
THE TEMPORAL LOGIC OF PROGRAMS*
Amir Pnueli

University of Pennsy lvania, Pa. 191D4
and

Tel-Aviv University, Tel Aviv, Israel

Summary:

A unified approach to program verification is
suggested, which applies to both sequential and
parallel programs. The main proof method suggested is
that of temporal reasoning in which the time depend
ence of events is the basic concept. Two forma 1
systems are presented for providing a basis for tem
poral reasoning. One forms a formalization of the
method of intermittent assertions, while the other is
an adaptation of the tense logic system Kb , and is

particularly suitable for reasoning about concurrent
programs.

O. Introduction

Due to increasing maturity in the research on
program verification, and the increasing interest and
understanding of the behavior of concurrent programs,
it is possible to distinguish two important trends in
the research concerning both these fields. The first
is towards unification of the basic notions and
approaches to program verification, be they sequential
or concurrent programs. The sec and is the continuous
search f or proof methods which will approximate more
and more the intuitive reasoning that a programmer
employs in designing and implementing his programs.

As a result of the first trend, one can indeed
claim today that there exist very few simple proof
principles which apply equally well to both sequentia 1
and concurrent progr~ms. Thus, the prevalent notions
of what constitutes a correctness of a program can all
be reduced to two main concepts:

a. The concept of invariance, i.e. a property
holding continuous ly thr oughout the execution of a
program. By appropriately extending the concept of an
assertion to describe a relation between the values of
the variables and the location at which the program is
executing, it can be shown that the general notion of
invariance covers the concepts of partial correctness
and clean behavior for sequential programs, and in
addition these of mutual exclusion, safety and dead
lock freedan in concurrent programs.

b. The second and even more important concept is
that of eventuality (or temporal implication). In its
full generality this denotes a dependence in time in
the behavior of the program. We write ~~~, read as:
1I'4J eventually follows c.p II or II <.p temporally implies
"p ", if whenever the situation described by cP

arises in the program, it is guaranteed that eventu
ally the situation described by ~will be attained.

The notion of eventua lity c overs as a specia 1
case the property of total correctness. In addition
it pr ovides the righ t genera liza ti on of c orrec t
behavior in time for cyc lic or non-func ti rna 1 pr ograms.

The classical approoch to correctness of programs,
such as re~resented in Manna 17, Hoare6,8 and also
Owicki2l,2 who addressed herself to concurrent pro-

*This research was supported in part by ONR under
contract N00014-76-C-04l6 and by NSF grant MCS
76-19466.

grams, always considered functional programs only.
Those are programs with distinct beginning and end, and
sane canputational instructions in between, whose
statement of correctness consists of the description
of the func tion of the input variab les c anputed on
successful cOOlpletion. This approach canpletely
ignored an important class of operating system or
real time type programs, for which halting is rather
an abnormal situation. Only recently 10,11,19 have
people begun investigating the concept of correctness
for non-terminating cyclic programs. It seems that
the notion of temporal implication is the correct one.
Thus, a specification of correctness for an operating
system may be that it responds correctly to any
incoming request, expressible as: {Request arrival
situation }~ System grants request }.

Similar to the unification of correctness basic
concepts, there seems to be a unification in the basic
proof methods. Thus for proving invariance the widely
acc laimed method is the induc tive assertion method.
For proving eventuality one uses either the well
founded set method or a relatively recent method which
we prefer to call temporal reasoning. This methcxi,
introduced by Burstal15 and further developed in [19]
and [24] (called there the method of intermittent
assertions), represents the second mentioned trend in
trying to approach the intuitive natural line of
reasoning one may adopt when informally justifying his
program.

This paper attempts to contribute to these two
trends. Two formal systems are presented which give a
sound basis to the yet unformalized methodology of
temporal reasoning about programs. This will on one
hand enhance the particular method it formalizes, and
on the other hand stress and give more insight to the
important concept of eventuality.

The first of the two systems is a direct formal
paraphraze of the ideas and arguments repeatedly used
in [5] and [19]. Since this system seems adequate for
sequential programs but too weak to accomodate the
multi branching alternate reasoning needed for con
current programs, a second system was adopted, which is
richer in structure and is actually but a modification
of the tense logic system Kb studied by Rescher and

Urquhart in [23]. This system seems much more satis
fying and able to model the more intricate reasoning
involved in proving temporal correctness of concurrent
programs.

The significance of temporal reasoning to con
current programs was pointed out in [lO,llJ. However
the tool suggested there, introduction of real time
clock seems too gross and powerful for the purpose
needed. We correct this situation here by formulating
the system K+b which is tailored to have exactly the

adequate power and mechanism for proving temporal
dependencies of concurrent programs.

Another formalization of the intermittent
assertion method using a richer tense logic has just
recent ly appeared in l3] J [.4J .

1. Systems and Programs

A unified approach to both sequential and c oncur-

46

rent programs is provided bv the general framework of

a system (see also Keller 13).

A dynamic discrete system consists of

< S, R, So >

where:

S - is the set of states the system may assume (possi
bly infinite)

R - is the transition relation holding between a state
and its possible successors, R ~ S x S

So - is the initia 1 state .

An execution of the system is a sequence:

()I -= so' s 1, · . ·

Since R is nondeterministic in general, many
different execution sequences are possible.

Obviously the concept of a discrete system is
very general. It applies to programs manipulating
digital data (cenventional programs) to programs
manipulating physical objects (Rooot driving programs),
to general engineering and even biological systems,
restricted only by the requirement that their evo
lution in time be discrete. Consequently any proof
principle that can be developed for general systems
shoold apply to the verification of behavior of any
of these systems. McCarthy and Hayes advocated in

[20] such a general apprCBch and to a certain extent
this paper is a technica I pursuance of some of the
general ideas expressed there.

However, being chiefly motivated by prOblems in
the programming area, all the examples and following
discussions will be addressed to verification of pro
grams. The generality provided by the system's con
cept is only utilized for presenting a uniform
approach to both sequential and concurrent programs
and their verification.

In order to Particularize systems into programs
further structuring of the state notion is needed.

Sequential Programs

The specific model of deterministic sequential
programs can be obtained by structuring the general
state into

s -= <1T , U >

1T is the centrol canponent and assumes a finite
number of values, taken to be labels or locations
in the program. L -= {R- o, R- I,· •• t n }

u is the data c anp onent and wi 11 usua lly range
ooer an infinite danain. In actual applications it
can be further structured into individual variables
and data structures.

The transition relation R can also be partiticned
into a next-location function N (1T,U) and a data
transformation functicn T (1T,U). N (t,u) will
ac tua lly depend on u only if the sta tement at t is a
c onditiona 1.

We can thus express R in terms of Nand T:

47

R«1T,1..1 >7 <11",1..1' » <I: > 7T' -= N(7T,u) & u' =
T(1T,u)

The restriction to deterministic programs is noc
essentia 1 and is made only to simplify notation.

Concurrent Programs

By allowing more than one control cOOlpcnent we
get the case of parallel programs. The state is to be
partitioned as:

s -= < 1T l' .. 1Tn ; u >

The range of each 1Ti may be considered as the
(finite) program for the i-th processor, while u is
the shared data canpanent . We assume that the next
state function N(1T,U), and the data transformation
T(1T,U) are still deterministic and depend on a single
control canponent at a time . However the scheduling
choice of the next processor to be stepped is
nondeterministic .

Intuitively, the model admits n programs being
concurrent ly run by n processors. At each step of
the whole system, one processor, i is selected, and
the statement at the location pointed to by 1T i is

executed to cornp letion (we do not a llow procedures).
This might seem at first glance to be restrictive,
being unable to model possible interference between
different phases of concurrent statements' execution.
However it is up to the user to express his program
in units which for his modelling purposes can be
considered atanic. Thus for one user the statement

y ~ f(y)

mt',y be considered atanic, while another who may be
worried ab rot possib Ie interference fran other
concurrent programs between the fetch and store
phases of this instruction may write instead:

t~y

yoE- f(t)

where t is a new variable local to the particular
process. Interference may now occur between those
two statements. Since we will be interested in
proving termination, we will require the scheduling
to be fair i.e. no processor may be indefinitely
de layed while enab led. This wi 11 be made more pre
cise later.

Formally we can express the overall transition
rule by the individual transition functions of each
of the processors as:

for s orne i, 1 ~ i ~ n :

u' -= Ti (1Ti' u)

2. Specifications and Their Classification

A Time Hierarchy of Specifications

To express properties of systems and their
development in time we use relations on states q(s)
(predicates) expressed in a suitable language.
Applied to programs this will be a relation
q(1T l , •. 1Tn ; u) between the data values and the

location of all the processor pointers. The general
ver~fication problem is that of establishing facts

about development of the properties q(s) in time.

Introducing explicit time variables t l , tz, ..
which in oor model range over the natural numbers and
may be connected by the relations -=, <, and the time
functional

it is obvious that any arbitrary complex time depen

dency can be expressed. This approach was taken in 11
where some intricate time specifications are illus
trated.

Here, however, we find it both instructive and
useful to limit the expressive power of the language
with respect to dependency in time, and observe the
actual complexity required to express different use
ful properties. Thus it is possible to classify
specifications according to the number of distinct
time variables needed to express it in a time explicit
formula •

1. Single Time Instance Specification -
Invariance. Having only one time variable

it may be either existentially or universally quanti
fied. If we choose the latter we obtain the notion of
Invariance - a property holding throughout all states
of all possible execution sequences.

Extending the binary relation R to its transitive
closure R* we define the set of accessible states

A predicate p(s) is invariant in the system if
for every accessible state seX p(s) holds.

(VseX)p(s) i.e. Vt H(t, p)

Many important properties fa 11 under the class
of invariance relations:

Partial Correctness: Consider a sequential pro
gram with entry label R- o and exit label R-m. To state

its partial correctness with respect to ({J('X),

\V (i,z)17 we can claim the invariance of the state
ment:

i.e. that it is invariantly true that whenever we
reach the exit, if the input satisfies its specifi
cation then so does the output.

Clean ExecutionZ5 ,18 In all realistic situations
it is not sufficient to prove that on terminaticn the
result is satisfactory. One should also see to it
that 00 the way, no step is taken which will cause
the program to behave illegally. Thus, attention
should be paid to the host of potential mishaps such
as: zero division, numerical overflow, exceeding
subscript range, etc. Taking as an illustration the
zero division case, let R- l , R- Z' .. R-k be all the

locations at which division is executed, and Yl'YZ'

Yk the ~espective divisors. The statement of zero

division fault freedom is the invariance of the claim
(1T -= R- 1 ::> y 1 -I 0) 1\ ••• 1\ (1T -= R,k =:;) Yk -I 0)

A variant of this (counter boondedness) can be used
also to establish termination.

Mutual Exc lusicn Turning now to c cncurrent
programs, let us c cnsider establishing mutua 1 exc lu
sion of critical sections in two concurrent programs.
Let Sl be the critical section in the first program,
i.e. a subset of the labels of the program, and Sz

48

the second critical section. Then the statement of
mutual exclusion amoonts to the claim of invariance:

&'>(1T l £S:I. 1\ 1T Z£S2)

Deadlock Freedom2l, 22 . Consider a set of con
current programs which communicate via semaphores. A
deadlock will be a situation in which each of the pro
cessors is waiting on a 'p' operaticn and none of the
semaphore variables which are waited f or is positive.
Since each of the programs is of finite length, and
ooly in a finite subset of their instructions are
there 'p' operations)it is possible to coostruct a

finite list of label vectors iI, R;Z, .• "ir such that

each R-f labels a 'p' instructioo in the jth program.
Correspondingly we can ccnstruct a list of vectors of

-1 -Z -r -ivariables u , u , .. u such that u contains all the
semaphore variables waited on in the instructions

labeled by ii. Deadlock freedom is guaranteed by the
invariance of the claim:

Z. Two Time Instances - Eventua lity (Temporal
Imp lica t i on)

The most useful two time variables statement (by
no means the only ooe) is that of eventuality
(Temp ora 1 Imp licat ion) We write <.f~ 4J for

V t l 3tz (tz ~ t l) H(tl,{f):::> H(t2 ,"¥)

i.e. for every execution G'- so' sl' .. whenever there

exists an si such that ~(si) there must exist a later

sj' j ~ i such tha t \,JJ (s j) .

An imp ortant instance of an eventua Ii ty is that
of total correctness. For a sequential program with
entry label R,o and exit label ~ , the statement of
total correctness with respect to predicates 'f , 4J
can be expressed by the eventua li ty:

i.e. if we enter the program with input values satis
fying CP, we will eventually reach the exit point
with variables' values satisfying QJ •

In applying eventuality specifications to non
deterministic and concurrent programs we must

distinguish between terminating and cyclic programs 11.
Programs of the first kind are expected to terminate
and present a result of their canputation. Total
correctness for them involves guarantee of termin
ation and of satisfaction of the output predicate on
termination. Generalizatioo of these to concurrent
terminating programs is straightforward (in the
formula above replace 7f, R- o• ~ by their vector
counterparts) .

Cyc lic programs en the other hand are not
supposed to halt and are run for providing ccntinuous
response to external stimulii. A typical example
wi 11 be an operating sys tem which runs c ontinuoos ly
(hopefully) and is expected to respond to both ex
ternal events, and requests from user programs which
for modelling purposes can also be cansidered external
stimulii. For this type of programs the notion of
total correctness has to be extended. We claim that
most of the reasonable extensions fall into the
category of eventuality. To mention few, there is
the property of accesibility. Usually in a mutual
exc lusion envirooment there is the dua 1 property

(termed 1iveness in [16]) of any of the pr ocess ors
eventually being able to access its critical section
once it set its mind to it. If we denote by £ the
location in the program where a processor decides it
wishes to enter and by S the set of locations canpri
sing the critical section, then the following event
uality expresses accessibility:

A more general property is that of responsiveness
which is appropriate for the operating system model.
If an externa 1 stimulus such as a user program making
a request far a resource is signified by setting a
request variab Ie to 1, or more genera lly by making cP
become true, and the system response of granting this
request is signa lIed by causing <+> to bec ane true,
then the genera 1 c arrec t resp onsiveness pr operty is
expressed by e.p~ 'IJ which guarantees that far every
request, there wi 11 eventua lly cane a c orrec t res
pense.

The Rest of the Hierarchy

These two, admittedely important, constructs by
no means exhaust the range of interesting and even
useful properties of programs. For example, continu
ing in the vein of stating properties of operating
systems, there is the question of fairness in granting
requests. This for example could state that if at tl

user A requested a resource and then at a later tz

user B requested the same resource then there will be
a t3 when user A will be granted his resource such

that at no intermediate t4 t l ~ t4 ~ t 3 was B granted

it)sidestepping Asprior request. This seems like a
four variable statement and not too farfetched one.

Beyond the complete range of qualitative state
ments about one event preceding the other, lies
another danain of questions re lating to the quanti
tative relatiens between timely events. If the system
is going to respond, will it respond within 10)048, 10
ms or 10 seconds?, etc. In this paper we address
ourselves enly to the two "simple" cases of invariance
and eventuality.

3. General Proof Principles

Following the description of the statements we
would like to prove we present a survey of three proof
principles. These will be described first in the
genera 1 system framework and then app lied in turn to
sequential and then ccncurrent programs: When parti
cularized to programs of either type they wi 11 be
shown to reduce to knGln methods f or some of the cases.

A. Invariance: The universally accepted method for
establishing invariance is that of induction:

(PI)

This is obviously the principle of computational
inducticn. Clearly, a property which holds initially
and is transferred aleng any legal transition (is

inductive13) is invariant. Naturally when wishing to
estab lish the invariance of a given property (such as
correctness on exit) it will usually have to be gen
eralized. This will carrespcnd to the known method of

inductive assertiens9 •

B. Well Founded Sets. This method is cne of the two

49

that we present for establishing eventualities. We
bring here only its natural number version, but its
extension to other well founded sets is readily avail-

ab Ie and described17

Let A(s,n) be a predicate depending on the state
s and a natural number n ~ o. Then

Cf(s) ~ 3n A(s, n)
A(s,n) A R(s, sl) :::>A(sl,n-l) v <I1(s) (PZ)

4'4~

The ab0\7e principle incorporates both the notioo
of invariance realized by the family of invariants A
(s,n) and the notion of well founded set. The basic

9
idea is also due to Floyd, and many presentations

similar to the above appear in the literature1B , 16,13.

C. Reasoning About Eventualities

In this approach one derives simple eventuality
relations directly from the system transition rules
(R) and then use canbination rules, and general
logic reas cning to derive more c anp lex eventua lities.

The method was first introduced by Burstall5 and

developed further, in an informal form 19,24, under
the name of the Intermittent Assertions method. Two
formalizations of the method are suggested below and

some alternate formalizations are given in [3] and [15]

Fran its inception this method had several
advantages over method B above:

a. It is more powerful than method B.As indicated

in (19] any proof using method B can a lways be c 00

verted to a proof in the intermittent assertions
method, and there exist some classes of programs
(notably those which are obtained by translating
recursive programs into iterative programs) for which
a natural proof exists in method C, and any possible
proof in B, will necessarily be overly cumbersome.

b. Proofs in C are inherently more intuitively
appealing ("natural"). While B is essentially a proof
by negation approach, showing that infinite or wrong
computations are impossible, C adopts the more posi
tive approach of establishing a chain of inevitable
events, which following one another, will lead to a
correct terminaticn (or attainment of objective).
Thus, similarly to any gocxl assertions methcxl, it not
ooly formally proves the program's correctness, but
gives the prover (and the reader) a better insight
into the structure and execution of the program.

The following axianatic system (ER) is a sug
ges ted forma lizati on f or temp ora 1 reas ooing ab out
events in a system.

Axioms

(AI)

p :;) q -= > p~q (A2)

Inference Rules

p~, Vs,sl r(s)"R(s,sl)~r(sl) -=> (pA.r) ~(q"r)(Rl)

p~q,q~r-=>p~r (RZ)

Pi'~ q, P2~q -=> (PI VPZ) ~ q (R3)

P~ q -=> (3up) -z. q (R4)

In addition we take all theorems of the first
order predicate calculus as axians.

The axioms enable us to derive elementary eventu
a lities. (AI) says tha t if f or a 11 one step transi
tions, p before the transition implies q after the
transition, then p~q is established. (Al) states
that logica 1 implication is a special case of tempo
ral implication. The inference rules enable us to
deduce complex temporal implications fran simpler ones.
Thus (R1) may be considered as either a Frame axiom or
an invariance rule which adds an arbitrary invariant
to any eventuality.

Note that once the connective~ is introduced,
it may participate in any arbitrary logical ex
pression using the other logica 1 c onnec tives, and the
usual rules of logic applied to derive proofs.
Thus, for example, the general integer induction
scheme will yield the following induction principle as
a special case:

p(o) ~q
pen) :z. q r p(ft,+l) ~q (I)

pen) ~q

Fran which we may conclude 3n pen) ~q (by (R4~

Theorem 1 The system (ER) is sound and complete for
prcwing any property of the form Cf~ "JJ •

Proof's Sketch: (Canpleteness)

Let~~. Assuming the assertion language to be
expressive, we can formulate in it the predicate
p(s,n):

"Every execution starting with s will reach in no

mOre than n steps a state Sl such that \p(sl) holds."

If we assume that our non determinism is bounded
(i.e., for each s there is at most a finite number of

different s1 such that R(s, sl) holds) then c.p~ 'P
must imply by KOnigs infinity Lemma that:
1. <.(>(s)::>3n p(s,n) is valid and hence prO\Tab1e in the

logic.
Similarly from the definition of p(s,n) the follow
ing claim is valid and hence provable:

2. p (s, n+1) :::" ~(s) V [VsIR(s, s 1) '::) p (s 1, n)]
fran which

3. p (s, n+1) ~ [p (s, n) v\f' (s)] is provable by (AI)
4. p (s, 0):>\fJ (s) By the definition of p

from 3., (R2) and (R3):
S. p(s,n)~'P(s) -=> p(s,n+l) ~'+' (s)

By the induction principle (I) 4. and S.
6. p(s,n) -z., ,+,(s)
7. 3n p (s, n) ~\P(s) by rule (R4)
8.'l'~'fJby 1.,7., (R2) and (A2).

4. Application to Sequential Programs

Consequent ly, we can express any globa 1 assertion
q(1T,U) as a set of local assertions qi(u) -= q(£i'u)

attached at each program locatioo. £i , ilCo, .. m (full

annotation). We call this rewriting attachment. Con
versely any network of local assertioos {qi I ia:o, ..m}
can be grouped to form a global assertion.

q(1T,U)=.!\[(1T II: 1i) :::::>qi(u)]
c-

If we examine the proof principle (PI) substi-
tuting the attachment form of q(1T,U) we get the
following conditions:

qo(u o)

For each i: qi(u)~qN (u) (T£(u»
£

i.e the initial values U o should satisfy qo' and then

considering any locaticn i in the program, let N1 (u)

denote its success or location (if i labels a c 00

ditiooa1 N1 will depend on u) and T1 (u) the trans-

formation u~T1 (u) affecting u 00 going fran £ to N£.

We require that if q1(u) is true at £ then qN should
i

be true at N£ for the transformed values. These are

exactly the verificaticn conditions for Floyd's methcxl
in the full annotation case. As a result the princi
ple ensures that q(1T,U) is invariant throughout the
execution, in particular if execution reaches the exit
point £m then ~ (u) holds. Thus partial correctness

with respect to qo' qm has been established.

Eventuality (Total Correctness) In an identical way,
method B for the sequential case can be shown to be
equivalent to Floyd's well founded sets methcxl.

Ccnsider now the methcxl of temp ora 1 reasoning (C).
When we study the informal intermittent assertions
method, as exemplified in [19], we find that the
basic statement is:

"if sometime p(u) at 11 then sanetime (later)
q(u) at 12"

1 1, 12 being program locations (labels).

This can obvi ous ly be f ormu la ted as the temp ora 1
imp lica t ion:

[1T = 1 1 " p(u)] ~[1T -= 12 1\ q(u)]

In order to complete the formalization we should
clarify the form that axiom (AI) and rule (Rl) will
assume in the sequential program case. In its most
useful form we will ccnsider an arbitrary finite path

in the pr ogram:

Let r~(u) denote the condition on u at i such

that the path~ will be tra versed. Let Td(u) des

cribe the transformaticn applied to u along 0<.. Then
(AI) f or the pa th 0(wi 11 be:

Vu p(u)::>ro(u) I\q (To«u» IC>

[IT-= i " P (u)] 7+ [1T -= j 1\ q (u)]

We will now consider the applicatioo. of the gen
eral principles to sequential programs showing that A.)

B. reduce to the known Floyd's methods9 while C. f erms

a formalization of the Intermittent Assertions methodS

19

Invariance Consider a genera 1 asserti 00. on a deter-
ministic sequentia 1 program q (1T, u). By considering
that 1T may assume only a finite number of values
1T£ u,o' · .1m} we can always rewrite

q (1T , u) E. (1T = £ 0) ::::> q (1 0' u)

50

i

p (u)

For the more formally minded we should restrict
the path to a single statement and consider the
system (ER) augmented by a finite number of axioms
which are instances of (AI), considering any of the
possible types of statements.

It is naY an exercise in formalization to take
any of the proofs in [19], justify the basic lemmas by
instances of (AI) and transitivity (R2) and work
out the higher level lemmas and theorems using the
induction principle (I).

Censequent ly (ER) is not en ly f onna lly c cmp lete
as proved in theorem 1, but as just shown is a natural
formalization(describing the formal machinery required
for a system implementing the intermittent assertion
method) of a method distinguished for its intuitive
appeal.

5. Concurrent Programs

Besides offering some additional insight into
known metho:ls for sequential programs, the main justi
fication for the uniform approach suggested here is
the strong guidelines it provides for verification
methods for concurrent programs.

Invariance Using the next location function N and the
next transformation function T it is straightforward
to rewrite the general invariance principle for con
current programs:

q (n 0; u o)

For each ia: 1, .. n

q(1f l ,· ·1fn , u)::::>q(1f l ,· ·1fi _1,N(1fi'u),. ·1fn ;

T(1f. u»
1,

q(TI;u) is invariant.

The main prob lem and rationa Ie f or the different
variations of this general principle is the canplex
ity of q(1f;u) and of the set of verification condi
tions.

On the other hand if the interaction is loose (as
is very often the case) we do get an appreciable im
provement and approach linear canplexity (sum of sizes).
All the advanced methods suggested in [2], [21], [22]
and [16] may be roughly classified as partial attach
ment metho:ls.

Another pranising approach does no attachment at

all 13,10, 12, but works directly in terms of global
invariants, and the verification conditions presented
at the beginning of this section. The dependence on
locatim is usually expressed in more uniform way,
sometimes arithmetic, than that of case enumeration.
When successfu 1, this wi 11 a Is 0 yie ld linea r c anp lexi ty
Since this method is less familiar we enclose a
correctness proof of the producer-consumer problem
taken rot of [10].

Example 1 (Producer-Consumer)

Consider the producer - consumer concurrent pro
gram in Fig. 2. The producer places an item in the
buffer after its producticn while the consumer removes
it fran there. These operations are represented by
respective incrementation and decrementatian of n
the buffer's current load.

We wish to prove:

a. The producer and consumer are never simula
taneously at their respective critical sections
(mutual exc lusion)

b. a ~ n ~ N i.e. the buffer capacity is never
exceeded.

c. There is no deadlock.

To prove these three prq>erties we prove first the
invariance of the f allowing three globa 1 assertions.
Note that the dependence on the processor's pointer
value is expressed in terms of the three character
istic functions mi , ri' si' i = 1,2 which assume the

va lue 1 on sane locati ens and a on the rest.

Invariants:

(1) m1 + m2 + MUTEX Ie:: 1

(2) rl + r2 + IS EMPTY + IS_FULL = N

The most straightforward and inefficient approach

is that of full attachment l . Similar to the sequen
tial case we rewrite for the two program case:

q('lT 1 , 'lT2; u) =A ('lT1ci " 'lT 2 c j):::>qij (u)]

i,j (3) s 1 + s 2 + I S EMPTY Ie:: n

This gives rise to a number of local assertions
which is proporticnal to the product of the sizes of
the participating programs, and a corresponding num
ber of verification conditions.

An improvement on the above is the idea of using
only partial attachment:

q ('IT l' 'IT 2; u) =f\r ('IT 1= i) .:J Pi ('IT2' u ilA!\[('IT 2c j)::oq j ('IT l' u)]

i j

i.e. at each point in each of the programs we attach
a local assertion which might still depend en the
location of the other process. This dependence is
sometimes implicit and is expressed by use of addi
tional central or shadCM variables. Formally the
number of assertions is now proportiona 1 to the sum
of the sizes of the individual programs. However, if
the interacticn between the programs is high we may
have to consider in the verification conditions all
possible values of the opposite processor, thus
regaining the exponential canplexity.

51

To establish each of these, check that they hold
in initial state and then consider each possible
single transition of each of the processors. We will
use (1) - (3) now in order to prove a-c.

a. Assume that both processors are in their
critical sections. We have then ml Ie:: m2 == 1 which by

(1) implies MUTEX Ie:: -1 in contradiction to MUTEX being
a semaphore.

b. From 3, since IS EMPTY is semaphore and sl'
s2 ? 0 we get n ~ O. By observing that si ~ r i
i=1,2

substitute (3) and bound it by (2) to get n = sl
+82 +IS_EMPTY ~ rl + r 2 + IS_EMPTY = N - IS_FULL ~ N

c. A deadlock can occur only if the two pro
cessors are waiting an a p operation. None can wait
on a p(MUTEX) since then, assuming, say, that TIl is

waiting we get ill l == 0, MUTEX = a which by (1) implies

m2 £ I which means that n2 is in its critical section

and cannot be waiting on a p. The remaining possi
bility is that the producer is waiting on p(IS_EMPTY)
and the consumer on p(IS_FULL) but that means that
rl = r

2
= IS_EMPTY II: IS_FULL II: 0 which by (2) leads to

N=O in contradiction to the buffer having positive
capacity.

Many other cases of program synchronized by
semaphores can be handled in a similarly efficjent way
employing global assertions and arithmetized locaticn

dependence 12 •

To summarize the issue of the complexity of con
current program verification, it seems always possible
to ccntrive an example which will defeat any proposed
method by causing it to becane exponentially canplex.
On the other hand we may bring once more the meta
physical argument advanced in [2], namely, that after
all it was a human progrannner who wrote the program
and believes it to be correct. He could not have
possibly considered an exponential number of cases
and must have had sane very few guiding reasons for
writing it the way he did. It is the role of the
proof method designer to c cme up with a method and
language which will let him make these reasons more
rigorous (and more conscious) and generate Qt1

efficient natura 1 proof.

F(p) - It will be that p·jt [t ~ n ~ H(t, p)]
G(p) - Henceforth always p - Vt [t ? n ,::,H(t, p)]

F and G are unary operators which may be used in
constructing arbitrary tense well formed formulas
(tWFF' s), using also the conventional logical con
nectives and quantifiers. The temporal interpretation
of a formula W involving no tense operators is that it
holds in the present.

In our study of systems the absolute present is
identified with So the initial state. For clarifi-

cation let us c ons1der some tense formulas and their
system interpretaticn:

p - p h olds at So

p~Fq - if P holds at so then at a future instance
q will hold.

P ~Gq - if P holds at So then q is invariab ly true for
all states.

G(p ::::>Fq) - Whenever p is true, it will eventually
be followed by a state in which q will be true
(note that this matches our noticn of eventu
ality)

G(p;:,Gq) - Whenever p is true, q will be true there
after.

Eventuality and Tense Logic

(GI)

GA 7::JA (The future inc ludes the present) (G2)

GA ~GGA (G3)

Our formal system contains the following axioms:
The method of well founded sets for termination

or other eventualities can also be similarly con
sidered with either full, partial or no attachment
13,16

However the dissatisfaction at its indirect
ness is even more intense then in the sequential
case.

Ccnsider next application of temporal reasoning
to ccncurrent programs. A first attempt at formali
zation was done in [10] and reported in [11] by the
explicit introduction of a real (or integer) valued
time parameter for each event. Thus, we write H(t,p)
for the statement that the assertion p is realized
(holds) at the time instance t. Obviously any kind
of dependency on time can be expressed by this power
ful device. On the other hand it might be too power
ful and obscure the question of which properties of
time are really essential in order to establish simple
properties such as temporal implication.

The system (ER), on the other hand, seems too
weak. This is sanewhat surprising in view of its
completeness. But this proves to be the case in the
sense that we find it difficult to express natural
intuitive arguments for the behavior of concurrent
pr ograms in (ER).

Obviously, we are not the first ones to face the
problem of finding a minimal basis for temporal rea
soning without taking the brute force approach of
installing an explicit real time cIcek variable. 23
Rescher and Urquhart in their book "Temporal Logic"
give a survey of different logical systems which
increasingly capture more and more of the properties
of time. Out of this selection we adopted a fragment
of the tense logic ~, which we would like to offer

here as a verification tool for temporal reasooing
aboot c cncurrent programs.

We introduce two basic tense operators, F and G.
Denoting the present by n we can describe semantic
ally

Where A and B are arbitrary tWFF's.
By defining FA: ., G('A) we can derive the following
counterparts to G2, G3:

A:;:)FA (F2)
FFA :::>FA (F3)

The following are the inference rules:

If A is a classical taUtology then r A (RT)
to- A Ie> ~ GA (Genera lization) (RG)
)-A, ~A'::)B z:> t-B (MP)

Rule (RG) deserves special attention. It is
based 00 the assumpticn of hcmogeneous development and
that every statement which is provable for the present
must be equa lly true in all p ossib Ie futures. As long
as the only way to prove basic facts about the present
is through rule (RT) this assumption is justified.
However if other means of deriving facts about the
present are introduced, the use of rule (RG) has to be
restricted.

The Kb fragment introduced here differs from the

one presented in [23] by several aspects:

1. In our presentation we consider the present
as part of the future.

2. While the original Kb contains primitives for
events both in the future and in the past, we find it
convenient and adequate to work only in terms of the
future operators. Theref ore, only these operators
are introduced and discussed.

3. To the pure tense logic we have to add "do
main dependent" axians, restricting the future to only

52

these developments which are consistent with the
transition mechanism of the system. These will be
discussed later.

p (s) 1\ R(s, sl)::>9 (sl)
p:::>Fq

(E)

(R)

The keen observer woo 1d have rea lized by now tha t
the system presented is completely isomorphic to the

27 23 .moda 1 logic system 54 ' • Indeed ene way of arr1V-
ing at it is to give a temporal interpretation to the
basic notien of modality, regarding "possible worlds"
as "worlds developable in the future starting from the
present wor ld" . In this is omorphism G stands for 0
and F f or ~. We resist full identification of the
two not cnly because of typographic reasons but
because we believe that the full ~ and even more

powerful tense systems will have to be used for prov
ing properties stranger than eventualities. Once one
introduces possible worlds both in the past and in the
future the correspondence between G and tJ fails.
On the other hand in oor discussion we will fully
utilize this isomorphism as exemplified in the
follCMing:

Theorem 2 The system given above (pure, propositional
future restricted ~ fragment) is complete (in the

absolute sense) and decidable.

For completeness we may modify the proof in [23]
showing the completeness of the full Kb. For decid-

ability (which subsumes completeness) we may turn to

known decidability results of 5427 ,3°. We even have
some results an the complexity of the decidability

procedure29 .

Quantifiers: From the universal character of G
and the existential character of F the following
axioms make sense:

This enables us to derive the most elementary
eventualities, those holding across a single transition
of the system.

Inevitability Axiom:

If we intend to prove termination or accesibility
we must give expression to our assumption of fair
scheduling, which assures in a concurrent process that
every processor will ultimately be scheduled to take a
step. In order to capture this notion within the
system framework we partition R II: V Ai into a

I
finite number of actions: ll= [Ail. To the usual

definition of execution sequence we add the restric
tion:

FO[Jno A£ a is there an i such that
V j (j 3- i):::> 'A(sj' Sj+l)

i.e. no acticn can be indefinitely delayed. In our
model of concurrent programs, each of the actions is
one of the processors taking a step. With this nota
tion we have the following axiom reflecting the weak
inevitability property:

p(s)I'R(s,sl)/\ 'A(s,sl) ::;,p(sl)

P(~) 1\ A(s, sl)::;)9 (sl) (N)
p::> Fq

i.e. if p is invariant as long as A is not executed,
and if execution of A when p is true causes q to be
come true, then once p is true q is inevitable (since
A must eventually be executed).

These are additional axioms which restrict the
future to be consistent with the system, and tie the
reascning to the particular system or program we wish
to study.

G(Vxp) =VxG(p)
F(3xp) ~ 3xF(p)
F(V xp) :::> VxF(p)

3 x G(p):::> G('3 xp)

Non Pure Axi ana

(Q1)
(Q2)
(Q3)
(Q4)

A scheme of a proof in our system will consist of
two separate phases. In the first phase we reason
about states, immediate successors and their pro
perties, proving all the required premises for the use
of the axioms (Il),(I2),(E),(N). This phase culmin
ates in deriving a set of basic tense formulas using
the domain dependent axioms. Its role is to translate
all the relevant properties of the program into basic
tense-logic statements. The next phase is purely
tense logical (domain independent), uses only the pure
rules and manipulate the basic tense logical state
ments into the final result.

Invariance Axiom:

Eventuality Axiom:

The first invariance axiom is identical to the
invariance principle (PI):

Consider examples of utilizaticn of the axioms
(I),(E),(N) under the concurrent programs context.
Axiom (II) may be used to derive global invariants.
Example 1 is a case in point. To verify the ante
cedents of (11) one has to assume that p currently
hold and consider all possible one step effects of
each of the processors, showing that p is preserved.
A similar verification is performed in order to
establish the antecedents of (E). In fact (E) is only
infrequently used. This is because in analyzing a
concurrent program we are either able to show in
variance independently of which processor moves, or to
indicate development because of the action of one
specific processor. It is only rarely that we can
trace development (going from p to q) independently of
who moves next.

An example of the use of (N) is given by the
following situation:

(II)

(12)

p.::>q
9 (s) 1\ R(s, sl) ::;:) 9 (sl)

t- p :JGq

)- Gp

p (so)

p(s)1\ R (s,sl)~p(sl)

The second invaraince axiom is more general and
it allows us to prove invariance of q not necessarily
starting from the beginning but from the first time
that p becomes true, i.e. from a certain moment on.

In fact, the more appropriate form for the con
sequence of (12) is l- G(p "::)Gq), however in view of
(RG) and (G2) the two forms are equivalent.

53

Lemma A 0.
4

1\ t ::;:) FaS

We use (DI) to establish
(a4 A t) A GaS -;:)G((a3 v a 4)" t)

P1'" GPZ ::;:) Gq

Pl(s)1\ R(s,sl) '" 'A(s,sl)" PZ(sl),:;)Pl(sl)

P1(s) 1\ A(s,sl)1\ PZ(sl)~q(sl) (DN)

PlI\GpZ':)Fq

i.e. one of the processors is currently at locaticn £,

and is about to execute B which will cause q to be
cane true. We can then use (N) to establish

(rr=£) :;:) F(rr-=£ 11\ q)

A more intriguing case is when B is a statement
depending on sane right hand side variables which in
general can be altered by the other processors thus
preventing q from becoming true. In same cases the
only one who may alter these variables is rr itself
and then we use the fact that as long as rr remain at
~ it cannot perform any alteration and hence once it
moves q will be true.

Pl,::)q
q (s) 1\ Pz (8 1) 1\ R(s, sl):::> q (sl)

(DI)

Consider now all possible locaticns of rrZ. Con

sider first rrZ = 8S · By I Z

8S ~ Cz
Using (DI) again we get:

It might be the case that p.:::>t, and as long as
rr does not move p remains invariant. We use then (N)

to derive that rrc~l is inevitable.

8S "G((<13 v 0. 4) " t) ::>G8S
Also GSB::::> Gc2

Theorem 3 Kb fragment is at least as strong as (ER) Summarizing the above we get

Proof Express p ~q as p ::>Fq. It is then possible
to shCM that all the axians of (ER) are theorems of
Kb fragment.

(a. 4 A t) 1\ GaS" 8s~ G«0,3 v (4) 1\ t" c z)

By (DN):

Corollary ~ fragment is relatively canplete for

proving temporal implicaticns of the form p~Fq. Similarly

While this theoretica 1 result does not shCM any
advantage of Kb over (ER), the following example may

serve to show how a relatively inf erma 1 proof of
eventua 1 c errectness of a c cncurrent program is
naturally formalized in Kb •

Example 2: Consider the example of the Mutual
Exc lusion prob}em presented in Fig. 1. For simpli
fication in notation we use the following abbrevia
ticns:

Hence we can join these two together to get:

8S " Gl~ FaS

where we denote Gl = G«a3 V 0. 4) " t)

Similar ly we can get

t f or tIC 1, t for tc:2

p for 'p where p is any of the abave.

Po c: 0. 1" 8 1 " cll\. c z" t

The theorem we wc:u ld like to derive (accessi
bility) is: 0.

2
~ Fa

S

j= 1, .. S

Thus regardless of where TIZ is we derived

GII\86~F(Gl" 8S)

GIl' 84::>F(G l " 86)

And can further produce under Gl the chains of

temp ora 1 imp Iica t ions
i=l, Z

i=l, .. S

1, c i f or c i -= 0c. -=
1

We start by deriving the following invariants:

I 1: c 1 -= ct 1 "aZ " as

1Z: c Z =8lv8ZV8S

13 : as "a,7"BS A 87
(Their actua 1 form should be GIl' etc) All these are

direct consequences of (II). In particular GI
3

prOV'es mutual exc lusion.

(a 4 1\ t) 1\ GaS :::> Fa.S

By the Lemma in the Appendix this implies:

a 4"t :;:,FaS

Lemma B G[(ct 4 V ct 6 V as) 1\ t => S1]

lnf orma lly: When 'IT 1 first enters 0.4) C z == 0 and

hence TIZ r:/ 8 1 . The only exit to S 1 is by making tel.

Lemma C

In the sequel we will use stronger versions of
(IZ) and (N) which can be derived from them

lnf orma lly: Consider the next test of t by 1T I a t as

(inevitable). If tel we can follow events to Ctz,a3.

We then either enter as or get to a4 with t~l.

54

Henceforth by Lemma A, FuS .

If t=Z at as then 'ITZ -I 61' cl :::: 1.

If 'ITZ -= B7 then later 'ITZ II: Bl , t-l and remains so.

Otherwise we can follow

86~8S 4 BZ~B3 2; 8S4 B7~ as

84 ~83·

Theorem

Follow 'IT 1 to a 3 • If we do not arrive at as we

get to u4 and eventually test t. If tel then by

Lemma A we get to as. If tll:2 we get to as and lemma

C ensures the same.

6. Finite State Systems

In conclusion we will ccnsider the special case
of finite state systems. For finite state systems
the va lidity of eventualities (and other tense f ormu,....
las) is decidable. Furthermore many difficult syn-
chronization and other concurrent programs happen to
be finite state, ar are usually presented in a simpli
fied finite state form (including example 2 above).

Consider the case of a system whose state set is
fini te. For such a system we can c cnsider alI pr 0

perties of the states as temporal propositions p (s)
(a proposition possibly varying with time or state).
The values of these propositions can be evaluated for
each of the states and presented in a finite table.
Thus the tense formula to be proved will be a ~
positional tense formula.

Let E Ie < S, R, so> be a finite state system,

where R II: YAi' ISI < 00. We can represent E as a

finite directed edge labeled graph G-= < S, E> whose
nodes are the states of E, and there is an edge

A.
1

SI --+s2 iff At (sl' s2) holds. A proper execution

of E will be a path in G, starting at so' and such

that if it is infinite it passes infinitely often
throogh edges labeled Ai for each of the Ai. For

simplicity let us aSStmle that there are no ha lting
states ar deadlocks in the system so that only in
finite execution paths have to be considered.

Theorem 4 The va lidity of an arbitrary eventuality:
G(A:;:)FB) is decidable for any finite state system E.

A and B here stand for arbitrary propositiooa 1
expressions, but since they will always be evaluated
an states we may as well consider each to be just a
single proposition, hence checking G(p~Fq) for
validity.

We sketch below a semantic decision procedure:
Obviously, it is sufficient to verify that p ::>Fq holds
at each state in the graph G representing E. Also it
is sufficient to cmsider cnly states s at which p(s)
II: true. If also q(s) is true, the checking at s is
c mc luded. Otherwise denote by Gq II: < Sq' Eq> the

subgraph, defined by deleting all states which satisfy
q. By wr assumptim s E: Sq. p::>Fq will be va lid at

s iff Gq c antains no infinite proper executi on se

quence starting at s, because then every s execution
sequence in G must run into one of the missing states,
i.e. a state satisfying q.

To c heck f or the exis tenc e of a pr oper pa th, de
c anp ose Sq int 0 str cngly C oonec ted c anp ooents Cl, .. Ck

55

where we assume that SE: Cl . We can construct a derived

graph whose nodes are the Ci such that Ci + Cj iff

there are si E: Ci , Sj E: Cj and si + Sj in Gq . Label

each of the nodes Ci by all the actions labeling edges

of nodes c anprising Ci .

It is not difficult to see that Gq contains an

infinite proper path starting at s if and only if in
the derived graph there is a path from Cl to one of

the components Cm which is labeled by all the actions.

Once it has been semantically established that
the temporal implication is indeed valid in the system
it is not difficult to ccnstruct a formal proof in Kb
fragment proving the same.

The natural extension to Theorem 4 is whether the
validity of any arbitrary tense formula is also decid
able on finite state systems. The answer is indeed
positive. However two extensicns are needed to the
logical system to be able to express the proof for a
genera 1 tense formula.

a. The Initial State Axian:

p (s 0) (P)

t=P
This enables us to derive properties which are

initially true.

b. In view of (P) the generalization rule (RG) fails
to be universally valid. Obviously any p which holds
ooly initially does not necessarily hold thereafter.
We thus have to modify (RG) int 0:

"if ~ A then I- GA provided the pro~f of f-- A did
not involve any use of axiom (P). (MRG)

Thus the extension of theorem 4 is:

Theorem S The validity of an arbitrary tense formula
on a finite state system is decidable, and the ex
tended system Kb is adequate for proving all valid

(propositicna 1) tense formulas.

Discussicn of possible proofs appears in
Appendix B.

7. Discussion and Criticism

Justifying the special system introduced here by
the minimality principle (use the simplest system that
will work - but no simpler), we should be the first to
ask: Is the noticn of external time or temporality
really needed in order to discuss intelligently and
usefully the behavior of pr ograms? We hope tha t the
exposition made it clear that it is not needed in
order to reas en ab oot invariance properties of pro
gram. How about properties of the eventuality type?
It seems clear that for deterministic, sequential
structured programs, temporality is not essential.
This is so because for these programs we have an
internal clock, namely the execution itself. By
knowing the location in the program and the values of
several loop counters we can pinpoint exactly where we
are in the execution.

Therefore for these programs the simple temporal
notions of "bef ore" and "after" the executicn of a
program segment, implicit in all the deductive systems

such as Hoare's and more recent ones26 ,2S are
c anp lete ly adequa te. It is not surprising theref ore
that for such programs, also the intermittent
assertions method has no advantage. On the other hand

when we attack programs which are cyclic, and hence
being in a location we cannot identify whether this is
the first or sec end time we are there, or nondeter....
ministic, or concurrent, in which execution consist of
intermixing operations for different processors, or
even unstructured in which there exists a relation
between the "where" and "when" but may be very c anp lex,
in all of these cases we must distinguish between the
"where" and "when" and maintain an external time sca Ie
independent of the execution. Thus, our answer to the
query above, is that as soon as we get to discuss
eventuality for these more intricate type of programs,
sane temporal device is necessary.

Another point that is worth mentioning is that the
approach taken here can be classified together with

Floyd' s9 Bursta 11' s5 (also [4] which is very c lose in
spirit t~ our work). Manna and Waldinger's and

McCarthy' s20 as being Endogenous approaches. By that
we mean that we immerse ourselves in a single program
which we regard as the universe, and concentrate on
possible developments within that universe. Charact
eristic of this approach is the first phase which
translates the programming features into general rules
of behavior which we later logica lly ana lyze. This is
in contrast with Exogenoos approaches such as Hoare's,
Pratt's, Constables' and other deductive systems.
These suggest a uniform formalism which deals in
formulas whose constituents are both logical assertions
and program segments, and can express very rich
relations between programs and assertions. We will be
the first to admit the many advantages of Exogenous
systems over Endogencus systems. These inc lude among
others:

a. The uniform formalism is more elegant and
universa 1, richer in expressibility, no need
for the two phase process of Endogencus
systems.

b. Endogenous systems live within a single
program. There is no way to canpare two pro
grams such as proving equivalence or inclu
sion.

c. Endogenous systems assume the program to be
rigidly given, Exogenous systems provide
tools and guidance for constructing a correct
system rather than just analyse an existent
ene.

Against these advantages endogenous system can
offer the following single line of defense: When the
going is tough, and we are interested in proving a
single intricate and difficult program, we do not care
about generality)uniformity or equivalence. It is
then advantageous to work with a fixed context rather
than carry a varying context with each statement.
Under these conditions, endogenoos systems attempt to
equip the prover with the strongest possible tools to
formalize his intuitive thinking and ease his way to
a rigorous proof.

References:

Logie" in B. Meltzer & D. Michie (eds.) Machine
Intelligence 5 (1970) 79-98, Edinburgh.

5. Burstall, R.M. (1974): "Program Proving as
Hand Simulation With A Little Induction,"
Information Processing, 1974, North Holland
Publishing Company, Amsterdam, 308-312.

6. Hoare, C.A.R. (1969): "An Axianatic Basis Of
Ccmputer Programming", CACM 12 (10) .

7. Hoare, C.A. R. (1970): "Procedures and Para
meters: An Axianatic Approach", in Engeler
(Ed.) Lecture Notes in Mathematics 188,
Springer Verlag.

8. Hoare, C. A. R. (1972): "Towards a The ory of
Parallel Programming", in Hoare, C.A.R,
Perrot, R.H. (Eds.): Operating Systems
Techniques, New York Academic Press.

9. Floyd, R.W.: "Assigning Meanings to Programs,"
Proc. Symp. Appl. Math. 19, in J.T. Schwartz
(ed.) Mathematical Aspects of Computer Science,
pp. 19-32, 1967.

10. - Francez, N.: "The Analysis of Cyclic Pro
grams," Ph.D. thesis, Weizmann Institute of
Science, Rehovot, Israel 1976.

11. - Francez, N. and Pnueli, A: "A Proof Method
For Cyclic Programs," Proceedings of the 1976
Conference en Parallel Processing, 235-245.

12. - Francez, N. and Pnueli, A.: "Proving Pro
perties of Parallel Programs by Gleba 1
Invariants," to appear.

13. - Keller, R.M.: "Formal Verification of Pa~alle1

Pr ograms," CACM 19 (7) 1976.

14. - Kroger, F.: "Logical Rules of Natural Reasm
ing Aboot Programs," Third Intern. Symposium
on Autanata, Languages and Progrannning,
Edinburgh, Edinburgh University Press, 1976,
87-98.

15. - KrOger, F: "A Uniform Logical Basis For The
Description, Specification and Correctness
Proof Techniques of Programs". Institute fur
Informatik der Technischen Universitat Munchen.

16. - Lamport, L (1976): "Proving the Correctness of
Multiprocess Program," Massachusetts Canputer
Associates, Inc. Mass. 01880.

17. - Manna Z: "Mathematical Theory of Canputation,"
MCGraw-Hill (1974).

18. - Manna Z. and Pnueli, A: "Axianatic Approach to
Total Correctness," Acta Informatica 3, 243
263.

1.

2.

3.

4.

Aschroft E.A. and Manna Z (1970): "Formali
zation of Properties of Parallel Programs,"
Machine Intelligence 6, Edinburgh University
Press.

Aschroft E.A. (1975): "Proving Assertions
About Parallel Programs," JCSS 10(1) 11

Aschroft E.A. and Wadge, W.W: "Intermittent
Assertion Proofs in Lucid," IFIP, Toronto 1977.

Burstall, R.M.: "Formal Description of Pro
gram Structure and Semantics of First Order

S6

19. - Manna Z. and Waldinger, R: "Is "scmetime"
sanetimes better than "always"? Intermittent
assertions in proving Program Correctness.
Proc. 2nd International Ccnference on Software
Engineering, San Francisco (Calif.) 1976, 32
39.

20. - McCarthy, J., Hayes, P.J: "Sane Philosophic
Problems from the Standpoint of Artificial
Intelligence" in B. Meltzer and D. Michie
(eds.) Machine Intelligence 4 (1969) 463-502,
Edinburgh.

Discussien of the proof of Theorem 5

21.

22.

Owicki, S. and Gries, D.: "An Axianatic

Pr oof Technique for Paralle 1 Pr ograms I ",
Acta Informatica 6,319-339.

Owicki, S. and Gries, D: "Verifying Proper
ties of Parallel Programs: An Axianatic
Approach", CACM 19(5) 1976, 279-284.

6. p ~ Fq

Appendix B

3,5

23.

24.

25.

26.

27.

28.

29.

30.

Rescher, N. and Urquhart, A: "Temporal
Logic," Springer Ver lag 1971.

Schwarz, J: "Event Based Reasoning - A
System for Proving Correct Termination of
Programs". Research Report No. 12, Dept.
of Artificial Intelligence, University of
Edinburgh, Edinburgh, Sc ot land.

Sites, R. L.: "Proving that Computer Programs
Terminate Cleanly," Stanford University,
Technical Report, May 1974.

Constable, R. L: "On the Theory of Program
ming Logic," Pr oc. of the 9th Anr..ua 1
Symposium on Theory of Canputing, Boulder,
Colorado, May 1977.

Hughes, G.E. and Creswell, M.J: "An
Introduction to Modal Logic," London:
Methuen and Co. Ltd, 1972.

Hare1, D., Meyer, A.R. and Pratt, V.R:
"Canputability and Canpleteness in Logics
of Programs," Proc. of the 9th Annual
Symp. on Theory of Canputing, BroIder,
Colorado, May 1977.

Fischer M. J. and Ladner, R. E.: "Prope
sitionai Modal Logic of Programs," Proc.
of the 9th Annua 1 Symp. en The ory of
Canputing, Boulder, Colorado, May 1977.

Kripke, S. A. : "Semantica 1 Ana lysis of
Modal Logic I: Normal Modal Propositional
Calculi," Zeitschr. f. Math. Logik und
Grundlagen d. Math. 9 (1963) pp. 67-96.

Theorem 5 may be proved by reduction of the problem
of validity of propositicnal tense formula en a finite
state system to that of the validity of a formula in
the Monaaic Secend Order Theory of Successor . This
is dane by reintroducing explicit time variables.
Referring to the definitions and results of [31] ,
there is a decision algorithm f or the va lidity of
f ormu la s in th is the ory •

Alternately, it is possible to recenstruct the
pr oof f or our spec ia 1 case :

We first Observe that for a given finite state
system l: it is possible to censtruct a finite state
autanaton Al: which will accept exactly those infinite
sequences sO,sl' •.• which form a proper execution
sequences of l:. Denote the language of infinite
words def ined by Al: by L (Al:) S; SW • We then sh ow tha t
f or each propositiona 1 tense formula W , we can
ccnstruct an w-regular32 language L(W) which describes
all th ose SW sequences m which W is true . This
c cnstructicn is defined inductive ly by the rules:

L(p)-=(s 1 + •. +s) SW
where sl' ••• sm are thWse states out of S m which p
is true •

L(,W)= SW-L(W)
L(WI" W2) =L (W1) Il L (W2)
L(W I V W2)II::L(W 1) u L(W2)

L(FW)ICS*L(W)
L(GW)-=L(" F I W)

Since the family of w-regular languages is closed
under all the operaticns used abooe , this gives an
effective way toe mstruct L(W) . Our decision prob lem
reduces then to the question:

is L(Al:) ~ L(W)
i.e. do all proper execution sequences of l: satisfy
W ? • This problem is known to be decidable for w
regular languages 33

Lennna:

Appendix A

Derived Rules and Theorems of Kb :

The following are theorems proved in [23]:

T2 Gp " Fq ::>F (p 1\ q)

Corollary Gp 1\ Fq ::::> F(Gp " q)

T3 F(p vq) ::>Fp V Fq

Cor 0 llary G p 1\ G q :;) G(p ,\ q)

pI\G(,q)::>Fq=> p,:::)Fq

Pr oof:

1. f- p " G(' q) --:::> Fq Ass.

2. ~ Fq v, Fq Tau.

3. ~ Fq v G(' q) by F's definition.

4. ~ p" Fq :>Fq Tau.

5. t- p f\ (Fq v G(., q»:::> Fq 1,4

57

31. - Biichi,J.R. :"On a Decisicn Method in Restricted
Seccnd Order Arithmetic" , International Congress
on Logic Methodology and Philosophy of Science,
Stanf ord , Ca lifornia (1960) .

32. - McNaughton,R•.: "Testing and Generating Infinite
Sequences by a finite Autanatm" , Information
and Control 9 (1966) 521-530 •

33. - Landweber , t .. H. : "Decisicn Prob lems for w
Aut ana ta " , Ma thema tica 1 Systems The ory 3
(1969) 376-384 •

