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We introduce a new algorithm to convert triangular meshes of polygonal regions, with

or without holes, into strictly convex quadrilateral meshes of small bounded size. Our

algorithm includes all vertices of the triangular mesh in the quadrilateral mesh, but may

add extra vertices (called Steiner points). We show that if the input triangular mesh
has t triangles, our algorithm produces a mesh with at most b 3t

2
c + 2 quadrilaterals by

adding at most t + 2 Steiner points, one of which may be placed outside the triangular

mesh domain. We also describe an extension of our algorithm to convert constrained
triangular meshes into constrained quadrilateral ones. We show that if the input con-

strained triangular mesh has t triangles and its dual graph has h connected components,
the resulting constrained quadrilateral mesh has at most b 3t

2
c + 4h quadrilaterals and

at most t + 3h Steiner points, one of which may be placed outside the triangular mesh
domain. Examples of meshes generated by our algorithm, and an evaluation of the qual-

ity of these meshes with respect to a quadrilateral shape quality criterion are presented

as well.
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1. Introduction

Finite element (FE) analysis is a powerful tool for numerically solving differential

equations of variational problems that arise during structural modeling in engineer-

ing and the applied sciences. An essential prerequisite for the use of FE analysis

is the availability of a mesh over the problem domain. If the problem domain is

a subset of the Euclidean plane, triangular or quadrilateral meshes are typically

employed. The accuracy of a problem’s solution, and the efficiency with which it is

obtained using a particular FE implementation are highly dependent on a variety

of mesh parameters, such as the number of elements of the mesh and their shape,

as well as the regularity, directionality and grading of the mesh 1,2.

Triangular meshes have been extensively investigated by the meshing commu-

nity, and their theoretical properties are now well understood 3. Algorithms for gen-

erating provably good triangular meshes of polygonal domains have been proposed

and implemented 4,5,6,7. On the other hand, the generation of good quadrilateral

meshes is not as well understood. A few algorithms exist to generate quadrilateral

meshes of bounded size 8,9,10,11,12, bounded largest angle 10, and controlled density

and directionality 13,14,15 for polygonal domains. However, there are no known al-

gorithms to generate quadrilateral meshes of polygonal domains that are provably

guaranteed to simultaneously meet several quality criteria. Algorithms to gener-

ate such meshes would have great practical value because it has been shown that

quadrilateral meshes are more desirable for certain FE-based applications, such as

planar stress-strain analysis 16.

The input to two-dimensional meshing algorithms is typically a planar straight

line graph (PSLG) that defines a polygonal region, possibly with polygonal holes,

and an additional set of vertices and edges in its interior 3 (see Fig. 1(a)–(b)). A

PSLG is a set of vertices and edges that satisfies two constraints. First, if the PSLG

contains an edge then it must also contain the two vertices that are the endpoints

of the edge. Second, edges can only intersect each other at their shared endpoints.

Meshing algorithms that take PSLGs as input are supposed to generate meshes that

conform to the input PSLG. In other words, the subset of points of the Euclidean

plane covered by the output mesh — the mesh domain — is exactly the same as

the subset of points of the polygonal region defined by the PSLG, and the set of

vertices and edges of the PSLG are respectively included in and covered by the set

of vertices and edges of the output mesh. Fig. 1(c) shows a triangular mesh that

conforms to the polygonal region and its corresponding PSLG in Fig. 1(a)–(b).

The need for constructing meshes of polygonal regions that also conform to some

vertices and edges in their interior often arises in practice. For instance, finite ele-

ment analysis of two-dimensional biological shapes often requires the construction

of meshes from segmented two-dimensional images, whose domain is appropriately

represented in the Euclidean plane by polygonal regions with vertices and edges in

their interiors 17. Several meshing algorithms can only handle PSLGs that describe

polygonal regions with or without polygonal holes. That is, the vertices and edges



November 30, 2004 20:41 WSPC/Guidelines ijcga

Constrained Quadrilateral Meshes of Bounded Size 3

of the PSLG are exactly the vertices and edges of the (boundary of the) polygonal

region defined by it. However, if the PSLG also defines vertices and edges in the

interior of the polygonal region then such meshing algorithms cannot guarantee

that these vertices and edges will be included in the output mesh. Some exceptions

are the algorithms by Chew 4, Ruppert 5, and Shewchuk 6,7, which are capable

of generating triangular meshes for general PSLGs. Hence, their algorithms are

particularly useful for building triangular meshes from imaging data of biological

shapes.

(a) (b) (c)

Fig. 1. (a) A PSLG. (b) A polygonal region defined by the PSLG in (a). (c) A triangular mesh
that conforms to the polygonal region in (b) and its corresponding PSLG in (a). The edges of the

PSLG are shown as solid line segments, and the other edges of the mesh are dashed line segments.

In this paper we are primarily concerned with the generation of strictly convex

quadrilateral meshes that are suitable for FE analysis of problems in which direc-

tional features are not present or relevant for the analysis accuracy. Strictly convex

quadrilateral meshes are quadrilateral meshes in which each of the four angles of

every quadrilateral is strictly less than 180o. Strictly convex quadrilateral meshes

are the only desirable quadrilateral meshes for FE-based applications 18,2. The main

contributions of our work are two-fold:

(1) We introduce a new algorithm for converting triangular meshes into strictly

convex quadrilateral meshes of provably small size. The output quadrilateral

mesh contains all vertices in the input triangular mesh, and may contain extra

vertices — Steiner points — inserted by our algorithm during the conversion

process, one of which may be placed outside the triangular mesh domain. In

particular, we show that if the input triangular mesh has t triangles then the

output quadrilateral mesh generated by our algorithm has at most b 3t
2 c + 2

quadrilaterals, obtained by inserting at most t + 2 Steiner points. These re-

sults improve upon previously known bounds on quadrilateral mesh size 8. Our

algorithm runs in O(t) time and space.

(2) We also show that given a triangular mesh and a constraining subset of its

edges, our algorithm can convert the input triangular mesh into a strictly con-

vex quadrilateral mesh whose set of edges covers the constraining set of edges.

Furthermore, we show that if the input triangular mesh has t triangles then the

output quadrilateral mesh generated by our algorithm has at most b 3t
2 c + 4h
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quadrilaterals, obtained by inserting at most t + 3h Steiner points, where h

is the number of connected components in the dual graph of the input trian-

gular mesh. One of the Steiner points may be placed outside the triangular

mesh domain. Note that this result implies that our algorithm can indirectly

handle the same class of PSLGs as the algorithms by Chew 4, Ruppert 5, and

Shewchuk 6,7. We just have to use one of these algorithms to generate the tri-

angular mesh, and then define the constraining subset of edges as consisting

of the edges of the triangular mesh that cover the edges of the input PSLG.

Hereafter, we refer to the input pair consisting of a triangular mesh and a con-

straining subset of its edges as a constrained triangular mesha, and we refer to

the corresponding output quadrilateral mesh generated by our algorithm as a

constrained quadrilateral mesh.

While our algorithm may place one Steiner point outside the triangulation do-

main, it is possible, with a small increase in the number of Steiner points, to place

all points in the interior of the domain with at most one point on the boundary.

We discuss this case further in the end of Section 4. The remainder of this paper is

organized as follows. In Section 2 we introduce some basic concepts related to our

work and review some prior work on quadrilateral meshes. In Section 3 we describe

the details of our new algorithm for generating quadrilateral meshes of polygonal

domains, and its extension to handle general PSLGs. In section 4 we present some

quadrilateral meshes obtained from an implementation of our algorithm, and eval-

uate their quality according to a quadrilateral shape quality metric. In Section 5

we summarize our results and discuss future work.

2. Background and Prior Work

A polygonal region R is a connected region of the plane whose boundary is one

simple and closed polygonal curve or the union of a finite number of disjoint, simple

and closed polygonal curves. When the boundary of R consists of 1 + k polygonal

curves with k > 0, we say that R has k polygonal holes. Vertices and edges of

R are vertices and edges of its bounding polygonal curves. We denote the set of

vertices (resp. edges) of R by VR (resp. ER). A mesh M of a polygonal region R is

a decomposition of R into openly disjoint polygonal regions without holes, called

mesh elements, that meet each other at a shared vertex or edge only. The set of

vertices VM and the set of edges EM are the set of vertices and edges of all mesh

elements of M, respectively. The set VM contains the set of vertices VR of the

polygonal region R, and every edge in the set of edges ER of the polygonal region

R is the union of one or more edges in the set EM. As discussed in the previous

section, our interest is in meshing algorithms that take polygonal regions described

by PSLGs as input.

aWe should point out that the term constrained triangular mesh has been used in several other
papers with a different meaning.
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A mesh M can be classified according to element type, mesh structure, and mesh

geometry 19. Any two elements of M are said to be of the same type if they have

the same number of vertices. When all elements of M have the same type, we say

that M is homogeneous. The most common homogeneous meshes are triangular

meshes and quadrilateral meshes, in which all mesh elements are triangles and

quadrilaterals, respectively. The structure of a mesh M is related to the valence of

its vertices. The valence of a vertex v ∈ VM is the number of edges in EM incident

to v. If this number is the same for all vertices in VM, except for the vertices on the

boundary of M, we say that M is regular. Otherwise, it is said to be irregular. The

geometry of a mesh is related to metric properties. We say that M is a uniform

mesh if M is regular and every edge e ∈ EM has the same length. Otherwise, M

is said to be nonuniform.

Mesh regularity also affects the geometry of mesh elements, as the valence of a

given vertex constrains the shape of all elements incident to it. Regular meshes are

often computed by applying a coordinate transformation to a rectangular grid. If

such a coordinate transformation can be computed efficiently, a regular mesh can

be generated very easily. Besides, there is no need to explicitly store the coordi-

nates of the mesh vertices. However, it may be extremely hard to find a coordinate

transformation that fits a given polygonal domain with arbitrarily complex geom-

etry 3. Furthermore, regular meshes do not offer a flexible way of controlling mesh

grading, which is directly related to local variation of element size. If the geometry

of the problem domain is complex or a fine control of element size and shape is

desirable, irregular meshes are usually preferred. A regular mesh defined as a grid

or obtained by applying a coordinate transformation to a grid is often called a

structured mesh 20.

The problem of generating a quadrilateral mesh of a polygonal region R is more

complex than that of producing a triangular mesh. In fact, if we require the set of

vertices of the mesh to be the set of vertices of R, then a triangular mesh can always

be obtained but it may not be possible to obtain a quadrilateral one. Hence, addi-

tional vertices, called Steiner points, may be necessary in order to quadrangulate

polygonal regions. Note that a straightforward parity argument shows that if the

number of boundary vertices is odd, it is impossible to quadrangulate R without

adding a Steiner point on or outside the boundary of R. The problem of deciding

whether or not a convex quadrilateral mesh of R, with exactly the same set of

vertices as R, can be obtained is NP-complete for R with polygonal holes 21. In

addition, the theoretical properties to generate good quality quadrilateral meshes

are not as well understood as the ones for producing good quality triangular meshes.

These facts have led several researchers to adopt an indirect approach to produce

quadrilateral meshes 22: The polygonal domain is first triangulated and then the

triangulation is converted into a quadrilateral mesh 8,23,11,14,24,15. This approach

relies on the premise that a good quality quadrilateral mesh can be more easily

generated from an existing triangular mesh of the problem domain.

Let R be a polygonal region with n vertices and k polygonal holes, and let T
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be any triangular mesh of R. By definition, the set of vertices VR of R is contained

in the set of vertices VT of T . From Euler’s relation, we know that T has t =

2m + 2k − 2 − mb triangles, where m is the number of vertices of T and mb is the

number of vertices of T on its boundary, with n ≤ mb ≤ m. A very simple algorithm

for converting such a triangular mesh into a strictly convex quadrilateral mesh was

proposed by de Berg 8: place a Steiner point in the interior of each edge and each

triangle of the triangular mesh, and then connect the Steiner point in the interior

of each triangle to the three Steiner points on its edges. Fig. 2 illustrates de Berg’s

algorithm. If the Steiner points are placed carefully, it is always possible to obtain

a strictly convex quadrilateral mesh. Despite its simplicity, the size of its output

quadrilateral meshes may prevent its practical use on large input triangular meshes.

The algorithm by de Berg runs in O(t) time, produces exactly 3t quadrilaterals,

and inserts exactly 5m + 5k − 5 − 2mb Steiner points.

Fig. 2. Example of de Berg’s algorithm.

Everett et al. 8 introduced another linear time algorithm to convert triangular

meshes into strictly convex quadrilateral ones. Their algorithm also inserts a Steiner

point in the interior of each edge of the triangular mesh, but only some of the

mesh triangles contain Steiner points in their interiors. This algorithm generates

at most b 8t
3 c quadrilaterals and uses the same number of Steiner points as de

Berg’s. However, the size of the output quadrilateral mesh may still be prohibitive

in practice. An interesting feature of this algorithm, which is also present in de

Berg’s algorithm, is the preservation of the input mesh grading.

Ramaswami et al. 11 presented a linear time and space algorithm to convert tri-

angular meshes into quadrilateral ones that considerably improves upon the bounds

on mesh size provided by the algorithms by de Berg and Everett et al. 8. However,

the quadrilateral meshes are not necessarily convex, which rules out the possibility

of using their algorithm for generating meshes for FE analysis. Johnston et al. 23

also apply the indirect approach to give an algorithm that uses several heuristics

to obtain a strictly convex quadrilateral mesh from a triangular mesh. Their al-

gorithm runs in O(t2) time, and selectively combines adjacent triangles to obtain

quadrilaterals. However, it is not clear from the description of the algorithm in 23

that the heuristic procedures are always successful in producing a homogeneous

quadrilateral mesh.

Shimada et al. 14 proposed an algorithm for generating quadrilateral meshes that
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takes into account mesh regularity, directionality, and grading, as well as element

shape. First, the problem domain is filled with square cells whose size is controlled

by a user-defined, scalar density function. Next, the direction of each cell is adjusted

by a physically-based relaxation process and a user-defined vector field that specifies

directionality over the problem domain. Then, mesh vertices are placed at the center

of every cell and connected to generate a triangular mesh of the entire domain.

Finally, the triangular mesh is converted into a strictly convex quadrilateral mesh.

Later, Viswanath et al. 15 modified this algorithm by using rectangular cells instead

of square cells, which enabled them to generate anisotropic quadrilateral meshes 2.

The algorithms in 14,15 allow the user to produce nearly regular quadrilateral

meshes with well-shaped elements and precise control over their direction and size

distribution. Meshes aligned in specific directions can lead to more accurate FE

analysis of problems that have strong directionality and involve anisotropic ma-

terial properties 2. However, if precise control of directionality is not critical and

the problem domain has complex geometry, neither algorithm may be very attrac-

tive due to the cost of the physically-based relaxation process used by the “cell

packing” technique. Furthermore, the conversion step is not guaranteed to elimi-

nate all triangles of the triangular mesh. As a result both algorithms may require

an extra step to subdivide every triangle and quadrilateral of the mesh resulting

from the conversion step into three and four quadrilaterals, respectively, to obtain

a homogeneous quadrilateral mesh.

Owen et al. 24 presented another quadrilateral meshing algorithm that takes

into account directionality and element shape, and it also preserves mesh grading.

It converts a triangular mesh into a strictly convex quadrilateral one using advanc-

ing fronts initially defined by the boundary edges of the input mesh. Quadrilaterals

are generated by combining and transforming triangles as the fronts move from

the boundary to the interior of the input mesh. Local smoothing and topologi-

cal improvements, commonly performed as post-processing steps, are part of the

conversion process. One limitation of this method is that directionality cannot be

arbitrarily specified as in 14,15. Although the algorithms in 24,14,15 do not provide

any provable bounds on mesh size or mesh element shape, they have been used in

practice to successfully generate good quality quadrilateral meshes.

Our quadrilateral meshing algorithm improves upon the bounds on mesh size

provided by the algorithms by de Berg and Everett et al. 8. This improvement

makes it possible to use our algorithm in practical applications, as we shall see

in Section 4. Our algorithm is also simpler, and likely faster, than the algorithms

by Owen et al. 24, Shimada et al. 14, and Viswanath et al. 15. Furthermore, our

algorithm can deal with constrained triangular meshes, which has not been reported

to be possible by the algorithms in 24,14,15. However, the algorithms in 24,14,15

are more likely to generate quadrilateral meshes in which overall element shape is

better for FE analysis than the overall element shape in the quadrilateral meshes

generated by our algorithm. Fortunately, we can further improve the overall shape

of the quadrilaterals generated by our algorithm, at the expense of runtime, by
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using standard post-processing techniques, as described in Section 4.

3. The Algorithm

In this section, we first describe a new algorithm for converting triangular meshes

of polygonal regions, with or without polygonal holes, into strictly convex quadri-

lateral meshes. Our algorithm allows interior edges of the triangular mesh to be

deleted, but it does not allow deletion of vertices. To construct the quadrilateral

mesh, new vertices, referred to as Steiner points, may be inserted along with new

edges between Steiner points and/or vertices of the input triangular mesh. We show

that the mesh produced by our algorithm has small, bounded size and it consists of

strictly convex quadrilaterals only. In particular, we show that if the input triangu-

lar mesh has t triangles then our algorithm produces a strictly convex quadrilateral

mesh with at most b 3t
2 c+ 2 quadrilaterals and it adds at most t + 2 Steiner points

to the mesh.

Next, we present a straightforward extension of our algorithm that makes it

possible to convert constrained triangular meshes into strictly convex, constrained

quadrilateral meshes. That is, given a triangular mesh and a constraining subset of

its edges, our algorithm can be easily modified to prevent the deletion of edges that

are in the input constraining subset of edges. We refer to the edges in this subset

as constraining edges. We show that each constraining edge is represented in the

constrained quadrilateral mesh as the union of one or more edges of this mesh. We

also show that, for an input constrained triangular mesh, our extended algorithm

produces a strictly convex, constrained quadrilateral mesh with at most b 3t
2 c + 4h

quadrilaterals, obtained by inserting at most t + 3h Steiner points to the mesh,

where h is the number of connected components in the dual graph of the triangular

mesh.

Hereafter, we use the terms “triangulation”, “quadrangulation”, “quadrangu-

late”, and “convex” to mean “triangular mesh”, “quadrilateral mesh”, “decompose

into quadrilaterals”, and “strictly convex”, respectively, and we occasionally use

“quad” as an abbreviation for “quadrilateral”.

3.1. Polygonal regions with or without polygonal holes

The main idea behind our algorithm is to quadrangulate a small triangulated region

of the input triangulation at a time until the entire triangulation is converted into

a quadrangulation. The domain of each such triangulated region is a small, simple

polygon (one with 7 or fewer vertices and no holes). This triangulation is converted

into a partial or complete quadrangulation of the polygonal region. By using a

spanning tree of the dual graph of the triangulation and a procedure to traverse

and prune this spanning tree in a bottom-up fashion, our algorithm systematically

groups triangles together to define and quadrangulate the small regions so that no

isolated triangles remain in the resulting decomposition.
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Let R be a polygonal region with n vertices and k polygonal holes, and let T

be any triangular mesh of R. Let m ≥ n be the number of vertices of T and t the

number of triangles of T . Our algorithm starts by building a rooted spanning tree T

of the dual graph G of T . The dual graph of T is the graph that contains a node for

every triangle of T and an edge between two nodes if and only if the corresponding

triangles share an edge. Figure 3(b) shows the dual graph of a triangulation of the

polygonal region shown in Fig. 3(a). A rooted spanning tree T of G is built as

a breadth-first search (BFS) tree. The root of T is any node corresponding to a

triangle containing a boundary edge of T . Since every node of G can have degree

at most 3, the tree T is a binary tree. Figure 3(c) shows such a spanning tree for

the dual graph in Fig. 3(b).

Root

(b)(a) (c)

Fig. 3. (a) A polygonal region R. (b) A triangulation of R and its dual graph. Vertices of the

dual graph are shown as white spots, and its edges are shown as dotted edges. (c) A rooted (BFS)
spanning tree for the dual graph in (b).

After constructing T , the algorithm builds the set Vl of all nodes of T at level

l, for every l ∈ {0, 1, . . . , d}, where d is the depth of T . The root node of T is the

singleton node at level 0. Next, the algorithm visits the nodes of T one level at a

time and in decreasing order of depth by processing the sets Vd, Vd−1, . . . , V0 in this

order. Let par(v) denotes the parent of v ∈ V , sib(v) the sibling of v, and ele(v)

the triangle of T corresponding to v. Note that ele(v) and ele(par(v)) necessarily

share an edge of T . When visiting a node v ∈ Vl ,1 < l ≤ d, the algorithm considers

the subtree rooted at either par(v) or par(par(v)) (the nodes of V0 and V1 are

handled separately at the end of the algorithm). We denote this subtree by Tv and

its root by rv. Let Gv denote the subgraph of G induced by Tv. As we show later,

the subgraph Gv corresponds to a triangulated polygonal region Tv of T consisting

of 4, 5, 6, or 7 vertices. This triangulation is then converted by the algorithm into

a partial or complete quadrangulation of the domain of Tv.

During the conversion of Tv into a partial or complete quadrangulation of its

domain, Steiner points may be added to the interior and boundary of Tv. If the

result is a complete quadrangulation of the domain of Tv, the entire subtree Tv is

eliminated from T . If the quadrangulation is not complete, there will be only one
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leftover triangle inside the domain of Tv. The root node rv of Tv now represents this

triangle and the remaining nodes of Tv are eliminated from T . Figure 4 illustrates

both cases for a triangulated polygonal region Tv of T consisting of 5 vertices on

the boundary. After converting Tv into a partial or complete quadrangulation, the

node v is always eliminated from T and Vl by the algorithm. Other nodes of Tv

may or may not be eliminated from T and Vl ∪ Vl−1 ∪ Vl−2. In any event, we show

that all nodes of Vl are eliminated at the end of this step of the algorithm, and

hence the depth of T decreases by at least one. As a result, when the nodes of

Vl−1 are processed during the next step of the algorithm, they are all leaf nodes

of (the pruned) T . The sets V0 and V1 are handled in a similar way as special

cases in the last step, so that after they are processed, the spanning tree T is

empty and the underlying triangulation T has been converted into a strictly convex

quadrangulationb. We will show that, except at the last step, for every two nodes

eliminated from T , at most three quadrilaterals are created by using at most two

Steiner points.

Tv
rv = par(par(v)) ele(rv)

ele(par(v))

v

par(v) e

s

Tv

ele(v)

ele(sib(v))rv = par(v)

Tv

ele(v)

ele(rv)
Tv

sib(v)

ele(rv)

v

(a)

(b)

Fig. 4. (a) Complete quadrangulation of the domain of Tv . (b) Partial quadrangulation of the

domain of Tv .

Before describing details of the approach used by our algorithm to process the

sets Vd, Vd−1, . . . , V0, we discuss two special situations:

bThis general idea of pruning the dual tree was also used in Ref. 11 to convert triangulations into

quadrangulations consisting of quads that are not necessarily convex.
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(1) When processing Tv, the algorithm may place a Steiner point s on the edge e

between ele(rv) and ele(par(rv)), as shown in Fig. 4(a). In this situation, the

triangle ele(par(rv)) becomes a degenerate quadrilateral. Note that ele(par(rv))

can further become a degenerate pentagon if the algorithm happens to add

another Steiner point to it on the edge shared with ele(sib(rv)). Figure 5 shows

a degenerate quadrilateral and a degenerate pentagon.

(a) (b)

par(rv)

s2

s1s
e

par(rv)

ele(par(rv)) ele(par(rv))

Fig. 5. (a) Degenerate quadrilateral. (b) Degenerate pentagon.

Since Tv gets eliminated from T when a Steiner point is placed on the

common edge e of rv and par(rv), degenerate pentagons are leaves of T , and

degenerate quadrilaterals are either leaves or internal nodes of degree 2. Fur-

thermore, since all quadrilaterals in the quadrangulation constructed by our

algorithm are strictly convex, there must be an edge of the quadrangulation in-

cident on s and lying outside ele(par(rv)). We can slightly perturb s along this

edge in order to eliminate the degeneracy of ele(par(rv)) without destroying the

strict convexity of other quadrilaterals incident to s. Figure 6(a) illustrates the

perturbation of the Steiner point of a degenerate quadrilateral to eliminate its

degeneracy. We shall show later how our algorithm eliminates the degeneracy

of a degenerate pentagon.

(a) (b)

s
e

s
s1

s2 s2

s1

∆

ele(par(rv)) ele(par(rv))

Fig. 6. Elimination of degenerate quadrilaterals and pentagons.
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(2) When Tv is a subtree of three nodes, v, rv = par(v) and sib(v), containing v

and there is a cross-edge between v and sib(v) in Gv, the triangulated polygonal

region Tv has three vertices of T on its boundary and a vertex of T in its interior,

as shown in Fig. 7. In this situation the algorithm eliminates v and sib(v) from

T , so that par(v) now represents the non-empty triangle ∆ with an interior

point (see Fig. 7). Note that if v is at level l, then the node corresponding to

∆ is a leaf at level l − 1.

We now describe the steps taken by our algorithm to process the set Vl (1 < l ≤

d), where l is the current deepest level of T . During the course of our description, we

refer to various lemmas pertaining to quadrangulations of small polygonal regions

without holes, which are given and proved in Section 3.3. Let 1 < l ≤ d be the

current deepest level of T . We first eliminate all leaves v of T such that ele(v) is a

degenerate quadrilateral, degenerate pentagon, or a non-empty triangle. The first

two types of leaves will exist only at levels l, l − 1, or l − 2, and the third type will

exist only at level l, as each node u of level l +1 processed during the previous step

had Tu rooted at par(u) or par(par(u)).

ele(sib(v))

par(v) ele(v)

Tv
ele(par(v))Tv

∆

v sib(v)

Fig. 7. The non-empty triangle ∆.

Note that, since the spanning tree T is a result of a breadth-first search (BFS) on

the dual graph G of T , the subtree Tv of T rooted at either par(v) or par(par(v)),

where v is a leaf of T , must be one of the five subtrees (up to isomorphism) shown

in Fig. 8. Suppose that l is the current deepest level of T . So, the node v of T is

at level l. Since a degenerate quadrilateral and a degenerate pentagon can corre-

spond to a node at levels l, l − 1, or l − 2 only, and since a non-empty triangle can

correspond to a node at level l only, we have that ele(v) can be either a triangle, a

degenerate quadrilateral, a degenerate pentagon, or a non-empty triangle, and nei-

ther ele(par(v)) nor ele(par(par(v))) can be a non-empty triangle. Furthermore,

since par(v) has one child in subtrees (1), (3), (4), and (5), and it has two children

in subtree (2), ele(par(v)) can be either a triangle or a degenerate quadrilateral

for par(v) in subtrees (1), (3), (4), and (5), and ele(par(v)) has to be a triangle

for par(v) in subtree (2). Likewise, ele(par(par(v))) is either a triangle or a degen-

erate quadrilateral for par(par(v)) in subtree (3), but it has to be a triangle for

par(par(v)) in subtrees (4) and (5).
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Step 1. Eliminate all v ∈ Vl ∪ Vl−1 ∪ Vl−2 such that v is a leaf and ele(v) is

a degenerate quadrilateral. Let s be the Steiner point of ele(v), and let es be the

edge of the quadrangulation (constructed thus far) incident on s. Convert ele(v)

into a strictly convex quadrilateral by perturbing s along the edge es, as shown in

Fig. 6(a). Remove v from T and Vl.

Step 2. Eliminate all v ∈ Vl ∪ Vl−1 ∪ Vl−2 such that ele(v) is a degenerate

pentagon. Let s1 and s2 be the two Steiner points of ele(v) and let e be the shared

edge of ele(v) and ele(par(v)). It is straightforward to convert ele(v) into a strictly

convex quadrilateral and a leftover triangle ∆, as shown in Fig. 6(b). Now, the node

v represents the leftover triangle, i.e., ele(v) = ∆.

(5)

v

par(v)

v

par(v)

v

par(v)

v

par(par(v))

v

par(par(v)) par(par(v))

par(v) par(v)

(1) (2) (3) (4)

Fig. 8. All possibilities for a subtree Tv of T rooted at par(v) or par(par(v)), where v is node at

the current deepest level of T (a leaf).

After steps 1 and 2 are carried out, every element v of Vl must correspond

to either a triangle or a non-empty triangle, and par(v) ∈ Vl−1 must be either a

triangle or a degenerate quadrilateral. The next step eliminates all nodes v from

Vl such that ele(v) is a non-empty triangle. Assume that v ∈ Vl corresponds to a

non-empty triangle and consider the subtree Tv containing v and rooted at par(v).

Up to isomorphism, the subtree Tv must be one of subtrees (1) and (2) in Fig. 8.

If Tv is isomorphic to subtree (1), then par(v) is either a triangle or a degenerate

quadrilateral. If Tv is isomorphic to subtree (2), then par(v) is a triangle and sib(v),

the sibling of v, is either a triangle or a degenerate quadrilateral. So, there are four

cases to be considered by the algorithm in order to eliminate the node v from Vl

when ele(v) is a non-empty triangle.

Step 3. Eliminate all v ∈ Vl such that ele(v) is a non-empty triangle. Note that

v corresponds to three nodes of the original spanning tree T . Let Tv be the subtree

of T rooted at par(v). We consider the following sub-steps (refer to the illustrations

in Fig. 9 and Fig. 10):

3a. Node par(v) has degree 2, and ele(par(v)) is a degenerate quadrilateral. Let s

be the Steiner point of ele(par(v)). By connecting s to the node of ele(par(v))

that is not incident to the edge of ele(par(v)) containing s, the triangulated
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region Tv can be decomposed into a triangle ∆ and a quadrilateral with a point

in its interior (see Fig. 9(a)). By Lemma 3.3.2, the latter can be quadrangulated

into five convex quads with three Steiner points in its interior. Carry out the

appropriate decomposition and then remove the node v from T and Vl. Node

par(v) now corresponds to the triangle ∆.

3b. Node par(v) has degree 2, and ele(par(v)) is a triangle. In this case, the do-

main of Tv is a quadrilateral and this quadrilateral contains a vertex of Tv in

its interior (see Fig. 9(b)). Again, by Lemma 3.3.2, the region can be quadran-

gulated into five convex quads with three Steiner points in its interior. Carry

out this decomposition and then remove v and par(v) from T and from their

corresponding node sets.

(a) (b)

ele(par(v))

Degenerate quad

Non-empty triangle

ele(v)

∆
par(v)

v

ele(v) ele(par(v))

par(v)

vs

Fig. 9. Cases 3a and 3b of Step 3.

3c. Node par(v) has degree 3, and ele(sib(v)) is a triangle. If Gv = Tv, then the

domain of Tv is a pentagon and this pentagon contains a vertex of Tv in its

interior (see Fig. 10(a)). Then by Lemma 3.3.4, this region can be decomposed

into at most six convex quads and one triangle ∆ by using at most four Steiner

points in the interior. If Gv contains a cross-edge between v and sib(v), then

ele(v) and ele(sib(v)) form a quadrilateral with a point inside (see Fig. 10(a)),

and again Lemma 3.3.2 is applied. In either case, carry out the appropriate de-

composition and then remove v and sib(v) from T and from their corresponding

node sets. In the former case, the vertex rv is made correspond to triangle ∆.

3d. Node par(v) has degree 3, and ele(sib(v)) is a non-empty triangle. If Gv = Tv,

then the domain of Tv is a pentagon and this pentagon contains two vertices

of Tv in its interior. If Gv 6= Tv, i.e., if Gv contains a cross-edge between v

and sib(v), then the domain of Tv is a triangle and this triangle contains three

vertices of Tv in its interior. In either case, the triangulated region Tv can be

decomposed into two quadrilaterals, each of which has point in its interior, as
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follows: add a Steiner point on the edge shared by ele(rv) and ele(par(rv)) and

connect it to the vertex of ele(rv) that is not incident to the edge shared by

ele(rv) and ele(par(rv)) (see Fig. 10(b)). By Lemma 3.3.2, each quadrilateral

can be decomposed into five convex quads using three Steiner points. After

applying the aforementioned decomposition, the algorithm removes all nodes

of Tv from T and from their corresponding node sets. Hence a total of seven

nodes were eliminated and ten convex quadrilaterals were created using seven

Steiner points. In the next step of the algorithm, the element ele(par(rv)) will

be a degenerate quadrilateral or pentagon.

par(v)

sib(v)v

ele(sib(v))

ele(par(v))
ele(v)

ele(sib(v))ele(par(v))

(a) (b)

Non-empty triangle

ele(par(v))

ele(v)

ele(sib(v))

par(v)

v sib(v)
ele(par(v))

ele(sib(v))

Fig. 10. Cases 3c and 3d of Step 3.

After steps 1, 2 and 3 are carried out, for every node v ∈ Vl, its corresponding

element ele(v) in T is a triangle, and the corresponding element ele(par(v)) of its

parent par(v) ∈ Vl−1 (if any) is either a triangle or a degenerate quadrilateral. The

algorithm proceeds by performing two more steps: step 4 and step 5. These steps

eliminate all remaining nodes of Vl. Step 4 is carried out if and only if l ≥ 3, i.e.,

if and only if the spanning tree T is currently a tree with at least three levels. In

the remaining description of our algorithm, assume that l ≥ 3 after steps 1, 2, and

3 are carried out.

Let v be any node of Vl. If par(v) exists, then consider the subtree Tv containing

v and rooted at par(v). Up to isomorphism, the subtree Tv must be one of subtrees

(1) and (2) in Fig. 8. If Tv is isomorphic to subtree (1), then ele(par(v)) is either a

triangle or a degenerate quadrilateral. If Tv is isomorphic to subtree (2), or equiva-

lently, if par(v) has degree 3, then par(v) is a triangle and sib(v), the sibling of v,

must be a triangle, as no vertex in Vl can correspond to a non-empty triangle. Our

algorithm considers Tv if and only if Tv is isomorphic to subtree (1) and ele(par(v))

is a degenerate quadrilateral, or Tv is isomorphic to subtree (2). Whenever Tv is
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isomorphic to subtree (2) and ele(par(v)) is a triangle, the algorithm considers the

subtree Tv containing v and rooted at par(par(v)). Up to isomorphism, the subtree

Tv rooted at par(par(v)) is one of subtrees (3), (4) and (5) in Fig. 8. We now give

details of step 4.

Step 4. Eliminate all remaining nodes v ∈ Vl. From the above observation and

from the fact that T is a BFS tree, it follows that the only possible configurations

for Tv are those described in the following sub-steps:

4a. Eliminate all v ∈ Vl such that ele(par(v)) is a degenerate quadrilateral. Let

Tv be the subtree of T rooted at rv = par(v). Perturb the Steiner point s of

ele(rv) along the quadrangulation edge incident to it. A Steiner point s′ placed

in ele(rv) decomposes the region Tv into two convex quads and a triangle ∆

adjacent to the edge shared by ele(rv) and ele(par(rv)) (see Fig. 11(a)). Remove

v from T and Vl, and let rv now represent triangle ∆.

par(v)

v

ele(v)
ele(sib(v))

ele(par(v))

ele(sib(v))

ele(par(v))

ele(v)

sib(v)

Degenerate quad

par(v)

v

(a) (b)

ele(par(v))

s

ele(v)

∆

s′

ele(v)

ele(par(v))

s

Fig. 11. Cases 4a and 4b of Step 4.

4b. Eliminate all v ∈ Vl such that par(v) is a node of degree 3. Again, let Tv be the

subtree of T rooted at rv = par(v) and refer to Fig. 11(b). If Gv contains an

edge between the nodes v and sib(v), remove v and sib(v) from Tv. The node

par(v) is now the non-empty triangle corresponding to the boundary of Tv,

with the fourth vertex of Tv in the interior of its domain (see Fig. 7). If there

is no cross-edge between v and sib(v), then by Lemma 3.3.3, the domain of Tv

can be subdivided into two convex quadrilaterals and one triangle ∆ (adjacent

to the edge shared by ele(rv) and ele(par(rv))) by adding one Steiner point.

Carry out the appropriate decomposition and then remove v and sib(v) from

T and the corresponding node sets. The node rv now represents triangle ∆.



November 30, 2004 20:41 WSPC/Guidelines ijcga

Constrained Quadrilateral Meshes of Bounded Size 17

If ele(par(v)) is not a degenerate quadrilateral and par(v) is not a node

of degree 3, the algorithm considers the subtree Tv containing v and rooted at

par(par(v)). As we mentioned before, up to isomorphism, the subtree Tv rooted

at par(par(v)) is one of subtrees (3), (4) and (5) in Fig. 8. If Tv is isomorphic to

subtree (3), or equivalently, if node par(v) has degree 2, then par(par(v)) can

be either a triangle or a degenerate quadrilateral. If Tv is isomorphic to subtree

(4), or equivalently, if node par(par(v)) has degree 3 and node sib(par(v)),

the sibling of par(v), is a leaf of Tv, then sib(par(v)) is either a triangle or a

non-empty triangle previously created by step 4b. If Tv is not isomorphic to

subtree (3) nor (4), then it is isomorphic to subtree (5), or equivalently, node

par(par(v)) has degree 3 and node sib(par(v)) has degree 3. So, the algorithm

distinguishes these five possible cases in sub-step 4c:

4c. Finally, eliminate all v ∈ Vl such that par(v) is a node of degree 2. Let Tv be

the subtree of T rooted at rv = par(v). If the domain of Tv is already a strictly

convex quadrilateral, simply eliminate the common edge shared by ele(v) and

ele(par(v)), and then remove v and par(v) from T and their corresponding

node sets. Otherwise, let Tv be the subtree of T rooted at rv = par(par(v))

and consider the following five sub-cases:

i. Element ele(rv) is a degenerate quadrilateral. Since T is a BFS tree, we have

that Gv = Tv. Perturb the Steiner point of ele(rv) along the quadrangulation

edge incident to it so that the domain of Tv is now a hexagon (see Fig. 12(a)).

By Lemma 3.3.1, this region can be subdivided into at most four convex

quadrilaterals by using at most three Steiner points in its interior. Carry

out this decomposition and then eliminate all the nodes of Tv from T and

from their corresponding node sets.

Degenerate quad

v

par(v)

ele(rv)
ele(par(v))

(a) (b)

rv

ele(v)
v

par(v)

rv

ele(rv)
ele(par(v))

ele(v)

Fig. 12. Cases i and ii of Step 4c.

ii. Node rv has degree 2 and ele(rv) is a triangle. Once again Gv = Tv for



November 30, 2004 20:41 WSPC/Guidelines ijcga

18 S. Ramaswami, M. Siqueira, T. Sundaram, J. Gallier, and J. Gee

this case. Therefore, the domain of Tv is a pentagon (see Fig. 12(b)). Apply

Lemma 3.3.3, where the common edge of ele(rv) and ele(par(rv)) is desig-

nated as the “outgoing” edge. There are two possible outcomes from apply-

ing Lemma 3.3.3. First, the domain of Tv is subdivided into three convex

quads and one triangle ∆ adjacent to the outgoing edge by using two Steiner

points. Second, the domain of Tv is subdivided into four convex quads by

using three Steiner points, one of which lies on the outgoing edge. In the first

situation, remove v and par(v) from T and from their corresponding node

sets, and let rv now represent triangle ∆. In the second situation, remove

all nodes of Tv from T and from their corresponding node sets. Note that

triangle ele(par(rv)) becomes a degenerate quadrilateral or a pentagon.

iii. Node rv has degree 3, node sib(par(v)) is a leaf, and element ele(sib(par(v)))

is a triangle. If Gv = Tv, the domain of Tv is a hexagon. Otherwise, the

domain of Tv is a quadrilateral that contains a vertex of Tv in its interior (see

Fig. 13). In the former case, carry out the decomposition from Lemma 3.3.1.

In the latter case, carry out the decomposition from Lemma 3.3.2. In either

case, remove all nodes of Tv from T and from their corresponding node sets.

ele(rv)

ele(v)

ele(rv)

ele(v) ele(v)

ele(rv)

Gv = Tv Gv 6= Tv

rv rv rv

vv v

Fig. 13. Case iii of Step 4c (dashed edges are cross-edges).

iv. Node rv has degree 3, node sib(par(v)) is a leaf, and element ele(sib(par(v)))

is a non-empty triangle. Note that such a non-empty triangle must have been

created in Step 4b. Refer to Fig. 14. If Gv = Tv, the domain of Tv is a hexagon

with a point in its interior. Otherwise, the domain of Tv is a quadrilateral

that contains two vertices of Tv in its interior. In both cases, consider the

triangulated pentagon P defined by ele(v), ele(par(v)), and ele(rv). Apply

Lemma 3.3.3 to P , where the shared edge of ele(rv) and ele(sib(par(v))) is

designated as the “outgoing” edge. If there is a leftover triangle ∆, this trian-

gle and ele(sib(par(v))) form a triangulated quadrilateral with a vertex of Tv

in its interior. Otherwise, a Steiner point has been placed on the edge shared

by ele(rv) and ele(sib(par(v))). In either case, the element ele(sib(par(v)))
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becomes a triangulated quadrilateral with a vertex of Tv in its interior. Ap-

ply Lemma 3.3.2 to the resulting quadrilateral. Remove all nodes of Tv from

T and from their corresponding node sets.

ele(v)

ele(rv)

Gv 6= Tv

ele(v)

ele(rv)
rv

v
ele(v)

v

rv
ele(rv)rv

v

Gv = Tv

Fig. 14. Case iv of Step 4c (dashed edges are cross-edges).

v. Node rv has degree 3 and node sib(par(v)) has degree 2. The different possi-

bilities for the graph Gv are derived from the fact that T is a BFS tree. All

cases are illustrated in Fig. 15. Cases (a)–(c) correspond to a pentagon with

a point in its interior. For these cases, apply Lemma 3.3.4. In cases (d)–(e),

the non-root nodes of Tv (v, v1, v2 and v3 in Fig. 15) correspond to a quadri-

lateral with a point inside. Apply Lemma 3.3.2 for these cases. Finally, case

(f) corresponds to a septagon. For this case, apply Lemma 3.3.5. In all cases,

remove all four non-root nodes of Tv from T and from their corresponding

node sets.

rv

v

rv

v

rv

v

rv

v

rv

v

rv

v

(a) (b) (c) (d) (e) (f)

v1 v2 v1 v2

v3v3

Fig. 15. Gv for Case v of Step 4c (dashed edges are cross-edges).
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After the sets Vd, Vd−1, . . . , V2 are processed, they are all empty and the sets V0

and V1 are possibly non-empty. If V0 ∪ V1 is empty, we are done. Otherwise, the

algorithm carries out the next and last step.

Step 5. Eliminate all nodes v ∈ V0 ∪ V1. Apply steps 1, 2, and 3 to V0 ∪ V1. If

V0 ∪ V1 is now empty, we are done. Otherwise, the nodes in V1, if any, correspond

to triangles of T . The singleton node in V0, if any, corresponds to either a triangle

or a degenerate quadrilateral that contains a boundary edge of T (because of how

we choose the root node of T ). We now have the following sub-steps:

5a. V1 has two elements. Let v and sib(v) be the two elements of V1, and let Tv

be the subtree of T rooted at rv = par(v). The tree Tv corresponds to either

a triangulated pentagon or a non-empty triangle. Place a single Steiner point

on the boundary edge of ele(rv) and perturb it slightly so that it lies outside

the domain of Tv (see Fig. 16). The domain of Tv is now either a hexagon, or

a quadrilateral with a point in its interior. By Lemmas 3.3.1 and 3.3.2, respec-

tively, each of these regions can be decomposed into strictly convex quadrilat-

erals by using at most three additional Steiner points in its interior. Eliminate

all three nodes from T, V0, and V1.

Tv rv

sib(v)v

ele(v)

Tv

ele(par(v))

ele(sib(v))

ele(sib(v))

ele(par(v))
Tv

ele(v)

Fig. 16. Decomposition of a non-empty triangle into two quadrilaterals in Step 5a.

5b. V1 has only one element and the singleton element of V0 corresponds to a de-

generate quadrilateral. Let v be the singleton element of V1, and let Tv be the

subtree of T rooted at rv = par(v). Proceed as in case 4a and let rv correspond

to the leftover triangle ∆. Place a Steiner point on the boundary edge of ∆

and perturb it slightly as shown in Fig. 17 to convert ∆ into a strictly convex

quadrilateral. Eliminate v and rv from T, V1, and V0.

5c. V1 has only one element and the singleton element of V0 corresponds to a trian-
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gle. Again, let v be the singleton element of V1, and let rv = par(v). Let Q be

the quadrilateral formed by ele(v) and ele(rv). If Q is strictly convex, simply

eliminate the common edge shared by ele(v) and ele(rv). If Q is not strictly

convex, add a Steiner point in the interior of Q and then apply Lemma 3.3.2 to

decompose it into five strictly convex quads by using three additional Steiner

points. In either case, remove v and rv from T and from their corresponding

node sets.

5d. V1 is empty, V0 is not empty and its singleton element corresponds to a triangle.

Let v be the singleton element of V0. Place a Steiner point s on the edge of

ele(v) that is also a boundary edge of T . Perturb s, as shown in Fig. 17, so that

it lies outside the domain of T and Q becomes a strictly convex quadrilateral.

Remove v from T and V0.

v
ele(v)

s
Tv

Tv

Fig. 17. Converting a triangle into a quadrilateral.

Note that each of step 5a–d can be executed at most once and they are all

mutually exclusive. Furthermore, steps 5a, 5b, and 5d are the only cases when our

algorithm adds a Steiner point outside the domain of T . When V0∪V1 is empty, the

spanning tree T is also empty and the triangulation T has been converted into a

strictly convex quadrangulation. The following theorem states important properties

of the above algorithm:

Theorem 3.1.1. Let R be a polygonal region with or without polygonal holes. Then,

given any triangulation T of R with t triangles, the algorithm described above can

convert T into a strictly convex quadrangulation of at most b 3t
2 c + 2 quadrilaterals

by using at most t+2 Steiner points, all except one of which lie within the boundary

of R. The algorithm runs in O(t) time and space.

Proof. The fact that our algorithm generates a strictly convex quadrangulation

from T is an immediate consequence of the lemmas in Section 3.3 and of the fact

that the spanning tree T of the dual graph G of T is empty after cases 1–5 are

executed. We now must show that our algorithm produces at most three strictly

convex quadrilaterals for every two nodes eliminated from the spanning tree T of

the dual graph G of T . In order to see this, consider Table 1. Each row of this
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table contains, for a given step of the algorithm, the maximum number of nodes of

T eliminated, the maximum number of quadrilaterals created, and the maximum

number of Steiner points inserted to create those quadrilaterals. Note that the

algorithm produces at most three strictly convex quadrilaterals for every two nodes

eliminated from T in all steps except steps 2, 3a, 4a, 5a, and 5c. We focus our

attention on these cases.

In step 2, ele(v) is a degenerate pentagon. In steps 3a and 4a, ele(par(v)) is a

degenerate quadrilateral. Degenerate quadrilaterals and pentagons can arise only

as the result of the execution of step 4c(ii). Hence, step 2 must be preceded by two

executions of step 4c(ii), while steps 3a and 4a must each be preceded by one exe-

cution of step 4c(ii). The combination of one execution of step 2 and two executions

of step 4c(ii) eliminates 6 nodes from T and produces at most 9 quadrilaterals. The

combination of one execution of step 3a and one execution of step 4c(ii) eliminates

7 nodes from T and produces at most 8 quadrilaterals. The combination of one

execution of step 4a and one execution of step 4c(ii) eliminates 5 nodes from T and

produces at most 5 quadrilaterals. Thus, in all these situations, the algorithm pro-

duces at most three strictly convex quadrilaterals for every two nodes eliminated

from T . Finally, only one of steps 5a and 5c can be executed and at most once. Step

5a creates 5 quads after eliminating three nodes, thus creating one more quad than

the target ratio. Step 5c creates 5 quads after eliminating two nodes, thus creating

two more quads than the target ratio. It follows that our algorithm constructs a

strictly convex quadrangulation with at most b 3t
2 c + 2 quadrilaterals.

From Table 1, we also have that the algorithm uses at most k Steiner points for

every k nodes eliminated from T in all steps except for steps 5a and 5c, in which

at most k + 2 Steiner points are used. Since only one of these steps is executed

and at most once, it follows that our algorithm places at most t + 2 Steiner points.

Furthermore, all Steiner points are placed within the boundary of R, except for

one Steiner point inserted in Steps 5a, 5b, or 5d. Since these steps are mutually

exclusive and executed at most once, our algorithm places at most one Steiner point

outside R.

Finally, after a given node set Vl (0 ≤ l ≤ d) is processed, where d is the depth

of T , the set Vl is empty and hence the depth of T decreases by at least one.

Furthermore, while processing Vl, the algorithm visits each node v ∈ Vl at most

twice, and it may also visit a constant number of nodes at levels l − 1 and l − 2

(the vertices in the subtree Tv at these levels). Hence, each node in T gets visited

only a constant number of times, and therefore the algorithm runs in O(t) time.

The space requirements are clearly O(t) as well.

3.2. Constrained quadrilateral meshes

The algorithm described in Section 3.1 for converting triangulations of polygonal

regions, with or without polygonal holes, into quadrangulations can be extended in a

straightforward manner to work with constrained triangulations. We are thus able to
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obtain constrained quadrilateral meshes that conform to an additional set of vertices

and edges in the interior of any given polygonal region with or without polygonal

holes. Such meshes can be generated in two steps. In the first step, we use an

algorithm for generating a constrained triangulation that conforms to the additional

set of vertices and edges in the interior of the polygonal region. For instance, any

algorithm from 4,5,6 will do. In the second step, we use the aforementioned extension

of our algorithm in Section 3.1 to obtain a constrained quadrangulation of the same

polygonal region. The input to the algorithm is the constrained triangulation and

the subset of constraining edges. Note that any additional vertices in the interior of

the polygonal region are also vertices of the quadrangulation, since our algorithm

does not allow deletion of vertices. In the rest of this section, we describe the

extension of our algorithm to generate constrained quadrilateral meshes.

Step # Nodes # Quads # Steiner Pts.
Eliminated Created Inserted

1 1 1 0
2 0 1 0
3a 3 5 3
3b 4 5 3
3c 4 6 4
3d 7 10 7
4a 1 2 1
4b 2 2 1
4c,i 3 4 3
4c,ii 3 4 3
4c,iii 4 6 4
4c,iv 6 9 6

4c,v,(a)–(c) 4 5 3
4c,v,(d)–(e) 4 5 3

4c,v,(f) 4 6 4
5a 3 5 4 (1 outside R)
5b 2 3 2 (1 outside R)
5c 2 5 4
5d 1 1 1 (1 outside R)

Table 1. Upper bounds on number of quads created and Steiner points inserted to quadrangulate

R.

Let T be a given constrained triangulation with t triangles, and let S be a subset

of edges of T . The edges in S are the constraining edges of T . Let G be the dual

graph of T such that G does not include the dual of the edges of T that are in S.

Let h be the number of connected components of G. In order to construct a convex

quadrangulation that also conforms to the constraining edges in S, we obtain all

connected components {G1, G2, . . . , Gh} of G and their corresponding spanning
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trees {T1, T2, . . . , Th}, and then we run our algorithm in Section 3.1 on each Ti

using Ti as the spanning tree of Gi, for every (1 ≤ i ≤ h). The root node of each Ti

represents a triangle adjacent to a boundary edge ei of the underlying triangulation

Ti. Since the dual graph G of T does not include the dual of the constraining edges

of T (the edges of S), these constraining edges cannot be interior edges of the small

triangulated polygonal regions that are formed by the algorithm in Section 3.1

during the conversion of each Ti into a quadrangulation. Thus, the constraining

edges of T are kept in the quadrangulation resulting from the conversion of each

Ti. However, at the very last step, the algorithm in Section 3.1 may place a Steiner

point on at most one of the constraining edges for each Ti, namely the boundary

edge belonging to the triangle that corresponds to the root node of Ti.

One difficulty with the above algorithm is that the conversion of one triangula-

tion Ti into a quadrangulation may “corrupt” the quadrangulation resulting from

the conversion of Tj , with i 6= j and 1 ≤ i, j ≤ h. This occurs whenever the algo-

rithm places one Steiner point on a boundary edge of Ti that is also a boundary edge

of Tj . This Steiner point will make a quadrilateral of the quadrangulation obtained

from Tj into a biconvex pentagon. Figure 18 illustrates this situation by using a

constrained triangulation whose dual graph has three connected components. The

constraining edges of T are heavily drawn. To overcome this difficulty, we carefully

choose the root nodes of the spanning trees in {T1, T2, . . . , Th}, and run our algo-

rithm on each Ti, for every 1 ≤ i ≤ h, in an order that avoids the situation shown

in Fig. 18.

Steiner point placed on the boundary of T3

T1

T2

T3

Fig. 18. The conversion of the triangulation T2 into a quadrangulation corrupted the triangulation

T3.

Let Gc be a graph such that Gc has a node vi for every connected component Gi

of G. Gc has an edge connecting vi to vj if and only if there exist a node u ∈ Gi and

a node w ∈ Gj such that ele(u) and ele(w) in T share a common edge, with i 6= j

and 1 ≤ i, j ≤ h. Note that the graph Gc is connected. Let T c be any spanning

tree of Gc such that the root of T c is a node of Gc corresponding to a connected
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component of G whose underlying triangulation has a triangle with a boundary

edge of T . From the definition of Gc, if vi ∈ T c is not the root of T c then it has a

parent node, say vj . Then, the underlying triangulations Ti and Tj corresponding

to vi and vj , respectively, must share a common constraining (boundary) edge.

To compute a spanning tree Ti for the connected component Gi of G (1 ≤ i ≤ h),

we consider the following two cases: First, the node vi is the root of T c, and hence

the triangulation Ti has at least one triangle 4 that contains a boundary edge of

T . Second, the node vi has a parent in T c, say vj , and hence the triangulation Ti

has at least one triangle 4 that shares an edge with a triangle in the triangulation

Tj , for some j 6= i and 1 ≤ j ≤ h. In either case, we choose the root of Ti to be

the node of Gi corresponding to 4. Finally, we obtain Ti by performing a BFS on

Gi, starting from the node of Gi corresponding to 4. Now, suppose we run the

algorithm in Section 3.1 on Ti using Ti as the spanning tree of Gi. If the algorithm

places a Steiner point s on a boundary edge of Ti, this boundary edge (call it e)

is an edge of the triangle of Ti corresponding to the root node of Ti. Furthermore,

e is also a boundary edge of exactly one other triangulation, namely Tj , where vj

is the parent node of vi in T c. Thus, by converting Ti into a quadrangulation, our

algorithm can only affect the triangulation Tj . If Tj has not yet been converted

into a quadrangulation, we can repair Tj by splitting its “corrupted” triangle, i.e.,

the triangle adjacent to e that becomes a biconvex quadrilateral by the placement

of s, into two triangles. Figure 19 shows this repairing procedure. Note that the

graph G, the connected component Gj of G and the spanning tree Tj of Gj must

be updated accordingly.

T3 Triangle made into a nonconvex quadrilateral

Fig. 19. The “corrupted” triangulation T3 in Fig. 18 is repaired by splitting a biconvex quadrilateral

into two triangles.

Now, in order to avoid the situation shown in Fig. 18, we run the algorithm in

Section 3.1 on each Ti (1 ≤ i ≤ h) as follows: We traverse the spanning tree T c by

level and in a bottom-up fashion, and apply the algorithm in Section 3.1 to the un-

derlying triangulation Ti of the spanning tree Ti corresponding to the current node

vi of T c. As before, let vj be the parent of vi. Since we traverse T c by level and in a
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bottom-up fashion, the triangulation Tj has not yet been converted into a quadran-

gulation at the time that the algorithm visits node vi of T c. Hence, the conversion

of Ti into a quadrangulation does not affect any previously computed quadrangula-

tion and can only affect the triangulation Tj . If it does affect Tj , we can repair Tj as

shown in Fig. 19. As a result, when the algorithm visits node vj , all triangulations

whose conversion can affect Tj have already been converted into quadrangulations,

and our repair procedure guarantees that the triangulation Tj is not corrupted. If

vi is the root node of T c, the conversion of Ti into a quadrangulation does not

affect any triangulation Tj or any previously computed quadrangulation. As a re-

sult, the extension of our algorithm in Section 3.1 correctly converts constrained

triangulations into constrained quadrangulations.

The following lemma provides upper bounds on the size of the constrained

quadrangulation produced by the algorithm described above:

Lemma 3.2.1. Let T be a constrained triangulation of a polygonal region with or

without polygonal holes. The above algorithm converts T into a constrained and

strictly convex quadrangulation with at most b 3t
2 c + 4h quadrilaterals by inserting

at most t + 3h Steiner points, where t is the number of triangles of T and h is the

number of connected components in the dual graph of T .

Proof. The conversion of each triangulation Ti into a quadrangulation may only

affect another triangulation Tj (j 6= i and 1 ≤ j ≤ h) that has not been con-

verted into a quadrangulation yet, except for the last triangulation considered by

the algorithm, which does not affect any other triangulation or previously com-

puted quadrangulation. Every time a triangulation Tj is affected by the conversion

of another triangulation into a quadrangulation, the number of triangles in Tj is

increased by 1 due to the repairing procedure shown in Fig. 19. Furthermore, each

triangulation Tj can be affected at most xj times where xj is the number of chil-

dren of the node vj of T c corresponding to the spanning tree Tj of Gj . Note that
∑h

i=1 xi = h − 1, as h − 1 is the number of edges in T c. Let ti (1 ≤ i ≤ h) be

the number of triangles in Ti before the algorithm converts any triangulation into

a quadrangulation, and let t′i be the number of triangles of Ti at the time the al-

gorithm converts Ti into a quadrangulation. Then, we have that ti ≤ t′i ≤ ti + xi.

From Theorem 3.1.1, we know that the algorithm in Section 3.1 produces b
3t′

i

2 c+ 2

quadrilaterals on input Ti. It follows therefore that the above algorithm produces

at most
∑h

i=1

(

b
3t′

i

2 c + 2
)

≤
∑h

i=1

(

b 3(ti+xi)
2 c

)

+ 2h ≤
∑h

i=1
3ti

2 +
∑h

i=1
3xi

2 + 2h =
3t
2 + 3h−3

2 +2h < b 3t
2 c+4h quadrilaterals to convert T into a constrained quadran-

gulation. Furthermore, these quadrilaterals are all strictly convex, as the algorithm

in Section 3.1 only generates strictly convex quadrilaterals. From Theorem 3.1.1,

we also know that the algorithm in Section 3.1 inserts at most t′i + 2 Steiner points

to convert Ti into a constrained quadrangulation. Thus, the algorithm extension

inserts at most
∑h

i=1(t
′ + 2) ≤

∑h

i=1(ti + xi + 2) = t + h− 1 + 2h < t + 3h Steiner

points to convert T into a constrained quadrangulation.
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3.3. Small polygonal regions

As seen in Section 3.1 and Section 3.2, our algorithm for converting a triangulation

into a quadrangulation makes use of several facts about the quadrangulation of

small and simple polygonal regions, i.e., regions consisting of 4, 5, 6, or 7 boundary

edges and no holes. In this section, we list lemmas that formally state such facts

and whose proofs can be easily made into algorithmic procedures. We start with

two useful facts about convex quadrangulations of 4- and 6-sided polygons, which

were given and proved in Bremner et al. 12:

Lemma 3.3.1. A hexagon can be decomposed into at most four convex quadrilat-

erals by using at most three Steiner points in its interior.

Lemma 3.3.2. A quadrilateral with a point in its interior can be decomposed into at

most five convex quadrilaterals by using at most three Steiner points in its interior.

For polygonal regions bounded by an odd number of edges, one of the boundary

edges is designated as an outgoing edge. (In the algorithm described in Section 3.1

the outgoing edge is simply the triangulation edge between the root of subtree Tv

and its parent node.) When quadrangulating this region, all Steiner points except

one are placed in the interior of the polygon, and one Steiner point may be placed

on the outgoing edge. In the following lemmas, these relevant facts are stated and

proved formally:

Definition 3.3.1. Given two points p and q, we denote by L(p, q) (resp. R(p, q))

the left (resp. right) open half-space defined by the oriented line from p to q. Given

a vertex v of a polygon P , we define wedge(v) as follows: If v is reflex then wedge(v)

denotes the locus of points inside P that can be connected to v forming strictly

convex angles at v. If v is convex then wedge(v) is the interior of the visibility region

of v in P . Now, assume that P is a simple polygon. Given a triangulation T of P

such that VT = VP , a triangle ∆ = (p, q, r) of T is said to be an ear if and only if p,

q, and r are consecutive vertices of a counterclockwise (or clockwise) enumeration

of the vertices of P .

Definition 3.3.2. Let P be a pentagon and let e be an edge of P . Given a tri-

angulation T of P such that VT = VP , the triangulation T necessarily consists

of three triangles, two of which are ears (see Fig. 20). Each of these ears shares

two vertices and a distinct diagonal of T with the third triangle, called the center

triangle. Furthermore, the edge e is said to be of type 1 with respect to T if it is the

edge of P shared with the center triangle of T . If e is not of type 1 and e is adjacent

to the type 1 edge, it is said to be of type 2 with respect to T . If e is neither of type

1 nor of type 2, then e is incident to the common vertex of all triangles of T and is

said to be of type 3.

Lemma 3.3.3. Let P be a pentagon and let e be the outgoing edge of P . Then,

given any triangulation T of P such that VT = VP , we have the following:
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(1) If e is of type 1 with respect to T , P can be decomposed into two convex quadri-

laterals and one triangle adjacent to e by adding one Steiner point inside P .

(2) If e is of type 2 with respect to T then, P can be decomposed into three convex

quadrilaterals and one triangle adjacent to e by adding two Steiner points inside

P .

(3) If e is of type 3 with respect to T then, P can be decomposed into four convex

quadrilaterals by adding two Steiner points inside P and one more on the edge

e.

Proof. Let v1, v2, v3, v4, v5 be a counterclockwise enumeration of the vertices of P .

Let T be a triangulation of P such that VT = VP and refer to Fig. 21. Without loss

of generality, assume that the center triangle, Tc, of T is defined by the vertices

v4, v1 and v2, and v4 is the common vertex of all three triangles of T . If e is

of type 1 then e is the edge v1v2 of P . Let R1 = wedge(v3) ∩ wedge(v5) ∩ Tc.

Note that the interior of R1 cannot be empty, and clearly R1 ⊂ P . Denote the

barycenter of R1 by p1. By removing edges v4v1 and v4v2 from T , and then adding

the point p1 and the edges v1p1, p1v4, and p1v2, we obtain a decomposition of P into

two quadrilaterals, Q1 = (v1, p1, v4, v5) and Q2 = (v4, p1, v2, v3), and one triangle,

T1 = (v1, v2, p1), which contains e = v1v2. Since p1 belongs to both wedge(v3) ∩ Tc

and wedge(v5)∩Tc, Q1 and Q2 are strictly convex quadrilaterals, and hence Claim

1 is true.

v3

v2

v4

v1

v5

Fig. 20. Triangulation T of a pentagon P with VT = VP .

If e is of type 2 then e is either v2v3 or v5v1. Assume that e = v2v3 and refer to

Fig. 22. By removing diagonals v4v1 and v4v2 from T , and then adding the point p1

above and the edges v1p1 and p1v4, we obtain a decomposition of P into the quadri-

lateral Q1 = (v1, p1, v4, v5) and the pentagon P ′ = (v2, v3, v4, p1, v1). Since diago-

nals p1v2 and v3p1 are inside P ′, the triangle (p1, v2, v3) is entirely contained in P ′,

and we can decompose P ′ into triangles T ′
c = (p1, v2, v3), (p1, v1, v2), and (v3, v4, p1),

where T ′
c is the center triangle and (p1, v1, v2), and (v3, v4, p1) are ears of the trian-

gulation (see Fig. 22(a)). Let R2 be the region R2 = wedge(v1) ∩ wedge(v4) ∩ T ′
c.

Note that R2 ⊂ P ′ ⊂ P , and the interior of R2 cannot be empty. Define p2 to be the



November 30, 2004 20:41 WSPC/Guidelines ijcga

Constrained Quadrilateral Meshes of Bounded Size 29

barycenter of R2. We can now decompose P ′ as in (1) to obtain two strictly convex

quads, Q3 = (v2, p2, p1, v1) and Q4 = (v3, v4, p1, p2), and a triangle T2 = (v3, p2, v2)

adjacent to e. If e = v5v1 we have the symmetric case, and hence Claim 2 holds.

v2

e

R1

v1

v5

p1

v4

v3

Fig. 21. Illustration of Claim 1 of Lemma 3.3.3.

l

(b)(a)

v2
R2

v1
p1e

v3

v4

v5

p2

v5

v1

v2

p2 p1

v4

ev3

p3

Fig. 22. (a) Illustration of Claim 2, and (b) Claim 3 of Lemma 3.3.3.

If e is of type 3, then e is either v3v4 or v4v5. Assume that e = v3v4. By

removing diagonals v4v1 and v4v2 from T , and then adding the points p1 and p2

above plus the edges v1p1, p1v4, p1p2 and p2v2, we obtain a decomposition of P

into strictly convex quads Q1 = (v1, p1, v4, v5) and Q3 = (v2, p2, p1, v1), and the

pentagon P ′′ = (v2, v3, v4, p1, p2). Let l = −−→v2p2 be the oriented line from v2 to p2.

Note that v3 is on the right side of l and the line l. If v4 is also on the right of l, we

define p3 to be the midpoint of the edge v3v4. Otherwise, the line l intersects the

edge v3v4, and we define p3 to be the midpoint of the segment defined by v3 and the

intersection point of l and v3v4 (see Fig. 22b). By adding p3 and the edge p2p3 to P ′′,

we obtain a decomposition of P ′′ into two quadrilaterals, Q5 = (v2, v3, p3, p2) and
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Q6 = (v4, p1, p2, p3). Since p3 lies on the right side of l, both Q5 and Q6 are strictly

convex quadrilaterals and therefore the set consisting of the convex quadrilaterals

Q1, Q3, Q5 and Q6 is a decomposition of P that uses three Steiner points, two of

which are inside P and the third is on the edge e = v3v4. If e = v4v5 we have the

symmetric case, and hence Claim 3 also holds.

In steps 3c and 4c(v) of our quadrangulation algorithm, the subgraph Gv cor-

responds to a triangulation Tv of a pentagon P such that Tv has exactly one vertex

q inside P (see Fig. 14). The following lemma is applied in these cases:

Lemma 3.3.4. Let P be a pentagon, q a point in its interior, and e the outgoing

edge of P . Then, P can be decomposed into at most six convex quadrilaterals and

one triangle adjacent to e by inserting at most four Steiner points inside P .

Proof. Let T be any triangulation of P such that VT = VP . Let T1, T2, and T3 be

the three triangles of T , where T2 is the center triangle and T1 and T3 are the ears.

There are two possibilities: The point q belongs to the triangle containing e, or it

does not. In the former case, let ∆ be the triangle obtained by connecting q to the

two endpoints of e. P is thus decomposed into ∆, which is adjacent to the outgoing

edge, and a hexagon H (see Fig. 23(a)). From Lemma 3.3.1, H can be decomposed

into at most four convex quadrilaterals using at most three Steiner points in its

interior.

(a) (b) (c)

e

q

e

T3

e
∆

T1 T2

H

T3

∆

T1

T2

T3

∆

T1

q

T2q

Fig. 23. Illustrations of the possible cases (up to symmetry) of Lemma 3.3.4.

Suppose now that q does not belong to the triangle containing e. If e belongs

to T2, decompose P into a triangle ∆ adjacent to e and two convex quadrilaterals,

as in case (1) of Lemma 3.3.3 (see Fig. 23(b)). One of these quadrilaterals must

contain q, which can be decomposed into five convex quads using three more Steiner

points by applying Lemma 3.3.2. Thus, P is decomposed into six convex quads and

a triangle adjacent to e by using four Steiner points. If e belongs to T1, let ∆ = T1.

Triangles T2 and T3 form a quadrilateral with a point inside (see Fig. 23(c)), to

which we apply Lemma 3.3.2. Thus, P is decomposed into five convex quads and a
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triangle adjacent to e by using three Steiner points. The case when e belongs to T3

is symmetric.

In our algorithm, a polygonal region S bounded by seven edges (septagon) is

obtained when the subtree Tv is a path of five nodes, with the middle node as

the root of Tv. (This is the only case that results in a septagon.) Hence, in this

case, the outgoing edge is always the edge of S belonging to the middle node. The

triangulation Tv of S also has a center triangle, the triangle corresponding to the

middle node of Tv. This triangle contains only one edge of S, the outgoing one.

Figure 24 illustrates a triangulation of a septagon whose dual graph is a path of

five nodes.

1

2

4

5

3

2

3
5

4

1

Fig. 24. Triangulation of a septagon and its dual graph.

Lemma 3.3.5. Let S be a septagon such that S admits a triangulation T , with

VT = VS, whose dual graph is a path. Let the edge of S contained in the center

triangle of T be the outgoing edge e. Then, S can be decomposed into six convex

quadrilaterals and one triangle adjacent to e by adding four Steiner points inside

S.

Proof. Let S be a septagon such that S admits a triangulation T , with VT = VS ,

whose dual graph is a path. Let v1, v2, . . . , v7 be a counterclockwise enumeration

of the vertices of S. Without loss of generality, assume that the center triangle Tc

of T is Tc = (v1, v2, v5). So, there are at most four possibilities for the other four

triangles of T , T1, T2, T3 and T4 (see Fig. 25): (a) T1 = (v5, v3, v4), T2 = (v5, v2, v3),

T3 = (v5, v7, v1), and T4 = (v5, v6, v7); (b) T1 = (v5, v3, v4), T2 = (v5, v2, v3),

T3 = (v5, v6, v1), and T4 = (v6, v7, v1); (c) T1 = (v4, v2, v3), T2 = (v5, v2, v4),

T3 = (v5, v7, v1), and T4 = (v5, v6, v7); and (d) T1 = (v4, v2, v3), T2 = (v5, v2, v4),

T3 = (v5, v6, v1), and T4 = (v6, v7, v1). Assume that T consists of Tc and the four

triangles shown in Fig. 25(a). Below, we describe how to place four Steiner points,

p1, p2, p3, and p4, in order to decompose S into six convex quads and one triangle

adjacent to e. The proofs for the other possibilities are very similar and we omit

them here.
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v3

v2 v1
v7

v6

v5

v4 v4

v5

v6

v7

v1v2

v3

(a) (b)

v4

v5

v1v2

v4

v5

v6

v7

v1v2

v3

v6

v7

v3

(c) (d)

Fig. 25. All triangulations of a septagon whose dual graphs are paths.

Let R1 = wedge(v4) ∩ wedge(v1) ∩ T2. Clearly, R1 ⊆ T2, v5 ∈ R1, and the

interior of R1 cannot be empty. Similarly, let R2 be the non-empty region R2 =

wedge(v6) ∩ wedge(v2) ∩ T3. Now, consider the two following cases (see Fig. 26):

(i) v2 ∈ R(v4, v5) and (ii) v2 6∈ R(v4, v5). Recall that R(p, q) (resp. L(p, q)) is

the right (resp. left) open half-space defined by the oriented line from p to q (see

Definition 3.3.1). In case (i), because v5v2, v5v1, and v5v7 are edges of T and

v2 6∈ R(v4, v5), the intersection region R1 ∩ R(v7, v5) cannot be empty. So, we

choose p1 and p2 to be the barycenters of R1 ∩ R(v7, v5) and R2, respectively. In

case (ii), we choose p1 to be the barycenter of R1, and we calculate the position

of p2 as follows: If v1 ∈ R(v6, v5) then p2 is the barycenter of R2 ∩ L(p1, v5). The

region R2 ∩ L(p1, v5) cannot be empty. Otherwise, the vertex v6 would belong to

L(p1, v5) and the vertex v7 would belong to the complement of L(p1, v5), which is

an absurd as v6 ∈ R(v4, v5) and v4 ∈ R(p1, v5). If v1 6∈ R(v6, v5) then p2 is the

barycenter of R2 ∩L(v3, v5). Again, R2 ∩L(v3, v5) cannot be empty as the oriented

line −−→v3v5 from v3 to v5 passes through the interior of wedge(v2)∩wedge(v6) and v1

is on the left of −−→v3v5.

In both cases (i) and (ii), we have that p2 ∈ L(p1, v5). Since p1 ∈ T2 and p2 ∈ T3,

we have that the oriented lines l1 = −−→v3p1 and l2 = −−→v7p2 intersect the edges v5v2 of

T2 and v5v1 of T3, respectively. Besides, since p1 ∈ wedge(v1) and p2 ∈ wedge(v2),

the oriented lines l3 = −−→p1v1 and l4 = −−→p2v2 intersect the edges v5v2 of T2 and v5v1

of T3, respectively. If q and r denote the intersection points of l1 and l3 with v5v2,
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respectively, then v2, q and r are collinear, and we define p3 to be the midpoint of

v2x, where x = q if q is in between v2 and r, and x = r otherwise. Similarly, If s

and t denote the intersection points of l2 and l4 with v5v1, respectively, then v1, s

and t are collinear, and we choose p4 to be the midpoint of v1y, where y = s if s is

in between v1 and t, and y = t otherwise. In this way, we have that p3 ∈ L(p1, v1)

and p4 ∈ R(p1, v1). Now, by removing edges v3v5, v2v5, v1v5, and v7v5 from T ,

and then adding points p1, p2, p3 and p4 and edges v5p1, p1v3, p1p3, p1v3, v5p2,

p2v7, p2p4, p1p4, and p3v1, we obtain a decomposition of S into six quadrilaterals,

Q1 = (v4, v5, p1, v3), Q2 = (v3, p1, p3, v2), Q3 = (p1, v5, p2, p4), Q4 = (p1, p4, v1, p3),

Q5 = (v5, v6, v7, p2), and Q6 = (v7, v1, p4, p2), and one triangle, T = (p3, v1, v2), as

shown in Fig. 27.

v7

v2

R2

R1

v5

v4
v6

v1

R1

R2

v4

v2 v1

v7

v6

v5

v3v3

p2

p1

p2
p1

(ii)(i)

Fig. 26. Choosing points p1 and p2 when (i) v2 ∈ R(v4, v5) and (ii) v2 6∈ R(v4, v5).

v6

v7

p2
p4

v1

p3

v2

v3 p1
v5

v4

Fig. 27. Resulting decomposition from the triangulation in Fig. 25(a).

Since p1 and p2 belong to the interior of wedge(v4) ∩ T2) and wedge(v6) ∩

T3, respectively, we have that Q1 and Q5 are strictly convex quadrilaterals. Since
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p3 ∈ L(v3, p1) and p4 ∈ R(v7, p2), we get that Q2 and Q6 are also strictly convex

quadrilaterals. Since p2 ∈ L(p1, v5), p2 ∈ R(v5, v1), p1 ∈ L(v5, v1), p4 ∈ L(p1, p2),

and p4 is a point on v5v1, we get that Q3 is a strictly convex quadrilateral. Finally,

because p3 ∈ L(p1, v1), p4 ∈ R(p1, v1), p3 is a point on v5v2, and p4 is a point on

v5v1, we get that Q4 is also a strictly convex quadrilateral. Thus, our claim holds

when T1, T2, T3 and T4 are the triangles corresponding to possibility (a).

4. Implementation, Results and Quality Measurements

We implemented the algorithm described in Section 3.1, and its extension in Sec-

tion 3.2, using C++ and the open source and freely available software Computa-

tional Geometry and Algorithms Library (CGAL)c 25. Figure 28(a) and Figure 28(b)

show the quadrilateral meshes obtained from the triangular meshes in Fig. 29(a)

and Fig. 29(b), respectively, using the aforementioned implementation of our algo-

rithm. The triangular meshes in Figures 29(a)–(b) were produced by the software

Triangle 6 from the PSLGs shown on top of the meshes. Triangle allows us to set

a lower bound for the smallest angle of every triangle in the mesh, except for the

angles defined by two triangle edges covering an edge of the input PSLG. Note

that a lower bound on the smallest angle of a triangle implies the following upper

bound on its largest angle: if θ is the smallest angle then the largest angle is at

most 180o − 2θ. For several FE-based applications, triangles with very small angles

are extremely undesirable 1. Both meshes in Figures 29(a)–(b) were generated by

choosing a lower bound of 30o for the smallest angle.

(a) (b)

Fig. 28. (a) Quadrilateral mesh of a polygonal region of Lake Superior’s shape. (b) Quadrilateral

mesh of a CAD model.

The quadrilateral meshes in Fig. 28(a) and Fig. 28(b) have 1249 and 511 quadri-

laterals, while their triangular counterparts in Fig. 29(a) and Fig. 29(b) have 2160

chttp://www.cgal.org
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and 912 triangles, respectively. Our quadrilateral meshing algorithm also used

169 and 55 Steiner points to generate the quadrilateral meshes in Fig. 28(a) and

Fig. 28(b), respectively. So, even though our algorithm may, in the worst case,

produce up to b 3t
2 c quadrilaterals and use up to t+2 Steiner points on an input tri-

angular mesh with t triangles, in these examples the number of quadrilaterals and

the number of Steiner points are about 60% and 8%, respectively, of the number of

triangles of the input triangular meshes. It turns out that this reduction in mesh

size and the use of only a few Steiner points were observed in almost all the test

cases on which we ran our algorithm.

(a) (b)

Fig. 29. (a) Triangular mesh of an outline of Lake Superior given by the PSLG on the top. (b)
Triangular mesh of a CAD model given by the PSLG on the top. Both meshes were generated by

Triangle.

We also noticed that, for a given polygonal region, the greater the number of

triangles in the triangular mesh, and the greater the lower bound on the smallest

angle of its triangles, the smaller the percentage of quadrilaterals generated and

Steiner points inserted by our algorithm (with respect to the number of triangles of

the input triangular mesh). Table 2 illustrates this observation. Each row of Table 2

contains the number of triangles of an input triangular mesh generated by Triangle

from the PSLG of Lake Superior in Fig. 29(a) with a distinct lower bound for the

smallest angle of the triangles. The table also shows the number of quadrilaterals

and Steiner points of the corresponding quadrilateral meshes generated by our
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algorithm, and their percentages with respect to the number of triangles in the

input triangular meshes.

Smallest # Tris. # Quads. # Steiner % Size % Steiner

Angle Points Reduction Points

25o 1422 908 197 36% 14%

30o 2160 1249 169 42% 8%

33o 3346 1846 173 45% 5%

Table 2. Percentage of output quadrilaterals and Steiner points of meshes generated by our algo-

rithm from distinct triangular meshes of the outline of Lake Superior in Fig. 29(a).

We support the observation illustrated in Table 2 with the following conjecture:

If we increase the number of triangles of a triangular mesh for a particular polygonal

region and we also increase the lower bound of the smallest angle of its triangles,

then the likelihood of two triangles sharing a common edge to form a strictly convex

quadrilateral also increases. As a result, Case 4c of our algorithm will be applied

more often (see Section 3.1), which causes the number of Steiner points and the

ratio between the number of output quadrilaterals and input triangles to be smaller

than they would be if, for the same polygonal region, we had used a smaller input

triangular mesh with a larger bound on the smallest triangle angle.

Both Fig. 28(a) and Fig. 28(b) highlight another feature of our algorithm:

Preservation of mesh grading, which is also present in the algorithms by Owen

et al.24, de Berg8, and Everett et al8. Since triangles of a small triangulated re-

gion of the triangulation have about the same area and our algorithm is based on

the conversion of small polygon triangulations into quadrangulations with similarly

sized quadrilaterals, the average area of the resulting quadrilaterals tend to be pro-

portional to the average area of the triangles in the same region. Hence, the grading

of the input triangular mesh tends to be preserved.

While our algorithm constructs quadrilateral meshes of bounded size and tends

to preserve mesh grading, it does not provide any guarantee on the shape quality of

the output quadrilaterals, no matter what criteria are used to measure shape qual-

ity. Since the shape of the elements of a mesh has a strong influence on the results

of numerical simulations involving the mesh 1,2 this is a considerable weakness of

our algorithm. Fortunately, we can improve the shape quality of the quadrilaterals

generated by our algorithm by using post-processing techniques. These techniques

optimize the shape quality of a mesh according to some quality criterion and at

the expense of runtime. Figure 30(a) and Figure 30(b) show quadrilateral meshes

obtained from the ones in Fig. 28(a) and Fig. 28(b), respectively, by using a smooth-

ing technique called angle-based smoothing 26. The idea behind this technique is to

iteratively change the position of the vertices of the quadrilateral mesh, so that
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the two adjacent angles defined at the same vertex by each diagonal of a quadri-

lateral become equal or distinct within a certain ratio. The resulting quadrilaterals

are supposed to be less distorted with respect to a reference square. Topological

operations, such as the cleanup procedures in Canann et al. 27 can also be used to

improve mesh regularity. We can quantitatively evaluate the effect of angle-based

smoothing on the quadrilateral meshes generated by our algorithm by analyzing a

measure of shape quality defined by Joe18.

(a) (b)

Fig. 30. (a) Quadrilateral mesh resulting from post-processing of the mesh in Fig. 28(a). Quadri-

lateral mesh resulting from post-processing of the mesh in Fig. 28(b).

Let Q = [a, b, c, d] be a strictly convex quadrilateral with vertices a, b, c, and

d. Then, we define a quality measure µ as follows. The quadrilateral Q can be

decomposed into two triangles by either adding the diagonal bd or the diagonal ac

to it. In the former case, we have the triangles T1 = [a, b, d] and T2 = [c, d, b]. In

the latter case, we have the triangles T3 = [a, b, c] and T4 = [d, a, c]. We define µ

to be the smallest angle among the angles of the triangles T1, T2, T3, and T4 (see

Fig. 31). Note that the value of µ is 45o if Q is a square, and that the value of µ

approaches 0o if one or two edges of Q is much shorter than the other edges or Q

has an angle near 0o or 180o. In fact, it can be shown that the maximum value of

µ is 45o, and that this value is only attained by the square 18. We can interpret

the value of µ as a measure of how distorted the triangles T1, T2, T3, and T4 are

with respect to a reference right, isosceles triangle. This interpretation was recently

formalized by Pébay28 in a study of the asymptotic behavior of another angle-based

quality measure of quadrilaterals, which is very similar to µ.

Table 3 shows the frequency distribution of the µ values of the quadrilaterals of

six quadrilateral meshes generated by our algorithm. Each quadrilateral mesh was

obtained from a triangular mesh of either the outline of Lake Superior in Fig. 29(a)

or the CAD model in Fig. 29(b) using a distinct lower bound for the smallest angle

of the triangles. Table 4 shows the same information as Table 3 for the quadrilateral

meshes obtained by post-processing the quadrilateral meshes in Table 3 using five
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iterations of the angle-based smoothing. By examining both tables, we can see that

the angle-based smoothing increases the frequency distribution of higher values of

µ and reduces the frequency distribution of lower values of µ.

a

d

b

c a

d

b

c

T4T1
α2

α3

α1 T2
α4

α6 α5

T3

α1

α8

α9
α12

α10

α11

µ = min{αi | 1 ≤ i ≤ 12}

Fig. 31. Illustration of the definition of the quality measure µ.

Mesh # Quads. [0o, 5o) [5o, 10o) [10o, 25o) [25o, 35o) [35o, 45o] Runtime

1 910 30 409 362 102 5 1021 ms

2 1249 11 430 566 228 14 1401 ms

3 1846 16 478 878 427 47 2992 ms

4 404 10 149 190 52 3 369 ms

5 511 2 170 225 110 4 429 ms

6 674 1 170 317 174 12 644 ms

Table 3. Meshes 1 (resp. 4), 2 (resp. 5) , and 3 (resp. 6) were obtained by our algorithm from a
triangular mesh of the outline of Lake Superior (resp. CAD model) in Fig. 29(a) (resp. Fig. 29(b))

using a lower bound of 25o, 30o, and 33o for the smallest triangle angle, respectively. The second
column from left to right shows the number of quadrilaterals of the meshes. The rightmost column
shows the time our meshing algorithm took to generate the mesh.

Mesh # Quads. [0o, 5o) [5o, 10o) [10o, 25o) [25o, 35o) [35o, 45o] Runtime

7 910 9 239 433 205 24 7555 ms

8 1249 2 166 587 458 36 10956 ms
9 1846 1 124 776 830 115 17788 ms

10 404 1 75 221 93 14 3380 ms

11 511 2 38 266 191 14 4791 ms
12 674 0 40 268 325 41 6723 ms

Table 4. Meshes 7, 8, 9, 10, 11, and 12 are the resulting meshes from the application of five iterations

of the angle-based smoothing to the meshes 1, 2, 3, 4, 5, and 6 in Table 3. The rightmost column

shows the time our implementation of the angle-based smoothing took to produce the improved

mesh in five iterations.

The angle-based smoothing also increases the uniformity of the area of the mesh
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elements. Table 5 illustrates this effect by showing the standard deviation of the

average area of the elements of meshes 1–12 in Table 3 and Table 4. Although our

implementation of the angle-based smoothing considerably improved the quality of

the meshes in Table 3 generated by our meshing algorithm, the time to produce each

improved mesh in Table 4 was at least 7 times longer than the time our meshing

algorithm took to generate the corresponding mesh in Table 3. However, this post-

processing step may be necessary to improve the accuracy of FE analysis using the

quadrilateral meshes generated by our algorithm.

Mesh Average Area Standard Deviation Mesh Standard Deviation

1 1.7 × 10−4 3.1 × 10−4 7 2.1 × 10−4

2 1.2 × 10−4 1.6 × 10−4 8 1.2 × 10−4

3 8.2 × 10−5 6.9 × 10−5 9 5.7 × 10−5

4 8.9 10.9 10 6.7
5 7.1 6.5 11 4.1
6 5.4 3.2 12 2.1

Table 5. Average area of the quadrilaterals in the meshes in Table 3 (before post-processing) and
Table 4 (after post-processing). Note that the average area of the meshes in the same row are

equal, as the angle-based smoothing does not change the mesh domain.

In a recent work 17, we used our implementation of the algorithm in Section 3.2

to create constrained quadrilateral meshes from two-dimensional images of the hu-

man brain. The quality of the meshes generated by our algorithm were compared

to the quality of their triangular counterparts and uniform quadrilateral grids with

respect to the performance of a FE-based image registration method. The results in
17 show that the target image registration application has a better performance if

it uses the meshes generated by our algorithm instead of approximately same-sized

uniform quadrilateral grids. The results also show that the target image registra-

tion application performs about the same if either the meshes generated by our

algorithm, or their denser triangular counterparts are used. Figure 32(c) shows a

constrained quadrilateral mesh generated by our algorithm from the constrained

triangular mesh of a human brain in Fig. 32(b). Figure 32(d) shows the quadrilat-

eral mesh resulting from post-processing the mesh in Fig. 32(c) using 5 iterations

of the angle-based smoothing. The constrained triangular mesh was generated by

Triangle from the PSLG in Fig. 32(a).

The fact that our algorithm places a Steiner point outside the triangulation do-

main may be highly undesirable in practice. However, our algorithm can be slightly

modified so that no Steiner point is placed outside the triangulation domain. Note

that a Steiner point is placed outside the triangulation domain only if one of sub-

steps 5a, 5b, and 5d is carried out. We can modify these sub-steps so that, in

sub-steps 5b and 5d, instead of adding a Steiner point to the triangulation bound-

ary in order to convert the leftover triangle into a quadrilateral, we subdivide the
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leftover triangle into five strictly convex quadrilateral by adding five Steiner point

in the interior of the triangle and one on the boundary (see Ref. 18 for a proof), as

shown by Fig. 33. By doing so, sub-cases 5b and 5d insert 6 and 5 Steiner points

into the resulting quadrangulation, respectively.

(a) (b)

(c) (d)

Fig. 32. (a) PSLG describing a polygonal approximation for the domain of an image of a human

brain. (b) Constrained triangular mesh generated by Triangle from the PSLG in (a). (c) Con-

strained quadrilateral mesh generated by the algorithm in Section 3.2. (d) Quadrilateral mesh

resulting from the post-processing of the mesh in (c) using 5 iterations of the angle-based smooth-
ing.
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In sub-step 5a, recall that we have two possible situations for the subtree Tv

of T rooted at par(v): Tv corresponds to either a triangulated pentagon or a non-

empty triangle. If Tv corresponds to a triangulated pentagon, then we can apply

Lemma 3.3.3 to convert the triangulation Tv into a quadrangulation and a leftover

triangle that contains a boundary edge. Next, we subdivide the leftover triangle into

five strictly convex quadrilaterals by using five Steiner points inside the triangle. In

this case, we insert exactly six Steiner points into the resulting quadrangulation. If

Tv corresponds to a non-empty triangle, then we can insert a Steiner point in the

interior of ele(v), so that the elements ele(v) and ele(sib(v)) form a quadrilateral

with a vertex in its interior. Hence, we can apply Lemma 3.3.2 to subdivide the

quadrilateral formed by ele(v) and ele(sib(v)) into at most five strictly convex

quadrilateral using at most three Steiner points. All Steiner points are placed in

the interior of the quadrilateral formed by ele(v) and ele(sib(v)). Now, we are left

with only one triangle, ele(par(v)). We can subdivide ele(par(v)) into five strictly

convex quadrilaterals by adding five Steiner points to the interior of ele(par(v)). The

total number of Steiner points inserted into the resulting quadrangulation by sub-

step 5d is at most nine. This implies that our algorithm can convert a triangulation

with t triangles into a strictly convex quadrangulation by using at most t+7 Steiner

points, all of which are placed in the interior or on the boundary of the triangulation

domain.

Fig. 33. Subdivision of a triangle into five strictly convex quadrilaterals using five Steiner points,

one of which is placed on the boundary of the triangle.

5. Conclusions

We presented an algorithm for converting triangulations of polygonal regions, with

or without polygonal holes, into strictly convex quadrangulations. Our algorithm

has a runtime linear in the number of triangles of the input triangulation, offers

better bounds than similar algorithms that also produce strictly convex quadri-

lateral meshes of bounded size 8, tends to preserve local mesh grading, and is

simpler and likely faster than algorithms that produce better quality meshes — in

terms of element shape, regularity and directionality control — at the expense of
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runtime 14,24,15. We also introduced an extension of our algorithm for converting

constrained triangulations of polygonal regions, with or without polygonal holes,

into constrained, strictly convex quadrangulations, and we showed that these con-

strained quadrilateral meshes also have small bounded size.

We also provided examples of quadrilateral meshes generated by our algorithm

and its extension to produce constrained quadrilateral meshes, and we evaluated

the quality of these meshes with respect to a quadrilateral shape quality criterion

defined in 18. We used a post-processing technique, called angle-based smoothing 26,

to improve the shape quality of the quadrilaterals of the meshes used in the exam-

ples. Our empirical results show that this technique effectively led to improvements

in the shape quality of the quadrilaterals. We also compared the size of the quadri-

lateral meshes of our examples with the size of their triangular counterparts, and

we observed that the sizes of the quadrilateral meshes is about 60% of their trian-

gular counterparts. A comparison between the quality of the quadrilateral meshes

generated by our algorithm and the quality of their triangular counterparts, with

respect to a particular FE-based application, is given in 17.

Although the combination of our algorithm with the angle-based smoothing can

produce quadrilateral meshes with “well-shaped” quadrilaterals, it may be a very

time-consuming combination in practice, as the angle-based smoothing is very slow

and so are most post-processing techniques to effectively improve mesh element

shape quality. Thus, it is natural to try to improve the shape quality of the quadri-

laterals produced by our algorithm by modifying the algorithm itself. However, the

problem of generating strictly convex quadrilateral meshes with small bounded size

and high-quality quadrilaterals is a very difficult one 10.

Some algorithms for generating quadrilateral meshes with high-quality quadri-

laterals and no rigorous bounds on mesh size, such as paving 13, may produce

many more than O(n) quadrilaterals, where n is the number of vertices of the in-

put polygonal region, but they are likely to produce better shaped quadrilaterals

than algorithms that reconcile provably good bounds on element shape quality and

mesh size 10. Nevertheless, similar ideas to the ones in 10, such as bounding the

largest angle of the quadrilaterals, can be used to improve the shape quality of

the quadrilaterals of the small quadrangulations produced by our algorithm (see

Section 3.3) without increasing its linear bound on mesh size. We intend to fo-

cus on this problem as future work. We also intend to investigate an extension of

our algorithm to produce hexahedral meshes from a set of quadrilateral meshes of

planar contours. This investigation has been motivated by applications in medical

imaging, namely, the generation of three-dimensional meshes of volumetric images

from planar image sections 29.
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