.v → A))
provided A is R

Proof. Using the Circus semantics of c!v → A ≡ c.v → A and Theo-
rem J.6.

Theorem J.8

tracesUT P(c?x : P → A) = traces(Υ(c?x : P → A))

provided

1. c?x : P → A is R

2. c?x : P → A is divergence-free

Inductive Hypothesis (A):

∀ v : S • tracesUT P(A[v/x])) = traces(Υ(A)[v/x])

Proof.

tracesUT P(c?x : P → A) [Property of Circus input]

= tracesUT P(2 v : {x : δ(c) | P} • c.v → A[v/x])

[Theorems J.11 and J.6 (IH)]

= traces(Υ(2 v : {x : δ(c) | P} • c.v → A[v/x]))

[Property of Circus input]

= traces(Υ(c?x : P → A))

Theorem J.9

tracesUT P(c?x → A) = traces(Υ(c?x → A))

provided

300

D24.1 - Comp. Anal. of CML Models (Public Document)

1. c?x : P → A is R

2. c?x : P → A is divergence-free

3. ∀ v : S • tracesUT P(A[v/x])) = traces(Υ(A)[v/x])

Proof.

Proof. Using the Circus semantics of c?x → A ≡ c?x : true → A and
Theorem J.8.

Theorem J.10 tracesUT P(A 2 B) = traces(Υ(A 2 B))
provided

1. A and B are R

2. A and B are divergence-free

Inductive Hypothesis:

tracesUT P(A) = traces(Υ(A))
tracesUT P(B) = traces(Υ(B))

Proof.

tracesUT P(A 2 B) [tracesUT P]

= {tr ′ − tr | (A 2 B)n}
∪ {(tr ′ − tr)a 〈X〉 | (A 2 B)t}

[At]

= {tr ′ − tr | (A 2 B)n}
∪ {(tr ′ − tr)a 〈X〉 | ¬ wait ′ ∧ (A 2 B)n}

[An]

=

{
tr ′ − tr
| okay ∧ ¬ wait ∧ okay ′ ∧ A 2 B

}
∪{

(tr ′ − tr)a 〈X〉
| okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ A 2 B

}
[PC]

=

{
tr ′ − tr
| okay ∧ (A 2 B)tf

}
∪{

(tr ′ − tr)a 〈X〉
| okay ∧ ¬ wait ′ ∧ (A 2 B)tf

}
[Lemma J.17]

301

D24.1 - Comp. Anal. of CML Models (Public Document)

=

tr ′ − tr

| okay ∧ CSP1

(¬ (A)ff ∧ ¬ (B)ff)

⇒ ((A)tf ∧ (B)tf)
Ctr ′ = tr ∧ wait ′B
((A)tf ∨ (B)tf)

∪

(tr ′ − tr)a 〈X〉

| okay ∧ ¬ wait ′ ∧ CSP1

(¬ (A)ff ∧ ¬ (B)ff)

⇒ ((A)tf ∧ (B)tf)
Ctr ′ = tr ∧ wait ′B
((A)tf ∨ (B)tf)

[Lemma J.4]

=

tr ′ − tr

| okay ∧

(¬ (A)ff ∧ ¬ (B)ff)

⇒ ((A)tf ∧ (B)tf)
Ctr ′ = tr ∧ wait ′B
((A)tf ∨ (B)tf)

∪

(tr ′ − tr)a 〈X〉

| okay ∧ ¬ wait ′ ∧

(¬ (A)ff ∧ ¬ (B)ff)

⇒ ((A)tf ∧ (B)tf)
Ctr ′ = tr ∧ wait ′B
((A)tf ∨ (B)tf)

[Proviso 2 and PC]

=

tr ′ − tr

| okay ∧

 (tr ′ = tr ∧ wait ′ ∧ (A)tf ∧ (B)tf)
∨ (¬ (tr ′ = tr ∧ wait ′) ∧ (A)tf)
∨ (¬ (tr ′ = tr ∧ wait ′) ∧ (B)tf)

∪
{(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ ((A)tf ∨ (B)tf)}

[SC]

302

D24.1 - Comp. Anal. of CML Models (Public Document)

= {tr ′ − tr | okay ∧ tr ′ = tr ∧ wait ′ ∧ (A)tf ∧ (B)tf }
∪ {tr ′ − tr | okay ∧ ¬ (tr ′ = tr ∧ wait ′) ∧ (A)tf }
∪ {tr ′ − tr | okay ∧ ¬ (tr ′ = tr ∧ wait ′) ∧ (B)tf }
∪ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ (A)tf }
∪ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ (B)tf }

[Cases, −, PC and SC]

= {〈〉}
∪ {tr ′ − tr | okay ∧ ¬ (tr ′ = tr ∧ wait ′) ∧ (A)tf }
∪ {tr ′ − tr | okay ∧ ¬ (tr ′ = tr ∧ wait ′) ∧ (B)tf }
∪ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ (A)tf }
∪ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ (B)tf }

[Lemma J.21]

= {〈〉}
∪ {tr ′ − tr | okay ∧ (A)tf }
∪ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ (A)tf }
∪ {tr ′ − tr | okay ∧ (B)tf }
∪ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ (A)tf }

[PC]

= {〈〉}
∪ {tr ′ − tr | okay ∧ ¬ wait ∧ okay ′ ∧ A}
∪ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ A}
∪ {tr ′ − tr | okay ∧ ¬ wait ∧ okay ′ ∧ B}
∪ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ (B}

[An]

= {〈〉}
∪ {tr ′ − tr | (A)n}
∪ {(tr ′ − tr)a 〈X〉 | ¬ wait ′ ∧ (A)n}
∪ {tr ′ − tr | (B)n}
∪ {(tr ′ − tr)a 〈X〉 | ¬ wait ′ ∧ (B)n}

[At]

= {〈〉}
∪ {tr ′ − tr | (A)n}
∪ {(tr ′ − tr)a 〈X〉 | (A)t}
∪ {tr ′ − tr | (B)n}
∪ {(tr ′ − tr)a 〈X〉 | (B)t}

[tracesUT P]

= {〈〉} ∪ tracesUT P(A) ∪ tracesUT P(B) [IH]

= {〈〉} ∪ traces(Υ(A)) ∪ traces(Υ(B)) [traces]

= {〈〉} ∪ traces(Υ(A) 2 Υ(B)) [traces prefix-closed]

= traces(Υ(A) 2 Υ(B)) [Υ]

= traces(Υ(A 2 B))

303

D24.1 - Comp. Anal. of CML Models (Public Document)

Theorem J.11

tracesUT P(2 x : S • A) = traces(Υ(2 x : S • A))

provided

1. ∀ i : S • A[vi/x] is R

2. ∀ i : S • A[vi/x] is divergence-free

Inductive Hypothesis (A):

∀ i : S • tracesUT P(A[vi/x]) = traces(Υ(A)[vi/x])

Proof. By induction on S

Base Case. S = {}
Proof.

tracesUT P(2 x : S • A) [Assumption]

= tracesUT P(2 x : {} • A) [Property of 2]

= tracesUT P(Stop) [Theorem J.3]

= traces(Υ(Stop)) [Property of 2]

= traces(Υ(2 x : {} • A)) [Assumption]

= traces(Υ(2 x : S • A))

Inductive Hypothesis (S):

tracesUT P(2 x : S • A) = traces(Υ(2 x : S • A))

Inductive Step

tracesUT P(2 x : S ∪ {vi} • A) = traces(Υ(2 x : S ∪ {vi} • A))

Proof.

tracesUT P(2 x : S ∪ {vi} • A) [2]

= tracesUT P(A[vi/x] 2 (2 x : S \ {vi} • A))

[Theorem J.10 (Provisos, IH-A and IH-S)]

= traces(Υ(A[vi/x] 2 (2 x : S \ {vi} • A))) [2]

= traces(Υ(2 x : S ∪ {vi} • A))

304

D24.1 - Comp. Anal. of CML Models (Public Document)

Theorem J.12 tracesUT P(A u B) = traces(Υ(A u B))

Inductive Hypothesis:

tracesUT P(A) = traces(Υ(A))
tracesUT P(B) = traces(Υ(B))

Proof.

tracesUT P(A u B) [tracesUT P]

= {tr ′ − tr | (A u B)n}
∪ {(tr ′ − tr)a 〈X〉 | (A u B)t}

[At]

= {tr ′ − tr | (A u B)n}
∪ {(tr ′ − tr)a 〈X〉 | ¬ wait ′ ∧ (A u B)n}

[An]

=

{
tr ′ − tr
| okay ∧ ¬ wait ∧ okay ′ ∧ A u B

}
∪{

(tr ′ − tr)a 〈X〉
| okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ A u B

}
[PC]

=

{
tr ′ − tr
| okay ∧ (A u B)tf

}
∪{

(tr ′ − tr)a 〈X〉
| okay ∧ ¬ wait ′ ∧ (A u B)tf

}
[]

=

{
tr ′ − tr
| okay ∧ (A ∨ B)tf

}
∪{

(tr ′ − tr)a 〈X〉
| okay ∧ ¬ wait ′ ∧ (A ∨ B)tf

}
[PC]

=

{
tr ′ − tr
| okay ∧ (A)tf ∨ (B)tf

}
∪{

(tr ′ − tr)a 〈X〉
| okay ∧ ¬ wait ′ ∧ (A)tf ∨ (B)tf

}
[PC, SC and ST]

= {tr ′ − tr | okay ∧ (A)tf }
∪ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ (A)tf }
∪ {tr ′ − tr | okay ∧ (B)tf }
∪ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ (A)tf }

[PC]

305

D24.1 - Comp. Anal. of CML Models (Public Document)

= {tr ′ − tr | okay ∧ ¬ wait ∧ okay ′ ∧ A}
∪ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ A}
∪ {tr ′ − tr | okay ∧ ¬ wait ∧ okay ′ ∧ B}
∪ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ (B}

[An]

= {tr ′ − tr | (A)n}
∪ {(tr ′ − tr)a 〈X〉 | ¬ wait ′ ∧ (A)n}
∪ {tr ′ − tr | (B)n}
∪ {(tr ′ − tr)a 〈X〉 | ¬ wait ′ ∧ (B)n}

[At]

= {tr ′ − tr | (A)n}
∪ {(tr ′ − tr)a 〈X〉 | (A)t}
∪ {tr ′ − tr | (B)n}
∪ {(tr ′ − tr)a 〈X〉 | (B)t}

[tracesUT P]

= tracesUT P(A) ∪ tracesUT P(B) [IH]

= traces(Υ(A)) ∪ traces(Υ(A)) [traces]

= traces(Υ(A) u Υ(B)) [Υ]

= traces(Υ(A u B))

Theorem J.13

tracesUT P(u x : S • A) = traces(Υ(u x : S • A))

provided

1. ∀ i : S • A[vi/x] is R

2. ∀ i : S • A[vi/x] is divergence-free

3. S 6= {}

Inductive Hypothesis (A):

∀ i : S • tracesUT P(A[vi/x]) = traces(Υ(A)[vi/x])

Proof. By induction on S

Base Case. S = {v}
Proof.

tracesUT P(u x : S • A) [Assumption]

306

D24.1 - Comp. Anal. of CML Models (Public Document)

= tracesUT P(u x : {v} • A) [u]

= tracesUT P(A[v/x]) [IH]

= traces(Υ(A[v/x])) [u]

= traces(Υ(u x : {v} • A)) [Assumption]

= traces(Υ(u x : S • A))

Inductive Hypothesis (S):

tracesUT P(u x : S • A) = traces(Υ(u x : S • A))

Inductive Step

tracesUT P(u x : S ∪ {vi} • A) = traces(Υ(u x : S ∪ {vi} • A))

Proof.

tracesUT P(u x : S ∪ {vi} • A) [u]

= tracesUT P(A[vi/x] u (u x : S \ {vi} • A))

[Theorem J.12 (Provisos, IH-A and IH-S)]

= traces(Υ(A[vi/x] 2 (u x : S \ {vi} • A))) [u]

= traces(Υ(u x : S ∪ {vi} • A))

Theorem J.14 tracesUT P(g & A) = traces(Υ(g & A))

Inductive Hypothesis:

tracesUT P(A) = traces(Υ(A))

Proof. The proof will be conducted by cases on g .

Case 1. g is false
Proof.

tracesUT P(g & A) [Assumption]

= tracesUT P(false & A) [Law 38]

= tracesUT P(Stop) [Theorem J.3]

= traces(Υ(Stop)) [Law 38]

= traces(Υ(false & A)) [Assumption]

= traces(Υ(g & A))

307

D24.1 - Comp. Anal. of CML Models (Public Document)

Case 2. g is true
Proof.

tracesUT P(g & A) [Assumption]

= tracesUT P(true & A) [Law 37]

= tracesUT P(A) [IH]

= traces(Υ(A)) [Law 37]

= traces(Υ(true & A)) [Assumption]

= traces(Υ(g & A))

Theorem J.15 tracesUT P(P ; Q) = traces(Υ(P ; Q))
provided

1. P and Q are divergence-free

2. P = R(Ppre ` Ppost) and Q = R(Qpre ` Qpost)

3. Ppre does not mention any dashed variable

4. Ppost and Qpost are R1 and R2

Inductive Hypothesis:

tracesUT P(P) = traces(Υ(P))
and
tracesUT P(Q) = traces(Υ(Q))

Proof.

tracesUT P(P ; Q) [tracesUT P]

= {tr ′ − tr | (P ; Q)n}
∪ {(tr ′ − tr)a 〈X〉 | (P ; Q)t}

[At]

= {tr ′ − tr | (P ; Q)n}
∪ {(tr ′ − tr)a 〈X〉 | ¬ wait ′ ∧ (P ; Q)n}

[An]

= {tr ′ − tr | okay ∧ ¬ wait ∧ okay ′ ∧ P ; Q}
∪ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ P ; Q}

[PC]

= {tr ′ − tr | okay ∧ (P ; Q)tf }
∪ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ (P ; Q)tf }

[Lemma J.19 (Assumptions)]

308

D24.1 - Comp. Anal. of CML Models (Public Document)

=

tr ′ − tr |

okay ∧ CSP1

(
(wait ′ ∧ Ppost)
∨ ((okay ′ ∧ ¬ wait ′ ∧ Ppost); Qpost)

)
∪

(tr ′ − tr)a 〈X〉 |

okay ∧ ¬ wait ′ ∧ CSP1

(
(wait ′ ∧ Ppost)
∨ ((okay ′ ∧ ¬ wait ′ ∧ Ppost); Qpost)

)
[Lemma J.4, PC, SC and ST]

= {tr ′ − tr | okay ∧ wait ′ ∧ Ppost}
∪ {tr ′ − tr | okay ∧ ((okay ′ ∧ ¬ wait ′ ∧ Ppost); Qpost)}
∪ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ ((okay ′ ∧ ¬ wait ′ ∧ Ppost); Qpost)}

[Sequence and PC]

= {tr ′ − tr | okay ∧ wait ′ ∧ Ppost}
∪ {tr ′ − tr | ((okay ∧ ¬ wait ′ ∧ Ppost); (okay ∧ Qpost))}
∪ {(tr ′ − tr)a 〈X〉 | ((okay ∧ ¬ wait ′ ∧ Ppost); (okay ∧ ¬ wait ′ ∧ Qpost))}

[Sequence, PC and SC]

= {tr ′ − tr | okay ∧ wait ′ ∧ Ppost}

∪

s a t |

s ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ Ppost}
∧ t ∈ {tr ′ − tr | okay ∧ Qpost}

∪

s a t a 〈X〉 |

s ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ Ppost}
∧ t ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ Qpost}

[SC and ST’(t might be 〈〉 based on Lemma J.15)]

= {tr ′ − tr | okay ∧ wait ′ ∧ Ppost}
∪ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ Ppost}

∪

s a t |

s ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ Ppost}
∧ t ∈ {tr ′ − tr | okay ∧ Qpost}

∪

s a t a 〈X〉 |

s ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ Ppost}
∧ t ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ Qpost}

[Cases on wait ′, PC, SC and ST]

= {tr ′ − tr | okay ∧ Ppost}

∪

s a t |

s ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ Ppost}
∧ t ∈ {tr ′ − tr | okay ∧ Qpost}

∪

s a t a 〈X〉 |

s ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ Ppost}
∧ t ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ Qpost}

[SC]

309

D24.1 - Comp. Anal. of CML Models (Public Document)

= {tr ′ − tr | okay ∧ Ppost}

∪

s a t |

s ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ Ppost}
∧ t ∈ {tr ′ − tr | okay ∧ Qpost}

∪

s a t |

s ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ Ppost}
∧ t ∈ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ Qpost}

[Lemma J.4 and Assumption 4]

= {tr ′ − tr | okay ∧ CSP1(R1(R2(Ppost)))}

∪

s a t |

s ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ CSP1(R1(R2(Ppost)))}
∧ t ∈ {tr ′ − tr | okay ∧ CSP1(R1(R2(Qpost)))}

∪

s a t |

s ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ CSP1(R1(R2(Ppost)))}
∧ t ∈ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ CSP1(R1(R2(Qpost)))}

[Lemma J.8 and PC]

= {tr ′ − tr | okay ∧ (R(true ` Ppost))
t
f }

∪

s a t |

s ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (R(true ` Ppost))
t
f }

∧ t ∈ {tr ′ − tr | okay ∧ (R(true ` Qpost))
t
f }

∪

s a t |

s ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (R(true ` Ppost))
t
f }

∧ t ∈ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ (R(true ` Qpost))
t
f }

[Assumption 1]

= {tr ′ − tr | okay ∧ (R(Ppre ` Ppost))
t
f }

∪

s a t |

s ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (R(Ppre ` Ppost))
t
f }

∧ t ∈ {tr ′ − tr | okay ∧ (R(Qpre ` Qpost))
t
f }

∪

s a t |

s ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (R(Ppre ` Ppost))
t
f }

∧ t ∈ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ (R(Qpre ` Qpost))
t
f }

[Assumption 2]

310

D24.1 - Comp. Anal. of CML Models (Public Document)

= {tr ′ − tr | okay ∧ (P)tf }

∪

s a t |

s ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ t ∈ {tr ′ − tr | okay ∧ (Q)tf }

∪

s a t |

s ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ t ∈ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ (Q)tf }

[PC]

= {tr ′ − tr | okay ∧ ¬ wait ∧ okay ′ ∧ (P)}

∪

s a t |

s ∈ {tr ′ − tr | okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ (P)}
∧ t ∈ {tr ′ − tr | okay ∧ ¬ wait ∧ okay ′ ∧ (Q)}

∪

s a t |

s ∈ {tr ′ − tr | okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ (P)}
∧ t ∈ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ (Q)}

[An]

= {tr ′ − tr | (P)n}

∪

s a t |

s ∈ {tr ′ − tr | ¬ wait ′ ∧ (P)n}
∧ t ∈ {tr ′ − tr | (Q)n}

∪

s a t |

s ∈ {tr ′ − tr | ¬ wait ′ ∧ (P)n}
∧ t ∈ {(tr ′ − tr)a 〈X〉 | ¬ wait ′ ∧ (Q)n}

[At]

= {tr ′ − tr | (P)n}

∪

s a t |

s ∈ {tr ′ − tr | (P)t}
∧ t ∈ {tr ′ − tr | (Q)n}

∪

s a t |

s ∈ {tr ′ − tr | (P)t}
∧ t ∈ {(tr ′ − tr)a 〈X〉 | (Q)t}

[PC and SC (tr , tr ′ : seq Σ and X /∈ Σ)]

= {tr ′ − tr | (P)n}

∪

s a t |

s a 〈X〉 ∈ {(tr ′ − tr)a 〈X〉 | (P)t}

∧ t ∈
(
{tr ′ − tr | (Q)n}
∪ {(tr ′ − tr)a 〈X〉 | (Q)t}

)

[SC and ST (tr , tr ′ : seq Σ and X /∈ Σ)]

311

D24.1 - Comp. Anal. of CML Models (Public Document)

=

((
{tr ′ − tr | (P)n}
∪ {(tr ′ − tr)a 〈X〉 | (P)t}

)
∩ Σ∗

)

∪

s a t |

s a 〈X〉 ∈
(
{tr ′ − tr | (P)n}
∪ {(tr ′ − tr)a 〈X〉 | (P)t}

)
∧ t ∈

(
{tr ′ − tr | (Q)n}
∪ {(tr ′ − tr)a 〈X〉 | (Q)t}

)

[tracesUT P]

= (tracesUT P(P) ∩ Σ∗)
∪{s a t | s a 〈X〉 ∈ tracesUT P(P) ∧ t ∈ tracesUT P(Q)}

[IH]

= (traces(Υ(P)) ∩ Σ∗) ∪ {s a t | s a 〈X〉 ∈ traces(Υ(P)) ∧ t ∈ traces(Υ(Q))}[traces]

= traces(Υ(P); Υ(Q)) [Υ]

= traces(Υ(P ; Q))

Theorem J.16

tracesUT P(o
9 x : S • A) = traces(Υ(o

9 x : S • A))

provided

1. ∀ i : S • A[vi/x] is R

2. ∀ i : S • A[vi/x] is divergence-free

Inductive Hypothesis (A):

∀ i : S • tracesUT P(A[vi/x]) = traces(Υ(A)[vi/x])

Proof. By induction on S

Base Case. S = 〈〉
Proof.

tracesUT P(o
9 x : S • A) [Assumption]

= tracesUT P(o
9 x : 〈〉 • A) [Property of o

9]

= tracesUT P(Skip) [Theorem J.2]

= traces(Υ(Skip)) [Property of o
9]

= traces(Υ(o
9 x : 〈〉 • A)) [Assumption]

312

D24.1 - Comp. Anal. of CML Models (Public Document)

= traces(Υ(o
9 x : S • A))

Inductive Hypothesis (S):

tracesUT P(o
9 x : S • A) = traces(Υ(o

9 x : S • A))

Inductive Step

tracesUT P(o
9 x : S ∪ {vi} • A) = traces(Υ(o

9 x : S ∪ {vi} • A))

Proof.

tracesUT P(o
9 x : S • A) [o9]

= tracesUT P(A[head(s)/x]; (o
9 x : tail(S) • A))

[Theorem J.15 (Provisos, IH-A and IH-S)]

= traces(Υ(A[head(vi)/x]; (o
9 x : tail(S) • A))) [o9]

= traces(Υ(o
9 x : S • A))

Theorem J.17

tracesUT P(P |[ns1 | cs | ns2]|Q)
=
traces(Υ(P |[ns1 | cs | ns2]|Q))

provided

1. P and Q are divergence-free

Inductive Hypothesis:

tracesUT P(P) = traces(Υ(P))
and
tracesUT P(Q) = traces(Υ(Q))

Proof.

tracesUT P(P |[ns1 | cs | ns2]|Q) [tracesUT P]

= {tr ′ − tr | (P |[ns1 | cs | ns2]|Q)n}
∪ {(tr ′ − tr)a 〈X〉 | (P |[ns1 | cs | ns2]|Q)t}

[At]

313

D24.1 - Comp. Anal. of CML Models (Public Document)

= {tr ′ − tr | (P |[ns1 | cs | ns2]|Q)n}
∪ {(tr ′ − tr)a 〈X〉 | ¬ wait ′ ∧ (P |[ns1 | cs | ns2]|Q)n}

[An]

= {tr ′ − tr | okay ∧ ¬ wait ∧ okay ′ ∧ P |[ns1 | cs | ns2]|Q}
∪ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ P |[ns1 | cs | ns2]|Q}

[PC]

= {tr ′ − tr | okay ∧ (P |[ns1 | cs | ns2]|Q)tf }
∪ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ (P |[ns1 | cs | ns2]|Q)tf }

[Lemma J.28 (Assumptions)]

=

tr ′ − tr |
okay

∧ CSP1

R1

 ∃ 1.tr ′, 2.tr ′ • (P f
f ; 1.tr ′ = tr)

∧ (Qf ; 2.tr ′ = tr)
∧ 1.tr ′ � cs = 2.tr ′ � cs

∨ R1

 ∃ 1.tr ′, 2.tr ′ • (Pf ; 1.tr ′ = tr)

∧ (Q f
f ; 2.tr ′ = tr)

∧ 1.tr ′ � cs = 2.tr ′ � cs

∨

((
(P t

f ; U 1(outαP))
∧ (Q t

f ; U 2(outαQ))

)
+{v ,tr}

; M‖cs

)

∪

(tr ′ − tr)a 〈X〉 |
okay ∧ ¬ wait ′

∧ CSP1

R1

 ∃ 1.tr ′, 2.tr ′ • (P f
f ; 1.tr ′ = tr)

∧ (Qf ; 2.tr ′ = tr)
∧ 1.tr ′ � cs = 2.tr ′ � cs

∨ R1

 ∃ 1.tr ′, 2.tr ′ • (Pf ; 1.tr ′ = tr)

∧ (Q f
f ; 2.tr ′ = tr)

∧ 1.tr ′ � cs = 2.tr ′ � cs

∨

((
(P t

f ; U 1(outαP))
∧ (Q t

f ; U 2(outαQ))

)
+{v ,tr}

; M‖cs

)

[Lemma J.4]

314

D24.1 - Comp. Anal. of CML Models (Public Document)

=

tr ′ − tr |
okay

∧

R1

 ∃ 1.tr ′, 2.tr ′ • (P f
f ; 1.tr ′ = tr)

∧ (Qf ; 2.tr ′ = tr)
∧ 1.tr ′ � cs = 2.tr ′ � cs

∨ R1

 ∃ 1.tr ′, 2.tr ′ • (Pf ; 1.tr ′ = tr)

∧ (Q f
f ; 2.tr ′ = tr)

∧ 1.tr ′ � cs = 2.tr ′ � cs

∨

((
(P t

f ; U 1(outαP))
∧ (Q t

f ; U 2(outαQ))

)
+{v ,tr}

; M‖cs

)

∪

(tr ′ − tr)a 〈X〉 |
okay ∧ ¬ wait ′

∧

R1

 ∃ 1.tr ′, 2.tr ′ • (P f
f ; 1.tr ′ = tr)

∧ (Qf ; 2.tr ′ = tr)
∧ 1.tr ′ � cs = 2.tr ′ � cs

∨ R1

 ∃ 1.tr ′, 2.tr ′ • (Pf ; 1.tr ′ = tr)

∧ (Q f
f ; 2.tr ′ = tr)

∧ 1.tr ′ � cs = 2.tr ′ � cs

∨

((
(P t

f ; U 1(outαP))
∧ (Q t

f ; U 2(outαQ))

)
+{v ,tr}

; M‖cs

)

[Assumption 1]

315

D24.1 - Comp. Anal. of CML Models (Public Document)

=

tr ′ − tr |
okay

∧

R1

 ∃ 1.tr ′, 2.tr ′ • (false; 1.tr ′ = tr)
∧ (Qf ; 2.tr ′ = tr)
∧ 1.tr ′ � cs = 2.tr ′ � cs

∨ R1

 ∃ 1.tr ′, 2.tr ′ • (Pf ; 1.tr ′ = tr)
∧ (false; 2.tr ′ = tr)
∧ 1.tr ′ � cs = 2.tr ′ � cs

∨

((
(P t

f ; U 1(outαP))
∧ (Q t

f ; U 2(outαQ))

)
+{v ,tr}

; M‖cs

)

∪

(tr ′ − tr)a 〈X〉 |
okay ∧ ¬ wait ′

∧

R1

 ∃ 1.tr ′, 2.tr ′ • (false; 1.tr ′ = tr)
∧ (Qf ; 2.tr ′ = tr)
∧ 1.tr ′ � cs = 2.tr ′ � cs

∨ R1

 ∃ 1.tr ′, 2.tr ′ • (Pf ; 1.tr ′ = tr)
∧ (false; 2.tr ′ = tr)
∧ 1.tr ′ � cs = 2.tr ′ � cs

∨

((
(P t

f ; U 1(outαP))
∧ (Q t

f ; U 2(outαQ))

)
+{v ,tr}

; M‖cs

)

[Sequence and PC]

=

tr ′ − tr |

okay

∧

((
(P t

f ; U 1(outαP))
∧ (Q t

f ; U 2(outαQ))

)
+{v ,tr}

; M‖cs

)

∪

(tr ′ − tr)a 〈X〉 |

okay ∧ ¬ wait ′

∧

((
(P t

f ; U 1(outαP))
∧ (Q t

f ; U 2(outαQ))

)
+{v ,tr}

; M‖cs

)

[M‖cs]

316

D24.1 - Comp. Anal. of CML Models (Public Document)

=

tr ′ − tr |
okay

∧

(
(P t

f ; U 1(outαP))
∧ (Q t

f ; U 2(outαQ))

)
+{v ,tr}

;

tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)
∧ 1.tr � cs = 2.tr � cs

∧

 (1.wait ∨ 2.wait)

∧ ref ′ ⊆
(

((1.ref ∪ 2.ref) ∩ cs)
∪((1.ref ∩ 2.ref) \ cs)

)
Cwait ′B
(¬ 1.wait ∧ ¬ 2.wait ∧ MSt)

∪

(tr ′ − tr)a 〈X〉 |
okay ∧ ¬ wait ′

∧

(
(P t

f ; U 1(outαP))
∧ (Q t

f ; U 2(outαQ))

)
+{v ,tr}

;

tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)
∧ 1.tr � cs = 2.tr � cs

∧

 (1.wait ∨ 2.wait)

∧ ref ′ ⊆
(

((1.ref ∪ 2.ref) ∩ cs)
∪((1.ref ∩ 2.ref) \ cs)

)
Cwait ′B
(¬ 1.wait ∧ ¬ 2.wait ∧ MSt)

[Sequence, PC and ST]

317

D24.1 - Comp. Anal. of CML Models (Public Document)

=

tr ′ − tr |
okay ∧ wait ′

∧

(
(P t

f ; U 1(outαP))
∧ (Q t

f ; U 2(outαQ))

)
+{v ,tr}

;
tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)
∧ 1.tr � cs = 2.tr � cs
∧ (1.wait ∨ 2.wait)

∧ ref ′ ⊆
(

((1.ref ∪ 2.ref) ∩ cs)
∪((1.ref ∩ 2.ref) \ cs)

)

∪

tr ′ − tr |
okay ∧ ¬ wait ′

∧

(

(P t
f ; U 1(outαP))

∧ (Q t
f ; U 2(outαQ))

)
+{v ,tr}

; tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)
∧ 1.tr � cs = 2.tr � cs
∧ (¬ 1.wait ∧ ¬ 2.wait ∧ MSt)

∪

(tr ′ − tr)a 〈X〉 |
okay ∧ ¬ wait ′

∧

(

(P t
f ; U 1(outαP))

∧ (Q t
f ; U 2(outαQ))

)
+{v ,tr}

; tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)
∧ 1.tr � cs = 2.tr � cs
∧ (¬ 1.wait ∧ ¬ 2.wait ∧ MSt)

[Lemma J.31]

318

D24.1 - Comp. Anal. of CML Models (Public Document)

=

tr ′ − tr |
okay ∧ wait ′

∧

(
(P t

f ; U 1(outαP))
∧ (Q t

f ; U 2(outαQ))

)
+{v ,tr}

;
tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)
∧ 1.tr � cs = 2.tr � cs
∧ (1.wait ∨ 2.wait)

∧ ref ′ ⊆
(

((1.ref ∪ 2.ref) ∩ cs)
∪((1.ref ∩ 2.ref) \ cs)

)

∪
⋃{ s ‖

csX
t | s ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ t ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (Q)tf }

}

∪

(tr ′ − tr)a 〈X〉 |
okay ∧ ¬ wait ′

∧

(

(P t
f ; U 1(outαP))

∧ (Q t
f ; U 2(outαQ))

)
+{v ,tr}

; tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)
∧ 1.tr � cs = 2.tr � cs
∧ (¬ 1.wait ∧ ¬ 2.wait ∧ MSt)

[Lemma J.32]

=

tr ′ − tr |
okay ∧ wait ′

∧

(
(P t

f ; U 1(outαP))
∧ (Q t

f ; U 2(outαQ))

)
+{v ,tr}

;
tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)
∧ 1.tr � cs = 2.tr � cs
∧ (1.wait ∨ 2.wait)

∧ ref ′ ⊆
(

((1.ref ∪ 2.ref) ∩ cs)
∪((1.ref ∩ 2.ref) \ cs)

)

∪
⋃{ s ‖

csX
t | s ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ t ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (Q)tf }

}
∪
⋃{ s a 〈X〉 ‖

csX
t a 〈X〉 | s ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (P)tf }

∧ t ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (Q)tf }

}
[PC, Sequential Composition, SC, and ST]

319

D24.1 - Comp. Anal. of CML Models (Public Document)

=

tr ′ − tr |
okay ∧ wait ′

∧

(
(P t

f ; U 1(outαP))
∧ (Q t

f ; U 2(outαQ))

)
+{v ,tr}

;
tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)
∧ 1.tr � cs = 2.tr � cs
∧ (1.wait ∧ 2.wait)

∧ ref ′ ⊆
(

((1.ref ∪ 2.ref) ∩ cs)
∪((1.ref ∩ 2.ref) \ cs)

)

∪

tr ′ − tr |
okay ∧ wait ′

∧

(
(P t

f ; U 1(outαP))
∧ (Q t

f ; U 2(outαQ))

)
+{v ,tr}

;
tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)
∧ 1.tr � cs = 2.tr � cs
∧ (1.wait ∧ ¬ 2.wait)

∧ ref ′ ⊆
(

((1.ref ∪ 2.ref) ∩ cs)
∪((1.ref ∩ 2.ref) \ cs)

)

∪

tr ′ − tr |
okay ∧ wait ′

∧

(
(P t

f ; U 1(outαP))
∧ (Q t

f ; U 2(outαQ))

)
+{v ,tr}

;
tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)
∧ 1.tr � cs = 2.tr � cs
∧ (¬ 1.wait ∨ 2.wait)

∧ ref ′ ⊆
(

((1.ref ∪ 2.ref) ∩ cs)
∪((1.ref ∩ 2.ref) \ cs)

)

∪
⋃{ s ‖

csX
t | s ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ t ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (Q)tf }

}
∪
⋃{ s a 〈X〉 ‖

csX
t a 〈X〉 | s ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (P)tf }

∧ t ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (Q)tf }

}
[Lemmas J.33, J.34, and J.35]

=
⋃{ s ‖

csX
t | s ∈ {tr ′ − tr | okay ∧ wait ′ ∧ (P)tf }
∧ t ∈ {tr ′ − tr | okay ∧ wait ′ ∧ (Q)tf }

}
∪
⋃{ s ‖

csX
t | s ∈ {tr ′ − tr | okay ∧ wait ′ ∧ (P)tf }
∧ t ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (Q)tf }

}
∪
⋃{ s ‖

csX
t | s ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ t ∈ {tr ′ − tr | okay ∧ wait ′ ∧ (Q)tf }

}

320

D24.1 - Comp. Anal. of CML Models (Public Document)

∪
⋃{ s ‖

csX
t | s ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ t ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (Q)tf }

}
∪
⋃{ s a 〈X〉 ‖

csX
t a 〈X〉 | s ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (P)tf }

∧ t ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (Q)tf }

}
[ST]

=
⋃{ s ‖

csX
t | s ∈ {tr ′ − tr | okay ∧ wait ′ ∧ (P)tf }
∧ t ∈ {tr ′ − tr | okay ∧ wait ′ ∧ (Q)tf }

}
∪
⋃{ s ‖

csX
t | s ∈ {tr ′ − tr | okay ∧ wait ′ ∧ (P)tf }
∧ t ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (Q)tf }

}
∪
⋃{ s ‖

csX
t | s ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ t ∈ {tr ′ − tr | okay ∧ wait ′ ∧ (Q)tf }

}
∪
⋃{ s ‖

csX
t | s ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ t ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (Q)tf }

}
∪
⋃
{{}}

∪
⋃
{{}}

∪
⋃
{{}}

∪
⋃
{{}}

∪
⋃{ s a 〈X〉 ‖

csX
t a 〈X〉 | s ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (P)tf }

∧ t ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (Q)tf }

}
[Lemma J.48 (tr , tr ′ : seq Σ and X /∈ Σ), SC and ST]

=
⋃{ s ‖

csX
t | s ∈ {tr ′ − tr | okay ∧ wait ′ ∧ (P)tf }
∧ t ∈ {tr ′ − tr | okay ∧ wait ′ ∧ (Q)tf }

}
∪
⋃{ s ‖

csX
t | s ∈ {tr ′ − tr | okay ∧ wait ′ ∧ (P)tf }
∧ t ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (Q)tf }

}
∪
⋃{ s ‖

csX
t | s ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ t ∈ {tr ′ − tr | okay ∧ wait ′ ∧ (Q)tf }

}
∪
⋃{ s ‖

csX
t | s ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ t ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (Q)tf }

}
∪
⋃{ s ‖

csX
t a 〈X〉 | s ∈ {tr ′ − tr | okay ∧ wait ′ ∧ (P)tf }

∧ t ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (Q)tf }

}
∪
⋃{ s ‖

csX
t a 〈X〉 | s ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (P)tf }

∧ t ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (Q)tf }

}
∪
⋃{ s a 〈X〉 ‖

csX
t | s ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ t ∈ {tr ′ − tr | okay ∧ wait ′ ∧ (Q)tf }

}

321

D24.1 - Comp. Anal. of CML Models (Public Document)

∪
⋃{ s a 〈X〉 ‖

csX
t | s ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ t ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (Q)tf }

}
∪
⋃{ s a 〈X〉 ‖

csX
t a 〈X〉 | s ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (P)tf }

∧ t ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (Q)tf }

}
[SC]

=
⋃{ s ‖

csX
t | s ∈ {tr ′ − tr | okay ∧ wait ′ ∧ (P)tf }
∧ t ∈ {tr ′ − tr | okay ∧ wait ′ ∧ (Q)tf }

}
∪
⋃{ s ‖

csX
t | s ∈ {tr ′ − tr | okay ∧ wait ′ ∧ (P)tf }
∧ t ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (Q)tf }

}
∪
⋃{ s ‖

csX
t | s ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ t ∈ {tr ′ − tr | okay ∧ wait ′ ∧ (Q)tf }

}
∪
⋃{ s ‖

csX
t | s ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ t ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (Q)tf }

}
∪
⋃{ s ‖

csX
t | s ∈ {tr ′ − tr | okay ∧ wait ′ ∧ (P)tf }
∧ t ∈ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ (Q)tf }

}
∪
⋃{ s ‖

csX
t | s ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ t ∈ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ (Q)tf }

}
∪
⋃{ s ‖

csX
t | s ∈ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ t ∈ {tr ′ − tr | okay ∧ wait ′ ∧ (Q)tf }

}
∪
⋃{ s ‖

csX
t | s ∈ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ t ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ (Q)tf }

}
∪
⋃{ s ‖

csX
t | s ∈ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ t ∈ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ (Q)tf }

}
[PC, SC, and ST]

=
⋃{ s ‖

csX
t | s ∈ {tr ′ − tr | okay ∧ (wait ′ ∨ ¬ wait ′) ∧ (P)tf }
∧ t ∈ {tr ′ − tr | okay ∧ (wait ′ ∨ ¬ wait ′) ∧ (Q)tf }

}
∪
⋃{ s ‖

csX
t | s ∈ {tr ′ − tr | okay ∧ (wait ′ ∨ ¬ wait ′) ∧ (P)tf }
∧ t ∈ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ (Q)tf }

}
∪
⋃{ s ‖

csX
t | s ∈ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ t ∈ {tr ′ − tr | okay ∧ (wait ′ ∨ ¬ wait ′) ∧ (Q)tf }

}
∪
⋃{ s ‖

csX
t | s ∈ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ t ∈ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ (Q)tf }

}
[PC]

322

D24.1 - Comp. Anal. of CML Models (Public Document)

=
⋃{ s ‖

csX
t | s ∈ {tr ′ − tr | okay ∧ (P)tf }
∧ t ∈ {tr ′ − tr | okay ∧ (Q)tf }

}
∪
⋃{ s ‖

csX
t | s ∈ {tr ′ − tr | okay ∧ (P)tf }
∧ t ∈ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ (Q)tf }

}
∪
⋃{ s ‖

csX
t | s ∈ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ t ∈ {tr ′ − tr | okay ∧ (Q)tf }

}
∪
⋃{ s ‖

csX
t | s ∈ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ t ∈ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ (Q)tf }

}
[ST, SC and PC]

=
⋃

s ‖
csX

t | s ∈
(
{tr ′ − tr | okay ∧ (P)tf }
∪ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ (P)tf }

)
∧ t ∈

(
{tr ′ − tr | okay ∧ (Q)tf }
∪ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ′ ∧ (Q)tf }

)
 [PC]

=
⋃

s ‖
csX

t | s ∈
(
{tr ′ − tr | okay ∧ ¬ wait ∧ okay ′ ∧ P}
∪ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ P}

)
∧ t ∈

(
{tr ′ − tr | okay ∧ ¬ wait ∧ okay ′ ∧ Q}
∪ {(tr ′ − tr)a 〈X〉 | okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ Q}

)

[An]

=
⋃

s ‖
csX

t | s ∈
(
{tr ′ − tr | (P)n}
∪ {(tr ′ − tr)a 〈X〉 | ¬ wait ′ ∧ (P)n}

)
∧ t ∈

(
{tr ′ − tr | (Q)n}
∪ {(tr ′ − tr)a 〈X〉 | ¬ wait ′ ∧ (Q)n}

)
 [At]

=
⋃

s ‖
csX

t | s ∈
(
{tr ′ − tr | (P)n}
∪ {(tr ′ − tr)a 〈X〉 | (P)t}

)
∧ t ∈

(
{tr ′ − tr | (Q)n}
∪ {(tr ′ − tr)a 〈X〉 | (Q)t}

)
 [tracesUT P]

=
⋃
{s ‖

csX
t | s ∈ tracesUT P(P) ∧ t ∈ tracesUT P(Q)} [IH]

=
⋃
{s ‖

csX
t | s ∈ traces(Υ(P)) ∧ t ∈ traces(Υ(Q))} [traces]

= traces(Υ(P)‖
cs

Υ(Q)) [Notation (ΥPcs (cs) = cs)]

= traces(Υ(P) ‖
ΥP(cs)

Υ(Q)) [Υ]

= traces(Υ(P |[ns1 | cs | ns2]|Q))

Theorem J.18

tracesUT P(|[cs]| x : S • |[ns]| A) = traces(Υ(|[cs]| x : S • |[ns]| A))

323

D24.1 - Comp. Anal. of CML Models (Public Document)

provided

1. ∀ i : S • A[vi/x] is R

2. ∀ i : S • A[vi/x] is divergence-free

3. S 6= {}

Inductive Hypothesis (A):

∀ i : S • tracesUT P(A[vi/x]) = traces(Υ(A)[vi/x])

Proof. By induction on S

Base Case. S = {v}
Proof.

tracesUT P(|[cs]| x : S • |[ns]| A) [Assumption]

= tracesUT P(|[cs]| x : {v} • |[ns]| A) [Indexed parallel]

= tracesUT P(A[v/x]) [IH]

= traces(Υ(A[v/x])) [Indexed parallel]

= traces(Υ(|[cs]| x : {v} • |[ns]| A)) [Assumption]

= traces(Υ(|[cs]| x : S • |[ns]| A))

Inductive Hypothesis (S):

tracesUT P(|[cs]| x : S • |[ns]| A) = traces(Υ(|[cs]| x : S • |[ns]| A))

Inductive Step

tracesUT P(|[cs]| x : S ∪ {vi} • |[ns]| A) = traces(Υ(|[cs]| x : S ∪ {vi} • |[ns]| A))

Proof.

tracesUT P(|[cs]| x : S ∪ {vi} • |[ns]| A) [Indexed parallel]

= tracesUT P(A[vi/x] |[ns [vi/x] | cs |
⋃

v :S\{vi} ns [v/x]]| (|[cs]| x : S \ {vi} • |[ns]| A))

[Theorem J.17 (Provisos, IH-A and IH-S)]

= traces(Υ(A[vi/x] |[ns [vi/x] | cs |
⋃

v :S\{vi} ns [v/x]]| (|[cs]| x : S \ {vi} • |[ns]| A)))

[Indexed parallel]

= traces(Υ(|[cs]| x : S ∪ {vi} • |[ns]| A))

324

D24.1 - Comp. Anal. of CML Models (Public Document)

Theorem J.19

tracesUT P(P ||[ns1 | ns2]|| Q)
=
traces(Υ(P ||[ns1 | ns2]|| Q))

provided

1. P and Q are divergence-free

Proof.

tracesUT P(P ||[ns1 | ns2]|| Q) [Law 29]

= tracesUT P(P |[ns1 | ∅ | ns2]|Q) [Theorem J.17 (proviso)]

= traces(Υ(P |[ns1 | ∅ | ns2]|Q)) [Law 29]

= traces(Υ(P ||[ns1 | ns2]|| Q))

Theorem J.20

tracesUT P(||| x : S • |[ns]| A) = traces(Υ(||| x : S • |[ns]| A))

provided

1. ∀ i : S • A[vi/x] is R

2. ∀ i : S • A[vi/x] is divergence-free

3. S 6= {}

Proof.

tracesUT P(||| x : S • |[ns]| A) [Law 29]

= tracesUT P(|[∅]| x : S • |[ns]| A)) [Theorem J.17 (proviso)]

= traces(Υ(|[∅]| x : S • |[ns]| A)) [Law 29]

= traces(Υ(||| x : S • |[ns]| A))

Theorem J.21 failuresUT P(Skip) = failures(Υ(Skip))

325

D24.1 - Comp. Anal. of CML Models (Public Document)

Proof.

failuresUT P(Skip) [failuresUT P]

= {(tr ′ − tr , ref ′) | (Skip)n}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | (Skip)n ∧ wait ′}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | (Skip)t}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | (Skip)t}

[At]

= {(tr ′ − tr , ref ′) | (Skip)n}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | (Skip)n ∧ wait ′}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | ¬ wait ′ ∧ (Skip)n}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | ¬ wait ′ ∧ (Skip)n}

[An]

= {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ∧ okay ′ ∧ Skip}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ ¬ wait ∧ okay ′ ∧ wait ′ ∧ Skip}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ Skip}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ Skip}

[PC]

= {(tr ′ − tr , ref ′) | okay ∧ (Skip)tf }
∪ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (Skip)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (Skip)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ′ ∧ (Skip)tf }

[Lemma J.12]

= {(tr ′ − tr , ref ′) | okay ∧ CSP1(tr ′ = tr ∧ ¬ wait ′ ∧ v ′ = v)}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ CSP1(tr ′ = tr ∧ ¬ wait ′ ∧ v ′ = v)}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ CSP1(tr ′ = tr ∧ ¬ wait ′ ∧ v ′ = v)}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ′ ∧ CSP1(tr ′ = tr ∧ ¬ wait ′ ∧ v ′ = v)}

[Lemma J.4]

= {(tr ′ − tr , ref ′) | okay ∧ tr ′ = tr ∧ ¬ wait ′ ∧ v ′ = v}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ tr ′ = tr ∧ ¬ wait ′ ∧ v ′ = v}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ tr ′ = tr ∧ ¬ wait ′ ∧ v ′ = v}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ′ ∧ tr ′ = tr ∧ ¬ wait ′ ∧ v ′ = v}

[PC and SC]

= {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ tr ′ = tr ∧ v ′ = v}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ tr ′ = tr ∧ v ′ = v}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ′ ∧ tr ′ = tr ∧ v ′ = v}

[SS. and −]

= {(〈〉, ref ′) | okay ∧ ¬ wait ′ ∧ tr ′ = tr ∧ v ′ = v}
∪ {(〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ tr ′ = tr ∧ v ′ = v}
∪ {(〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ′ ∧ tr ′ = tr ∧ v ′ = v}

[Cases]

= {(〈〉, ref ′)} ∪ {} ∪ {(〈X〉, ref ′)} ∪ {} ∪ {(〈X〉, ref ′ ∪ {X})} ∪ {} [ST]

= {(〈〉, ref ′)} ∪ {(〈X〉, ref ′)} ∪ {(〈X〉, ref ′ ∪ {X})} [ref ′ definition]

= {(〈〉,X) | X ⊆ Σ} ∪ {(〈X〉,X) | X ⊆ Σ} ∪ {(〈X〉,X ∪ {X}) | X ⊆ Σ} [ST]

= {(〈〉,X) | X ⊆ Σ} ∪ {(〈X〉,X) | X ⊆ Σ ∪ {X}} [ΣX]

326

D24.1 - Comp. Anal. of CML Models (Public Document)

= {(〈〉,X) | X ⊆ Σ} ∪ {(〈X〉,X) | X ⊆ ΣX} [failures]

= failures(SKIP) [Υ]

= failures(Υ(Skip))

Theorem J.22 failuresUT P(Stop) = failures(Υ(Stop))

Proof.

failuresUT P(Stop) [failuresUT P]

= {(tr ′ − tr , ref ′) | (Stop)n}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | (Stop)n ∧ wait ′}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | (Stop)t}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | (Stop)t}

[At]

= {(tr ′ − tr , ref ′) | (Stop)n}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | (Stop)n ∧ wait ′}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | ¬ wait ′ ∧ (Stop)n}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | ¬ wait ′ ∧ (Stop)n}

[An]

= {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ∧ okay ′ ∧ Stop}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ ¬ wait ∧ okay ′ ∧ wait ′ ∧ Stop}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ Stop}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ Stop}

[PC]

= {(tr ′ − tr , ref ′) | okay ∧ (Stop)tf }
∪ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (Stop)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (Stop)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ′ ∧ (Stop)tf }

[Lemma J.12]

= {(tr ′ − tr , ref ′) | okay ∧ CSP1(tr ′ = tr ∧ wait ′)}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ CSP1(tr ′ = tr ∧ wait ′)}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ CSP1(tr ′ = tr ∧ wait ′)}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ′ ∧ CSP1(tr ′ = tr ∧ wait ′)}

[Lemma J.4]

= {(tr ′ − tr , ref ′) | okay ∧ tr ′ = tr ∧ wait ′}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ tr ′ = tr ∧ wait ′}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ tr ′ = tr ∧ wait ′}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ′ ∧ tr ′ = tr ∧ wait ′}

[PC and SC]

= {(tr ′ − tr , ref ′) | okay ∧ tr ′ = tr ∧ wait ′}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ tr ′ = tr}

[SS. and −]

= {(〈〉, ref ′) | okay ∧ tr ′ = tr ∧ wait ′}
∪ {(〈〉, ref ′ ∪ {X}) | okay ∧ wait ′ ∧ tr ′ = tr}

[Cases and SC]

327

D24.1 - Comp. Anal. of CML Models (Public Document)

= {(〈〉, ref ′)} ∪ {} ∪ {(〈〉, ref ′ ∪ {X})} ∪ {} [ST]

= {(〈〉, ref ′)} ∪ {(〈〉, ref ′ ∪ {X})} [ref ′ definition]

= {(〈〉,X) | X ⊆ Σ} ∪ {(〈〉,X ∪ {X}) | X ⊆ Σ} [ST]

= {(〈〉,X) | X ⊆ Σ ∪ {X}} [ΣX]

= {(〈〉,X) | X ⊆ ΣX} [failures]

= failures(STOP) [Υ]

= failures(Υ(Stop))

Theorem J.23 failuresUT P(c → Skip) = failures(Υ(c → Skip))

Proof.

failuresUT P(c → Skip) [failuresUT P]

= {(tr ′ − tr , ref ′) | (c → Skip)n}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | (c → Skip)n ∧ wait ′}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | (c → Skip)t}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | (c → Skip)t}

[At]

= {(tr ′ − tr , ref ′) | (c → Skip)n}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | (c → Skip)n ∧ wait ′}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | ¬ wait ′ ∧ (c → Skip)n}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | ¬ wait ′ ∧ (c → Skip)n}

[An]

=

{
(tr ′ − tr , ref ′) | okay ∧ ¬ wait ∧ okay ′

∧ c → Skip

}
∪
{

(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ ¬ wait ∧ okay ′ ∧ wait ′

∧ c → Skip

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′

∧ c → Skip

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′

∧ c → Skip

}

[PC]

=

{
(tr ′ − tr , ref ′) | okay ∧ ¬ wait ∧ okay ′

∧ (c → Skip)tf

}
∪
{

(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ ¬ wait ∧ okay ′ ∧ wait ′

∧ (c → Skip)tf

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′

∧ (c → Skip)tf

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′

∧ (c → Skip)tf

}

[PC]

328

D24.1 - Comp. Anal. of CML Models (Public Document)

=

{
(tr ′ − tr , ref ′) | okay ∧ ¬ wait ∧ okay ′

∧ ((c → Skip)f)
t

}
∪
{

(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ ¬ wait ∧ okay ′ ∧ wait ′

∧ ((c → Skip)f)
t

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′

∧ ((c → Skip)f)
t

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′

∧ ((c → Skip)f)
t

}

[Lemma J.3]

=

{
(tr ′ − tr , ref ′) | okay ∧ ¬ wait ∧ okay ′

∧ (CSP1(okay ′ ∧ doC(c, Sync) ∧ v ′ = v))t

}
∪
{

(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ ¬ wait ∧ okay ′ ∧ wait ′

∧ (CSP1(okay ′ ∧ doC(c, Sync) ∧ v ′ = v))t

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′

∧ (CSP1(okay ′ ∧ doC(c, Sync) ∧ v ′ = v))t

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′

∧ (CSP1(okay ′ ∧ doC(c, Sync) ∧ v ′ = v))t

}

[Lemma J.4]

=

{
(tr ′ − tr , ref ′) | okay ∧ ¬ wait ∧ okay ′

∧ (okay ′ ∧ doC(c, Sync) ∧ v ′ = v)t

}
∪
{

(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ ¬ wait ∧ okay ′ ∧ wait ′

∧ (okay ′ ∧ doC(c, Sync) ∧ v ′ = v)t

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′

∧ (okay ′ ∧ doC(c, Sync) ∧ v ′ = v)t

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′

∧ (okay ′ ∧ doC(c, Sync) ∧ v ′ = v)t

}

[PC]

=

{
(tr ′ − tr , ref ′) | okay ∧ ¬ wait ∧ okay ′

∧ doC(c, Sync) ∧ v ′ = v

}
∪
{

(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ ¬ wait ∧ okay ′ ∧ wait ′

∧ doC(c, Sync) ∧ v ′ = v

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′

∧ doC(c, Sync) ∧ v ′ = v

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′

∧ doC(c, Sync) ∧ v ′ = v

}

[PC and doC]

329

D24.1 - Comp. Anal. of CML Models (Public Document)

=

(tr ′ − tr , ref ′) |

okay ∧ ¬ wait ∧ okay ′ ∧ v ′ = v
∧ (tr ′ = tr ∧ (c, Sync) /∈ ref ′ C wait ′ B tr ′ = tr a 〈 (c, Sync)〉)

∪

(tr ′ − tr , ref ′ ∪ {X}) |

okay ∧ ¬ wait ∧ okay ′ ∧ wait ′ ∧ v ′ = v
∧ (tr ′ = tr ∧ (c, Sync) /∈ ref ′ C wait ′ B tr ′ = tr a 〈 (c, Sync)〉)

∪

((tr ′ − tr)a 〈X〉, ref ′) |

okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ v ′ = v
∧ (tr ′ = tr ∧ (c, Sync) /∈ ref ′ C wait ′ B tr ′ = tr a 〈 (c, Sync)〉)

∪

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) |

okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ v ′ = v
∧ (tr ′ = tr ∧ (c, Sync) /∈ ref ′ C wait ′ B tr ′ = tr a 〈 (c, Sync)〉)

[PC]

=

{
(tr ′ − tr , ref ′) |

okay ∧ ¬ wait ∧ okay ′ ∧ v ′ = v ∧ wait ′ ∧ tr ′ = tr ∧ (c, Sync) /∈ ref ′

}
∪
{

(tr ′ − tr , ref ′) |
okay ∧ ¬ wait ∧ okay ′ ∧ v ′ = v ∧ ¬ wait ′ ∧ tr ′ = tr a 〈 (c, Sync)〉

}
∪
{

(tr ′ − tr , ref ′ ∪ {X}) |
okay ∧ ¬ wait ∧ okay ′ ∧ wait ′ ∧ v ′ = v ∧ tr ′ = tr ∧ (c, Sync) /∈ ref ′

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′) |
okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ v ′ = v ∧ tr ′ = tr a 〈 (c, Sync)〉

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) |
okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ v ′ = v ∧ tr ′ = tr a 〈 (c, Sync)〉

}
[SS. and −]

=

{
(〈〉, ref ′) |

okay ∧ ¬ wait ∧ okay ′ ∧ v ′ = v ∧ wait ′ ∧ tr ′ = tr ∧ (c, Sync) /∈ ref ′

}
∪
{

(〈(c, Sync)〉, ref ′) |
okay ∧ ¬ wait ∧ okay ′ ∧ v ′ = v ∧ ¬ wait ′ ∧ tr ′ = tr a 〈 (c, Sync)〉

}
∪
{

(〈〉, ref ′ ∪ {X}) |
okay ∧ ¬ wait ∧ okay ′ ∧ wait ′ ∧ v ′ = v ∧ tr ′ = tr ∧ (c, Sync) /∈ ref ′

}
∪
{

(〈(c, Sync),X〉, ref ′) |
okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ v ′ = v ∧ tr ′ = tr a 〈 (c, Sync)〉

}
∪
{

(〈(c, Sync),X〉, ref ′ ∪ {X}) |
okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ v ′ = v ∧ tr ′ = tr a 〈 (c, Sync)〉

}
[Circus Events (c ≡ (c, Sync))]

330

D24.1 - Comp. Anal. of CML Models (Public Document)

=

{
(〈〉, ref ′) |

okay ∧ ¬ wait ∧ okay ′ ∧ v ′ = v ∧ wait ′ ∧ tr ′ = tr ∧ c /∈ ref ′

}
∪
{

(〈c〉, ref ′) |
okay ∧ ¬ wait ∧ okay ′ ∧ v ′ = v ∧ ¬ wait ′ ∧ tr ′ = tr a 〈 c〉

}
∪
{

(〈〉, ref ′ ∪ {X}) |
okay ∧ ¬ wait ∧ okay ′ ∧ wait ′ ∧ v ′ = v ∧ tr ′ = tr ∧ c /∈ ref ′

}
∪
{

(〈c,X〉, ref ′) |
okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ v ′ = v ∧ tr ′ = tr a 〈 c〉

}
∪
{

(〈c,X〉, ref ′ ∪ {X}) |
okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ v ′ = v ∧ tr ′ = tr a 〈 c〉

}
[Cases and SC]

= {(〈〉, ref ′) | c /∈ ref ′} ∪ {}
∪ {(〈c〉, ref ′)} ∪ {}
∪ {(〈〉, ref ′ ∪ {X}) | c /∈ ref ′} ∪ {}
∪ {(〈c,X〉, ref ′)} ∪ {}
∪ {(〈c,X〉, ref ′ ∪ {X})} ∪ {}

[ST]

= {(〈〉, ref ′) | c /∈ ref ′}
∪ {(〈c〉, ref ′)}
∪ {(〈〉, ref ′ ∪ {X}) | c /∈ ref ′}
∪ {(〈c,X〉, ref ′)}
∪ {(〈c,X〉, ref ′ ∪ {X})}

[ref ′ definition]

= {(〈〉,X) | X ⊆ Σ ∧ c /∈ X }}
∪ {(〈c〉,X) | X ⊆ Σ}}
∪ {(〈〉,X ∪ {X}) | X ⊆ Σ ∧ c /∈ X }
∪ {(〈c,X〉,X) | X ⊆ Σ}
∪ {(〈c,X〉,X ∪ {X}) | X ⊆ Σ}

[ST]

= {(〈〉,X) | c /∈ X ∧ X ⊆ ΣX}
∪ {(〈c〉,X) | X ⊆ Σ}
∪ {(〈c,X〉,X) | X ⊆ ΣX}

[a]

= {(〈〉,X) | c /∈ X ∧ X ⊆ ΣX}
∪ {(〈c〉a 〈〉,X) | X ⊆ Σ}
∪ {(〈c〉a 〈X〉,X) | X ⊆ ΣX}

[SC]

= {(〈〉,X) | c /∈ X ∧ X ⊆ ΣX}
∪ {(〈c〉a s ,X) | (s ,X) ∈ {(〈〉,X) | X ⊆ Σ}}
∪ {(〈c〉a s ,X) | (s ,X) ∈ {(〈X〉,X) | X ⊆ ΣX}}

[ST]

= {(〈〉,X) | c /∈ X ∧ X ⊆ ΣX}
∪ {(〈c〉a s ,X) | (s ,X) ∈ {(〈〉,X) | X ⊆ Σ} ∪ {(〈X〉,X) | X ⊆ ΣX}}

[failures]

= {(〈〉,X) | c /∈ X ∧ X ⊆ ΣX} ∪ {(〈c〉a s ,X) | (s ,X) ∈ failures(SKIP)} [failures]

331

D24.1 - Comp. Anal. of CML Models (Public Document)

= failures(c→ SKIP) [Υ]

= failures(Υ(c → Skip))

Theorem J.24 failuresUT P(c → A) = failures(Υ(c → A))
provided c → A is R

Inductive Hypothesis:

failuresUT P(A) = failures(A)

Proof.

failuresUT P(c → A) [failuresUT P]

= {(tr ′ − tr , ref ′) | (c → A)n}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | (c → A)n ∧ wait ′}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | (c → A)t}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | (c → A)t}

[At]

= {(tr ′ − tr , ref ′) | (c → A)n}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | (c → A)n ∧ wait ′}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | ¬ wait ′ ∧ (c → A)n}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | ¬ wait ′ ∧ (c → A)n}

[An]

=

{
(tr ′ − tr , ref ′) | okay ∧ ¬ wait ∧ okay ′

∧ c → A

}
∪
{

(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ ¬ wait ∧ okay ′ ∧ wait ′

∧ c → A

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′

∧ c → A

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′

∧ c → A

}

[PC]

=

{
(tr ′ − tr , ref ′) | okay ∧

∧ (c → A)tf

}
∪
{

(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′

∧ (c → A)tf

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′

∧ (c → A)tf

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ′

∧ (c → A)tf

}

[Lemma J.6]

332

D24.1 - Comp. Anal. of CML Models (Public Document)

=

(tr ′ − tr , ref ′)
| okay ∧
∧ (CSP1(okay ′ ∧ doC(c, Sync) ∧ v ′ = v); (A)t)

∪

(tr ′ − tr , ref ′ ∪ {X})
| okay ∧ wait ′

∧ (CSP1(okay ′ ∧ doC(c, Sync) ∧ v ′ = v); (A)t)

∪

((tr ′ − tr)a 〈X〉, ref ′)
| okay ∧ ¬ wait ′

∧ (CSP1(okay ′ ∧ doC(c, Sync) ∧ v ′ = v); (A)t)

∪

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X})
| okay ∧ ¬ wait ′

∧ (CSP1(okay ′ ∧ doC(c, Sync) ∧ v ′ = v); (A)t)

[Lemma J.5]

=

(tr ′ − tr , ref ′)
| okay ∧
∧ ((okay ′ ∧ doC(c, Sync) ∧ v ′ = v); (A)t)

∪

(tr ′ − tr , ref ′ ∪ {X})
| okay ∧ wait ′

∧ ((okay ′ ∧ doC(c, Sync) ∧ v ′ = v); (A)t)

∪

((tr ′ − tr)a 〈X〉, ref ′)
| okay ∧ ¬ wait ′

∧ ((okay ′ ∧ doC(c, Sync) ∧ v ′ = v); (A)t)

∪

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X})
| okay ∧ ¬ wait ′

∧ ((okay ′ ∧ doC(c, Sync) ∧ v ′ = v); (A)t)

[doC]

333

D24.1 - Comp. Anal. of CML Models (Public Document)

=

(tr ′ − tr , ref ′)

| okay ∧

okay ′ ∧ v ′ = v

∧

 tr ′ = tr ∧ (c, Sync) /∈ ref ′

Cwait ′B
tr ′ = tr a 〈 (c, Sync)〉

 ;

(A)t

∪

(tr ′ − tr , ref ′ ∪ {X})

| okay ∧ wait ′ ∧

okay ′ ∧ v ′ = v

∧

 tr ′ = tr ∧ (c, Sync) /∈ ref ′

Cwait ′B
tr ′ = tr a 〈 (c, Sync)〉

 ;

(A)t

∪

((tr ′ − tr)a 〈X〉, ref ′)

| okay ∧ ¬ wait ′ ∧

okay ′ ∧ v ′ = v

∧

 tr ′ = tr ∧ (c, Sync) /∈ ref ′

Cwait ′B
tr ′ = tr a 〈 (c, Sync)〉

 ;

(A)t

∪

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X})

| okay ∧ ¬ wait ′ ∧

okay ′ ∧ v ′ = v

∧

 tr ′ = tr ∧ (c, Sync) /∈ ref ′

Cwait ′B
tr ′ = tr a 〈 (c, Sync)〉

 ;

(A)t

[PC]

334

D24.1 - Comp. Anal. of CML Models (Public Document)

=

(tr ′ − tr , ref ′)

|

 okay ∧

 (
okay ′ ∧ v ′ = v ∧ wait ′

∧ tr ′ = tr ∧ (c, Sync) /∈ ref ′

)
;

(A)t

∨

 okay ∧

 (
okay ′ ∧ v ′ = v ∧ ¬ wait ′

∧ tr ′ = tr a 〈 (c, Sync)〉

)
;

(A)t

∪

(tr ′ − tr , ref ′ ∪ {X})

|

 okay ∧ wait ′ ∧

 (
okay ′ ∧ v ′ = v ∧ wait ′

∧ tr ′ = tr ∧ (c, Sync) /∈ ref ′

)
;

(A)t

∨

 okay ∧ wait ′ ∧

 (
okay ′ ∧ v ′ = v ∧ ¬ wait ′

∧ tr ′ = tr a 〈 (c, Sync)〉

)
;

(A)t

∪

((tr ′ − tr)a 〈X〉, ref ′)

|

 okay ∧ ¬ wait ′ ∧

 (
okay ′ ∧ v ′ = v ∧ wait ′

∧ tr ′ = tr ∧ (c, Sync) /∈ ref ′

)
;

(A)t

∨

 okay ∧ ¬ wait ′ ∧

 (
okay ′ ∧ v ′ = v ∧ ¬ wait ′

∧ tr ′ = tr a 〈 (c, Sync)〉

)
;

(A)t

∪

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X})

|

 okay ∧ ¬ wait ′ ∧

 (
okay ′ ∧ v ′ = v ∧ wait ′

∧ tr ′ = tr ∧ (c, Sync) /∈ ref ′

)
;

(A)t

∨

 okay ∧ ¬ wait ′ ∧

 (
okay ′ ∧ v ′ = v ∧ ¬ wait ′

∧ tr ′ = tr a 〈 (c, Sync)〉

)
;

(A)t

[Lemma J.25 (proviso)]

335

D24.1 - Comp. Anal. of CML Models (Public Document)

=

(tr ′ − tr , ref ′)
| (okay ∧ v ′ = v ∧ wait ′ ∧ tr ′ = tr ∧ (c, Sync) /∈ ref ′)

∨

 okay ∧

 (
okay ′ ∧ v ′ = v ∧ ¬ wait ′

∧ tr ′ = tr a 〈 (c, Sync)〉

)
;

(A)t

∪

(tr ′ − tr , ref ′ ∪ {X})
| (okay ∧ wait ′ ∧ v ′ = v ∧ wait ′ ∧ tr ′ = tr ∧ (c, Sync) /∈ ref ′)

∨

 okay ∧ wait ′ ∧

 (
okay ′ ∧ v ′ = v ∧ ¬ wait ′

∧ tr ′ = tr a 〈 (c, Sync)〉

)
;

(A)t

∪

((tr ′ − tr)a 〈X〉, ref ′)
| (okay ∧ ¬ wait ′ ∧ v ′ = v ∧ wait ′ ∧ tr ′ = tr ∧ (c, Sync) /∈ ref ′)

∨

 okay ∧ ¬ wait ′ ∧

 (
okay ′ ∧ v ′ = v ∧ ¬ wait ′

∧ tr ′ = tr a 〈 (c, Sync)〉

)
;

(A)t

∪

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X})
| (okay ∧ ¬ wait ′ ∧ v ′ = v ∧ wait ′ ∧ tr ′ = tr ∧ (c, Sync) /∈ ref ′)

∨

 okay ∧ ¬ wait ′ ∧

 (
okay ′ ∧ v ′ = v ∧ ¬ wait ′

∧ tr ′ = tr a 〈 (c, Sync)〉

)
;

(A)t

[PC and SC]

= {(tr ′ − tr , ref ′) | (okay ∧ v ′ = v ∧ wait ′ ∧ tr ′ = tr ∧ (c, Sync) /∈ ref ′)}

∪

(tr ′ − tr , ref ′)

| okay ∧

 (
okay ′ ∧ v ′ = v ∧ ¬ wait ′

∧ tr ′ = tr a 〈 (c, Sync)〉

)
;

(A)t

∪{(tr ′ − tr , ref ′ ∪ {X}) | (okay ∧ wait ′ ∧ v ′ = v ∧ tr ′ = tr ∧ (c, Sync) /∈ ref ′)}

∪

(tr ′ − tr , ref ′ ∪ {X})

| okay ∧ wait ′ ∧

 (
okay ′ ∧ v ′ = v ∧ ¬ wait ′

∧ tr ′ = tr a 〈 (c, Sync)〉

)
;

(A)t

∪

((tr ′ − tr)a 〈X〉, ref ′)

|

 okay ∧ ¬ wait ′ ∧

 (
okay ′ ∧ v ′ = v ∧ ¬ wait ′

∧ tr ′ = tr a 〈 (c, Sync)〉

)
;

(A)t

∪

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X})

|

 okay ∧ ¬ wait ′ ∧

 (
okay ′ ∧ v ′ = v ∧ ¬ wait ′

∧ tr ′ = tr a 〈 (c, Sync)〉

)
;

(A)t

[Lemma J.16]

336

D24.1 - Comp. Anal. of CML Models (Public Document)

= {(tr ′ − tr , ref ′) | (okay ∧ v ′ = v ∧ wait ′ ∧ tr ′ = tr ∧ (c, Sync) /∈ ref ′)}
∪ {(tr ′ − tr , ref ′) | okay ∧ (A)tf [tr

a 〈(c, Sync)〉/tr]}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | (okay ∧ wait ′ ∧ v ′ = v ∧ tr ′ = tr ∧ (c, Sync) /∈ ref ′)}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (A)tf [tr

a 〈(c, Sync)〉/tr]}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (A)tf [tr

a 〈(c, Sync)〉/tr]}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ′ ∧ (A)tf [tr

a 〈(c, Sync)〉/tr]}

[ST]

= {(tr ′ − tr , ref ′) | (okay ∧ v ′ = v ∧ wait ′ ∧ tr ′ = tr ∧ (c, Sync) /∈ ref ′)}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | (okay ∧ wait ′ ∧ v ′ = v ∧ tr ′ = tr ∧ (c, Sync) /∈ ref ′)}
∪ {(tr ′ − tr , ref ′) | okay ∧ (A)tf [tr

a 〈(c, Sync)〉/tr]}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (A)tf [tr

a 〈(c, Sync)〉/tr]}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (A)tf [tr

a 〈(c, Sync)〉/tr]}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ′ ∧ (A)tf [tr

a 〈(c, Sync)〉/tr]}
[Circus Events (c ≡ (c, Sync))]

= {(tr ′ − tr , ref ′) | (okay ∧ v ′ = v ∧ wait ′ ∧ tr ′ = tr ∧ c /∈ ref ′)}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | (okay ∧ wait ′ ∧ v ′ = v ∧ tr ′ = tr ∧ c /∈ ref ′)}
∪ {(tr ′ − tr , ref ′) | okay ∧ (A)tf [tr

a 〈c〉/tr]}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (A)tf [tr

a 〈c〉/tr]}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (A)tf [tr

a 〈c〉/tr]}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ′ ∧ (A)tf [tr

a 〈c〉/tr]}

[Lemma J.20 (proviso)]

= {(tr ′ − tr , ref ′) | (okay ∧ v ′ = v ∧ wait ′ ∧ tr ′ = tr ∧ c /∈ ref ′)}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | (okay ∧ wait ′ ∧ v ′ = v ∧ tr ′ = tr ∧ c /∈ ref ′)}
∪ {(c a (tr ′ − tr), ref ′) | okay ∧ (A)tf }
∪ {((c a (tr ′ − tr), ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (A)tf }
∪ {((c a (tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (A)tf }
∪ {((c a (tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ′ ∧ (A)tf }

[SS and −]

= {(〈〉, ref ′) | (okay ∧ v ′ = v ∧ wait ′ ∧ tr ′ = tr ∧ c /∈ ref ′)}
∪ {(〈〉, ref ′ ∪ {X}) | (okay ∧ wait ′ ∧ v ′ = v ∧ tr ′ = tr ∧ c /∈ ref ′)}
∪ {(c a (tr ′ − tr), ref ′) | okay ∧ (A)tf }
∪ {((c a (tr ′ − tr), ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (A)tf }
∪ {((c a (tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (A)tf }
∪ {((c a (tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ′ ∧ (A)tf }

[Cases and SC]

= {(〈〉, ref ′) | c /∈ ref ′} ∪ {}
∪ {(〈〉, ref ′ ∪ {X}) | c /∈ ref ′} ∪ {}
∪ {(c a (tr ′ − tr), ref ′) | okay ∧ (A)tf }
∪ {((c a (tr ′ − tr), ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (A)tf }
∪ {((c a (tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (A)tf }
∪ {((c a (tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ′ ∧ (A)tf }

[ST]

337

D24.1 - Comp. Anal. of CML Models (Public Document)

= {(〈〉, ref ′) | c /∈ ref ′}
∪ {(〈〉, ref ′ ∪ {X}) | c /∈ ref ′}
∪ {(c a (tr ′ − tr), ref ′) | okay ∧ (A)tf }
∪ {((c a (tr ′ − tr), ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (A)tf }
∪ {((c a (tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (A)tf }
∪ {((c a (tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ′ ∧ (A)tf }

[ref ′ definition]

= {(〈〉, ref ′) | c /∈ ref ′ ∧ ref ′ ⊆ Σ}
∪ {(〈〉, ref ′ ∪ {X}) | c /∈ ref ′ ∧ ref ′ ⊆ Σ}
∪ {(c a (tr ′ − tr), ref ′) | okay ∧ (A)tf }
∪ {((c a (tr ′ − tr), ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (A)tf }
∪ {((c a (tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (A)tf }
∪ {((c a (tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ′ ∧ (A)tf }

[ST]

= {(〈〉, ref ′) | c /∈ ref ′ ∧ ref ′ ⊆ ΣX}
∪ {(〈c〉a (tr ′ − tr), ref ′) | okay ∧ (A)tf }
∪ {(〈c〉a (tr ′ − tr), ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (A)tf }
∪ {(〈c〉a (tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (A)tf }
∪ {(〈c〉a (tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ′ ∧ (A)tf }

[Rename ref ′]

= {(〈〉,X) | c /∈ X ∧ X ⊆ ΣX}
∪ {(〈c〉a (tr ′ − tr), ref ′) | okay ∧ (A)tf }
∪ {(〈c〉a (tr ′ − tr), ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (A)tf }
∪ {(〈c〉a (tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (A)tf }
∪ {(〈c〉a (tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ′ ∧ (A)tf }

[PC]

= {(〈〉,X) | c /∈ X ∧ X ⊆ ΣX}

∪
{

(〈c〉a (tr ′ − tr), ref ′)
| okay ∧ ¬ wait ∧ okay ′ ∧ A

}
∪
{

(〈c〉a (tr ′ − tr), ref ′ ∪ {X})
| okay ∧ ¬ wait ∧ okay ′ ∧ A ∧ wait ′

}
∪
{

(〈c〉a (tr ′ − tr)a 〈X〉, ref ′)
| okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ A

}
∪
{

(〈c〉a (tr ′ − tr)a 〈X〉, ref ′ ∪ {X})
| okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ A

}

[SC]

338

D24.1 - Comp. Anal. of CML Models (Public Document)

= {(〈〉,X) | c /∈ X ∧ X ⊆ ΣX}

∪

(〈c〉a s ,X)

| (s ,X) ∈
{

(tr ′ − tr , ref ′)
| okay ∧ ¬ wait ∧ okay ′ ∧ A

}
∪

(〈c〉a s ,X)

| (s ,X) ∈
{

(tr ′ − tr , ref ′ ∪ {X})
| okay ∧ ¬ wait ∧ okay ′ ∧ A ∧ wait ′

}
∪

(〈c〉a s ,X)

| (s ,X) ∈
{

((tr ′ − tr)a 〈X〉, ref ′)
| okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ A

}
∪

(〈c〉a s ,X)

| (s ,X) ∈
{

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X})
| okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ A

}

[An]

= {(〈〉,X) | c /∈ X ∧ X ⊆ ΣX}
∪{(〈c〉a s ,X) | (s ,X) ∈ {(tr ′ − tr , ref ′) | (A)n}}
∪{(〈c〉a s ,X) | (s ,X) ∈ {(tr ′ − tr , ref ′ ∪ {X}) | (A)n ∧ wait ′}}
∪{(〈c〉a s ,X) | (s ,X) ∈ {((tr ′ − tr)a 〈X〉, ref ′) | ¬ wait ′ ∧ (A)n}}
∪{(〈c〉a s ,X) | (s ,X) ∈ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | ¬ wait ′ ∧ (A)n}}

[At]

= {(〈〉,X) | c /∈ X ∧ X ⊆ ΣX}
∪{(〈c〉a s ,X) | (s ,X) ∈ {(tr ′ − tr , ref ′) | (A)n}}
∪{(〈c〉a s ,X) | (s ,X) ∈ {(tr ′ − tr , ref ′ ∪ {X}) | (A)n ∧ wait ′}}
∪{(〈c〉a s ,X) | (s ,X) ∈ {((tr ′ − tr)a 〈X〉, ref ′) | (A)t}}
∪{(〈c〉a s ,X) | (s ,X) ∈ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | (A)t}}

[SC e ST]

= {(〈〉,X) | c /∈ X ∧ X ⊆ ΣX}

∪

(〈c〉a s ,X)

| (s ,X) ∈

{(tr ′ − tr , ref ′) | (A)n}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | (A)n ∧ wait ′}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | (A)t}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | (A)t}

[failuresUT P]

= {(〈〉,X) | c /∈ X ∧ X ⊆ ΣX} ∪ {(〈c〉a s ,X) | (s ,X) ∈ failuresUT P(A)} [IH]

= {(〈〉,X) | c /∈ X ∧ X ⊆ ΣX} ∪ {(〈c〉a s ,X) | (s ,X) ∈ failures(Υ(A))}[failures]

= failures(c→Υ(A)) [Υ]

= failures(Υ(c → A))

Theorem J.25 failuresUT P(c.v → A) = failures(Υ(c.v → A))
provided A is R

339

D24.1 - Comp. Anal. of CML Models (Public Document)

Proof. Identical to that of Theorem J.24, but replacing Sync by v .

Theorem J.26 failuresUT P(c!v → A) = failures(Υ(c.v → A))
provided A is R

Proof. Using the Circus semantics of c!v → A ≡ c.v → A and Theo-
rem J.25.

Theorem J.27

failuresUT P(c?x : P → A) = failures(Υ(c?x : P → A))

provided

1. c?x : P → A is R

2. c?x : P → A is divergence-free

Inductive Hypothesis (A):

∀ v : S • failuresUT P(A[v/x])) = failures(Υ(A)[v/x])

Proof.

failuresUT P(c?x : P → A) [Property of Circus input]

= failuresUT P(2 v : {x : δ(c) | P} • c.v → A[v/x])

[Theorems J.30 and J.25 (IH)]

= failures(Υ(2 v : {x : δ(c) | P} • c.v → A[v/x]))

[Property of Circus input]

= failures(Υ(c?x : P → A))

Theorem J.28

failuresUT P(c?x → A) = failures(Υ(c?x → A))

provided

1. c?x : P → A is R

2. c?x : P → A is divergence-free

3. v : S • failuresUT P(A[v/x])) = failures(Υ(A)[v/x])

340

D24.1 - Comp. Anal. of CML Models (Public Document)

Proof. Using the Circus semantics of c?x → A ≡ c?x : true → A and
Theorem J.27.

Theorem J.29 failuresUT P(A 2 B) = failures(Υ(A 2 B))
provided

1. A and B are R

2. A and B are divergence-free

Inductive Hypothesis:

failuresUT P(A) = failures(Υ(A))
failuresUT P(B) = failures(Υ(B))

Proof.

failuresUT P(A 2 B) [failuresUT P]

= {(tr ′ − tr , ref ′) | (A 2 B)n}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | (A 2 B)n ∧ wait ′}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | (A 2 B)t}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | (A 2 B)t}

[At]

= {(tr ′ − tr , ref ′) | (A 2 B)n}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | (A 2 B)n ∧ wait ′}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | ¬ wait ′ ∧ (A 2 B)n}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | ¬ wait ′ ∧ (A 2 B)n}

[An]

=

{
(tr ′ − tr , ref ′)
| okay ∧ ¬ wait ∧ okay ′ ∧ A 2 B

}
∪
{

(tr ′ − tr , ref ′ ∪ {X})
| okay ∧ ¬ wait ∧ okay ′ ∧ wait ′ ∧ A 2 B

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′)
| okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ A 2 B

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X})
| okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ A 2 B

}

[PC]

=

{
(tr ′ − tr , ref ′)
| okay ∧ (A 2 B)tf

}
∪
{

(tr ′ − tr , ref ′ ∪ {X})
| okay ∧ wait ′ ∧ (A 2 B)tf

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′)
| okay ∧ ¬ wait ′ ∧ (A 2 B)tf

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X})
| okay ∧ ¬ wait ′ ∧ (A 2 B)tf

}

[Lemma J.17]

341

D24.1 - Comp. Anal. of CML Models (Public Document)

=

(tr ′ − tr , ref ′)

| okay ∧ CSP1

(¬ (A)ff ∧ ¬ (B)ff)

⇒ ((A)tf ∧ (B)tf)
Ctr ′ = tr ∧ wait ′B
((A)tf ∨ (B)tf)

∪

(tr ′ − tr , ref ′ ∪ {X})

| okay ∧ wait ′ ∧ CSP1

(¬ (A)ff ∧ ¬ (B)ff)

⇒ ((A)tf ∧ (B)tf)
Ctr ′ = tr ∧ wait ′B
((A)tf ∨ (B)tf)

∪

((tr ′ − tr)a 〈X〉, ref ′)

| okay ∧ ¬ wait ′ ∧ CSP1

(¬ (A)ff ∧ ¬ (B)ff)

⇒ ((A)tf ∧ (B)tf)
Ctr ′ = tr ∧ wait ′B
((A)tf ∨ (B)tf)

∪

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X})

| okay ∧ ¬ wait ′ ∧ CSP1

(¬ (A)ff ∧ ¬ (B)ff)

⇒ ((A)tf ∧ (B)tf)
Ctr ′ = tr ∧ wait ′B
((A)tf ∨ (B)tf)

[Lemma J.4]

342

D24.1 - Comp. Anal. of CML Models (Public Document)

=

(tr ′ − tr , ref ′)

| okay ∧

(¬ (A)ff ∧ ¬ (B)ff)

⇒ ((A)tf ∧ (B)tf)
Ctr ′ = tr ∧ wait ′B
((A)tf ∨ (B)tf)

∪

(tr ′ − tr , ref ′ ∪ {X})

| okay ∧ wait ′ ∧

(¬ (A)ff ∧ ¬ (B)ff)

⇒ ((A)tf ∧ (B)tf)
Ctr ′ = tr ∧ wait ′B
((A)tf ∨ (B)tf)

∪

((tr ′ − tr)a 〈X〉, ref ′)

| okay ∧ ¬ wait ′ ∧

(¬ (A)ff ∧ ¬ (B)ff)

⇒ ((A)tf ∧ (B)tf)
Ctr ′ = tr ∧ wait ′B
((A)tf ∨ (B)tf)

∪

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X})

| okay ∧ ¬ wait ′ ∧

(¬ (A)ff ∧ ¬ (B)ff)

⇒ ((A)tf ∧ (B)tf)
Ctr ′ = tr ∧ wait ′B
((A)tf ∨ (B)tf)

[Proviso 2 and PC]

=

(tr ′ − tr , ref ′)

| okay ∧

 ((A)tf ∧ (B)tf)
Ctr ′ = tr ∧ wait ′B
((A)tf ∨ (B)tf)

∪

(tr ′ − tr , ref ′ ∪ {X})

| okay ∧ wait ′ ∧

 ((A)tf ∧ (B)tf)
Ctr ′ = tr ∧ wait ′B
((A)tf ∨ (B)tf)

∪

((tr ′ − tr)a 〈X〉, ref ′)

| okay ∧ ¬ wait ′ ∧

 ((A)tf ∧ (B)tf)
Ctr ′ = tr ∧ wait ′B
((A)tf ∨ (B)tf)

∪

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X})

| okay ∧ ¬ wait ′ ∧

 ((A)tf ∧ (B)tf)
Ctr ′ = tr ∧ wait ′B
((A)tf ∨ (B)tf)

[PC and SC]

343

D24.1 - Comp. Anal. of CML Models (Public Document)

= {(tr ′ − tr , ref ′) | okay ∧ tr ′ = tr ∧ wait ′ ∧ (A)tf ∧ (B)tf }
∪ {(tr ′ − tr , ref ′) | okay ∧ ¬ (tr ′ = tr ∧ wait ′) ∧ (A)tf }
∪ {(tr ′ − tr , ref ′) | okay ∧ ¬ (tr ′ = tr ∧ wait ′) ∧ (B)tf }
∪ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ tr ′ = tr ∧ (A)tf ∧ (B)tf }
∪ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ ¬ tr ′ = tr ∧ (A)tf }
∪ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ ¬ tr ′ = tr ∧ (B)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (A)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (B)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ′ ∧ (A)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ′ ∧ (B)tf }

[−]

= {(〈〉, ref ′) | okay ∧ tr ′ = tr ∧ wait ′ ∧ (A)tf ∧ (B)tf }
∪ {(tr ′ − tr , ref ′) | okay ∧ ¬ (tr ′ = tr ∧ wait ′) ∧ (A)tf }
∪ {(tr ′ − tr , ref ′) | okay ∧ ¬ (tr ′ = tr ∧ wait ′) ∧ (B)tf }
∪ {(〈〉, ref ′ ∪ {X}) | okay ∧ wait ′ ∧ tr ′ = tr ∧ (A)tf ∧ (B)tf }
∪ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ ¬ tr ′ = tr ∧ (A)tf }
∪ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ ¬ tr ′ = tr ∧ (B)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (A)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (B)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ′ ∧ (A)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ′ ∧ (B)tf }

[ST]

344

D24.1 - Comp. Anal. of CML Models (Public Document)

= {(〈〉, ref ′) | okay ∧ tr ′ = tr ∧ wait ′ ∧ (A)tf ∧ (B)tf }
∪ {(〈〉, ref ′ ∪ {X}) | okay ∧ wait ′ ∧ tr ′ = tr ∧ (A)tf ∧ (B)tf }
∪ {(tr ′ − tr , ref ′) | okay ∧ ¬ (tr ′ = tr ∧ wait ′) ∧ (A)tf }
∪ {(tr ′ − tr , ref ′) | okay ∧ ¬ (tr ′ = tr ∧ wait ′) ∧ (B)tf }
∪ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ ¬ tr ′ = tr ∧ (A)tf }
∪ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ ¬ tr ′ = tr ∧ (B)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (A)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (B)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ′ ∧ (A)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ′ ∧ (B)tf }

[Lemma J.1]

= {(〈〉, ref ′) | tr ′ = tr ∧ okay ∧ (A)tf ∧ (B)tf }
∪ {(〈〉, ref ′) | tr ′ = tr ∧ okay ∧ ¬ wait ′ ∧ (A)tf }}
∪ {(〈〉, ref ′) | tr ′ = tr ∧ okay ∧ ¬ wait ′ ∧ (B)tf }}
∪ {(tr ′ − tr , ref ′) | ¬ tr ′ = tr ∧ okay ∧ (A)tf }
∪ {(tr ′ − tr , ref ′) | ¬ tr ′ = tr ∧ okay ∧ (B)tf }
∪ {(〈〉, ref ′ ∪ {X}) | tr ′ = tr ∧ okay ∧ wait ′ ∧ (A)tf ∧ (B)tf }
∪ {(tr ′ − tr , ref ′ ∪ {X}) | ¬ tr ′ = tr ∧ okay ∧ wait ′ ∧ (A)tf }
∪ {(tr ′ − tr , ref ′ ∪ {X}) | ¬ tr ′ = tr ∧ okay ∧ wait ′ ∧ (B)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (A)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (B)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ′ ∧ (A)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ′ ∧ (B)tf }

[ST]

= {(〈〉, ref ′) | tr ′ = tr ∧ okay ∧ (A)tf ∧ (B)tf }
∪ {(〈〉, ref ′ ∪ {X}) | tr ′ = tr ∧ okay ∧ wait ′ ∧ (A)tf ∧ (B)tf }
∪ {(tr ′ − tr , ref ′) | ¬ tr ′ = tr ∧ okay ∧ (A)tf }
∪ {(tr ′ − tr , ref ′ ∪ {X}) | ¬ tr ′ = tr ∧ okay ∧ wait ′ ∧ (A)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (A)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ′ ∧ (A)tf }
∪ {(tr ′ − tr , ref ′) | ¬ tr ′ = tr ∧ okay ∧ (B)tf }
∪ {(tr ′ − tr , ref ′ ∪ {X}) | ¬ tr ′ = tr ∧ okay ∧ wait ′ ∧ (B)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (B)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ′ ∧ (B)tf }
∪ {(〈〉, ref ′) | tr ′ = tr ∧ okay ∧ ¬ wait ′ ∧ (A)tf }}
∪ {(〈〉, ref ′) | tr ′ = tr ∧ okay ∧ ¬ wait ′ ∧ (B)tf }}

[Lemmas J.22, J.23, and J.24]

345

D24.1 - Comp. Anal. of CML Models (Public Document)

= {(〈〉,X) | (〈〉,X) ∈ failures(Υ(A)) ∩ failures(Υ(B))}
∪{(s ,X) | (s ,X) ∈ failures(Υ(A)) ∪ failures(Υ(B)) ∧ s 6= 〈〉}
∪{(〈〉,X) | X ⊆ Σ ∧ 〈X〉 ∈ traces(Υ(A)) ∪ traces(Υ(B))}

[failures]

= failures(Υ(A) 2 Υ(B)) [Υ]

= failures(A 2 B)

Theorem J.30

failuresUT P(2 x : S • A) = failures(Υ(2 x : S • A))

provided

1. ∀ i : S • A[vi/x] is R

2. ∀ i : S • A[vi/x] is divergence-free

Inductive Hypothesis (A):

∀ i : S • failuresUT P(A[vi/x]) = failures(Υ(A)[vi/x])

Proof. By induction on S

Base Case. S = {}
Proof.

failuresUT P(2 x : S • A) [Assumption]

= failuresUT P(2 x : {} • A) [Property of 2]

= failuresUT P(Stop) [Theorem J.22]

= failures(Υ(Stop)) [Property of 2]

= failures(Υ(2 x : {} • A)) [Assumption]

= failures(Υ(2 x : S • A))

Inductive Hypothesis (S):

failuresUT P(2 x : S • A) = failures(Υ(2 x : S • A))

346

D24.1 - Comp. Anal. of CML Models (Public Document)

Inductive Step

failuresUT P(2 x : S ∪ {vi} • A) = failures(Υ(2 x : S ∪ {vi} • A))

Proof.

failuresUT P(2 x : S ∪ {vi} • A) [2]

= failuresUT P(A[vi/x] 2 (2 x : S \ {vi} • A))

[Theorem J.29 (Provisos, IH-A and IH-S)]

= failures(Υ(A[vi/x] 2 (2 x : S \ {vi} • A))) [2]

= failures(Υ(2 x : S ∪ {vi} • A))

Theorem J.31 failuresUT P(A u B) = failures(Υ(A u B))

Inductive Hypothesis:

failuresUT P(A) = failures(Υ(A))
failuresUT P(B) = failures(Υ(B))

Proof.

failuresUT P(A u B) [failuresUT P]

= {(tr ′ − tr , ref ′) | (A u B)n}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | (A u B)n ∧ wait ′}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | (A u B)t}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | (A u B)t}

[At]

= {(tr ′ − tr , ref ′) | (A u B)n}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | (A u B)n ∧ wait ′}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | ¬ wait ′ ∧ (A u B)n}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | ¬ wait ′ ∧ (A u B)n}

[An]

=

{
(tr ′ − tr , ref ′)
| okay ∧ ¬ wait ∧ okay ′ ∧ A u B

}
∪
{

(tr ′ − tr , ref ′ ∪ {X})
| okay ∧ ¬ wait ∧ okay ′ ∧ wait ′ ∧ A u B

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′)
| okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ A u B

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X})
| okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ A u B

}

[PC]

347

D24.1 - Comp. Anal. of CML Models (Public Document)

=

{
(tr ′ − tr , ref ′)
| okay ∧ (A u B)tf

}
∪
{

(tr ′ − tr , ref ′ ∪ {X})
| okay ∧ wait ′ ∧ (A u B)tf

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′)
| okay ∧ ¬ wait ′ ∧ (A u B)tf

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X})
| okay ∧ ¬ wait ′ ∧ (A u B)tf

}

[]

=

{
(tr ′ − tr , ref ′)
| okay ∧ (A ∨ B)tf

}
∪
{

(tr ′ − tr , ref ′ ∪ {X})
| okay ∧ wait ′ ∧ (A ∨ B)tf

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′)
| okay ∧ ¬ wait ′ ∧ (A ∨ B)tf

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X})
| okay ∧ ¬ wait ′ ∧ (A ∨ B)tf

}

[PC]

=

{
(tr ′ − tr , ref ′)
| okay ∧ (A)tf ∨ (B)tf

}
∪
{

(tr ′ − tr , ref ′ ∪ {X})
| okay ∧ wait ′ ∧ (A)tf ∨ (B)tf

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′)
| okay ∧ ¬ wait ′ ∧ (A)tf ∨ (B)tf

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X})
| okay ∧ ¬ wait ′ ∧ (A)tf ∨ (B)tf

}

[PC, SC and ST]

= {(tr ′ − tr , ref ′) | okay ∧ (A)tf }
∪ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (A)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (A)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ′ ∧ (A)tf }
∪ {(tr ′ − tr , ref ′) | okay ∧ (B)tf }
∪ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (B)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (B)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ′ ∧ (B)tf }

[failuresUT P]

= failuresUT P(Υ(A)) ∪ failuresUT P(Υ(A)) [IH]

= failures(Υ(A)) ∪ failures(Υ(B)) [failures]

= failures(Υ(A) u Υ(B)) [Υ]

= failures(Υ(A u B))

348

D24.1 - Comp. Anal. of CML Models (Public Document)

Theorem J.32

failuresUT P(u x : S • A) = failures(Υ(u x : S • A))

provided

1. ∀ i : S • A[vi/x] is R

2. ∀ i : S • A[vi/x] is divergence-free

3. S 6= {}

Inductive Hypothesis (A):

∀ i : S • failuresUT P(A[vi/x]) = failures(Υ(A)[vi/x])

Proof. By induction on S

Base Case. S = {v}
Proof.

failuresUT P(u x : S • A) [Assumption]

= failuresUT P(u x : {v} • A) [u]

= failuresUT P(A[v/x]) [IH]

= failures(Υ(A[v/x])) [u]

= failures(Υ(u x : {v} • A)) [Assumption]

= failures(Υ(u x : S • A))

Inductive Hypothesis (S):

failuresUT P(u x : S • A) = failures(Υ(u x : S • A))

Inductive Step

failuresUT P(u x : S ∪ {vi} • A) = failures(Υ(u x : S ∪ {vi} • A))

Proof.

failuresUT P(u x : S ∪ {vi} • A) [u]

= failuresUT P(A[vi/x] 2 (u x : S \ {vi} • A))

349

D24.1 - Comp. Anal. of CML Models (Public Document)

[Theorem J.31 (Provisos, IH-A and IH-S)]

= failures(Υ(A[vi/x] 2 (u x : S \ {vi} • A))) [u]

= failures(Υ(u x : S ∪ {vi} • A))

Theorem J.33 failuresUT P(g & A) = failures(Υ(g & A))

Inductive Hypothesis:

failuresUT P(A) = failures(Υ(A))

Proof. The proof will be conducted by cases on g .

Case 1. g is false
Proof.

failuresUT P(g & A) [Assumption]

= failuresUT P(false & A) [Law 38]

= failuresUT P(Stop) [Theorem J.22]

= failures(Υ(Stop)) [Law 38]

= failures(Υ(false & A)) [Assumption]

= failures(Υ(g & A))

Case 2. g is true
Proof.

failuresUT P(g & A) [Assumption]

= failuresUT P(true & A) [Law 37]

= failuresUT P(A) [IH]

= failures(Υ(A)) [Law 37]

= failures(Υ(true & A)) [Assumption]

= failures(Υ(g & A))

Theorem J.34 failuresUT P(P ; Q) = failures(Υ(P ; Q))
provided

1. P and Q are divergence-free

350

D24.1 - Comp. Anal. of CML Models (Public Document)

2. P = R(Ppre ` Ppost) and Q = R(Qpre ` Qpost)

3. Ppre does not mention any dashed variable

4. Ppost and Qpost are R1 and R2

Inductive Hypothesis:

failuresUT P(P) = failures(Υ(P))
and
failuresUT P(Q) = failures(Υ(Q))

Proof.

failuresUT P(P ; Q) [failuresUT P]

= {(tr ′ − tr , ref ′) | (P ; Q)n}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | (P ; Q)n ∧ wait ′}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | (P ; Q)t}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | (P ; Q)t}

[At]

= {(tr ′ − tr , ref ′) | (P ; Q)n}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | (P ; Q)n ∧ wait ′}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | ¬ wait ′ ∧ (P ; Q)n}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | ¬ wait ′ ∧ (P ; Q)n}

[An]

= {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ∧ okay ′ ∧ (P ; Q)}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ ¬ wait ∧ okay ′ ∧ (P ; Q) ∧ wait ′}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | ¬ wait ′ ∧ okay ∧ ¬ wait ∧ okay ′ ∧ (P ; Q)}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | ¬ wait ′ ∧ okay ∧ ¬ wait ∧ okay ′ ∧ (P ; Q)}

[PC]

= {(tr ′ − tr , ref ′) | okay ∧ (P ; Q)tf }
∪ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (P ; Q)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′) | ¬ wait ′ ∧ okay ∧ (P ; Q)tf }
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | ¬ wait ′ ∧ okay ∧ (P ; Q)tf }

[Lemma J.19 (Assumptions)]

351

D24.1 - Comp. Anal. of CML Models (Public Document)

=

(tr ′ − tr , ref ′) |

okay ∧ CSP1

(
(wait ′ ∧ Ppost)
∨ ((okay ′ ∧ ¬ wait ′ ∧ Ppost); Qpost)

)
∪

(tr ′ − tr , ref ′ ∪ {X}) |

okay ∧ wait ′ ∧ CSP1

(
(wait ′ ∧ Ppost)
∨ ((okay ′ ∧ ¬ wait ′ ∧ Ppost); Qpost)

)
∪

((tr ′ − tr)a 〈X〉, ref ′) |

okay ∧ ¬ wait ′ ∧ CSP1

(
(wait ′ ∧ Ppost)
∨ ((okay ′ ∧ ¬ wait ′ ∧ Ppost); Qpost)

)
∪

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) |

okay ∧ ¬ wait ′ ∧ CSP1

(
(wait ′ ∧ Ppost)
∨ ((okay ′ ∧ ¬ wait ′ ∧ Ppost); Qpost)

)
[Lemma J.4, PC, SC and ST]

= {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ Ppost}
∪ {(tr ′ − tr , ref ′) | okay ∧ ((okay ′ ∧ ¬ wait ′ ∧ Ppost); Qpost)}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ Ppost}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ ((okay ′ ∧ ¬ wait ′ ∧ Ppost); Qpost)}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ ((okay ′ ∧ ¬ wait ′ ∧ Ppost); Qpost)}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ′ ∧ ((okay ′ ∧ ¬ wait ′ ∧ Ppost); Qpost)}

[Sequence and PC]

= {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ Ppost}
∪ {(tr ′ − tr , ref ′) | (okay ∧ ¬ wait ′ ∧ Ppost); (okay ∧ Qpost)}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ Ppost}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | (okay ∧ ¬ wait ′ ∧ Ppost); (okay ∧ wait ′ ∧ Qpost)}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | (okay ∧ ¬ wait ′ ∧ Ppost); (okay ∧ ¬ wait ′ ∧ Qpost)}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | (okay ∧ ¬ wait ′ ∧ Ppost); (okay ∧ ¬ wait ′ ∧ Qpost)}

[Sequence, PC and SC]

352

D24.1 - Comp. Anal. of CML Models (Public Document)

= {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ Ppost}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ Ppost}

∪

(s a t ,X) |

s ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ Ppost}
∧ (t ,X) ∈ {(tr ′ − tr , ref ′) | okay ∧ Qpost}

∪

(s a t ,X ∪ {X}) |

s ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ Ppost}
∧ (t ,X) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ Qpost}

∪

(s a t a 〈X〉,X) |

s ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ Ppost}
∧ (t ,X) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ Qpost}

∪

(s a t a 〈X〉,X ∪ {X}) |

s ∈ {tr ′ − tr | okay ∧ ¬ wait ′ ∧ Ppost}
∧ (t ,X) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ Qpost}

[SC]

= {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ Ppost}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ Ppost}

∪

(s a t ,X) |

s ∈ {(tr ′ − tr) | okay ∧ ¬ wait ′ ∧ Ppost}
∧ (t ,X) ∈ {(tr ′ − tr , ref ′) | okay ∧ Qpost}

∪

(s a t ,X) |

s ∈ {(tr ′ − tr) | okay ∧ ¬ wait ′ ∧ Ppost}
∧ (t ,X) ∈ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ Qpost}

∪

(s a t ,X) |

s ∈ {(tr ′ − tr) | okay ∧ ¬ wait ′ ∧ Ppost}
∧ (t ,X) ∈ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ Qpost}

∪

(s a t ,X) |

s ∈ {(tr ′ − tr) | okay ∧ ¬ wait ′ ∧ Ppost}
∧ (t ,X) ∈ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ′ ∧ Qpost}

[Lemma J.4 and Assumption 4]

353

D24.1 - Comp. Anal. of CML Models (Public Document)

= {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ CSP1(R1(R2(Ppost)))}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ CSP1(R1(R2(Ppost)))}

∪

(s a t ,X) |

s ∈ {(tr ′ − tr) | okay ∧ ¬ wait ′ ∧ CSP1(R1(R2(Ppost)))}
∧ (t ,X) ∈ {(tr ′ − tr , ref ′) | okay ∧ CSP1(R1(R2(Qpost)))}

∪

(s a t ,X) |

s ∈ {(tr ′ − tr) | okay ∧ ¬ wait ′ ∧ CSP1(R1(R2(Ppost)))}

∧ (t ,X) ∈
{

(tr ′ − tr , ref ′ ∪ {X}) |
okay ∧ wait ′ ∧ CSP1(R1(R2(Qpost)))

}

∪

(s a t ,X) |

s ∈ {(tr ′ − tr) | okay ∧ ¬ wait ′ ∧ CSP1(R1(R2(Ppost)))}

∧ (t ,X) ∈
{

((tr ′ − tr)a 〈X〉, ref ′) |
okay ∧ ¬ wait ′ ∧ CSP1(R1(R2(Qpost)))

}

∪

(s a t ,X) |

s ∈ {(tr ′ − tr) | okay ∧ ¬ wait ′ ∧ CSP1(R1(R2(Ppost)))}

∧ (t ,X) ∈
{

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) |
okay ∧ ¬ wait ′ ∧ CSP1(R1(R2(Qpost)))

}

[Lemma J.8 and PC]

= {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (R(true ` Ppost))
t
f }

∪ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (R(true ` Ppost))
t
f }

∪

(s a t ,X) |

s ∈ {(tr ′ − tr) | okay ∧ ¬ wait ′ ∧ (R(true ` Ppost))
t
f }

∧ (t ,X) ∈ {(tr ′ − tr , ref ′) | okay ∧ (R(true ` Qpost))
t
f }

∪

(s a t ,X) |

s ∈ {(tr ′ − tr) | okay ∧ ¬ wait ′ ∧ (R(true ` Ppost))
t
f }

∧ (t ,X) ∈
{

(tr ′ − tr , ref ′ ∪ {X}) |
okay ∧ wait ′ ∧ (R(true ` Qpost))

t
f

}

∪

(s a t ,X) |

s ∈ {(tr ′ − tr) | okay ∧ ¬ wait ′ ∧ (R(true ` Ppost))
t
f }

∧ (t ,X) ∈
{

((tr ′ − tr)a 〈X〉, ref ′) |
okay ∧ ¬ wait ′ ∧ (R(true ` Qpost))

t
f

}

∪

(s a t ,X) |

s ∈ {(tr ′ − tr) | okay ∧ ¬ wait ′ ∧ (R(true ` Ppost))
t
f }

∧ (t ,X) ∈
{

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) |
okay ∧ ¬ wait ′ ∧ (R(true ` Qpost))

t
f

}

[Assumption 1]

354

D24.1 - Comp. Anal. of CML Models (Public Document)

= {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (R(Ppre ` Ppost))
t
f }

∪ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (R(Ppre ` Ppost))
t
f }

∪

(s a t ,X) |

s ∈ {(tr ′ − tr) | okay ∧ ¬ wait ′ ∧ (R(Ppre ` Ppost))
t
f }

∧ (t ,X) ∈ {(tr ′ − tr , ref ′) | okay ∧ (R(Qpre ` Qpost))
t
f }

∪

(s a t ,X) |

s ∈ {(tr ′ − tr) | okay ∧ ¬ wait ′ ∧ (R(Ppre ` Ppost))
t
f }

∧ (t ,X) ∈
{

(tr ′ − tr , ref ′ ∪ {X}) |
okay ∧ wait ′ ∧ (R(Qpre ` Qpost))

t
f

}

∪

(s a t ,X) |

s ∈ {(tr ′ − tr) | okay ∧ ¬ wait ′ ∧ (R(Ppre ` Ppost))
t
f }

∧ (t ,X) ∈
{

((tr ′ − tr)a 〈X〉, ref ′) |
okay ∧ ¬ wait ′ ∧ (R(Qpre ` Qpost))

t
f

}

∪

(s a t ,X) |

s ∈ {(tr ′ − tr) | okay ∧ ¬ wait ′ ∧ (R(Ppre ` Ppost))
t
f }

∧ (t ,X) ∈
{

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) |
okay ∧ ¬ wait ′ ∧ (R(Qpre ` Qpost))

t
f

}

[Assumption 2]

= {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }
∪ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (P)tf }

∪

(s a t ,X) |

s ∈ {(tr ′ − tr) | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ (t ,X) ∈ {(tr ′ − tr , ref ′) | okay ∧ (Q)tf }

∪

(s a t ,X) |

s ∈ {(tr ′ − tr) | okay ∧ ¬ wait ′ ∧ (P)tf }

∧ (t ,X) ∈
{

(tr ′ − tr , ref ′ ∪ {X}) |
okay ∧ wait ′ ∧ (Q)tf

}

∪

(s a t ,X) |

s ∈ {(tr ′ − tr) | okay ∧ ¬ wait ′ ∧ (P)tf }

∧ (t ,X) ∈
{

((tr ′ − tr)a 〈X〉, ref ′) |
okay ∧ ¬ wait ′ ∧ (Q)tf

}

∪

(s a t ,X) |

s ∈ {(tr ′ − tr) | okay ∧ ¬ wait ′ ∧ (P)tf }

∧ (t ,X) ∈
{

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) |
okay ∧ ¬ wait ′ ∧ (Q)tf

}

[PC]

355

D24.1 - Comp. Anal. of CML Models (Public Document)

= {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ∧ okay ′ ∧ wait ′ ∧ P}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ ¬ wait ∧ okay ′ ∧ wait ′ ∧ P}

∪

(s a t ,X) |

s ∈ {(tr ′ − tr) | okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ P}
∧ (t ,X) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ∧ okay ′ ∧ Q}

∪

(s a t ,X) |

s ∈ {(tr ′ − tr) | okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ P}

∧ (t ,X) ∈
{

(tr ′ − tr , ref ′ ∪ {X}) |
okay ∧ ¬ wait ∧ okay ′ ∧ wait ′ ∧ Q

}

∪

(s a t ,X) |

s ∈ {(tr ′ − tr) | okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ P}

∧ (t ,X) ∈
{

((tr ′ − tr)a 〈X〉, ref ′) |
okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ Q

}

∪

(s a t ,X) |

s ∈ {(tr ′ − tr) | okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ P}

∧ (t ,X) ∈
{

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) |
okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ Q

}

[An]

= {(tr ′ − tr , ref ′) | (P)n ∧ wait ′}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | (P)n ∧ wait ′}

∪

(s a t ,X) |

s ∈ {(tr ′ − tr) | ¬ wait ′ ∧ (P)n}
∧ (t ,X) ∈ {(tr ′ − tr , ref ′) | (Q)n}

∪

(s a t ,X) |

s ∈ {(tr ′ − tr) | ¬ wait ′ ∧ (P)n}
∧ (t ,X) ∈ {(tr ′ − tr , ref ′ ∪ {X}) | (Q)n ∧ wait ′}

∪

(s a t ,X) |

s ∈ {(tr ′ − tr) | ¬ wait ′ ∧ (P)n}
∧ (t ,X) ∈ {((tr ′ − tr)a 〈X〉, ref ′) | ¬ wait ′ ∧ (Q)n}

∪

(s a t ,X) |

s ∈ {(tr ′ − tr) | ¬ wait ′ ∧ (P)n}
∧ (t ,X) ∈ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | ¬ wait ′ ∧ (Q)n}

[At]

356

D24.1 - Comp. Anal. of CML Models (Public Document)

= {(tr ′ − tr , ref ′) | (P)n ∧ wait ′}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | (P)n ∧ wait ′}

∪

(s a t ,X) |

s ∈ {(tr ′ − tr) | (P)t}
∧ (t ,X) ∈ {(tr ′ − tr , ref ′) | (Q)n}

∪

(s a t ,X) |

s ∈ {(tr ′ − tr) | (P)t}
∧ (t ,X) ∈ {(tr ′ − tr , ref ′ ∪ {X}) | (Q)n ∧ wait ′}

∪

(s a t ,X) |

s ∈ {(tr ′ − tr) | (P)t}
∧ (t ,X) ∈ {((tr ′ − tr)a 〈X〉, ref ′) | (Q)t}

∪

(s a t ,X) |

s ∈ {(tr ′ − tr) | (P)t}
∧ (t ,X) ∈ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | (Q)t}

[ST, PC and SC]

= {(tr ′ − tr , ref ′) | (P)n ∧ wait ′}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | (P)n ∧ wait ′}
∪

(s a t ,X) |
s ∈ {(tr ′ − tr) | (P)t}

∧ (t ,X) ∈

(tr ′ − tr , ref ′) | (Q)n}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | (Q)n ∧ wait ′}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | (Q)t}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | (Q)t

[SC and ST (ref , ref ′ : seq Σ and X /∈ Σ)]

=

(s ,X) |

s ∈ Σ∗

∧ (s ,X ∪ {X}) ∈ {(tr ′ − tr , ref ′ ∪ {X}) | (P)n ∧ wait ′}

∪

(s a t ,X) |
s ∈ {(tr ′ − tr) | (P)t}

∧ (t ,X) ∈

(tr ′ − tr , ref ′) | (Q)n}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | (Q)n ∧ wait ′}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | (Q)t}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | (Q)t

[SC and ST (ref , ref ′ : seq Σ and X /∈ Σ)]

357

D24.1 - Comp. Anal. of CML Models (Public Document)

=

(s ,X) |

s ∈ Σ∗

∧ (s ,X ∪ {X}) ∈
{
{(tr ′ − tr , ref ′) | (P)n}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | (P)n ∧ wait ′}

}

∪

(s a t ,X) |
s ∈ {(tr ′ − tr) | (P)t}

∧ (t ,X) ∈

{(tr ′ − tr , ref ′) | (Q)n}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | (Q)n ∧ wait ′}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | (Q)t}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | (Q)t

[SC and ST (tr , tr ′ : seq Σ and X /∈ Σ)]

=

(s ,X) |
s ∈ Σ∗

∧ (s ,X ∪ {X}) ∈

{(tr ′ − tr , ref ′) | (P)n}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | (P)n ∧ wait ′}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | (P)t}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | (P)t

∪

(s a t ,X) |
s ∈ {(tr ′ − tr) | (P)t}

∧ (t ,X) ∈

{(tr ′ − tr , ref ′) | (Q)n}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | (Q)n ∧ wait ′}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | (Q)t}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | (Q)t

[SC and ST (tr , tr ′ : seq Σ and X /∈ Σ)]

358

D24.1 - Comp. Anal. of CML Models (Public Document)

=

(s ,X) |
s ∈ Σ∗

∧ (s ,X ∪ {X}) ∈

{(tr ′ − tr , ref ′) | (P)n}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | (P)n ∧ wait ′}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | (P)t}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | (P)t

∪

(s a t ,X) |
s a 〈X〉 ∈
{tr ′ − tr | (P)n} ∪ {(tr ′ − tr)a 〈X〉 | (P)t}

∧ (t ,X) ∈

{(tr ′ − tr , ref ′) | (Q)n}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | (Q)n ∧ wait ′}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | (Q)t}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | (Q)t

[tracesUT P and failuresUT P]

= {(s ,X) | s ∈ Σ∗ ∧ (s ,X ∪ {X}) ∈ failuresUT P(P)}
∪{(s a t ,X) | s a 〈X〉 ∈ tracesUT P(P) ∧ (t ,X) ∈ failuresUT P(Q)}

[Theorem 5.1]

= {(s ,X) | s ∈ Σ∗ ∧ (s ,X ∪ {X}) ∈ failuresUT P(P)}
∪{(s a t ,X) | s a 〈X〉 ∈ traces(Υ(P)) ∧ (t ,X) ∈ failuresUT P(Q)}

[IH]

= {(s ,X) | s ∈ Σ∗ ∧ (s ,X ∪ {X}) ∈ failures(Υ(P))}
∪{(s a t ,X) | s a 〈X〉 ∈ traces(Υ(P)) ∧ (t ,X) ∈ failures(Υ(Q))}

[failures]

= failures(Υ(P); Υ(Q)) [Υ]

= failures(Υ(P ; Q))

Theorem J.35

failuresUT P(o
9 x : S • A) = failures(Υ(o

9 x : S • A))

provided

1. ∀ i : S • A[vi/x] is R

2. ∀ i : S • A[vi/x] is divergence-free

Inductive Hypothesis (A):

∀ i : S • failuresUT P(A[vi/x]) = failures(Υ(A)[vi/x])

Proof. By induction on S

359

D24.1 - Comp. Anal. of CML Models (Public Document)

Base Case. S = 〈〉
Proof.

failuresUT P(o
9 x : S • A) [Assumption]

= failuresUT P(o
9 x : 〈〉 • A) [Property of o

9]

= failuresUT P(Skip) [Theorem J.21]

= failures(Υ(Skip)) [Property of o
9]

= failures(Υ(o
9 x : 〈〉 • A)) [Assumption]

= failures(Υ(o
9 x : S • A))

Inductive Hypothesis (S):

failuresUT P(o
9 x : S • A) = failures(Υ(o

9 x : S • A))

Inductive Step

failuresUT P(o
9 x : S ∪ {vi} • A) = failures(Υ(o

9 x : S ∪ {vi} • A))

Proof.

failuresUT P(o
9 x : S • A) [o9]

= failuresUT P(A[head(s)/x]; (o
9 x : tail(S) • A))

[Theorem J.34 (Provisos, IH-A and IH-S)]

= failures(Υ(A[head(vi)/x]; (o
9 x : tail(S) • A))) [o9]

= failures(Υ(o
9 x : S • A))

Theorem J.36

failuresUT P(P |[ns1 | cs | ns2]|Q)
=
failures(Υ(P |[ns1 | cs | ns2]|Q))

provided

1. P and Q are divergence-free

Inductive Hypothesis:

failuresUT P(P) = failures(Υ(P))
and
failuresUT P(Q) = failures(Υ(Q))

360

D24.1 - Comp. Anal. of CML Models (Public Document)

Proof.

failuresUT P(P |[ns1 | cs | ns2]|Q) [failuresUT P]

= {(tr ′ − tr , ref ′) | (P |[ns1 | cs | ns2]|Q)n}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | (P |[ns1 | cs | ns2]|Q)n ∧ wait ′}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | (P |[ns1 | cs | ns2]|Q)t}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | (P |[ns1 | cs | ns2]|Q)t}

[At]

= {(tr ′ − tr , ref ′) | (P |[ns1 | cs | ns2]|Q)n}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | (P |[ns1 | cs | ns2]|Q)n ∧ wait ′}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | ¬ wait ′ ∧ (P |[ns1 | cs | ns2]|Q)n}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | ¬ wait ′ ∧ (P |[ns1 | cs | ns2]|Q)n}

[An]

= {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ∧ okay ′ ∧ (P |[ns1 | cs | ns2]|Q)}

∪
{

(tr ′ − tr , ref ′ ∪ {X})
| okay ∧ ¬ wait ∧ okay ′ ∧ wait ′ ∧ (P |[ns1 | cs | ns2]|Q)

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′)
| okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ (P |[ns1 | cs | ns2]|Q)

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) |
okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ (P |[ns1 | cs | ns2]|Q)

}

[PC]

= {(tr ′ − tr , ref ′) | okay ∧ (P |[ns1 | cs | ns2]|Q)tf }

∪
{

(tr ′ − tr , ref ′ ∪ {X})
| okay ∧ wait ′ ∧ (P |[ns1 | cs | ns2]|Q)tf

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′)
| okay ∧ ¬ wait ′ ∧ (P |[ns1 | cs | ns2]|Q)tf

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) |
okay ∧ ¬ wait ′ ∧ (P |[ns1 | cs | ns2]|Q)tf

}
[Lemma J.28 (Assumptions)]

361

D24.1 - Comp. Anal. of CML Models (Public Document)

=

(tr ′ − tr , ref ′)

| okay ∧ CSP1

R1

 ∃ 1.tr ′, 2.tr ′ • (P f
f ; 1.tr ′ = tr)

∧ (Qf ; 2.tr ′ = tr)
∧ 1.tr ′ � cs = 2.tr ′ � cs

∨ R1

 ∃ 1.tr ′, 2.tr ′ • (Pf ; 1.tr ′ = tr)

∧ (Q f
f ; 2.tr ′ = tr)

∧ 1.tr ′ � cs = 2.tr ′ � cs

∨

((
(P t

f ; U 1(outαP))
∧ (Q t

f ; U 2(outαQ))

)
+{v ,tr}

; M‖cs

)

∪

(tr ′ − tr , ref ′ ∪ {X})
| okay ∧ wait ′ ∧

CSP1

R1

 ∃ 1.tr ′, 2.tr ′ • (P f
f ; 1.tr ′ = tr)

∧ (Qf ; 2.tr ′ = tr)
∧ 1.tr ′ � cs = 2.tr ′ � cs

∨ R1

 ∃ 1.tr ′, 2.tr ′ • (Pf ; 1.tr ′ = tr)

∧ (Q f
f ; 2.tr ′ = tr)

∧ 1.tr ′ � cs = 2.tr ′ � cs

∨

((
(P t

f ; U 1(outαP))
∧ (Q t

f ; U 2(outαQ))

)
+{v ,tr}

; M‖cs

)

∪

((tr ′ − tr)a 〈X〉, ref ′)
| okay ∧ ¬ wait ′ ∧

CSP1

R1

 ∃ 1.tr ′, 2.tr ′ • (P f
f ; 1.tr ′ = tr)

∧ (Qf ; 2.tr ′ = tr)
∧ 1.tr ′ � cs = 2.tr ′ � cs

∨ R1

 ∃ 1.tr ′, 2.tr ′ • (Pf ; 1.tr ′ = tr)

∧ (Q f
f ; 2.tr ′ = tr)

∧ 1.tr ′ � cs = 2.tr ′ � cs

∨

((
(P t

f ; U 1(outαP))
∧ (Q t

f ; U 2(outαQ))

)
+{v ,tr}

; M‖cs

)

∪

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) |
okay ∧ ¬ wait ′ ∧

CSP1

R1

 ∃ 1.tr ′, 2.tr ′ • (P f
f ; 1.tr ′ = tr)

∧ (Qf ; 2.tr ′ = tr)
∧ 1.tr ′ � cs = 2.tr ′ � cs

∨ R1

 ∃ 1.tr ′, 2.tr ′ • (Pf ; 1.tr ′ = tr)

∧ (Q f
f ; 2.tr ′ = tr)

∧ 1.tr ′ � cs = 2.tr ′ � cs

∨

((
(P t

f ; U 1(outαP))
∧ (Q t

f ; U 2(outαQ))

)
+{v ,tr}

; M‖cs

)

362

D24.1 - Comp. Anal. of CML Models (Public Document)

[Lemma J.4]

363

D24.1 - Comp. Anal. of CML Models (Public Document)

=

(tr ′ − tr , ref ′)

| okay ∧

R1

 ∃ 1.tr ′, 2.tr ′ • (P f
f ; 1.tr ′ = tr)

∧ (Qf ; 2.tr ′ = tr)
∧ 1.tr ′ � cs = 2.tr ′ � cs

∨ R1

 ∃ 1.tr ′, 2.tr ′ • (Pf ; 1.tr ′ = tr)

∧ (Q f
f ; 2.tr ′ = tr)

∧ 1.tr ′ � cs = 2.tr ′ � cs

∨

((
(P t

f ; U 1(outαP))
∧ (Q t

f ; U 2(outαQ))

)
+{v ,tr}

; M‖cs

)

∪

(tr ′ − tr , ref ′ ∪ {X})
| okay ∧ wait ′ ∧

R1

 ∃ 1.tr ′, 2.tr ′ • (P f
f ; 1.tr ′ = tr)

∧ (Qf ; 2.tr ′ = tr)
∧ 1.tr ′ � cs = 2.tr ′ � cs

∨ R1

 ∃ 1.tr ′, 2.tr ′ • (Pf ; 1.tr ′ = tr)

∧ (Q f
f ; 2.tr ′ = tr)

∧ 1.tr ′ � cs = 2.tr ′ � cs

∨

((
(P t

f ; U 1(outαP))
∧ (Q t

f ; U 2(outαQ))

)
+{v ,tr}

; M‖cs

)

∪

((tr ′ − tr)a 〈X〉, ref ′)
| okay ∧ ¬ wait ′ ∧

R1

 ∃ 1.tr ′, 2.tr ′ • (P f
f ; 1.tr ′ = tr)

∧ (Qf ; 2.tr ′ = tr)
∧ 1.tr ′ � cs = 2.tr ′ � cs

∨ R1

 ∃ 1.tr ′, 2.tr ′ • (Pf ; 1.tr ′ = tr)

∧ (Q f
f ; 2.tr ′ = tr)

∧ 1.tr ′ � cs = 2.tr ′ � cs

∨

((
(P t

f ; U 1(outαP))
∧ (Q t

f ; U 2(outαQ))

)
+{v ,tr}

; M‖cs

)

∪

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) |
okay ∧ ¬ wait ′ ∧

R1

 ∃ 1.tr ′, 2.tr ′ • (P f
f ; 1.tr ′ = tr)

∧ (Qf ; 2.tr ′ = tr)
∧ 1.tr ′ � cs = 2.tr ′ � cs

∨ R1

 ∃ 1.tr ′, 2.tr ′ • (Pf ; 1.tr ′ = tr)

∧ (Q f
f ; 2.tr ′ = tr)

∧ 1.tr ′ � cs = 2.tr ′ � cs

∨

((
(P t

f ; U 1(outαP))
∧ (Q t

f ; U 2(outαQ))

)
+{v ,tr}

; M‖cs

)

364

D24.1 - Comp. Anal. of CML Models (Public Document)

[Assumption 1]

365

D24.1 - Comp. Anal. of CML Models (Public Document)

=

(tr ′ − tr , ref ′)

| okay ∧

R1

 ∃ 1.tr ′, 2.tr ′ • (false; 1.tr ′ = tr)
∧ (Qf ; 2.tr ′ = tr)
∧ 1.tr ′ � cs = 2.tr ′ � cs

∨ R1

 ∃ 1.tr ′, 2.tr ′ • (Pf ; 1.tr ′ = tr)
∧ (false; 2.tr ′ = tr)
∧ 1.tr ′ � cs = 2.tr ′ � cs

∨

((
(P t

f ; U 1(outαP))
∧ (Q t

f ; U 2(outαQ))

)
+{v ,tr}

; M‖cs

)

∪

(tr ′ − tr , ref ′ ∪ {X})
| okay ∧ wait ′ ∧

R1

 ∃ 1.tr ′, 2.tr ′ • (false; 1.tr ′ = tr)
∧ (Qf ; 2.tr ′ = tr)
∧ 1.tr ′ � cs = 2.tr ′ � cs

∨ R1

 ∃ 1.tr ′, 2.tr ′ • (Pf ; 1.tr ′ = tr)
∧ (false; 2.tr ′ = tr)
∧ 1.tr ′ � cs = 2.tr ′ � cs

∨

((
(P t

f ; U 1(outαP))
∧ (Q t

f ; U 2(outαQ))

)
+{v ,tr}

; M‖cs

)

∪

((tr ′ − tr)a 〈X〉, ref ′)
| okay ∧ ¬ wait ′ ∧

R1

 ∃ 1.tr ′, 2.tr ′ • (false; 1.tr ′ = tr)
∧ (Qf ; 2.tr ′ = tr)
∧ 1.tr ′ � cs = 2.tr ′ � cs

∨ R1

 ∃ 1.tr ′, 2.tr ′ • (Pf ; 1.tr ′ = tr)
∧ (false; 2.tr ′ = tr)
∧ 1.tr ′ � cs = 2.tr ′ � cs

∨

((
(P t

f ; U 1(outαP))
∧ (Q t

f ; U 2(outαQ))

)
+{v ,tr}

; M‖cs

)

∪

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) |
okay ∧ ¬ wait ′ ∧

R1

 ∃ 1.tr ′, 2.tr ′ • (false; 1.tr ′ = tr)
∧ (Qf ; 2.tr ′ = tr)
∧ 1.tr ′ � cs = 2.tr ′ � cs

∨ R1

 ∃ 1.tr ′, 2.tr ′ • (Pf ; 1.tr ′ = tr)
∧ (false; 2.tr ′ = tr)
∧ 1.tr ′ � cs = 2.tr ′ � cs

∨

((
(P t

f ; U 1(outαP))
∧ (Q t

f ; U 2(outαQ))

)
+{v ,tr}

; M‖cs

)

366

D24.1 - Comp. Anal. of CML Models (Public Document)

[Sequence and PC]

=

(tr ′ − tr , ref ′)

| okay ∧

((
(P t

f ; U 1(outαP))
∧ (Q t

f ; U 2(outαQ))

)
+{v ,tr}

; M‖cs

)
∪

(tr ′ − tr , ref ′ ∪ {X})
| okay ∧ wait ′ ∧((

(P t
f ; U 1(outαP))

∧ (Q t
f ; U 2(outαQ))

)
+{v ,tr}

; M‖cs

)

∪

((tr ′ − tr)a 〈X〉, ref ′)
| okay ∧ ¬ wait ′ ∧((

(P t
f ; U 1(outαP))

∧ (Q t
f ; U 2(outαQ))

)
+{v ,tr}

; M‖cs

)

∪

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) |
okay ∧ ¬ wait ′ ∧((

(P t
f ; U 1(outαP))

∧ (Q t
f ; U 2(outαQ))

)
+{v ,tr}

; M‖cs

)

[M‖cs]

367

D24.1 - Comp. Anal. of CML Models (Public Document)

=

(tr ′ − tr , ref ′)

| okay ∧

(
(P t

f ; U 1(outαP))
∧ (Q t

f ; U 2(outαQ))

)
+{v ,tr}

;

tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)
∧ 1.tr � cs = 2.tr � cs

∧

 (1.wait ∨ 2.wait)

∧ ref ′ ⊆
(

((1.ref ∪ 2.ref) ∩ cs)
∪((1.ref ∩ 2.ref) \ cs)

)
Cwait ′B
(¬ 1.wait ∧ ¬ 2.wait ∧ MSt)

∪

(tr ′ − tr , ref ′ ∪ {X})
| okay ∧ wait ′ ∧

(
(P t

f ; U 1(outαP))
∧ (Q t

f ; U 2(outαQ))

)
+{v ,tr}

;

tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)
∧ 1.tr � cs = 2.tr � cs

∧

 (1.wait ∨ 2.wait)

∧ ref ′ ⊆
(

((1.ref ∪ 2.ref) ∩ cs)
∪((1.ref ∩ 2.ref) \ cs)

)
Cwait ′B
(¬ 1.wait ∧ ¬ 2.wait ∧ MSt)

∪

((tr ′ − tr)a 〈X〉, ref ′)
| okay ∧ ¬ wait ′ ∧

(
(P t

f ; U 1(outαP))
∧ (Q t

f ; U 2(outαQ))

)
+{v ,tr}

;

tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)
∧ 1.tr � cs = 2.tr � cs

∧

 (1.wait ∨ 2.wait)

∧ ref ′ ⊆
(

((1.ref ∪ 2.ref) ∩ cs)
∪((1.ref ∩ 2.ref) \ cs)

)
Cwait ′B
(¬ 1.wait ∧ ¬ 2.wait ∧ MSt)

∪

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) |
okay ∧ ¬ wait ′ ∧

(
(P t

f ; U 1(outαP))
∧ (Q t

f ; U 2(outαQ))

)
+{v ,tr}

;

tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)
∧ 1.tr � cs = 2.tr � cs

∧

 (1.wait ∨ 2.wait)

∧ ref ′ ⊆
(

((1.ref ∪ 2.ref) ∩ cs)
∪((1.ref ∩ 2.ref) \ cs)

)
Cwait ′B
(¬ 1.wait ∧ ¬ 2.wait ∧ MSt)

368

D24.1 - Comp. Anal. of CML Models (Public Document)

[Sequence, PC and ST]

369

D24.1 - Comp. Anal. of CML Models (Public Document)

=

(tr ′ − tr , ref ′)
| okay ∧ wait ′ ∧

(
(P t

f ; U 1(outαP))
∧ (Q t

f ; U 2(outαQ))

)
+{v ,tr}

;
tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)
∧ 1.tr � cs = 2.tr � cs

∧

 (1.wait ∨ 2.wait)

∧ ref ′ ⊆
(

((1.ref ∪ 2.ref) ∩ cs)
∪((1.ref ∩ 2.ref) \ cs)

)

∪

(tr ′ − tr , ref ′)
| okay ∧ ¬ wait ′ ∧

(
(P t

f ; U 1(outαP))
∧ (Q t

f ; U 2(outαQ))

)
+{v ,tr}

; tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)
∧ 1.tr � cs = 2.tr � cs
∧ ¬ 1.wait ∧ ¬ 2.wait ∧ MSt

∪

(tr ′ − tr , ref ′ ∪ {X})
| okay ∧ wait ′ ∧

(
(P t

f ; U 1(outαP))
∧ (Q t

f ; U 2(outαQ))

)
+{v ,tr}

;
tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)
∧ 1.tr � cs = 2.tr � cs

∧

 (1.wait ∨ 2.wait)

∧ ref ′ ⊆
(

((1.ref ∪ 2.ref) ∩ cs)
∪((1.ref ∩ 2.ref) \ cs)

)

∪

((tr ′ − tr)a 〈X〉, ref ′)
| okay ∧ ¬ wait ′ ∧

(
(P t

f ; U 1(outαP))
∧ (Q t

f ; U 2(outαQ))

)
+{v ,tr}

; tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)
∧ 1.tr � cs = 2.tr � cs
¬ 1.wait ∧ ¬ 2.wait ∧ MSt

∪

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) |
okay ∧ ¬ wait ′ ∧

(
(P t

f ; U 1(outαP))
∧ (Q t

f ; U 2(outαQ))

)
+{v ,tr}

; tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)
∧ 1.tr � cs = 2.tr � cs
∧ ¬ 1.wait ∧ ¬ 2.wait ∧ MSt

370

D24.1 - Comp. Anal. of CML Models (Public Document)

At this point of the proof, for conciseness, we need to introduce further
notation to give names to predicates.

• Separate execution of P and Q

PQ =̂

(
(P t

f ; U 1(outαP))
∧ (Q t

f ; U 2(outαQ))

)
+{v ,tr}

• Merge for P and Q not waiting

MPf Qf
=̂

 tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)
∧ 1.tr � cs = 2.tr � cs
∧ ¬ 1.wait ∧ ¬ 2.wait ∧ MSt

• Merge for P and Q waiting

MPtQt =̂

tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)
∧ 1.tr � cs = 2.tr � cs
∧ 1.wait ∧ 2.wait

∧ ref ′ ⊆
(

((1.ref ∪ 2.ref) ∩ cs)
∪((1.ref ∩ 2.ref) \ cs)

)

• Merge for P waiting and Q not waiting

MPtQf
=̂

tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)
∧ 1.tr � cs = 2.tr � cs
∧ 1.wait ∧ ¬ 2.wait

∧ ref ′ ⊆
(

((1.ref ∪ 2.ref) ∩ cs)
∪((1.ref ∩ 2.ref) \ cs)

)

• Merge for P not waiting and Q waiting

MPf Qt =̂

tr ′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr)
∧ 1.tr � cs = 2.tr � cs
∧ ¬ 1.wait ∧ 2.wait

∧ ref ′ ⊆
(

((1.ref ∪ 2.ref) ∩ cs)
∪((1.ref ∩ 2.ref) \ cs)

)

[Sequence, PC and ST]

371

D24.1 - Comp. Anal. of CML Models (Public Document)

= (A)

{(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (PQ; MPtQt)}
(B)

∪{(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (PQ; MPtQf
)}

(C)

∪{(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (PQ; MPf Qt)}
(D)

∪{(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (PQ; MPf Qf
)}

(E)

∪{(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (PQ; MPtQt)}
(F)

∪{(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (PQ; MPtQf
)}

(G)

∪{(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (PQ; MPf Qt)}
(H)

∪{((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (PQ; MPf Qf
)}

(I)

∪{((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | okay ∧ ¬ wait ′ ∧ (PQ; MPf Qf
)}

At this step, we have a one-to-one correspondence. They are:

• (A) is equivalent to (1.1) by Lemma J.37

• (B) is equivalent to (1.2) by Lemma J.38

• (C) is equivalent to (1.3) by Lemma J.39

• (D) is equivalent to (1.4) by Lemma J.40

• (E) is equivalent to (2.1) by Lemma J.41

• (F) is equivalent to (5.2) by Lemma J.42

• (G) is equivalent to (2.2) by Lemma J.43

• (H) is equivalent to (11) by Lemma J.44

• (I) is equivalent to (12) by Lemma J.45

Applying these lemmas, we continue the proof below.

=

(1.1)

372

D24.1 - Comp. Anal. of CML Models (Public Document)

(u,Y ∪ Z)
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(1.2)

∪

(u,Y ∪ Z)
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(1.3)

∪

(u,Y ∪ Z)
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(1.4)

∪

(u,Y ∪ Z)
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(2.1)

∪

(u,Y ∪ Z ∪ {X})
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(2.2)

373

D24.1 - Comp. Anal. of CML Models (Public Document)

∪

(u,Y ∪ Z ∪ {X})
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(5.2)

∪

(u,Y ∪ Z ∪ {X})
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(11)

∪

(u a 〈X〉,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈ {((tr ′ − tr), ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ (t ,Z) ∈ {((tr ′ − tr), ref ′) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(12)

∪

(u a 〈X〉,Y ∪ Z ∪ {X}) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {((tr ′ − tr), ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈
{

((tr ′ − tr), ref ′)
| okay ∧ ¬ wait ′ ∧ (Q)tf

}
∧ u ∈ s ‖

csX
t

At this step, we use set theory to repeat some elements. The repetitions
are:

• Repeating (2.1): (5.1) and (6)

• Repeating (12): (15) and (16)

=

(1.1)

(u,Y ∪ Z)
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

374

D24.1 - Comp. Anal. of CML Models (Public Document)

(1.2)

∪

(u,Y ∪ Z)
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(1.3)

∪

(u,Y ∪ Z)
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(1.4)

∪

(u,Y ∪ Z)
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(2.1)

∪

(u,Y ∪ Z ∪ {X})
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(2.2)

∪

(u,Y ∪ Z ∪ {X})
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(5.1)

375

D24.1 - Comp. Anal. of CML Models (Public Document)

∪

(u,Y ∪ Z ∪ {X})
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(5.2)

∪

(u,Y ∪ Z ∪ {X})
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(6)

∪

(u,Y ∪ Z ∪ {X})
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(11)

∪

(u a 〈X〉,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈ {((tr ′ − tr), ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ (t ,Z) ∈ {((tr ′ − tr), ref ′) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(12)

∪

(u a 〈X〉,Y ∪ Z ∪ {X}) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {((tr ′ − tr), ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈
{

((tr ′ − tr), ref ′)
| okay ∧ ¬ wait ′ ∧ (Q)tf

}
∧ u ∈ s ‖

csX
t

(15)

376

D24.1 - Comp. Anal. of CML Models (Public Document)

∪

(u a 〈X〉,Y ∪ Z ∪ {X}) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈
{

((tr ′ − tr), ref ′)
| okay ∧ ¬ wait ′ ∧ (P)tf

}
∧ (t ,Z) ∈

{
((tr ′ − tr), ref ′)
| okay ∧ ¬ wait ′ ∧ (Q)tf

}
∧ u ∈ s ‖

csX
t

(16)

∪

(u a 〈X〉,Y ∪ Z ∪ {X}) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈
{

((tr ′ − tr), ref ′)
| okay ∧ ¬ wait ′ ∧ (P)tf

}
∧ (t ,Z) ∈

{
((tr ′ − tr), ref ′)
| okay ∧ ¬ wait ′ ∧ (Q)tf

}
∧ u ∈ s ‖

csX
t

[Lemma J.49, SC, ST]

=

(1.1)

(u,Y ∪ Z)
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(1.2)

∪

(u,Y ∪ Z)
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(1.3)

∪

(u,Y ∪ Z)
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

377

D24.1 - Comp. Anal. of CML Models (Public Document)

(1.4)

∪

(u,Y ∪ Z)
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(2.1)

∪

(u,Y ∪ Z ∪ {X})
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(2.2)

∪

(u,Y ∪ Z ∪ {X})
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(5.1)

∪

(u,Y ∪ Z ∪ {X})
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(5.2)

∪

(u,Y ∪ Z ∪ {X})
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(6)

378

D24.1 - Comp. Anal. of CML Models (Public Document)

∪

(u,Y ∪ Z ∪ {X})
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(11)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ (t ,Z) ∈ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(12)

∪

(u,Y ∪ Z ∪ {X}) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈
{

((tr ′ − tr)a 〈X〉, ref ′)
| okay ∧ ¬ wait ′ ∧ (Q)tf

}
∧ u ∈ s ‖

csX
t

(15)

∪

(u,Y ∪ Z ∪ {X}) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈
{

((tr ′ − tr)a 〈X〉, ref ′)
| okay ∧ ¬ wait ′ ∧ (P)tf

}
∧ (t ,Z) ∈

{
((tr ′ − tr)a 〈X〉, ref ′)
| okay ∧ ¬ wait ′ ∧ (Q)tf

}
∧ u ∈ s ‖

csX
t

(16)

∪

(u,Y ∪ Z ∪ {X}) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈
{

((tr ′ − tr)a 〈X〉, ref ′)
| okay ∧ ¬ wait ′ ∧ (P)tf

}
∧ (t ,Z) ∈

{
((tr ′ − tr)a 〈X〉, ref ′)
| okay ∧ ¬ wait ′ ∧ (Q)tf

}
∧ u ∈ s ‖

csX
t

[ST]

=

379

D24.1 - Comp. Anal. of CML Models (Public Document)

(1.1)

(u,Y ∪ Z)
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(1.2)

∪

(u,Y ∪ Z)
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(1.3)

∪

(u,Y ∪ Z)
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(1.4)

∪

(u,Y ∪ Z)
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(2.1)

∪

(u,Y ∪ Z ∪ {X})
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(2.2)

380

D24.1 - Comp. Anal. of CML Models (Public Document)

∪

(u,Y ∪ Z ∪ {X})
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(3.1)

∪{}
(3.2)

∪{}
(4.1)

∪{}
(4.2)

∪{}
(5.1)

∪

(u,Y ∪ Z ∪ {X})
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(5.2)

∪

(u,Y ∪ Z ∪ {X})
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(6)

∪

(u,Y ∪ Z ∪ {X})
| Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(7)

∪{}

381

D24.1 - Comp. Anal. of CML Models (Public Document)

(8)

∪{}
(9.1)

∪{}
(9.2)

∪{}
(10)

∪{}
(11)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ (t ,Z) ∈ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(12)

∪

(u,Y ∪ Z ∪ {X}) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈
{

((tr ′ − tr)a 〈X〉, ref ′)
| okay ∧ ¬ wait ′ ∧ (Q)tf

}
∧ u ∈ s ‖

csX
t

(13.1)

∪{}
(13.2)

∪{}
(14)

∪{}
(15)

∪

(u,Y ∪ Z ∪ {X}) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈
{

((tr ′ − tr)a 〈X〉, ref ′)
| okay ∧ ¬ wait ′ ∧ (P)tf

}
∧ (t ,Z) ∈

{
((tr ′ − tr)a 〈X〉, ref ′)
| okay ∧ ¬ wait ′ ∧ (Q)tf

}
∧ u ∈ s ‖

csX
t

(16)

382

D24.1 - Comp. Anal. of CML Models (Public Document)

∪

(u,Y ∪ Z ∪ {X}) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈
{

((tr ′ − tr)a 〈X〉, ref ′)
| okay ∧ ¬ wait ′ ∧ (P)tf

}
∧ (t ,Z) ∈

{
((tr ′ − tr)a 〈X〉, ref ′)
| okay ∧ ¬ wait ′ ∧ (Q)tf

}
∧ u ∈ s ‖

csX
t

[Lemma J.48 (tr , tr ′ : seq Σ and X /∈ Σ), SC and ST]

[on (3.*), (4.*), (7) to (10), (13), (14)]

=

(1.1)
(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }
∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(1.2)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }
∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(1.3)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(1.4)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(2.1)

383

D24.1 - Comp. Anal. of CML Models (Public Document)

∪

(u,Y ∪ Z ∪ {X}) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }
∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(2.2)

∪

(u,Y ∪ Z ∪ {X}) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(3.1)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }
∧ (t ,Z) ∈ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(3.2)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ (t ,Z) ∈ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(4.1)

∪

(u,Y ∪ Z ∪ {X}) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈
{

((tr ′ − tr)a 〈X〉, ref ′)
| okay ∧ ¬ wait ′ ∧ (Q)tf

}
∧ u ∈ s ‖

csX
t

(4.2)

∪

(u,Y ∪ Z ∪ {X}) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈
{

((tr ′ − tr)a 〈X〉, ref ′)
| okay ∧ ¬ wait ′ ∧ (Q)tf

}
∧ u ∈ s ‖

csX
t

(5.1)

384

D24.1 - Comp. Anal. of CML Models (Public Document)

∪

(u,Y ∪ Z ∪ {X}) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }
∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(5.2)

∪

(u,Y ∪ Z ∪ {X}) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }
∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(6)

∪

(u,Y ∪ Z ∪ {X}) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }
∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(7)

∪

(u,Y ∪ Z ∪ {X}) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }
∧ (t ,Z) ∈ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(8)

∪

(u,Y ∪ Z ∪ {X}) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈
{

((tr ′ − tr)a 〈X〉, ref ′)
| okay ∧ ¬ wait ′ ∧ (Q)tf

}
∧ u ∈ s ‖

csX
t

(9.1)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(9.2)

385

D24.1 - Comp. Anal. of CML Models (Public Document)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(10)

∪

(u,Y ∪ Z ∪ {X}) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(11)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ (t ,Z) ∈ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(12)

∪

(u,Y ∪ Z ∪ {X}) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈
{

((tr ′ − tr)a 〈X〉, ref ′)
| okay ∧ ¬ wait ′ ∧ (Q)tf

}
∧ u ∈ s ‖

csX
t

(13.1)

∪

(u,Y ∪ Z ∪ {X}) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈
{

((tr ′ − tr)a 〈X〉, ref ′)
| okay ∧ ¬ wait ′ ∧ (P)tf

}
∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(13.2)

∪

(u,Y ∪ Z ∪ {X}) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈
{

((tr ′ − tr)a 〈X〉, ref ′)
| okay ∧ ¬ wait ′ ∧ (P)tf

}
∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(14)

386

D24.1 - Comp. Anal. of CML Models (Public Document)

∪

(u,Y ∪ Z ∪ {X}) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈
{

((tr ′ − tr)a 〈X〉, ref ′)
| okay ∧ ¬ wait ′ ∧ (P)tf

}
∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(15)

∪

(u,Y ∪ Z ∪ {X}) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈
{

((tr ′ − tr)a 〈X〉, ref ′)
| okay ∧ ¬ wait ′ ∧ (P)tf

}
∧ (t ,Z) ∈

{
((tr ′ − tr)a 〈X〉, ref ′)
| okay ∧ ¬ wait ′ ∧ (Q)tf

}
∧ u ∈ s ‖

csX
t

(16)

∪

(u,Y ∪ Z ∪ {X}) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈
{

((tr ′ − tr)a 〈X〉, ref ′)
| okay ∧ ¬ wait ′ ∧ (P)tf

}
∧ (t ,Z) ∈

{
((tr ′ − tr)a 〈X〉, ref ′)
| okay ∧ ¬ wait ′ ∧ (Q)tf

}
∧ u ∈ s ‖

csX
t

[ST and SC (refusals on (2.*), (4.*), (5.*), (6), (7), (8), (10), (12) and (13) to (16)]

=

(1.1)
(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }
∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(1.2)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }
∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(1.3)

387

D24.1 - Comp. Anal. of CML Models (Public Document)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(1.4)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(2.1)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }
∧ (t ,Z) ∈ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(2.2)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ (t ,Z) ∈ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(3.1)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }
∧ (t ,Z) ∈ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(3.2)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ (t ,Z) ∈ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(4.1)

388

D24.1 - Comp. Anal. of CML Models (Public Document)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈
{

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X})
| okay ∧ ¬ wait ′ ∧ (Q)tf

}
∧ u ∈ s ‖

csX
t

(4.2)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈
{

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X})
| okay ∧ ¬ wait ′ ∧ (Q)tf

}
∧ u ∈ s ‖

csX
t

(5.1)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (P)tf }
∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(5.2)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (P)tf }
∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(6)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (P)tf }
∧ (t ,Z) ∈ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(7)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (P)tf }
∧ (t ,Z) ∈ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(8)

389

D24.1 - Comp. Anal. of CML Models (Public Document)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈
{

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X})
| okay ∧ ¬ wait ′ ∧ (Q)tf

}
∧ u ∈ s ‖

csX
t

(9.1)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(9.2)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(10)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ (t ,Z) ∈ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(11)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ (t ,Z) ∈ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(12)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈
{

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X})
| okay ∧ ¬ wait ′ ∧ (Q)tf

}
∧ u ∈ s ‖

csX
t

(13.1)

390

D24.1 - Comp. Anal. of CML Models (Public Document)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈
{

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X})
| okay ∧ ¬ wait ′ ∧ (P)tf

}
∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(13.2)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈
{

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X})
| okay ∧ ¬ wait ′ ∧ (P)tf

}
∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(14)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈
{

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X})
| okay ∧ ¬ wait ′ ∧ (P)tf

}
∧ (t ,Z) ∈ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(15)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈
{

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X})
| okay ∧ ¬ wait ′ ∧ (P)tf

}
∧ (t ,Z) ∈ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(16)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈
{

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X})
| okay ∧ ¬ wait ′ ∧ (P)tf

}
∧ (t ,Z) ∈

{
((tr ′ − tr)a 〈X〉, ref ′ ∪ {X})
| okay ∧ ¬ wait ′ ∧ (Q)tf

}
∧ u ∈ s ‖

csX
t

[ST, SC and PC on (1), (2), (3), (4), (5), (9), (13)]

=

(1)

391

D24.1 - Comp. Anal. of CML Models (Public Document)

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ (P)tf }
∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(2)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ (P)tf }
∧ (t ,Z) ∈ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(3)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ (P)tf }
∧ (t ,Z) ∈ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(4)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | okay ∧ (P)tf }

∧ (t ,Z) ∈
{

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X})
| okay ∧ ¬ wait ′ ∧ (Q)tf

}
∧ u ∈ s ‖

csX
t

(5)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (P)tf }
∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(6)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (P)tf }
∧ (t ,Z) ∈ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(7)

392

D24.1 - Comp. Anal. of CML Models (Public Document)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (P)tf }
∧ (t ,Z) ∈ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(8)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈
{

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X})
| okay ∧ ¬ wait ′ ∧ (Q)tf

}
∧ u ∈ s ‖

csX
t

(9)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(10)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ (t ,Z) ∈ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(11)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }
∧ (t ,Z) ∈ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(12)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (P)tf }

∧ (t ,Z) ∈
{

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X})
| okay ∧ ¬ wait ′ ∧ (Q)tf

}
∧ u ∈ s ‖

csX
t

(13)

393

D24.1 - Comp. Anal. of CML Models (Public Document)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈
{

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X})
| okay ∧ ¬ wait ′ ∧ (P)tf

}
∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | okay ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(14)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈
{

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X})
| okay ∧ ¬ wait ′ ∧ (P)tf

}
∧ (t ,Z) ∈ {(tr ′ − tr , ref ′ ∪ {X}) | okay ∧ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(15)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈
{

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X})
| okay ∧ ¬ wait ′ ∧ (P)tf

}
∧ (t ,Z) ∈ {((tr ′ − tr)a 〈X〉, ref ′) | okay ∧ ¬ wait ′ ∧ (Q)tf }
∧ u ∈ s ‖

csX
t

(16)

∪

(u,Y ∪ Z) | Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈
{

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X})
| okay ∧ ¬ wait ′ ∧ (P)tf

}
∧ (t ,Z) ∈

{
((tr ′ − tr)a 〈X〉, ref ′ ∪ {X})
| okay ∧ ¬ wait ′ ∧ (Q)tf

}
∧ u ∈ s ‖

csX
t

[ST, SC and PC]

394

D24.1 - Comp. Anal. of CML Models (Public Document)

=

(u,Y ∪ Z) |
Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈
{

(tr ′ − tr , ref ′)
| okay ∧ (P)tf

}
∪
{

(tr ′ − tr , ref ′ ∪ {X})
| okay ∧ wait ′ ∧ (P)tf

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′)
| okay ∧ ¬ wait ′ ∧ (P)tf

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X})
| okay ∧ ¬ wait ′ ∧ (P)tf

}
∧ (t ,Z) ∈

{
(tr ′ − tr , ref ′)
| okay ∧ (Q)tf

}
∪
{

(tr ′ − tr , ref ′ ∪ {X})
| okay ∧ wait ′ ∧ (Q)tf

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′)
| okay ∧ ¬ wait ′ ∧ (Q)tf

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X})
| okay ∧ ¬ wait ′ ∧ (Q)tf

}
∧ u ∈ s ‖

csX
t

[PC]

=

(u,Y ∪ Z) |
Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})

∧ ∃ s , t • (s ,Y) ∈
{

(tr ′ − tr , ref ′)
| okay ∧ ¬ wait ∧ okay ′ ∧ (P)

}
∪
{

(tr ′ − tr , ref ′ ∪ {X})
| okay ∧ ¬ wait ∧ okay ′ ∧ wait ′ ∧ (P)

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′)
| okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ (P)

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X})
| okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ (P)

}
∧ (t ,Z) ∈

{
(tr ′ − tr , ref ′)
| okay ∧ ¬ wait ∧ okay ′ ∧ (Q)

}
∪
{

(tr ′ − tr , ref ′ ∪ {X})
| okay ∧ ¬ wait ∧ okay ′ ∧ wait ′ ∧ (Q)

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′)
| okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ (Q)

}
∪
{

((tr ′ − tr)a 〈X〉, ref ′ ∪ {X})
| okay ∧ ¬ wait ∧ okay ′ ∧ ¬ wait ′ ∧ (Q)

}
∧ u ∈ s ‖

csX
t

395

D24.1 - Comp. Anal. of CML Models (Public Document)

[An]

=

(u,Y ∪ Z) |
Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | (P)n}

∪ {(tr ′ − tr , ref ′ ∪ {X}) | (P)n ∧ wait ′}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | ¬ wait ′ ∧ (P)n}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | ¬ wait ′ ∧ (P)n}

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | (Q)n}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | (Q)n ∧ wait ′}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | ¬ wait ′ ∧ (Q)n}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | ¬ wait ′ ∧ (Q)n}

∧ u ∈ s ‖
csX

t

[At]

=

(u,Y ∪ Z) |
Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ {(tr ′ − tr , ref ′) | (P)n}

∪ {(tr ′ − tr , ref ′ ∪ {X}) | (P)n ∧ wait ′}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | (P)t}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | (P)t}

∧ (t ,Z) ∈ {(tr ′ − tr , ref ′) | (Q)n}
∪ {(tr ′ − tr , ref ′ ∪ {X}) | (Q)n ∧ wait ′}
∪ {((tr ′ − tr)a 〈X〉, ref ′) | (Q)t}
∪ {((tr ′ − tr)a 〈X〉, ref ′ ∪ {X}) | (Q)t}

∧ u ∈ s ‖
csX

t

[failuresUT P]

=

(u,Y ∪ Z) |
Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ failuresUT P(P)

∧ (t ,Z) ∈ failuresUT P(Q)
∧ u ∈ s ‖

csX
t

[IH]

=

(u,Y ∪ Z) |
Y \ (cs ∪ {X}) = Z \ (cs ∪ {X})
∧ ∃ s , t • (s ,Y) ∈ failures(Υ(P))

∧ (t ,Z) ∈ failures(Υ(Q)))
∧ u ∈ s ‖

csX
t

396

D24.1 - Comp. Anal. of CML Models (Public Document)

[failures]

= failures(Υ(P) ‖
csX

Υ(Q)) [Notation (ΥPcs (cs) = cs)]

= failures(Υ(P) ‖
ΥP(cs)

Υ(Q)) [Υ]

= failures(Υ(P |[ns1 | cs | ns2]|Q))

Theorem J.37

failuresUT P(|[cs]| x : S • |[ns]| A) = failures(Υ(|[cs]| x : S • |[ns]| A))

provided

1. ∀ i : S • A[vi/x] is R

2. ∀ i : S • A[vi/x] is divergence-free

3. S 6= {}

Proof. By induction on S

Inductive Hypothesis (A):

∀ i : S • failuresUT P(A[vi/x]) = failures(Υ(A)[vi/x])

Base Case. S = {v}
Proof.

failuresUT P(|[cs]| x : S • |[ns]| A) [Assumption]

= failuresUT P(|[cs]| x : {v} • |[ns]| A) [Indexed parallel]

= failuresUT P(A[v/x]) [IH]

= failures(Υ(A[v/x])) [Indexed parallel]

= failures(Υ(|[cs]| x : {v} • |[ns]| A)) [Assumption]

= failures(Υ(|[cs]| x : S • |[ns]| A))

Inductive Hypothesis (S):

failuresUT P(|[cs]| x : S • |[ns]| A) = failures(Υ(|[cs]| x : S • |[ns]| A))

397

D24.1 - Comp. Anal. of CML Models (Public Document)

Inductive Step

failuresUT P(|[cs]| x : S ∪ {vi} • |[ns]| A) = failures(Υ(|[cs]| x : S ∪ {vi} • |[ns]| A))

Proof.

failuresUT P(|[cs]| x : S ∪ {vi} • |[ns]| A) [Indexed parallel]

= failuresUT P(A[vi/x] |[ns [vi/x] | cs |
⋃

v :S\{vi} ns [v/x]]| (|[cs]| x : S \ {vi} • |[ns]| A))

[Theorem J.36 (Provisos, IH-A and IH-S)]

= failures(Υ(A[vi/x] |[ns [vi/x] | cs |
⋃

v :S\{vi} ns [v/x]]| (|[cs]| x : S \ {vi} • |[ns]| A)))

[Indexed parallel]

= failures(Υ(|[cs]| x : S ∪ {vi} • |[ns]| A))

Theorem J.38

failuresUT P(P ||[ns1 | ns2]|| Q)
=
failures(Υ(P ||[ns1 | ns2]|| Q))

provided

1. P and Q are divergence-free

Proof.

failuresUT P(P ||[ns1 | ns2]|| Q) [Law 29]

= failuresUT P(P |[ns1 | ∅ | ns2]|Q) [Theorem J.36 (proviso)]

= failures(Υ(P |[ns1 | ∅ | ns2]|Q)) [Law 29]

= failures(Υ(P ||[ns1 | ns2]|| Q))

Theorem J.39

failuresUT P(||| x : S • |[ns]| A) = failures(Υ(||| x : S • |[ns]| A))

provided

1. ∀ i : S • A[vi/x] is R

2. ∀ i : S • A[vi/x] is divergence-free

3. S 6= {}

398

D24.1 - Comp. Anal. of CML Models (Public Document)

Proof.

failuresUT P(||| x : S • |[ns]| A) [Law 29]

= failuresUT P(|[∅]| x : S • |[ns]| A)) [Theorem J.36 (proviso)]

= failures(Υ(|[∅]| x : S • |[ns]| A)) [Law 29]

= failures(Υ(||| x : S • |[ns]| A))

Theorem J.40 tracesUT P(A \ cs) = traces(Υ(A \ cs))

Proof. Under development.

Theorem J.41 failuresUT P(P \ cs) = failures(Υ(P \ cs))

Proof. To be done.

Theorem J.42 tracesUT P(µX • A(X)) = traces(Υ(µX • A(X)))

Proof. To be done.

Theorem J.43 failuresUT P(µX • P(X)) = failures(Υ(µX • P(X)))

Proof. To be done.

Theorem J.44 tracesUT P(P [old := new]) = traces(Υ(P [old := new]))

Proof. To be done.

Theorem J.45 failuresUT P(P [old := new]) = failures(Υ(P [old := new]))

Proof. To be done.

J.5 Auxiliary Lemmas

Lemma J.46

s ∈ (X ‖cs Y)
⇔ s − t ∈ (X − t ‖cs Y − t)

399

D24.1 - Comp. Anal. of CML Models (Public Document)

Lemma J.47

s ≤ X ∧ s ≤ Y ∧ t ∈ X ‖cs Y
⇒
s ≤ t

Lemma J.48

(e ∈ cs ∧ e /∈ ran(s))
⇒
(s ‖

cs

t a 〈e〉 = t a 〈e〉‖
cs

s = {})

Proof. To be done.

Lemma J.49

{x a 〈X〉 | x ∈ s ‖
cs

t}

=
{x | x ∈ s a 〈X〉 ‖

csX
t a 〈X〉}

provided X /∈ ran(s) ∪ ran(t)

Proof. To be done.

Lemma J.50

s ‖cs t = s ‖
cs

t

Proof. To be done.

Lemma J.51

s ‖cs t = s ‖
cs ∪ {e}

t

provided e /∈ ran(s) ∪ ran(t)

Proof. To be done.

Lemma J.52

s ‖
cs

t 6= ∅ ⇔ s � cs = t � cs}

400

D24.1 - Comp. Anal. of CML Models (Public Document)

Proof. To be done.

Lemma J.53 Let Y = YZ∪ cs ′ and Z = YZ∪ cs ′′ such that (cs ′∪ cs ′′) ⊆ cs
and YZ ∩ cs = {} then (Y ∪ Z) ∩ cs = (cs ′ ∪ cs ′′).

Proof.

(Y ∪ Z) ∩ cs [by the hypothesis]

= (YZ ∪ cs ′ ∪ YZ ∪ cs ′′) ∩ cs

[set theory: idempotence and comutativity of ∪]

= (YZ ∪ (cs ′ ∪ cs ′′)) ∩ cs [set theory: distribution of ∩ over ∪]

= (YZ ∩ cs) ∪ ((cs ′ ∪ cs ′′) ∩ cs) [by the hypothesis]

= {} ∪ (cs ′ ∪ cs ′′) [set theory: identity of ∪]

= (cs ′ ∪ cs ′′)

Lemma J.54 Let Y = YZ ∪cs ′ and Z = YZ ∪cs ′′ such that (cs ′∪cs ′′) ⊆ cs
and YZ ∩ cs = {} then (Y ∩ Z) \ cs = YZ .

Proof.

(Y ∩ Z) \ cs [by the hypothesis]

= ((YZ ∪ cs ′) ∩ (YZ ∪ cs ′′)) ∩ cs [set theory: distribution of ∩ over ∪]

= ((YZ ∩ YZ) ∪ (YZ ∩ cs ′′) ∪ (cs ′ ∩ YZ) ∪ (cs ′ ∩ cs ′′)) ∩ cs

[hypothesis and set theory (idempotence and identity of ∪)]

= (YZ ∪ (cs ′ ∩ cs ′′)) ∩ cs

[set theory (distribution of \ over ∪, identity of ∪) and hypothesis]

= YZ

Lemma J.55

{Y ,Z , cs , ref ′ | Y \ cs = Z \ cs ∧ ref ′ = Y ∪ Z • ref ′}
=
{Y ,Z , cs , ref ′ | Y \ cs = Z \ cs ∧ ref ′ = ((Y ∪ Z) ∩ cs) ∪ ((Y ∩ Z) \ cs) • ref ′}

Proof.

{Y ,Z , cs , ref ′ | Y \ cs = Z \ cs ∧ ref ′ = Y ∪ Z • ref ′} [One point rule]

= {Y ,Z , cs , ref ′ | (∃YZ • YZ = Y \ cs ∧ YZ = Z \ cs) ∧ ref ′ = Y ∪ Z • ref ′}

401

D24.1 - Comp. Anal. of CML Models (Public Document)

[One point rule and predicate calculus]

=

Y ,Z , cs , ref ′

|

 ∃YZ , cs ′, cs ′′

| cs ′ ∪ cs ′′ ⊆ cs ∧ YZ ∩ cs = {}
• Y = YZ ∪ cs ′ ∧ Z = YZ ∪ cs ′′

 ∧ ref ′ = Y ∪ Z

• ref ′

[substitution]

=

Y ,Z , cs , ref ′

|

 ∃YZ , cs ′, cs ′′

| cs ′ ∪ cs ′′ ⊆ cs ∧ YZ ∩ cs = {}
• Y = YZ ∪ cs ′ ∧ Z = YZ ∪ cs ′′

∧ ref ′ = YZ ∪ cs ′ ∪ cs ′′

• ref ′

[Lemma J.53]

=

Y ,Z , cs , ref ′

|

 ∃YZ , cs ′, cs ′′

| cs ′ ∪ cs ′′ ⊆ cs ∧ YZ ∩ cs = {}
• Y = YZ ∪ cs ′ ∧ Z = YZ ∪ cs ′′

∧ ref ′ = YZ ∪ ((Y ∪ Z) ∩ cs)
• ref ′

[Lemma J.54]

=

Y ,Z , cs , ref ′

|

 ∃YZ , cs ′, cs ′′

| cs ′ ∪ cs ′′ ⊆ cs ∧ YZ ∩ cs = {}
• Y = YZ ∪ cs ′ ∧ Z = YZ ∪ cs ′′

∧ ref ′ = ((X ∩ Z) \ cs) ∪ ((Y ∪ Z) ∩ cs)
• ref ′

[one point rule and predicate calculus]

= {Y ,Z , cs , ref ′ | (Y \ cs = Z \ cs) ∧ ref ′ = ((X ∩ Z) \ cs) ∪ ((Y ∪ Z) ∩ cs) • ref ′}

K Proofs of the Rewrite from Stateful Circus
into Stateless Circus

In this section, we demonstrate the correctness of the translation function Ω
that rewrites stateful Circus processes into stateless Circus processes. The
overall proof is by induction on the syntax of accepted actions. We consider

402

D24.1 - Comp. Anal. of CML Models (Public Document)

Skip, Stop, Chaos , prefixing, external and internal choice, guarded actions,
sequence, hiding, alternation, and assignment.

K.1 Skip

Theorem K.1

PS .Skip
=
Ω(PS .Skip)

Proof. In this proof and those that follow we will consider a single state
component x . The generalisation of this proof by induction on the num-
ber of state components is rather simple, but omitted here for the sake of
presentation.

Ω(PS .Skip) [Ω]

=

P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} • (ΩA(Skip); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[ΩA]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} • (Skip; terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 8]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} • (terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Lemma K.2]

= P .

403

D24.1 - Comp. Anal. of CML Models (Public Document)

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •

(terminate → Skip)
|[∅ | MEMI | {b}]| (2 get .n!b(n)→ Memory(b))

2
(
2 set .n?nv → Memory(b ⊕ {n 7→ nv})

)
2 terminate → Skip;

\ MEMI

[Law 10]

provided

{terminate} ⊆ MEMI

{get , set} ⊆ MEMI

{get , set} ∩ {terminate} = ∅
= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} • (terminate → Skip)
|[∅ | MEMI | {b}]|
(terminate → Skip)

 \ MEMI

[Law 25]

provided

[terminate ∈ MEMI]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} • Skip
|[∅ | MEMI | {b}]|
Skip

 \ MEMI

[Law 28]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
Skip \ MEMI

[Law 15]

provided

[MEMI ∩ usedC (Skip) = ∅]
= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
Skip

404

D24.1 - Comp. Anal. of CML Models (Public Document)

[Law 26(b is the only component of S)]

= PS .Skip

2

K.2 Stop

Theorem K.2

PS .Stop
=
Ω(PS .Stop)

Proof.

Ω(PS .Stop) [Ω]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} • (ΩA(Stop); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[ΩA]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} • (Stop; terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 22]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} • Stop
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Lemma K.2]

= P .

405

D24.1 - Comp. Anal. of CML Models (Public Document)

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •

Stop
|[∅ | MEMI | {b}]|

(2 n : dom b • get .n!b(n)→ Memory(b))

2

(
2 n : dom b •

set .n?nv → Memory(b ⊕ {n 7→ nv})

)
2 terminate → Skip

\ MEMI

[Law 46]

provided

{get , set , terminate} ⊆ MEMI

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
Stop \ MEMI

[Law 15]

provided

[MEMI ∩ usedC{Stop} = ∅]
= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
Stop

[Law 26(b is the only component of S)]

= PS .Stop

2

K.3 Chaos

Theorem K.3

PS .Chaos
=
Ω(PS .Chaos)

Proof.

Ω(PS .Chaos) [Ω]

= P .

406

D24.1 - Comp. Anal. of CML Models (Public Document)

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} • (ΩA(Chaos); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[ΩA]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} • (Chaos; terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 40]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} • Chaos
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 41]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
Chaos \ MEMI

[Law 39]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
Chaos

[Law 26(b is the only component of S)]

= PS .Chaos

2

K.4 Prefixing

Theorem K.4

PS .(c → A)
=
Ω(PS .(c → A))

407

D24.1 - Comp. Anal. of CML Models (Public Document)

Proof. Inductive Hypothesis for any state S.

(vres x : BINDING • A(x))(b)
= (ΩA(A); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

2

Proof.

Ω(Ps .(c → A))

[Ω]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} • (ΩA(c → A); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[ΩA]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} • (c → ΩA(A); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 34]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} • ((c → Skip);ΩA(A); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 30]

provided

[initials(Memory(b)) ⊆ MEMI]

[MEMI ∩ usedC (c → Skip) = ∅]
[wrtV (c → Skip) ∩ usedV (Memory(b)) = ∅]

408

D24.1 - Comp. Anal. of CML Models (Public Document)

[Memory(b) is divergence-free]

[wrtV (c → Skip) ⊆ ∅]
= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •(c → Skip);

 (ΩA(A); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 31]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •

(c → Skip) \ MEMI ;

 (ΩA(A); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 15]

provided

[MEMI ∩ usedC (c → Skip) = ∅)]
= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •

(c → Skip);

 ΩA(A); terminate → Skip
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[IH]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •(
(c → Skip);
(vres x : BINDING • A(x))(b)

)
[Lemma K.1]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} • var x : BINDING •
(c → Skip);
A(b)

[Law 34]

= P .

409

D24.1 - Comp. Anal. of CML Models (Public Document)

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •(
var x : BINDING • c → A(b)

)
[Law 6]

provided

[x /∈ FV (c → A(b))]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
c → A(b)

[Law 26(b is the only component of S)]

= PS .(c → A)

2

K.5 Output Communications

Theorem K.5

Ps .(c.e(b(v0))→ A)
=
Ω(Ps .(c.e(b(v0))→ A))

Proof. Inductive Hypothesis for any state S.

(vres x : BINDING • A(x))(b)
= (ΩA(A); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

Proof.

Ω(Ps .(c.e(b(v0))→ A))

[Ω]

= P .

410

D24.1 - Comp. Anal. of CML Models (Public Document)

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
(ΩA(c.e(b(v0))→ A);
terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[ΩA]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
get .v0?vv0 → c.e(vv0)→ ΩA(A);
terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Lemma K.2]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •

(
get .v0?vv0 → c.e(vv0)→ ΩA(A);
terminate → Skip

)
|[∅ | MEMI | {b}]| (2 get .n!b(n)→ Memory(b))

2
(
2 set .n?nv → Memory(b ⊕ {n 7→ nv})

)
2 terminate → Skip;

\ MEMI

[Law 10]

provided

{terminate} ⊆ MEMI

{get , set} ⊆ MEMI

{set , terminate} ∈ MEMI

{set , terminate} /∈ {get}
= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
(

get .v0?vv0 → c.e(vv0)→ ΩA(A);
terminate → Skip

)
|[∅ | MEMI | {b}]|(

get .n!b(n)→ Memory(b))
)

 \ MEMI

[Law 24]

provided

411

D24.1 - Comp. Anal. of CML Models (Public Document)

{get} ⊆ MEMI

x /∈ FV (get .n!b(n)→ Memory(b))

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
c.e(b(v0))→ ΩA(A);
terminate → Skip
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 30]

provided

[initials(Memory(b)) ⊆ MEMI]

[MEMI ∩ usedC (c.e(b(v0))→ Skip) = ∅]
[wrtV (c.e(b(v0))→ Skip) ∩ usedV (Memory(b)) = ∅]
[Memory(b) is divergence-free]

[wrtV (c.e(b(v0))→ Skip) ⊆ ∅]
=

P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
c.e(b(v0))→ Skip; ΩA(A); terminate → Skip
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 31]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
c.e(b(v0))→ Skip \ MEMI ; (ΩA(A); terminate → Skip)
|[∅ | MEMI | {b}]|
(Memory(b))

 \ MEMI

[Law 15]

provided

[MEMI ∩ usedC (c.e(b(v0))→ Skip) = ∅)]
=

P .

412

D24.1 - Comp. Anal. of CML Models (Public Document)

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
c.e(b(v0))→ Skip; (ΩA(A); terminate → Skip)
|[∅ | MEMI | {b}]|
(Memory(b))

 \ MEMI

[IH]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •(
c.e(b(v0))→ Skip;
(vres x : BINDING • A(x))(b)

)
[Lemma K.1]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} • var x : BINDING •
c.e(b(v0))→ Skip;
A(b)

[Law 34]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •(
var x : BINDING •

c.e(b(v0))→ A(b)

)
[Law 6]

provided

[x /∈ FV (c.e(b(v0))→ A(b))]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
c.e(b(v0))→ A(b)

[Law 26(b is the only component of S)]

= PS .(c.e(b(v0))→ A)

2

413

D24.1 - Comp. Anal. of CML Models (Public Document)

K.6 Output Communications

Theorem K.6

PS .(c!e(b(v0)))→ A)
=
Ω(PS .(c.e(b(v0))→ A))

Proof.

Ω(PS .(c!e(b(v0))→ A))

[Ω]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
(ΩA(c!e(b(v0))→ A);
terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[ΩA]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
ΩA(c.e(b(v0))→ A);
terminate → Skip
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Theorem K.5]

=

PS .(c.e(b(v0))→ A)

2

K.7 Guard

Theorem K.7

PS (g(b(v0)) & A)
=
Ω(PS .(g(b(v0)) & A))

414

D24.1 - Comp. Anal. of CML Models (Public Document)

Proof. Inductive Hypothesis for any state S.

(vres x : BINDING • A(x))(b)
= (ΩA(A); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

2

Proof.

Ω(PS .(g(b(v0)) & A))

[Ω]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} • (ΩA(g(b(v0)) & A); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

\ MEMI

[ΩA]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
(

get .v0?vv0 → g(vv0) & ΩA(A);
terminate → Skip)

)
|[∅ | MEMI | {b}]|
Memory(b)

\ MEMI

[Lemma K.2]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •

(
get .v0?vv0 → g(vv0) & ΩA(A);
terminate → Skip)

)
|[∅ | MEMI | {b}]| (2 get .n!b(n)→ Memory(b))

2
(
2 set .n?nv → Memory(b ⊕ {n 7→ nv})

)
2 terminate → Skip;

\ MEMI

415

D24.1 - Comp. Anal. of CML Models (Public Document)

[Law 10]

provided

{terminate} ⊆ MEMI

{get , set} ⊆ MEMI

{set , terminate} ∈ MEMI

{set , terminate} /∈ {get}
= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
(

get .v0?vv0 → g(vv0) & ΩA(A);
terminate → Skip)

)
|[∅ | MEMI | {b}]|(

get .v0!b(v0)→ Memory(b)
)

 \ MEMI

[Law 24]

provided

{get} ⊆ MEMI

x /∈ FV (Memory(b))

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
g(b(v0)) & ΩA(A);
terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 52]

provided

initials(Memory(b)) ⊆ MEMI

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
g(b(v0)) & ΩA(A); terminate → Skip

|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 8]

= P .

416

D24.1 - Comp. Anal. of CML Models (Public Document)

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
g(b(v0)) & Skip;

 (ΩA(A); terminate → Skip
|[∅ | MEMI | {b}]|
Memory(b))

 \ MEMI

[Law 32]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
g(b(v0)) & Skip; ΩA(A); terminate → Skip
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 31]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
g(b(v0)) & Skip \ I MEM ; ΩA(A); terminate → Skip
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 15]

provided

[MEMI ∩ usedC (g(b(v0)) & Skip) = ∅)]
= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
g(b(v0)) & Skip; ΩA(A); terminate → Skip
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[IH]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •(
g(b(v0)) & Skip;
(vres x : BINDING • A(x))(b)

)
[Lemma K.1]

= P .

417

D24.1 - Comp. Anal. of CML Models (Public Document)

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} • var x : BINDING •
g(b(v0)) & Skip;
A(b)

[Law 32]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} • var x : BINDING •
g(b(v0)) &
Skip;A(b)

[Law 8]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •(
(var x : BINDING •

g(b(v0)) & A(b)

)
[Law 6]

provided

[x /∈ FV (g(b(v0)) & A(b))]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
g(b(v0)) & A(b)

[Law 26(b is the only component of S)]

=

PS .(g(b(v0)) & A) = PS .(g(v0) & A)

2

K.8 Input

Theorem K.8

PS (c?x : P(x , b(v0))→ A)
=
Ω(Ps(c?x : P(x , b(v0))→ A))

418

D24.1 - Comp. Anal. of CML Models (Public Document)

Proof. Inductive Hypothesis for any state S.

(vres x : BINDING • A(x))(b)
= (ΩA(A); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

2

Proof.

Ω(PS .(c?x : P(x , b(v0))→ A))

[Ω]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
ΩA(c?x : P(x , b(v0))→ A);
terminate → Skip
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[ΩA]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
(

get .v0?vv0 → c?x : P(x , vv0)→ ΩA(A);
terminate → Skip

)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Lemma K.2]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •

(
get .v0?vv0 → c?x : P(x , vv0)→ ΩA(A);
terminate → Skip

)
|[∅ | MEMI | {b}]| (2 get .n!b(n)→ Memory(b))

2
(
2 set .n?nv → Memory(b ⊕ {n 7→ nv})

)
2 terminate → Skip;

 \ MEMI

[Law 10]

419

D24.1 - Comp. Anal. of CML Models (Public Document)

provided

{terminate} ⊆ MEMI

{get , set} ⊆ MEMI

{set , terminate} ∈ MEMI

{set , terminate} /∈ {get}
= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
(

get .v0?vv0 → c?x : P(x , vv0)→ ΩA(A);
terminate → Skip

)
|[∅ | MEMI | {b}]|(

get .v0!b(v0)→ Memory(b)
)

 \ MEMI

[Law 24]

provided

{get} ⊆ MEMI

x /∈ FV (Memory(b))

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
c?x : P(x , b(v0))→ ΩA(A);
terminate → Skip
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 33]

provided

[c /∈ MEMI]

[x /∈ usedV (Memory(b))]

[initials(Memory(b)) ⊆ MEMI]

[Memory(b) is deterministic]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
c?x : P(x , b(v0))→ ΩA(A); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 34]

= P .

420

D24.1 - Comp. Anal. of CML Models (Public Document)

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
c?x : P(x , b(v0))→ Skip; ΩA(A); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 31]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
(c?x : P(x , b(v0))→ Skip) \ MEMI ; ΩA(A); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 15]

provided

[MEMI ∩ usedC (c?x : P(x , b(v0))→ Skip) = ∅)]
= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
c?x : P(x , b(v0)))→ Skip; ΩA(A); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[IH]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •(
c?x : P(x , b(v0))→ Skip;
(vres x : BINDING • A(x))(b)

)
[Lemma K.1]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} • var x : BINDING •
c?x : P(x , b(v0))→ Skip;
A(b)

[Law 34]

= P .

421

D24.1 - Comp. Anal. of CML Models (Public Document)

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •(
var x : BINDING •

c?x : P(x , b(v0))→ A(b)

)
[Law 6]

provided

[x /∈ FV (c?x : P(x , b(v0))→ A(b))]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
c?x : P(x , b(v0))→ A(b)

[Law 26(b is the only component of S)]

=

PS .(c?x : P(x , b(v0))→ A)

2

K.9 Internal Choice

Theorem K.9

PS .(A1 u A2)
=
Ω(PS .(A1 u A2))

Proof. Inductive Hypothesis: for any state S1 and S2

(vres x : BINDING • A1(x))(b)
= (ΩA(A1); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

and
(vres x : BINDING • A2(x))(b) = (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

422

D24.1 - Comp. Anal. of CML Models (Public Document)

Proof.

Ω(PS .(A1 u A2))

[Ω]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} • (ΩA(A1 u A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[ΩA]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} • (ΩA(A1) u ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 43]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
(

((ΩA(A1);terminate → Skip)
u (ΩA(A2);terminate → Skip))

)
|[∅ | MEMI | {b}]|
Memory(b))

 \ MEMI

[Law 42]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •

(ΩA(A1);terminate → Skip
|[∅ | MEMI | {b}]|
Memory(b))
u
(ΩA(A2);terminate → Skip
|[∅ | MEMI | {b}]|
Memory(b))

\ MEMI

[Law 53]

= P .

423

D24.1 - Comp. Anal. of CML Models (Public Document)

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •

 (ΩA(A1);terminate → Skip
|[∅ | MEMI | {b}]|
Memory(b))

 \ MEMI

u (ΩA(A2);terminate → Skip
|[∅ | MEMI | {b}]|
Memory(b))

 \ MEMI

[IH]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •(
(vres x : BINDING • A1(x))(b) u
(vres x : BINDING • A2(x))(b)

)
[Semantics]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •(
(var x : BINDING • x := b; A1(x); b := x) u
(var x : BINDING • x := b; A2(x); b := x)

)
[Law 49]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •(
(var x : BINDING • x := b; A1(x); b := x) u
(var y : BINDING • y := b; A2(y); b := y)

)
[Law 47]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •(
(var x : BINDING • x := b; A1(x); b := x) u
(var y : BINDING • A2(b); b := b)

)
[Laws 48 and 8]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •(
(var x : BINDING • x := b; A1(x); b := x) u
(var y : BINDING • A2(b))

)
[Law 47]

= P .

424

D24.1 - Comp. Anal. of CML Models (Public Document)

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •(
(var x : BINDING • A1(b); b := b) u
(var y : BINDING • A2(b))

)
[Laws 48 and 8]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •(
(var x : BINDING • A1(b)) u
(var y : BINDING • A2(b))

)
[Law 6]

provided

[x /∈ FV (A2(b))]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •((
var x : BINDING • A1(b)

)
u A2(b)

)
[Law 6]

provided

[x /∈ FV (A1(b))]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •(
A1(b) u A2(b)

)
[Law 26(b is the only component of S)]

=

PS .(A1 u A2)

2

K.10 External Choice

Theorem K.10

PS .(A1 2 A2)
=
Ω(PS .(A1 2 A2))

425

D24.1 - Comp. Anal. of CML Models (Public Document)

Proof. Inductive Hypothesis: for any state S1 and S2

(vres x : BINDING • A1(x))(b)
= (ΩA(A1); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

and
(vres x : BINDING • A2(x))(b) = (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

Proof.

Ω(PS .(A1 2 A2)) [Ω]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} • (ΩA(A1 2 A2);terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[ΩA]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
(

get .v0?vv0 → Ω′A(A1) 2 Ω′A(A2);
terminate → Skip

)
|[∅ | MEMI | {b}]|
Memory(b)

\ MEMI

[Lemma K.2]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •

(
get .v0?vv0 → Ω′A(A1) 2 Ω′A(A2);
terminate → Skip

)
|[∅ | MEMI | {b}]| (2 get .n!b(n)→ Memory(b))

2
(
2 set .n?nv → Memory(b ⊕ {n 7→ nv})

)
2 terminate → Skip;

\ MEMI

426

D24.1 - Comp. Anal. of CML Models (Public Document)

[Law 10]

provided

{terminate} ⊆ MEMI

{get , set} ⊆ MEMI

{set , terminate} ∈ MEMI

{set , terminate} /∈ {get}
= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
(

get .v0?vv0 → Ω′A(A1) 2 Ω′A(A2);
terminate → Skip

)
|[∅ | MEMI | {b}]|(

get .v0!b(v0)→ Memory(b)
)

\ MEMI

[Law 24]

provided

{get} ⊆ MEMI

x /∈ FV (Memory(b))

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} • Ω′A(A1) 2 Ω′A(A2);terminate → Skip
|[∅ | MEMI | {b}]|
Memory(b)

\ MEMI

[Law 37]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
(true & Ω′A(A1)) 2 (true & Ω′A(A2));
terminate → Skip
|[∅ | MEMI | {b}]|
Memory(b)

\ MEMI

[Law 19]

= P .

427

D24.1 - Comp. Anal. of CML Models (Public Document)

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
(

(true & Ω′A(A1)); terminate → Skip
2 (true & Ω′A(A2)); terminate → Skip

)
|[∅ | MEMI | {b}]|
Memory(b)

\ MEMI

[Law 37]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
(

Ω′A(A1); terminate → Skip
2 Ω′A(A2); terminate → Skip

)
|[∅ | MEMI | {b}]|
Memory(b)

\ MEMI

In our strategy, the External Choices are only among prefixed actions.

So, in this case, we can use the Law 17

provided

initials(Memory(b)) ⊆ MEMI

Memory(b) is Deterministic

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •

(Ω′A(A1);terminate → Skip
|[∅ | MEMI | {b}]|
Memory(b))
2

(Ω′A(A2);terminate → Skip
|[∅ | MEMI | {b}]|
Memory(b))

\ MEMI

[Law 20]

This is valid because we force the structure of the actions in external

choices to be prefixed actions and because Ω′A(A1) does not include

any events from MEMI

= P .

428

D24.1 - Comp. Anal. of CML Models (Public Document)

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •

 (Ω′A(A1);terminate → Skip
|[∅ | MEMI | {b}]|
Memory(b))

 \ MEMI

2 (Ω′A(A2);terminate → Skip
|[∅ | MEMI | {b}]|
Memory(b))

 \ MEMI

[IH]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •(
(vres x : BINDING • A1(x))(b) 2
(vres x : BINDING • A2(x))(b)

)
[Semantics]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •(
(var x : BINDING • x := b; A1(x); b := x) 2
(var x : BINDING • x := b; A2(x); b := x)

)
[Law 49]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •(
(var x : BINDING • x := b; A1(x); b := x) 2
(var y : BINDING • y := b; A2(y); b := y)

)
[Law 47]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •(
(var x : BINDING • x := b; A1(x); b := x) 2
(var y : BINDING • A2(b); b := b)

)
[Laws 48 and 8]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •(
(var x : BINDING • x := b; A1(x); b := x) 2
(var y : BINDING • A2(b))

)
[Law 47]

= P .

429

D24.1 - Comp. Anal. of CML Models (Public Document)

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •(
(var x : BINDING • A1(b); b := b) 2
(var y : BINDING • A2(b))

)
[Laws 48 and 8]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •(
(var x : BINDING • A1(b)) 2
(var y : BINDING • A2(b))

)
[Law 6]

provided

[x /∈ FV (A2(b))]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •((
var x : BINDING • A1(b)

)
2 A2(b)

)
[Law 6]

provided

[x /∈ FV (A1(b))]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •(
A1(b) 2 A2(b)

)
[Law 26(b is the only component of S)]

=

PS .(A1 2 A2)

2

K.11 Hiding

Theorem K.11

PS .(A \ cs)
=
Ω(PS .(A \ cs))

430

D24.1 - Comp. Anal. of CML Models (Public Document)

Proof. Inductive Hypothesis for any state S.

(vres x : BINDING • A(x))(b)
= (ΩA(A); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

2

Proof.

Ω(PS .(A \ cs))

[Ω]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} • (Ω(A \ cs); terminate → Skip
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[ΩA]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} • ΩA(A) \ cs; terminate → Skip
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 15]

provided

[cs ∩ usedC (terminate → Skip) = ∅]
= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} • (ΩA(A)) \ cs; (terminate → Skip) \ cs
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 31]

= P .

431

D24.1 - Comp. Anal. of CML Models (Public Document)

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} • (ΩA(A); terminate → Skip) \ cs
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 15]

provided

[cs ∩ usedC (Memory(b)) = ∅]
= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} • (ΩA(A); terminate → Skip) \ cs
|[∅ | MEMI | {b}]|
Memory(b) \ cs

 \ MEMI

[Law 44]

provided

[MEMI ∩ cs = ∅]
= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} • (ΩA(A); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI ∪ cs

[Law 45]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} • (ΩA(A); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

 \ cs

[IH]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •(
(vres x : BINDING • A(x))(b)

)
\ cs

[Semantics]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •(
var x : BINDING • x := b; A(x); b := x

)
\ cs

[Law 47]

432

D24.1 - Comp. Anal. of CML Models (Public Document)

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •(
var x : BINDING • A(b); b := b

)
\ cs

[Laws 48 and 8]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •(
var x : BINDING • A(b)

)
\ cs

[Law 6]

provided

[x /∈ FV (A(b))]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
A(b) \ cs

[Law 26(b is the only component of S)]

=

PS .(A \ cs)

2

K.12 Alternation

Theorem K.12

PS

if g0(v0)→ A0

[] . . .
[] gn(v0)→ An

fi

=

Ω(PS .

if g0(vv0)→ A0

[] . . .
[] gn(vv0)→ An

fi

)

433

D24.1 - Comp. Anal. of CML Models (Public Document)

Inductive Hypothesis: for every i ∈ {0, . . . , n}.

(vres x : BINDING • Ai(x))(b)
= (ΩA(Ai); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

Proof.

Ω

P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
if g0(vv0)→ A0

[] . . .
[] gn(vv0)→ An

fi

 [Ω]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
ΩA

if g0(vv0)→ A0

[] . . .
[] gn(vv0)→ An

fi

 ;

terminate → Skip
|[∅ | MEMI | {b}]|
Memory(b)

\ MEMI

[ΩA]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •

get .v0?vv0 →
if g0(vv0)→ ΩA(A0)
[] . . .
[] gn(vv0)→ ΩA(An)
fi

 ;

terminate → Skip
|[∅ | MEMI | {b}]|
Memory(b)

\ MEMI

[Lemma K.2]

434

D24.1 - Comp. Anal. of CML Models (Public Document)

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •

get .v0?vv0 →
if g0(vv0)→ ΩA(A0)
[] . . .
[] gn(vv0)→ ΩA(An)
fi

 ;

terminate → Skip
|[∅ | MEMI | {b}]| (2 get .n!b(n)→ Memory(b))

2
(
2 set .n?nv → Memory(b ⊕ {n 7→ nv})

)
2 terminate → Skip

\ MEMI

[Law 10]

provided

{terminate} ⊆ MEMI

{get , set} ⊆ MEMI

{set , terminate} ∈ MEMI

{set , terminate} /∈ {get}
= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •

get .v0?vv0 →
if → g0(vv0)→ ΩA(A0)
[] . . .
[] gn(vv0)→ ΩA(An)
fi

 ;

terminate → Skip
|[∅ | MEMI | {b}]|(

get .vo!b(vo)→ Memory(b)
)

\ MEMI

[Law 24]

{get} ⊆ MEMI

v /∈ FV (get .vo!b(vo)→ Memory(b))

= P .

435

D24.1 - Comp. Anal. of CML Models (Public Document)

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •

if g0(b(v0))→ ΩA(A0)

[] . . .
[] gn(b(v0))→ ΩA(An)

fi

 ;

terminate → Skip
|[∅ | MEMI | {b}]|
Memory(b)

\ MEMI

From here, we have three possibilities:

• No alternative is true (Proved by Lemma K.8)

• Exactly one alternative is true (Proved by Lemma K.9)

• More than one alternative is true (Proved by Lemma K.10)

2

K.13 Assignment

Theorem K.13

PS .(x0 := e0(v0))
=
Ω(PS .(x0 := e0(v0)))

Proof.

Ω(PS .(x0 := e0(v0)))

[Definition of Ω]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} • x0 := e0(v0); terminate → Skip
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[ΩA]

436

D24.1 - Comp. Anal. of CML Models (Public Document)

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
(

get .v0?vv0 → set .x0!e0(vv0)→ Skip
)
;

terminate → Skip
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Lemma K.2]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •

(
get .v0?vv0 → set .x0!e0(vv0)→ Skip

)
;

terminate → Skip
|[∅ | MEMI | {b}]| (2 get .n!b(n)→ Memory(b))

2
(
2 set .n?nv → Memory(b ⊕ {n 7→ nv})

)
2 terminate → Skip

 \ MEMI

[Law 10]

provided

{terminate} ⊆ MEMI

{get , set} ⊆ MEMI

{set , terminate} ∈ MEMI

{set , terminate} /∈ {get}
= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
(

get .v0?vv0 → set .x0!e0(vv0)→ Skip
)
;

terminate → Skip
|[∅ | MEMI | {b}]|
get .v0!b(v0)→ Memory(b)

\ MEMI

[Law 24]

provided

{get} ⊆ MEMI

x /∈ FV (Memory(b))

= P .

437

D24.1 - Comp. Anal. of CML Models (Public Document)

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
(

set .x0!e0(b(v0))→ Skip
)
;

terminate → Skip
|[∅ | MEMI | {b}]|
Memory(b)

\ MEMI

[Lemma K.2]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •

var b : BINDING •

(
set .x0!e0(b(v0))→ Skip

)
;

terminate → Skip
|[∅ | MEMI | {b}]| (2 get .n!b(n)→ Memory(b))

2
(
2 set .n?nv → Memory(b ⊕ {n 7→ nv})

)
2 terminate → Skip

\ MEMI

[Law 10]

provided

{terminate} ⊆ MEMI

{get , set} ⊆ MEMI

{set , terminate} ∈ MEMI

{set , terminate} /∈ {get}
= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
(

set .x0!e0(b(v0))→ Skip
)
;

terminate → Skip
|[∅ | MEMI | {b}]|
(set .x0?nv → Memory(b ⊕ {x0 7→ nv}))

\ MEMI

[Law 24]

provided

{set} ⊆ MEMI

x /∈ FV (Memory(b))

= P .

438

D24.1 - Comp. Anal. of CML Models (Public Document)

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} • Skip; terminate → Skip
|[∅ | MEMI | {b}]|
Memory(b ⊕ {x0 7→ e0(b(v0))})

\ MEMI

[Law 8]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} • terminate → Skip
|[∅ | MEMI | {b}]|
Memory(b ⊕ {x0 7→ e0(b(v0))})

\ MEMI

[Lemma K.2]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •

terminate → Skip
|[∅ | MEMI | {b}]| (2 get .n!sb(n)→ Memory(b))

2
(
2 set .n?nv → Memory(b ⊕ {n 7→ nv})

)
2 terminate → Skip;

\ MEMI

[Law 10]

provided

{terminate} ⊆ MEMI

{get , set} ⊆ MEMI

{set , terminate} ∈ MEMI

{set , terminate} /∈ {get}
= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} • terminate → Skip
|[∅ | MEMI | {b}]|
terminate → Skip

\ MEMI

[Law 25]

provided

[terminate ∈ MEMI]

439

D24.1 - Comp. Anal. of CML Models (Public Document)

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} • Skip
|[∅ | MEMI | {b}]|
Skip

\ MEMI

[Law 28]

provided

[terminate ∈ MEMI]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
Skip \ MEMI

[Law 15]

provided

[MEMI ∩ usedC (Skip) = ∅]
= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
Skip

[Law 56]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
b(x0) := e0(v0)

[Law 26(b is the only component of S)]

=

PS .(b(x0) := e0(v0))

2

K.14 Sequential Composition

Theorem K.14

PS .(A1; A2)
=
Ω(PS .(A1; A2))

440

D24.1 - Comp. Anal. of CML Models (Public Document)

Proof. Inductive Hypothesis: for any state S1 and S2

(vres x : BINDING • A1(x))(b)
= (ΩA(A2); terminate → Skip)
|[∅ | I MEM | ∅]|
Memory(b)

 \ MEMI

and
(vres x : BINDING • A2(x))(b) = (ΩA(A2); terminate → Skip)
|[∅ | I MEM | ∅]|
Memory(b)

 \ I MEM

Proof.

Ω(PS .(A1; A2)) [Ω]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ . . . ∧ inv(b(v0), . . . , b(vn))} • (ΩA(A1; A2); terminate → Skip)
|[MEMI]|
Memory(b)

 \ MEMI

[ΩA]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ . . . ∧ inv(b(v0), . . . , b(vn))} • (ΩA(A1); ΩA(A2); terminate → Skip)
|[MEMI]|
Memory(b)

 \ MEMI

[Lemma K.7]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ . . . ∧ inv(b(v0), . . . , b(vn))} • (ΩA(A1); terminate → Skip)
|[∅ | I MEM | ∅]|
Memory(b)

 \ I MEM

 ; (ΩA(A2); terminate → Skip)
|[∅ | I MEM | ∅]|
Memory(b)

 \ I MEM

[IH]

= P .var b : {x : BINDING | b(v0) ∈ T0 ∧ . . . ∧ inv(b(v0), . . . , b(vn))} •(
(vres x : BINDING • A1(x))(b);
(vres x : BINDING • A2(x))(b)

)
441

D24.1 - Comp. Anal. of CML Models (Public Document)

[Semantics]

= P .var b : {x : BINDING | b(v0) ∈ T0 ∧ . . . ∧ inv(b(v0), . . . , b(vn))} •(
(var x : BINDING • x := b; A1(x); b := x);
(var x : BINDING • x := b; A2(x); b := x)

)
[Law 49]

= P .var b : {x : BINDING | b(v0) ∈ T0 ∧ . . . ∧ inv(b(v0), . . . , b(vn))} •(
(var x : BINDING • x := b; A1(x); b := x);
(var y : BINDING • y := b; A2(y); b := y)

)
[Law 8]

= P .var b : {x : BINDING | b(v0) ∈ T0 ∧ . . . ∧ inv(b(v0), . . . , b(vn))} • (var x : BINDING • x := b; A1(x); b := x);
(var y : BINDING • y := b; A2(y); b := y);
Skip

[Law 4]

= P .var b : {x : BINDING | b(v0) ∈ T0 ∧ . . . ∧ inv(b(v0), . . . , b(vn))} •
var y : BINDING • (var x : BINDING • x := b; A1(x); b := x);

(y := b; A2(y); b := y);
Skip

[Law 8]

= P .var b : {x : BINDING | b(v0) ∈ T0 ∧ . . . ∧ inv(b(v0), . . . , b(vn))} •
var y : BINDING • Skip;

(var x : BINDING • x := b; A1(x); b := x);
(y := b; A2(y); b := y);

[Law 4]

= P .var b : {x : BINDING | b(v0) ∈ T0 ∧ . . . ∧ inv(b(v0), . . . , b(vn))} •
var y : BINDING •

var x : BINDING •
Skip;
(x := b; A1(x); b := x);
(y := b; A2(y); b := y);

[Law 8]

442

D24.1 - Comp. Anal. of CML Models (Public Document)

= P .var b : {x : BINDING | b(v0) ∈ T0 ∧ . . . ∧ inv(b(v0), . . . , b(vn))} •
var y : BINDING • var x : BINDING •

(x := b; A1(x); b := x);
(y := b; A2(y); b := y);

[Law 7]

= P .var b : {x : BINDING | b(v0) ∈ T0 ∧ . . . ∧ inv(b(v0), . . . , b(vn))} • var x , y : BINDING •
(x := b; A1(x); b := x);
(y := b; A2(y); b := y);

[Law 47]

= P .var b : {x : BINDING | b(v0) ∈ T0 ∧ . . . ∧ inv(b(v0), . . . , b(vn))} • var x , y : BINDING •
(x := b; A1(x); b := x);
(A2(b); b := b);

[Laws 48 and 8]

= P .var b : {x : BINDING | b(v0) ∈ T0 ∧ . . . ∧ inv(b(v0), . . . , b(vn))} • var x , y : BINDING •
(x := b; A1(x); b := x);
A2(b)

[Law 47]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ . . . ∧ inv(b(v0), . . . , b(vn))} • var x , y : BINDING •
(A1(b); b := b);
A2(b)

[Laws 48 and 8]

= P .var b : {x : BINDING | b(v0) ∈ T0 ∧ . . . ∧ inv(b(v0), . . . , b(vn))} •
var x , y : BINDING • A1(b); A2(b)

[Laws 7 and 6]

= P .var b : {x : BINDING | b(v0) ∈ T0 ∧ . . . ∧ inv(b(v0), . . . , b(vn))} •
A1(b); A2(b)

[Law 26(b is the only component of S)]

= PS .(A1; A2)

2

443

D24.1 - Comp. Anal. of CML Models (Public Document)

K.15 Auxiliary Lemmas

Lemma K.1

A1;
(vres x : BINDING • A2(x))(b)
=
var x : BINDING •(

A1;
A2(b)

)

Proof.

A1;

(vres x : BINDING • A2(x))(b)

[Semantics]

=

A1;

(var x : BINDING • x := b; A2(x); b := x)

[Law 8]

=

A1;

(var x : BINDING • x := b; A2(x); b := x);

Skip

[Law 4]

=

var x : BINDING • A1;
x := b; A2(x); b := x ;
Skip

[Law 8]

=

var x : BINDING •(
A1;
x := b; A2(x); b := x

)
444

D24.1 - Comp. Anal. of CML Models (Public Document)

[Law 47]

=

var x : BINDING •(
A1;
A2(b); b := b

)
[Laws 48 and 8]

=

var x : BINDING •(
A1;
A2(b)

)

Lemma K.2 A
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

=
A
|[∅ | MEMI | {b}]| (2 n : NAME • get .n!b(n)→ Cell(b))

2 (2 n : NAME • set .n?nv → Cell(b ⊕ {n 7→ nv}))
2 terminate → Skip

 \ MEMI

provided

• b /∈ FV (A) A
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI [Law 49]

=

 A
|[∅ | MEMI | {bs}]|
Memory(bs)

 \ MEMI [Law 9]

445

D24.1 - Comp. Anal. of CML Models (Public Document)

=

A
|[∅ | MEMI | {bs}]|

vres b : BINDING •
(2 n : NAME • get .n!b(n)→ Cell(b))
2 (2 n : NAME • set .n?nv → Cell(b ⊕ {n 7→ nv}))
2 terminate → Skip

 (bs)

 \ MEMI

[Semantics of vres]

=

A
|[∅ | MEMI | {bs}]|

var b : BINDING •
b := bs; (2 n : NAME • get .n!b(n)→ Cell(b))

2 (2 n : NAME • set .n?nv → Cell(b ⊕ {n 7→ nv}))
2 terminate → Skip

 ;

bs := b

\ MEMI

[Law 1]

=

var b : BINDING •
A
|[∅ | MEMI | {bs}]|

b := bs; (2 n : NAME • get .n!b(n)→ Cell(b))
2 (2 n : NAME • set .n?nv → Cell(b ⊕ {n 7→ nv}))
2 terminate → Skip

 ;

bs := b

\ MEMI

[Law 47]

=

var b : BINDING •
A
|[∅ | MEMI | {bs}]|
 (2 n : NAME • get .n!bs(n)→ Cell(bs))

2 (2 n : NAME • set .n?nv → Cell(bs ⊕ {n 7→ nv}))
2 terminate → Skip

 ;

bs := bs

\ MEMI

[Laws 48 and 8]

446

D24.1 - Comp. Anal. of CML Models (Public Document)

=

var b : BINDING •

A
|[∅ | MEMI | {bs}]| (2 n : NAME • get .n!bs(n)→ Cell(bs))

2 (2 n : NAME • set .n?nv → Cell(bs ⊕ {n 7→ nv}))
2 terminate → Skip

 \ MEMI

[Laws 6]

=

A
|[∅ | MEMI | {bs}]| (2 n : NAME • get .n!bs(n)→ Cell(bs))

2 (2 n : NAME • set .n?nv → Cell(bs ⊕ {n 7→ nv}))
2 terminate → Skip

 \ MEMI

[Law 49]

=

A
|[∅ | MEMI | {b}]| (2 n : NAME • get .n!b(n)→ Cell(b))

2 (2 n : NAME • set .n?nv → Cell(b ⊕ {n 7→ nv}))
2 terminate → Skip

 \ MEMI

Lemma K.3

 (A1; terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

 ; (A2; terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

= (A1; A2; terminate → Skip)
|[MEMI]|
Memory(b)

 \ MEMI

provided

• MEMI ∩ usedC (A1) = ∅

• b /∈ wrtV (A1)

447

D24.1 - Comp. Anal. of CML Models (Public Document)

=

 (A1; terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

 ; (A2; terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 30]

[initials(Memory(b)) ⊆ MEMI] is true

[MEMI ∩ usedC (A1) = ∅] proviso

[wrtV (A1) ∩ {b} = ∅] proviso

[Memory(b) is divergence-free] is true

[{b} ⊆ {b}] is true

=

A1; (terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

 ;

 (A2; terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Laws 31 and 15 by proviso]

=

A1; (terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

 ;

 (A2; terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Lemma K.2]

=

A1;

(terminate → Skip)
|[∅ | MEMI | {b}]|

(2 n : NAME •
get .n!b(n)→ Memory(b))

2 (2 n : NAME •
set .n?nv → Memory(b ⊕ {n 7→ nv}))

2 terminate → Skip

\ MEMI

;

448

D24.1 - Comp. Anal. of CML Models (Public Document)

 (A2; terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 10]

provided

{terminate} ⊆ MEMI

{get , set} ⊆ MEMI

{get , set} ∩ {terminate} = ∅

=

A1; (terminate → Skip)
|[∅ | MEMI | {b}]|
(terminate → Skip)

\ MEMI

 ;

 (A2; terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 25]

provided

[terminate ∈ MEMI]

=

(
A1;
(Skip |[∅ | MEMI | {b}]| Skip) \ MEMI

)
; (A2; terminate → Skip)

|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 28 and 15]

provided

[terminate ∈ MEMI]

= (A1; Skip); (A2; terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 8]

=

A1; (A2; terminate → Skip)
|[MEMI]|
Memory(b)

 \ MEMI

449

D24.1 - Comp. Anal. of CML Models (Public Document)

[Law 30 by proviso]

=

 (A1; A2; terminate → Skip)
|[MEMI]|
Memory(b)

 \ MEMI

[ΩA]

=

 (A1; A2; terminate → Skip)
|[MEMI]|
Memory(b)

 \ MEMI

Lemma K.4

 (A1; A2; terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

 ; (A3; terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

= (A1; A2; A3; terminate → Skip)
|[MEMI]|
Memory(b)

 \ MEMI

provided

• MEMI ∩ usedC (A1) = ∅

• b /∈ wrtV (A1)

•

 (A2; terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

 ; (A3; terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

= (A2; A3; terminate → Skip)
|[MEMI]|
Memory(b)

 \ MEMI

450

D24.1 - Comp. Anal. of CML Models (Public Document)

 (A1; A2; terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

 ; (A3; terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 30]

[initials(Memory) ⊆ MEMI] is true

[MEMI ∩ usedC (A1) = ∅] by proviso

[wrtV (A1) ∩ {b} = ∅] by proviso

[Memory is divergence-free] is true

=

A1; (A2; terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

 ;

 (A3; terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Laws 31 and 15]

= A1; (A2; terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

 ; (A3; terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Proviso]

= A1; (A2; A3; terminate → Skip)
|[MEMI]|
Memory(b)

 \ MEMI

[Laws 31 and 15]

=

A1; (A2; A3; terminate → Skip)
|[MEMI]|
Memory(b)

 \ MEMI

[Law 30]

451

D24.1 - Comp. Anal. of CML Models (Public Document)

=

 (A1; A2; A3; terminate → Skip)
|[MEMI]|
Memory(b)

 \ MEMI

Lemma K.5

 ((get .x?vv0 → A1(vv0)); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

 ; (A2; terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

=

 (A1(b(x)); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

 ; (A2; terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

Proof.

 ((get .x?vv0 → A1(vv0)); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

 ; A2

|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 50]

=

 (get .x?vv0 → (A1(vv0); terminate → Skip))
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

 ; A2

|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Lemma K.2]

452

D24.1 - Comp. Anal. of CML Models (Public Document)

=

(get .x?vv0 → (A1(vv0); terminate → Skip))
|[∅ | MEMI | {b}]| (2 n : NAME • get .n!b(n)→ Memory(b))

2 (2 n : NAME • set .n?nv → Memory(b ⊕ {n 7→ nv}))
2 terminate → Skip

 \ MEMI

 ;

 A2

|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 10]

=

 (get .x?vv0 → (A1(vv0); terminate → Skip))
|[∅ | MEMI | {b}]|
(get .x !b(x)→ Memory(b))

 \ MEMI

 ; A2

|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 24]

=

 (A1(b(x)); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

 ; A2

|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

Lemma K.6

 ((set .x !e(b(x))→ A); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

 ; (A2; terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

=

 (A; terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b ⊕ {x 7→ b(x)})

 \ MEMI

 ; (A2; terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

453

D24.1 - Comp. Anal. of CML Models (Public Document)

Proof.

 ((set .x !e(b(x))→ A); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

 ; A2

|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 34, 50 and Associtivity]

=

 (set .x !e(b(x))→ (A; terminate → Skip))
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

 ; A2

|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Lemma K.2]

=

(set .x !e(b(x))→ (A; terminate → Skip))
|[∅ | MEMI | {b}]| (2 n : NAME • get .n!b(n)→ Memory(b))

2 (2 n : NAME • set .n?nv → Memory(b ⊕ {n 7→ nv}))
2 terminate → Skip

 \ MEMI

 ;

 A2

|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 10]

=

 (set .x !e(b(x))→ (A; terminate → Skip))
|[∅ | MEMI | {b}]|
(set .x?nv → Memory(b ⊕ {x 7→ nv}))

 \ MEMI

 ; A2

|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 35]

=

set .x !e(b(x))→ (A; terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b ⊕ {x 7→ b(x)})

 \ MEMI

 ;

 A2

|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

454

D24.1 - Comp. Anal. of CML Models (Public Document)

[Laws 34, 31 and 15]

=

 (A; terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b ⊕ {x 7→ b(x)})

 \ MEMI

 ; (A2; terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

Lemma K.7 (ΩA(A1); terminate → Skip)

|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

 ; (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

=

 (ΩA(A1); ΩA(A2); terminate → Skip)
|[MEMI]|
Memory(b)

 \ MEMI

Proof. The overall proof is by induction on the syntax of accepted actions
for A1. We consider Skip, Stop, Chaos , prefixing, guarded actions, and
assignment.

Base cases:ΩA(A1) is one of the following actions

• Skip

• Stop

• Chaos

• c → Skip (c /∈ MEMI)

All these cases can be proved using the structure below.

 (ΩA(A1); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

 ; (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[ΩA]

455

D24.1 - Comp. Anal. of CML Models (Public Document)

=

 (A1; terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

 ; (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Lemma K.3]

[MEMI ∩ usedC (A1) = ∅]
[wrtV (A1) ∩ {b} = ∅]

=

 (A1; ΩA(A2); terminate → Skip)
|[MEMI]|
Memory(b)

 \ MEMI

[ΩA]

=

 (ΩA(A1); ΩA(A2); terminate → Skip)
|[MEMI]|
Memory(b)

 \ MEMI

Inductive cases:

Proved:

K.15.1 c → A1

K.15.2 c.e(v0, . . . , vn , l0, . . . , lm)→ A1

K.15.3 c!e(v0, . . . , vn , l0, . . . , lm)→ A1

K.15.4 g(v0, . . . , vn , l0, . . . , lm) & A1

K.15.5 c?x : P(x , v0, . . . , vn , l0, . . . , lm)→ A1

K.15.6 x0, . . . , xn := e0(v0, . . . , vn , l0, . . . , lm), . . . , en(v0, . . . , vn , l0, . . . , lm)

To prove:

1. A1; A2 (IHs)

2. A1 u A2 (IHs)

3. A1 2 A2 (gets and IHs)

4. A1 |[ns1 | cs | ns2]| A2 (gets, IHs, and much more)

5. A1 ||[ns1 | ns2]| A2 (free lunch)

6. A \ cs (IHs)

456

D24.1 - Comp. Anal. of CML Models (Public Document)

7. (x : T • A(x))(e) (IHs)

8. µX • A(X) (IHs)

9. w : [pre(v0, . . . , vn , l0, . . . , lm), post(v0, . . . , vn , l0, . . . , lm)] (IHs)

10. {g} (free lunch)

11. [g] (free lunch)

12. [udecl ; ddecl ′ | pred] (free lunch)

13. A[old1, . . . , oldn := new1, . . . , newn] (free lunch)

14. Iterated operators (induction on type using IH, but a free lunch)

15. if fi (induction on number of guards using IH, but a free lunch)

Inductive hypothesis: (ΩA(A1); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI ; (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

=

 (ΩA(A1); ΩA(A2); terminate → Skip)
|[MEMI]|
Memory(b)

 \ MEMI

K.15.1 Free Event

For c /∈ {set , get , terminate}: (ΩA(c → A1); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

 ; (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

=

 (ΩA(c → A1); ΩA(A2); terminate → Skip)
|[MEMI]|
Memory(b)

 \ MEMI

457

D24.1 - Comp. Anal. of CML Models (Public Document)

Proof. (ΩA(c → A1); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

 ; (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[ΩA]

=

 (c → ΩA(A1); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

 ; (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Semantics of c → A]

=

 ((c → Skip); ΩA(A1); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

 ; (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Lemma K.4]

[MEMI ∩ (c → Skip) = ∅]
[wrtV (c → A) ∩ {b} = ∅]
IH

=

 ((c → Skip); ΩA(A1); ΩA(A2); terminate → Skip)
|[MEMI]|
Memory(b)

 \ MEMI

[Semantics of c → A]

=

 ((c → ΩA(A1)); ΩA(A2); terminate → Skip)
|[MEMI]|
Memory(b)

 \ MEMI

[ΩA]

=

 (ΩA(c → A1); ΩA(A2); terminate → Skip)
|[MEMI]|
Memory(b)

 \ MEMI

458

D24.1 - Comp. Anal. of CML Models (Public Document)

K.15.2 Simple Synchronisation Event (ΩA(c.e(v0, . . . , vn , l0, . . . , lm)→ A1); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

 ; (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

=

 (ΩA(c.e(v0, . . . , vn , l0, . . . , lm)→ A1); ΩA(A2); terminate → Skip)
|[MEMI]|
Memory(b)

 \ MEMI

Proof. In this proof and those that follow we will consider a single state
component x . The generalisation of this proof by induction on the num-
ber of state components is rather simple, but omitted here for the sake of
presentation. (ΩA(c.e(x)→ A1); terminate → Skip)

|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

 ; (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[ΩA]

=

 (get .x?vv0 → c.e(vv0)→ ΩA(A1)); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

 ; (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Lemma K.5]

=

 (c.e(b(x))→ ΩA(A1)); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(x)

 \ MEMI

 ; (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Case K.15.1]

459

D24.1 - Comp. Anal. of CML Models (Public Document)

=

 (ΩA(c.e(b(x))→ ΩA(A1)); ΩA(A2); terminate → Skip)
|[MEMI]|
Memory(b)

 \ MEMI

K.15.3 Output Event (ΩA(c!e(v0, . . . , vn , l0, . . . , lm)→ A1); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

 ; (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

=

 (ΩA(c!e(v0, . . . , vn , l0, . . . , lm)→ A1); ΩA(A2); terminate → Skip)
|[MEMI]|
Memory(b)

 \ MEMI

Proof. (ΩA(c!e(x)→ A1); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

 ; (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[c!e → A]

=

 (ΩA(c.e(x)→ A1); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

 ; (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Case K.15.2]

=

 (ΩA(c.e(b(x))→ A1); ΩA(A2); terminate → Skip)
|[MEMI]|
Memory(b)

 \ MEMI

[c.e → A]

=

 (ΩA(c!e(b(x))→ A1); ΩA(A2); terminate → Skip)
|[MEMI]|
Memory(b)

 \ MEMI

460

D24.1 - Comp. Anal. of CML Models (Public Document)

K.15.4 Guarded Action (ΩA(g(v0, . . . , vn , l0, . . . , lm) & A1); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

 ; (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

=

 (ΩA(g(v0, . . . , vn , l0, . . . , lm) & A1); ΩA(A2); terminate → Skip)
|[MEMI]|
Memory(b)

 \ MEMI

Proof. (ΩA(g(v0) & A1); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

 ; (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[ΩA]

=

 ((get .x?vv0 → g(vv0) & ΩA(A1)); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

 ; (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Lemma K.5]

=

 ((g(b(x)) & ΩA(A1)); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

 ; (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Laws 8 and 32]

461

D24.1 - Comp. Anal. of CML Models (Public Document)

=

 ((g(b(x)) & Skip); ΩA(A1); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

 ; (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Lemma K.4]

provided

[MEMI ∩ ∅ = ∅]
[b /∈ ∅]
IH

=

 ((g(b(x)) & Skip); ΩA(A1); ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Laws 8 and 32]

=

 (g(b(x)) & ΩA(A1)); ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[ΩA]

=

 (ΩA(g(b(x)) & A1); ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

K.15.5 Input Event (ΩA(c?y : P(x)→ A1(y , x)); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

 ; (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

=

 (ΩA((c?y : P(y , x)→ A1(y , x)); ΩA(A2); terminate → Skip)
|[MEMI]|
Memory(b)

 \ MEMI

462

D24.1 - Comp. Anal. of CML Models (Public Document)

Proof. (ΩA(c?y : P(x)→ A1(y , x)); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

 ; (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[ΩA]

=

(

(get .x?vv0 → c?y : P(y , x)→ ΩA(A1(y , x)));
terminate → Skip

)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

 ;

 (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Lemma K.5]

=

 ((c?y : P(y , b(x))→ ΩA(A1(y , b(x)))); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

 ; (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 50]

=

 (c?y : P(y , b(x))→ (ΩA(A1(y , b(x))); terminate → Skip))
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

 ; (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 33]

provided

[c /∈ MEMI]

[y /∈ usedV (Memory(b))]

[initials(Memory(b)) ⊆ MEMI]

[Memory(b) is deterministic]

463

D24.1 - Comp. Anal. of CML Models (Public Document)

=

c?y : P(y , b(x))→ (ΩA(A1(y , b(x))); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

 ;

 (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 51]

=

c?y : P(y , b(x))→ (ΩA(A1(y , b(x))); terminate → Skip)

|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

 ;

 (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 50]

provided

[y /∈ FV (A2) by renaming any existing y]

= c?y : P(y , b(x))→

 (ΩA(A1(y , b(x))); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

 ; (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[IH]

= c?y : P(y , b(x))→ (ΩA(A1(y , b(x))); ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 51]

=

c?y : P(y , b(x))→ (ΩA(A1(y , b(x))); ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 33]

464

D24.1 - Comp. Anal. of CML Models (Public Document)

=

 (c?y : P(y , b(x))→ (ΩA(A1(y , b(x))); ΩA(A2); terminate → Skip))
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 50]

=

 (c?y : P(y , b(x))→ ΩA(A1(y , b(x))));

ΩA(A2);
terminate → Skip

|[MEMI]|
Memory(b)

 \ MEMI

[Law 24]

=

get .x?vv0 → (c?y : P(y , vv0)→ ΩA(A1(y , vv0)));

ΩA(A2);
terminate → Skip

|[MEMI]|
(get .x !b(x)→ Memory(b))

 \ MEMI

[Law 10]

=

get .x?vv0 → (c?y : P(y , vv0)→ ΩA(A1(y , vv0)));

ΩA(A2);
terminate → Skip

|[MEMI]| (2 n : NAME • get .n!b(n)→ Memory(b))
2 (2 n : NAME • set .n?nv → Memory(b ⊕ {n 7→ nv}))
2 terminate → Skip

\ MEMI

[Lemma K.2]

=

get .x?vv0 → (c?y : P(y , vv0)→ ΩA(A1(y , vv0)));

ΩA(A2);
terminate → Skip

|[MEMI]|
Memory(b)

 \ MEMI

[Law 50]

=

 (get .x?vv0 → c?y : P(y , vv0)→ ΩA(A1(y , vv0)));

ΩA(A2);
terminate → Skip

|[MEMI]|
Memory(b)

 \ MEMI

465

D24.1 - Comp. Anal. of CML Models (Public Document)

[ΩA]

=

 (ΩA(c?y : P(x)→ A1(y , x)); ΩA(A2); terminate → Skip)
|[MEMI]|
Memory(b)

 \ MEMI

K.15.6 Assignment

(ΩA(x0, . . . , xn := e0(v0, . . . , vn , l0, . . . , lm), . . . , en(v0, . . . , vn , l0, . . . , lm));
terminate → Skip)

|[∅ | MEMI | {b}]|
Memory(b)

\ MEMI

 ;

 (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

\ MEMI

=

(ΩA(x0, . . . , xn := e0(v0, . . . , vn , l0, . . . , lm), . . . , en(v0, . . . , vn , l0, . . . , lm); ΩA(A2);

terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

\ MEMI

Proof. In this proof we will consider a single assignment x := e(x). The
generalisation of this proof by induction on the number assigned variables is
rather simple, but omitted here for the sake of presentation. (ΩA(x := e(x)); terminate → Skip)

|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

 ; (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[ΩA]

=

(

(get .x?vv0 → set .x !e(vv0)→ Skip);
terminate → Skip

)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

 ;

 (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

466

D24.1 - Comp. Anal. of CML Models (Public Document)

[Lemma K.5]

=

 ((set .x !e(b(x))→ Skip); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

 ; (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 34]

=

 (set .x !e(b(x))→ terminate → Skip))
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

 ; (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Lemma K.6]

=

 (terminate → Skip))
|[∅ | MEMI | {b}]|
Memory(b ⊕ {x 7→ b(x)})

 \ MEMI

 ; (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 49]

=

 (terminate → Skip))
|[∅ | MEMI | {bs}]|
Memory(bs ⊕ {x 7→ bs(x)})

 \ MEMI

 ; (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {bs}]|
Memory(bs)

 \ MEMI

[Law 9]

467

D24.1 - Comp. Anal. of CML Models (Public Document)

=

(terminate → Skip))
|[∅ | MEMI | {bs}]|

vres b : BINDING •
(2 n : NAME • get .n!b(n)→ Cell(b))
2 (2 n : NAME • set .n?nv → Cell(b ⊕ {n 7→ nv}))
2 terminate → Skip

(bs ⊕ {x 7→ bs(x)})

\ MEMI

;

 (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {bs}]|
Memory(bs)

 \ MEMI

[Semantics of vres]

=

(terminate → Skip))
|[∅ | MEMI | {bs}]|

var b : BINDING •
b := bs ⊕ {x 7→ bs(x)}; (2 n : NAME • get .n!b(n)→ Cell(b))

2 (2 n : NAME • set .n?nv → Cell(b ⊕ {n 7→ nv}))
2 terminate → Skip

 ;

bs := b

\ MEMI

;

 (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {bs}]|
Memory(bs)

 \ MEMI

[Law 1]

=

var b : BINDING •
(terminate → Skip))
|[∅ | MEMI | {bs}]|

b := bs ⊕ {x 7→ bs(x)}; (2 n : NAME • get .n!b(n)→ Cell(b))
2 (2 n : NAME • set .n?nv → Cell(b ⊕ {n 7→ nv}))
2 terminate → Skip

 ;

bs := b

\ MEMI

;

 (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {bs}]|
Memory(bs)

 \ MEMI

[Law 47]

468

D24.1 - Comp. Anal. of CML Models (Public Document)

=

var b : BINDING •
(terminate → Skip))
|[∅ | MEMI | {bs}]|

 2 n : NAME •
get .n!(bs ⊕ {x 7→ bs(x)})(n)→
Cell(bs ⊕ {x 7→ bs(x)}))

2

 2 n : NAME •
set .n?nv →
Cell((bs ⊕ {x 7→ bs(x)})⊕ {n 7→ nv})

2 terminate → Skip

;

bs := bs ⊕ {x 7→ bs(x)}

\ MEMI

;

 (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {bs}]|
Memory(bs)

 \ MEMI

[Laws 6]

=

(terminate → Skip))
|[∅ | MEMI | {bs}]|

 2 n : NAME •
get .n!(bs ⊕ {x 7→ bs(x)})(n)→
Cell(bs ⊕ {x 7→ bs(x)}))

2

 2 n : NAME •
set .n?nv →
Cell((bs ⊕ {x 7→ bs(x)})⊕ {n 7→ nv})

2 terminate → Skip

;

bs := bs ⊕ {x 7→ bs(x)}

\ MEMI

;

 (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {bs}]|
Memory(bs)

 \ MEMI

[Law 49]

469

D24.1 - Comp. Anal. of CML Models (Public Document)

=

(terminate → Skip))
|[∅ | MEMI | {bs}]|

 2 n : NAME •
get .n!(b ⊕ {x 7→ b(x)})(n)→
Cell(b ⊕ {x 7→ b(x)}))

2

 2 n : NAME •
set .n?nv →
Cell((s ⊕ {x 7→ s(x)})⊕ {n 7→ nv})

2 terminate → Skip

;

b := b ⊕ {x 7→ b(x)}

\ MEMI

;

 (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Laws 36 and 37]

=

(terminate → Skip))
|[∅ | MEMI | {bs}]|

2 n : NAME •

get .n!(b ⊕ {x 7→ b(x)})(n)→
Cell(b ⊕ {x 7→ b(x)}));
b := b ⊕ {x 7→ b(x)}

2

2 n : NAME •

set .n?nv →
Cell((s ⊕ {x 7→ s(x)})⊕ {n 7→ nv});
b := b ⊕ {x 7→ b(x)}

2 terminate → Skip; b := b ⊕ {x 7→ b(x)}

\ MEMI

;

 (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 10]

=

 (terminate → Skip)
|[∅ | MEMI | {bs}]|
(terminate → Skip; b := b ⊕ {x 7→ b(x)})

\ MEMI

 ;

 (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 34]

470

D24.1 - Comp. Anal. of CML Models (Public Document)

=

 (terminate → Skip)
|[∅ | MEMI | {bs}]|
(terminate → b := b ⊕ {x 7→ b(x)})

\ MEMI

 ;

 (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 25]

=

 Skip
|[∅ | MEMI | {bs}]|
b := b ⊕ {x 7→ b(x)}

 \ MEMI

 ; (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 8 and 30]

=

b := b ⊕ {x 7→ b(x)}; Skip
|[∅ | MEMI | {bs}]|
Skip

 \ MEMI

 ;

 (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Laws 28 and 8]

= ((b := b ⊕ {x 7→ b(x)}) \ MEMI); (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 31]

=

(b := b ⊕ {x 7→ b(x)}); (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 47]

=

 (ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b ⊕ {x 7→ b(x)})

 \ MEMI

[Lemma K.6]

471

D24.1 - Comp. Anal. of CML Models (Public Document)

=

 (set .x !e(b(x))→ ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 34]

=

 ((set .x !e(b(x))→ Skip); ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Lemma K.5]

=

 ((get .x?vv0 → set .x !e(vv0)→ Skip); ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[ΩA]

=

 (ΩA(x := e(x)); ΩA(A2); terminate → Skip)
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

2

Lemma K.8

P .
var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •

if g0(b(v0))→ ΩA(A0)

[] . . .
[] gn(b(v0))→ ΩA(An)

fi

 ;

terminate → Skip
|[∅ | MEMI | {b}]|
Memory(b)

\ MEMI

=
PS (Chaos)

provided
∨

i • gi ≡ false

Proof.

P .

472

D24.1 - Comp. Anal. of CML Models (Public Document)

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •

if g0(b(v0))→ ΩA(A0)

[] . . .
[] gn(v0)→ ΩA(An)

fi

 ;

terminate → Skip
|[∅ | MEMI | {b}]|
Memory(b)

\ MEMI

[Assuming that no alternative is true Law 54]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} • Chaos;terminate → Skip
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 40]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} • Chaos
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 41]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
Chaos \ MEMI

[Law 39]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
Chaos

[Law 26(b is the only component of S)]

= P .Chaos

[Law 54]

provided∨
i • gi ≡ false

473

D24.1 - Comp. Anal. of CML Models (Public Document)

= PS .

if g0(v0)→ A0

[] . . .
[] gn(v0)→ An

fi

2

Lemma K.9

P .
var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •

if g0(b(v0))→ ΩA(A0)

[] . . .
[] gn(b(v0))→ ΩA(An)

fi

 ;

terminate → Skip
|[∅ | MEMI | {b}]|
Memory(b)

\ MEMI

=
PS (Ai)

provided gi ≡ true and
∨

j : {0, . . . , n} \ {i} • gj ≡ false

Proof.

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •

if g0(b(v0))→ ΩA(A0)

[] . . .
[] gn(b(v0))→ ΩA(An)

fi

 ;

terminate → Skip
|[∅ | MEMI | {b}]|
Memory(b)

\ MEMI

[Law 55 (alternative i is true)]

= P .

474

D24.1 - Comp. Anal. of CML Models (Public Document)

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} • ΩA(Ai);terminate → Skip
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[IH]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •(
(vres x : BINDING • Ai(x))(b)

)
[Semantics]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •(
(var x : BINDING • x := b; Ai(x); b := x)

)
[Law 47]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •(
(var x : BINDING • Ai(b); b := b)

)
[Laws 48 and 8]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •(
var x : BINDING • Ai(b)

)
[Law 6]

provided

[x /∈ FV (Ai(b))]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
Ai(b)

[Law 26(b is the only component of S)]

= P .(Ai)

[Law 55]

provided

gi ≡ true and
∨

j : {0, . . . , n} \ {i} • gj ≡ false

475

D24.1 - Comp. Anal. of CML Models (Public Document)

= PS .

if g0(v0)→ A0

[] . . .
[] gn(v0)→ An

fi

2

Lemma K.10

P .
var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •

if g0(b(v0))→ ΩA(A0)

[] . . .
[] gn(b(v0))→ ΩA(An)

fi

 ;

terminate → Skip
|[∅ | MEMI | {b}]|
Memory(b)

\ MEMI

=
Ps .(Ai u Aj)

provided gi ∧ gj ≡ true and
∨

x : {0, . . . , n} \ {i , j} • gx ≡ false

Proof. For simplicity, we assume two guards, i and j , are true.

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •

if g0(b(v0))→ ΩA(Ai)

[] . . .
[] gn(b(v0))→ ΩA(An)

fi

 ;

terminate → Skip
|[∅ | MEMI | {b}]|
Memory(b)

\ MEMI

[Assuming that some alternatives are true Law 55]

= P .

476

D24.1 - Comp. Anal. of CML Models (Public Document)

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
ΩA(Ai) u ΩA(Aj);
terminate → Skip
|[∅ | MEMI | {b}]|
Memory(b)

 \ MEMI

[Law 43]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •
(

((ΩA(Ai);terminate → Skip)
u (ΩA(Aj);terminate → Skip))

)
|[∅ | MEMI | {b}]|
Memory(b))

 \ MEMI

[Law 42]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •

(ΩA(Ai);terminate → Skip
|[∅ | MEMI | {b}]|
Memory(b))
u
(ΩA(Aj);terminate → Skip
|[∅ | MEMI | {b}]|
Memory(b))

\ MEMI

[Law 53]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •

 (ΩA(Ai);terminate → Skip
|[∅ | MEMI | {b}]|
Memory(b))

 \ MEMI

u (ΩA(Aj);terminate → Skip
|[∅ | MEMI | {b}]|
Memory(b))

 \ MEMI

[IH]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •(
(vres x : BINDING • Ai(x))(b) u
(vres x : BINDING • Aj (x))(b)

)

477

D24.1 - Comp. Anal. of CML Models (Public Document)

[Semantics]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •(
(var x : BINDING • x := b; Ai(x); b := x) u
(var x : BINDING • x := b; Aj (x); b := x)

)
[Law 49]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •(
(var x : BINDING • x := b; Ai(x); b := x) u
(var y : BINDING • y := b; Aj (y); b := y)

)
[Law 47]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •(
(var x : BINDING • x := b; Ai(x); b := x) u
(var y : BINDING • Aj (b); b := b)

)
[Laws 48 and 8]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •(
(var x : BINDING • x := b; Ai(x); b := x) u
(var y : BINDING • Aj (b))

)
[Law 47]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •(
(var x : BINDING • Ai(b); b := b) u
(var y : BINDING • Aj (b))

)
[Laws 48 and 8]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •(
(var x : BINDING • Ai(b)) u
(var y : BINDING • Aj (b))

)
[Law 6]

provided

[x /∈ FV (A2(b))]

= P .

478

D24.1 - Comp. Anal. of CML Models (Public Document)

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •((
var x : BINDING • Ai(b)

)
u Aj (b)

)
[Law 6]

provided

[x /∈ FV (Ai(b))]

= P .

var b : {x : BINDING | b(v0) ∈ T0 ∧ inv(b(v0))} •(
Ai(b) u Aj (b)

)
[Law 26(b is the only component of S)]

=

P .(Ai u Aj)

[Law 55]

provided

gi ≡ true and
∨

j : {0, . . . , n} \ {i} • gj ≡ false

= PS .

if g0(v0)→ A0

[] . . .
[] gn(v0)→ An

fi

2

479

D24.1 - Comp. Anal. of CML Models (Public Document)

References

[AB03] A. Aldini and M. Bernardo. A general approach to deadlock
freedom verification for software architectures. In International
Symposium of Formal Methods Europe, volume 2805 of Lecture
Notes in Computer Science, pages 658–677. Springer, 2003.

[ACN02] J. Aldrich, C. Chambers, and D. Notkin. Archjava: connect-
ing software architecture to implementation. In International
Conference on Software Engineering. ACM Press, 2002.

[ADG98] R. Allen, R. Douence, and D. Garlan. Specifying and analyzing
dynamic software architectures. In Conference on Fundamental
Approaches to Software Engineering (FASE), Lisbon, Portugal,
March 1998.

[All97a] R. Allen. A Formal Approach to Software Architecture. PhD
thesis, Carnegie Mellon University, 1997. Issued as CMU Tech-
nical Report CMUU-CS–97–144.

[All97b] R. Allen. A Formal Approach to Software Architecture. PhD
thesis, Carnegie Mellon University, 1997. CMU Technical Re-
port CMUU-CS–97–144.

[Arb04] F. Arbab. Reo: a channel-based coordination model for compo-
nent composition. Mathematical. Structures in Computer Sci-
ence, 14(3):329–366, 2004.

[BBC+12] Victor Bandur, Jeremy Bryans, Ana Cavalcanti, Andy Gal-
loway, and Jim Woodcock. CML Definition 1. Technical Report
D23.2, COMPASS Deliverable, September 2012.

[BBT01] A. Bracciali, A. Brogi, and F. Turini. Coordinating interaction
patterns. In ACM Symposium on Applied Computing, pages
159–165. ACM, 2001.

[BCD02] M. Bernardo, P. Ciancarini, and L. Donatiello. Architecting
families of software systems with process algebras. ACM Trans-
actions on Software Engineering and Methodology, 11(4):386–
426, 2002.

[BCL+06] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.B.
Stefani. The FRACTAL component model and its support in
Java. Software: Practice and Experience, 36(11-12):1257–1284,
2006.

480

D24.1 - Comp. Anal. of CML Models (Public Document)

[BGL+08] A. Basu, M. Gallien, C. Lesire, T.-H. Nguyen, S. Bensalem,
F. Ingrand, and J. Sifakis. Incremental component-based con-
struction and verification of a robotic system. In 18th European
Conference on Artificial Intelligence, volume 178 of Frontiers
in Artificial Intelligence and Applications, pages 631–635. IOS
Press, 2008.

[BHP06] T. Bures, P. Hnetynka, and F. Plasil. SOFA 2.0: Balancing
Advanced Features in a Hierarchical Component Model. In 4th
International Conference on Software Engineering Research,
Management and Applications, pages 40–48. IEEE, 2006.

[Cav97] A. L. C. Cavalcanti. A Refinement Calculus for Z. PhD the-
sis, Oxford University Computing Laboratory, Oxford, 1997.
Technical Monograph TM-PRG-123, ISBN 00902928-97-X.

[CCH+09] E. Cheung, X. Chen, H. Hsieh, A. Davare, A. Sangiovanni-
Vincentelli, and Y. Watanabe. Runtime deadlock analysis for
system level design. Design Automation for Embedded Systems,
13(4):287–310, 2009.

[CCO11] A. L. C. Cavalcanti, P. Clayton, and C. O’Halloran. From
Control Law Diagrams to Ada via Circus. Formal Aspects of
Computing, 23(4):465 – 512, 2011.

[CG07] A. L. C. Cavalcanti and M.-C. Gaudel. Testing for Refinement
in CSP. In 9th International Conference on Formal Engineering
Methods, volume 4789 of Lecture Notes in Computer Science,
pages 151 – 170. Springer-Verlag, 2007.

[CG10] A. L. C. Cavalcanti and M.-C. Gaudel. A note on traces re-
finement and the conf relation in the Unifying Theories of Pro-
gramming. In A. Butterfield, editor, Unifying Theories of Pro-
gramming 2008, volume 5713 of Lecture Notes in Computer
Science. Springer-Verlag, 2010.

[Chi09] Z. Chi. Components Composition Compatibility Checking
Based on Behavior Description and Roles Division. In In-
ternational Conference on Management of e-Commerce and e-
Government, pages 262–265. IEEE, 2009.

[CHLZ07] X. Chen, J. He, Z. Liu, and N. Zhan. A model of Component-
Based programming. In International Symposium on Funda-
mentals of Software Engineering, volume 4767 of Lecture Notes
in Computer Science, pages 191–206. Springer, 2007.

481

D24.1 - Comp. Anal. of CML Models (Public Document)

[CK96] S. Cheung and J. Kramer. Context constraints for composi-
tional reachability analysis. ACM Transactions on Software
Engineering and Methodology, 5(4):334–377, 1996.

[CML+12] Joey W. Coleman, Anders Kaels Malmos, Peter Gorm Larsen,
Jan Peleska, Ralph Hains, Zoe Andrews, Richard Payne, Si-
mon Foster, Alvaro Miyazawa, Cristiano Bertolini, and André
Didier. COMPASS Tool Vision for a System of Systems Col-
laborative Development Environment. In Proceedings of the
7th International Conference on System of System Engineer-
ing, IEEE SoSE 2012, volume 6 of IEEE Systems Journal, July
2012.

[CSW03] A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Wood-
cock. A Refinement Strategy for Circus. Formal Aspects of
Computing, 15(2–3):146–181, 2003.

[CSW05a] A. L. C. Cavalcanti, A. Sampaio, and J. C. P. Woodcock. Uni-
fying classes and processes. Journal of Software and Systems
Modeling, 4(3):277–296, 2005.

[CSW05b] A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Wood-
cock. Unifying Classes and Processes. Software and System
Modelling, 4(3):277–296, 2005.

[CW04] A. L. C. Cavalcanti and J. C. P. Woodcock. A tutorial intro-
duction to CSP in Unifying Theories of Programming. In Pro-
ceedings of the Pernambuco Summer School on Software Engi-
neering: Refinement. Springer-Verlag, December 2004.

[CW06] A. L. C. Cavalcanti and J. C. P. Woodcock. A Tutorial In-
troduction to CSP in Unifying Theories of Programming. In
A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Wood-
cock, editors, Refinement Techniques in Software Engineering,
volume 3167 of Lecture Notes in Computer Science, pages 220
– 268. Springer-Verlag, 2006.

[CZ07] D.C. Craig and WM Zuberek. Compatibility of software
components-modeling and verification. In International Con-
ference on Dependability of Computer Systems, pages 11–18.
IEEE, 2007.

[Dij76] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall,
1976.

482

D24.1 - Comp. Anal. of CML Models (Public Document)

[DK06] L. DeMichiel and M. Keith. Enterprise javabeans specifica-
tion, version 3.0. Technical Report JSR 220, Sun Microsystems,
2006.

[DR02] MS Dias and DJ Richardson. Identifying cause and effect re-
lations between events in concurrent event-based components.
In 17th IEEE International Conference on Automated Software
Engineering, pages 245–248. IEEE, 2002.

[DZL10] J. Ding, H. Zhu, and Q. Li. Formal Modeling and Verifications
of Deadlock Prevention Solutions in Web Service Oriented Sys-
tem. In 2010 17th IEEE International Conference and Work-
shops on Engineering of Computer-Based Systems, pages 335–
343. IEEE, 2010.

[FG03] A. Farias and Y. Guéhéneuc. On the coherence of compo-
nent protocols. Electronic Notes Theoretical Computer Science,
82(5):42–53, 2003.

[FL09] John Fitzgerald and Peter Gorm Larsen. Modelling Systems:
Practical Tools and Techniques in Software Development. Cam-
bridge University Press, 2nd edition, 2009.

[FLF01] R.B. Findler, M. Latendresse, and M. Felleisen. Behavioral
contracts and behavioral subtyping. ACM SIGSOFT Software
Engineering Notes, 26(5):229–236, 2001.

[FMS08] Sanford Friedenthal, Alan Moore, and Rick Steiner. A Prac-
tical Guide to SysML: Systems Modeling Language. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

[GGMC+06] G. Gößler, S. Graf, M. Majster-Cederbaum, M. Martens, and
J. Sifakis. Ensuring properties of interaction systems. In Theory
and Practice on Program Analysis and Compilation, volume
4444 of Lecture Notes in Computer Science, pages 201–224.
Springer, 2006.

[GGMC+07] G. Gößler, S. Graf, M. Majster-Cederbaum, M. Martens, and
J. Sifakis. An approach to modelling and verification of compo-
nent based systems. In Current Trends in Theory and Practice
of Computer Science, volume 4362 of Lecture Notes in Com-
puter Science, pages 295–308. Springer, 2007.

483

D24.1 - Comp. Anal. of CML Models (Public Document)

[HGK+06] M. Hepner, R. Gamble, M. Kelkar, L. Davis, and D. Flagg.
Patterns of conflict among software components. The Journal
of Systems & Software, 79(4):537–551, 2006.

[HJ98] C. A. R. Hoare and H. Jifeng. Unifying Theories of Program-
ming. Prentice-Hall, 1998.

[HJK10a] R. Hennicker, S. Janisch, and A. Knapp. On the observable
behaviour of composite components. Electronic Notes in The-
oretical Computer Science, 260:125–153, 2010.

[HJK10b] Rolf Hennicker, Stephan Janisch, and Alexander Knapp. On
the observable behaviour of composite components. ENTCS,
260:125–153, 2010.

[HLL06a] J. He, X. Li, and Z. Liu. rCOS: a refinement calculus of ob-
ject systems. Theoretical Computer Science, 365(1-2):109–142,
2006.

[HLL06b] J. He, X. Li, and Z. Liu. A theory of reactive components.
Electronic Notes in Theoretical Computer Science, 160:173–
195, 2006.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-
Hall, 1985.

[IM08] J. Ivers and G. Moreno. PACC starter kit: developing software
with predictable behavior. In ICSE Companion, pages 949–950.
ACM, 2008.

[IR08] Y. Isobe and M. Roggenbach. CSP-Prover – a Proof Tool for
the Verification of Scalable Concurrent Systems. Journal of
Computer Software, 25(4):85 – 92, 2008.

[Jon90] C. B. Jones. Systematic Software Development Using VDM.
Prentice-Hall, 2nd edition, 1990.

[Kwi07] X.W.M. Kwiatkowska. Compositional state space reduction
using untangled actions. In 13th International Workshop on
Expressiveness in Concurrency, volume 175 of Electronic Notes
in Theoretical Computer Science, pages 27–46, 2007.

[Laz99] R. Lazić. A semantic study of data-independence with applica-
tions to the mechanical verification of concurrent systems. PhD
thesis, Oxford University, 1999.

484

D24.1 - Comp. Anal. of CML Models (Public Document)

[LD00] Gary Leavens and Krishna Dhara. Concepts of behavioral sub-
typing and a sketch of their extension to Component-Based
systems. In Foundations of Component-Based Systems, pages
113–135. Cambridge University Press, 2000.

[Lev95] N. Leveson. Safeware: System Safety and Computers. Addison-
Wesley, 1995.

[LMC10] C. Lambertz and M. E. Majster-Cederbaum. Port protocols
for deadlock-freedom of component systems. In S. Bliudze,
R. Bruni, D. Grohmann, and A. Silva, editors, ICE, volume 38
of EPTCS, pages 7–11, 2010.

[LW94] B. H. Liskov and J. M. Wing. A Behavioural Notion of Sub-
typing. ACM Transactions on Programming Languages and
Systems, 16(6), 1994.

[Mah90] M. Mahoney. The roots of software engineering. CWI Quar-
terly, 3(4):325–334, 1990.

[MB05] S. Matougui and A. Beugnard. How to Implement Software
Connectors? A Reusable, Abstract and Adaptable Connector.
In IFIP WG 6.1 International Conference in Distributed Ap-
plications and Interoperable Systems, volume 3543 of Lecture
Notes in Computer Science, pages 83–94. Springer, 2005.

[MCM07] M. Majster-Cederbaum and M. Martens. Robustness in inter-
action systems. In 27th International Conference on Formal
Methods for Networked and Distributed Systems, volume 4574
of Lecture Notes of Computer Science, pages 325–340. Springer,
2007.

[MCM08] M Majster-Cederbaum and M. Martens. Compositional anal-
ysis of deadlock-freedom for tree-like component architectures.
In 8th ACM international conference on Embedded software,
pages 199–206. ACM, 2008.

[MCMM07] M. Majster-Cederbaum, M. Martens, and C. Minnameier. A
polynomial-time checkable sufficient condition for deadlock-
freedom of component-based systems. SOFSEM 2007: Theory
and Practice of Computer Science, pages 888–899, 2007.

[MCMM08] M. Majster-Cederbaum, M. Martens, and C. Minnameier. Live-
ness in Interaction Systems. Electronic Notes in Theoretical
Computer Science, 215:57–74, 2008.

485

D24.1 - Comp. Anal. of CML Models (Public Document)

[MH05] P. Merson and S. Hissam. Predictability by construction. In
20th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages
134–135. ACM, 2005.

[Mic11] Microsoft Developer Network. Component object model tech-
nologies. Technical report, http://www.microsoft.com/com,
2011.

[Min07] C. Minnameier. Local and global deadlock-detection in
component-based systems are NP-hard. Information Processing
Letters, 103(3):105–111, 2007.

[MJG+10] A. Mota, J. Jesus, A. Gomes, F. Ferri, and E. Watanabe. Evolv-
ing a Safe System Design Iteratively. In 29th International Con-
ference Computer Safety, Reliability, and Security, volume 6351
of Lecture Notes in Computer Science, pages 361–374. Springer,
2010.

[MK96] J. Magee and J. Kramer. Dynamic structures in software ar-
chitecture. In 4th Symposium On the Foundations of Software
Engineering, pages 3–14. ACM Press, 1996.

[Mor94] C. Morgan. Programming from Specifications. Prentice-Hall,
1994.

[MT00] N. Medvidovic and R. Taylor. A classification and compari-
son framework for software architecture description languages.
Transactions on Software Engineering, 26(1):70–93, 2000.

[MW97] J.M.R. Martin and P.H. Welch. A design strategy for
deadlock-free concurrent systems. Transputer Communications,
3(4):215–232, 1997.

[Nie93] O. Nierstrasz. Regular types for active objects. ACM Sigplan
Notices, 28(10):1–15, 1993.

[NSM12] S. Nogueira, A. C. A. Sampaio, and A. C. Mota. Test gen-
eration from state based use case models. Formal Aspects of
Computing, pages 1–50, 2012.

[Obj07] Object Management Group. Unified Modeling Language, Su-
perstructure, V2.1.2. Technical Report formal/2007-11-02,
OMG, 2007. OMG Adopted Specification.

486

D24.1 - Comp. Anal. of CML Models (Public Document)

[Oli06] M. V. M. Oliveira. Formal Derivation of State-Rich Reactive
Programs using Circus. PhD thesis, Department of Computer
Science, University of York, 2006.

[ORS+12a] M. V. M. Oliveira, R. T. Ramos, A. C. A. Sampaio, A. C. Mota,
P. R. G. Antonino, and A. W Roscoe. An Exercise on Strong
Output Decisiveness and Input Determinism. Technical report,
Centro de Informática - Universidade Federal de Pernambuco,
2012.

[ORS+12b] M. V. M. Oliveira, R. T. Ramos, A. C. A. Sampaio,
A. C. Mota, P. R. G. Antonino, and A. W Roscoe. Sys-
tematic Development of Constructive Component-based Sys-
tems: a Quantitative Analysis. Technical report, 2012.
http://www.dimap.ufrn.br/˜marcel/.

[OZC11] M. V. M. Oliveira, F. Zeyda, and A. L. C. Cavalcanti. A Tac-
tic Language for Refinement of State-rich Concurrent Specifi-
cations. Science of Computer Programming, 76(9):792 – 833,
2011.

[PA98] G. Papadopoulos and F. Arbab. Coordination models and lan-
guages. Advances in Computers - The Engineering of Large
Systems, 46:330–401, 1998.

[Pla05] F. Plasil. Enhancing component specification by behavior de-
scription: the SOFA experience. In 4th international sym-
posium on Information and communication technologies, page
190. Trinity College Dublin, 2005.

[PV02] F. Plasil and S. Visnovsky. Behavior protocols for software
components. IEEE Transactions on Software Engineering,
28(11):1056–1076, 2002.

[Ram11] Rodrigo Teixeira Ramos. Systematic Development of Trustwor-
thy Component-based Systems. PhD thesis, Center of Informat-
ics - Federal University of Pernambuco, Brazil, 2011.

[RM04] R. Roshandel and N. Medvidovic. Multi-View software com-
ponent modeling for dependability. In Architecting Dependable
Systems II, volume 3069 of Lecture Notes in Computer Science.
Springer, 2004.

[Ros98] A. W. Roscoe. The Theory and Practice of Concurrency.
Prentice-Hall Series in Computer Science. Prentice-Hall, 1998.

487

D24.1 - Comp. Anal. of CML Models (Public Document)

[Ros05] A. W. Roscoe. The pursuit of buffer tolerance. Technical report,
Oxford University, may 2005.

[Ros10] A.W. Roscoe. Understanding Concurrent Systems. Springer-
Verlag New York, Inc., New York, NY, USA, 1st edition, 2010.

[RSM08] R. Ramos, A. Sampaio, and A. Mota. Framework composition
conformance via refinement checking. In ACM Symposium on
Applied computing, pages 119–125. ACM, 2008.

[RSM09] R. Ramos, A. Sampaio, and A. Mota. Systematic development
of trustworthy component systems. In 2nd World Congress on
Formal Methods, volume 5850 of Lecture Notes in Computer
Science, pages 140–156. Springer, 2009.

[RSM10] R. Ramos, A. Sampaio, and A. Mota. Conformance notions for
the coordination of interaction components. Science of Com-
puter Programming, 75(5):350–373, 2010.

[SCHS10] A. Sherif, A. L. C. Cavalcanti, J. He, and A. C. A. Sampaio.
A process algebraic framework for specification and validation
of real-time systems. Formal Aspects of Computing, 22(2):153
– 191, 2010.

[SD01] G. Smith and J. Derrick. Specification, refinement and verifi-
cation of concurrent systems—an integration of Object-Z and
CSP. Formal Methods in Systems Design, 18:249–284, May
2001.

[SGW94] B. Selic, G. Gullekson, and P. Ward. Real-Time Object-
Oriented Modeling. John Wiley & Sons, Inc., 1994.

[Sif10] J. Sifakis. Component-Based Construction of Heterogeneous
Real-Time Systems in Bip. The Future of Software Engineering,
page 150, 2010.

[Spi92] J. M. Spivey. The Z Notation: A Reference Manual. Prentice-
Hall, 2nd edition, 1992.

[Spi04] B. Spitznagel. Compositional Transformation of Software Con-
nectors. PhD thesis, Carnegie Mellon University, 2004. Num-
ber: CMU-CS-04-128.

[SR98] B. Selic and J. Rumbaugh. Using UML for modeling complex
RealTime systems. Technical report, Rational Software Corpo-
ration, 1998.

488

D24.1 - Comp. Anal. of CML Models (Public Document)

[VVR06] A. Vallecillo, V.T. Vasconcelos, and A. Ravara. Typing the be-
havior of software components using session types. Fundamenta
Informaticae, 73(4):583–598, 2006.

[Wal03] Kurt C. Wallnau. Volume III: a technology for pre-
dictable assembly from certifiable components. Technical Re-
port CMU/SEI-2003-TR-009, Software Engineering Institute,
Carnegie Mellon University, 2003.

[WCC+12] Jim Woodcock, Ana Cavalcanti, Joey Coleman, André Didier,
Peter Gorm Larsen, Alvaro Miyazawa, and Marcel Oliveira.
CML Definition 0. Technical Report D23.1, COMPASS Deliv-
erable, June 2012.

[WCF+12] J. Woodcock, A. Cavalcanti, J. Fitzgerald, P. Larsen,
A. Miyazawa, and S. Perry. Features of CML: a Formal Mod-
elling Language for Systems of Systems. In Proceedings of the
7th International Conference on System of System Engineering,
volume 6 of IEEE Systems Journal. IEEE, July 2012.

[WD96] J. C. P. Woodcock and J. Davies. Using Z—Specification, Re-
finement, and Proof. Prentice-Hall, 1996.

[Weh00] H. Wehrheim. Specification of an automatic manufacturing sys-
tem: A case study in using integrated formal methods. In 3rd
Internationsl Conference Fundamental Approaches to Software
Engineering, volume 1783 of Lecture Notes in Computer Sci-
ence, pages 334–348. Springer, 2000.

[Weh03] H. Wehrheim. Behavioral subtyping relations for active objects.
Formal Methods in System Design, 23(2):143–170, 2003.

[ZKL10] N. Zhan, E. Kang, and Z. Liu. Component publications and
compositions. Unifying Theories of Programming, pages 238–
257, 2010.

[ZM10] H. Zeng and H. Miao. Deadlock Detection for Parallel Com-
position of Components. Computer and Information Science,
pages 23–34, 2010.

489

	Introduction
	Motivation
	Objetives
	Overview

	Technical Background
	CSP
	CSP semantic models

	Circus
	CML
	Unifying Theories of Programming

	Systematic Development of Trustworthy Component Systems
	Component Model
	Extended Component Model
	Mechanising the Composition Rules Side Conditions in CSP
	Alphabets
	I/O Channels
	Infinite Traces and Divergence-Freedom
	Input Determinism
	Strong Output Decisiveness
	Further Side Conditions in CSP

	Experiments

	Lifting the Approach to Circus and CML
	Component Contracts
	Renaming Contracts
	I/O Processes
	Implementation Protocols

	Linking Theories
	Linking Processes
	Linking Refinement
	From Circus to CSP
	Mapping Circus into CSP
	Correctness

	From CML to Circus
	Mapping CML into Circus
	Correctness

	Case Study
	CML Ring Buffer
	BRIC Ring Buffer
	BRIC Composition

	Conclusion
	Related work
	Future work (Deliverable 24.4)

	Refinement Laws
	Mapping Functions
	Mapping Function for Actions
	Mapping Function for Numbers
	Mapping Function for Predicates
	Mapping Function for Set Expressions
	Mapping Function for Channel Set Expressions
	Mapping Function for Sequence Expressions

	Prefixed Actions
	RingBuffer: from CML to CSP
	CML RingBuffer
	Circus State-rich RingBuffer
	Circus Stateless RingBuffer
	CSP RingBuffer

	Lifting the Approach to Circus and CML
	Propositions
	Theorems

	Mechanisation of the Composition Rules Side Conditions in CSP
	Interleave composition (P [|-2mu|-2mu|] Q)
	Communication composition (P [ip oq] Q)
	Feedback composition (P [ip -3mu oq])
	Reflexive composition (P [ip op])

	An Exercise on the New Definition of Channel Projection
	Lazy Abstraction
	Lazy Abstraction in the Failures Model (F).

	Traces Model and I/O Process Properties

	Z Formalisation of BRIC
	Embedding Circus Syntax into Z
	Z Auxiliary Functions
	Circus UTP Model
	General Types
	Model Auxiliary Functions
	Predicate Model
	Observational Variables
	Semantic Functions

	Linking UTP Model to FD Model
	Properties
	Refinement

	Z Formalisation of Circus BRIC
	Basic Definitions
	Component Model
	I/O channels
	Input determinism
	Strong output decisiveness
	I/O Process
	Component Contract
	Asynchronous Composition
	Asynchronous Unary Composition
	Projection
	Communication protocol
	Protocol Implementation
	Dual Protocol
	Dual Protocol
	Renaming I/O
	I/O confluence
	Conjugate protocols
	Strong protocol compatibility
	Finite output property
	Decoupled Channels
	Buffering self-injection compatibility
	Interaction patterns
	Interaction process
	Interaction component
	Interaction channels
	Wrapping

	Composition Rules
	Interleave Composition
	Communication Composition
	Feedback Composition
	Reflexive Composition
	Extended Communication Composition
	Extended Feedback Composition
	Wrapping interaction

	Extending the Model with Metadata
	Enriched component contract
	Enrich component contract
	Enriched interleaving composition
	Enriched Communication Composition
	Enriched Feedback Composition
	Enriched Reflexive Composition

	Proofs on Model Equivalence
	Lemmas from Oliveira's Phd
	Laws from UTP Tutorial Phd
	New Lemmas
	Theorems
	Auxiliary Lemmas

	Proofs of the Rewrite from Stateful Circus into Stateless Circus
	Skip
	Stop
	Chaos
	Prefixing
	Output Communications
	Output Communications
	Guard
	Input
	Internal Choice
	External Choice
	Hiding
	Alternation
	Assignment
	Sequential Composition
	Auxiliary Lemmas
	Free Event
	Simple Synchronisation Event
	Output Event
	Guarded Action
	Input Event
	Assignment

