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Abstract

Generating quadrilateral meshes is a highly non-trivial task, as design decisions are frequently driven by specific
application demands. Automatic techniques can optimize objective quality metrics, such as mesh regularity, orthog-
onality, alignment and adaptivity; however, they can not make subjective design decisions. There are a few quad
meshing approaches that offer some mechanisms to include the user in the mesh generation process; however, these
techniques either require a large amount of user interaction or do not provide necessary or easy to use inputs. Here,
we propose a template-based approach for generating quad-only meshes from triangle surfaces. Our approach offers a
flexible mechanism to allow external input, through the definition of alignment features that are respected during the
mesh generation process. While allowing user inputs to support subjective design decisions, our approach also takes
into account objective quality metrics to produce semi-regular, quad-only meshes that align well to desired surface
features.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computer Graph-
ics/Computational Geometry and Object Modeling—Curve, surface, solid and object representations

1. Introduction

Generating quad meshes is a central problem in cur-
rent geometry processing research, as many important
applications, including texture and spline-based surface
modeling, greatly benefit from a quad structure. Anima-
tion artists, in general, prefer quad over triangle meshes.
This is partially attributed to the ability of quad elements
to naturally align to principal curvature directions and
feature curves that, for example, facilitates the modeling
of character limbs. Further, joints, articulations and skin
bends can be modeled with quad edge polylines ending
in extraordinary vertices (i.e., vertices of valence other
than 4), because these polyline structures behave like a
hinge to improve deformations.

Although quad meshes are highly desired for the
aforementioned applications, designing fully automatic
techniques to produce suitable quad meshes is still a dif-
ficult task. This is partially due to the fact that fun-
damental quality criteria, i.e., mesh regularity (domi-
nated by valence 4 vertices), orthogonality (rectangular
quad elements), alignment (respecting principal curva-

ture and surface features), and adaptivity (relating quad
sizes to local curvature variations and anisotropy), can
be in conflict with each other. Furthermore, application
specific criteria, for which the mesh is targeted, may re-
quire design decisions that cannot be automatically an-
ticipated.

On the one hand, there are well-known automatic
techniques to describe the surface features of a model,
and some of them have been incorporated within fully
automatic quad mesh generation approaches. On the
other hand, subjective design decisions require user in-
puts. There are a few quad meshing approaches that of-
fer some mechanisms to include the user in the mesh
generation process. However, these approaches may
not ensure the desired mesh alignment with surface fea-
tures; may not provide necessary or easy to use inputs
to control subjective design decisions; or may require a
large amount of user interaction.

This paper describes a new approach for generat-
ing all-quad meshes from triangle surfaces. Our ap-
proach offers a flexible mechanism to allow external in-
put, through the definition of surface features that are
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respected during the mesh generation process. Input
feature information can be defined by the user, auto-
matic algorithms, or a combination of both, varying
the level of user involvement. While considering user
inputs to support subjectivity, our approach produces
semi-regular, quad-only meshes that align to surface
features, conforming to the fundamental quality crite-
ria.
Contributions. The proposed approach consists of
three main stages: base triangulation construction,
template-based meshing, and mesh quality improve-
ment (Fig. 1). The base triangulation construction relies
on a novel scheme that derives a triangulation from har-
monic functions defined on the input model. In this way,
our algorithm is oblivious to the 3-dimensional (3D)
space, processing on the surface. Template meshes, de-
fined on a triangle, are mapped to the elements of the
base triangulation. A graph-based matching optimiza-
tion ensures that the templates are mapped in a coherent
manner, respecting the input features, constructing all-
quad connectivity, and favoring orthogonality and pla-
narity of template matching. Finally, a vertex-based op-
timization scheme is applied to the quad mesh to im-
prove the quality of the final elements. We summarize
the contributions of our work:

1. A novel algorithm for base triangulation construc-
tion,

2. Template definitions that generate all-quad meshes
aligned to input features,

3. Novel application of a graph matching algorithm
to arrange templates on the base triangulation,

4. A novel metric to optimize orthogonality and pla-
narity during template arrangement.

2. Related Work

This paper describes a new approach for remeshing
the triangle surface of a given input model with quadri-
lateral connectivity. In the past few years, several meth-
ods have been developed with the same goal in mind.
In what follows, we review those methods, emphasizing
the shortcomings that are addressed by our approach.
For a comprehensive review on quad meshing tech-
niques, we refer the reader to [47, 2, 21].
Quadrilateral Meshing. Driven by the successful
philosophies in triangle-based meshing, many state-of-
the-art techniques seek to construct high quality quadri-
lateral meshes without the need for user intervention.
For instance, rectangular bundled repulsion potentials
[52], Lp centroidal Voronoi tessellations (Lp-CVT)
[31], and vertex smoothing [29] automatically distribute

points in a quad-packing over the model. Anisotropic
repulsion forces and distance computations allow the
alignment of the final elements to an underlying vec-
tor data. Similarly guided by vector alignment, numer-
ical integration of certain orthogonal vector fields de-
fined over the surface, i.e. principal curvature directions
[1, 34], yield quad elements aligned to geometric fea-
tures. However, each of these techniques generate many
extraordinary vertices and non-quad elements.

Triangle pairing schemes using greedy algorithms
[51, 29, 49] are robust techniques to construct quad-
dominant meshes. Such methods have been shown to
build well aligned mesh edges, but may not produce all-
quad models, nor align extraordinary vertices. Greedy
pairing schemes do not guarantee to provide an optimal
matching. Similarly, an unweighted graph matching al-
gorithm [41] coupled with Steiner vertex insertions gen-
erates quad-only meshes; however, alignment becomes
problematic. A template-based meshing approach for
building quad meshes from imaging data reconstructs
image features [32]. However, this technique is con-
strained to planar regions and uses a heuristic for pairing
base triangles that does not generate mesh alignment.

Parametrization methods generate quad meshes that
are dominated by idealized vertex neighborhoods (va-
lence 4). For instance, clustering of cone singular-
ity candidate points and conformal parametrization [4],
naturally locate extraordinary vertices. Further, fitting
parametrization gradients to the underlying vector field,
using periodic coordinates [42], branch coverings [24],
and a mixed integer solver [7], improves element align-
ment of the final mesh. However, aligning iso-values of
the parametrization to surface features, and between ex-
traordinary vertices is a challenging task, demonstrated
in Sec. 7.1.

Semi-automatic, spectral quadrangulation [14] relies
on user selected eigenfunctions to drive the number and
placement of extraordinary vertices. Extension of this
work provides additional controls over alignment and
importance sampling [22].

While such methods produce high-quality quad
meshes, eigenfunction browsing, parameter tuning, fea-
ture alignment and anisotropic sampling are challeng-
ing tasks. Similarly using the Morse-Smale complex to
build the final quads, two sizing fields allow anisotropic
sampling [57]; however, these models do not exhibit
the same structural regularity of the spectral-based tech-
niques.

T-spline modeling [46, 45], recently T-meshes [35],
support T-junctions within the mesh. This added degree
of freedom facilitates importance sampling to capture
geometric details and feature alignment. However, sim-
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Figure 1: From an input triangle surface and feature curves (leftmost), our template-based remeshing approach defines a cell decomposition that is
used to construct a base triangulation. We map template meshes to the base domain triangles, then optimize vertex locations as we map the vertices
back to the original surface (rightmost).

ilar to geometry clipmaps [33] and multi-chart geometry
images [8], if not properly handled, zero-area triangles
can be problematic.

Vector Field Design. To this point our quad meshing
discussion has assumed that the underlying vector field
that guides mesh alignment is an approximation of the
principal curvature directions. However, this need not
be the case, as user designed fields can be seamlessly
placed into many of the quad meshing methods.

Vector field design techniques provide methods to
smooth potentially noisy vector fields and extraneous
field topology. For instance, radial basis functions
smoothly interpolate constraint vectors [40]. User inter-
actions, providing alignment curves [54] or modifying
field singularities [56], allows for subjective design de-
cisions. User designed fields can be seamlessly placed
into many of the quad meshing methods. Cross-field
design [19, 36, 43] enriches the number of possible sin-
gularities. However, designing fields where numerical
integration exactly traces surface features is challeng-
ing, if not impossible due to rounding errors, resulting
in artifacts within corresponding quad meshes.

Base Domain Modeling. Leveraging a coarse repre-
sentation of a surface model is a useful practice in ge-
ometry processing, as demonstrated by morphing appli-
cations [44, 27]. Base domains have been employed by
remeshing and parametrization algorithms; constructed
through refinement of hybrid meshes [18], Delaunay tri-
angulation of distributed points [10], mesh simplifica-
tion [30, 25, 38, 12, 49], clustering [11, 6], as well as
user boundary painting [28, 50] and block construction
[48]. The regular refinement of the base domain model
generates a semi-regular mesh connectivity, beneficial
to subsequent processing. Feature reconstruction is de-
pendent on the base domain, a challenging task for some
techniques. Further, user editing may be challenging or

time consuming in these approaches.
In this work, we propose a method to construct a base

domain model that respects a set of feature points and
curves without discriminating between them. Using ef-
ficient linear system solves, our method naturally han-
dles these inputs and provides fast feedback to allow
incremental editing for an iterative construction of base
domain models. Our method exactly reconstructs fea-
ture curves defined on the surface, and offers flexibility
through template application that allows for animation
specific mesh configurations (Fig. 11). In contrast to
previous efforts, we combine several key aspects: iter-
ative editing controls, exact feature reconstruction, and
semi-regular output structure.

3. Method Overview

Our quadrilateral meshing approach comprises three
main stages: base triangulation construction, template-
based meshing, and mesh quality improvement (Fig. 1).
First, we build a base domain triangulation constrained
to a few feature points and curves defined over the input
triangle surface. Feature points and endpoints of feature
curves become the only vertices of the base triangula-
tion. The construction of the base triangulation from
the feature points and curves relies on harmonic fields
computed over the surface (Fig. 2 and 3). This compu-
tation is intrinsically 2D, carried out on the input surface
and it is oblivious to the 3D space.

An all-quad mesh is generated during the second
stage: template-based meshing. The key idea is to map
template meshes defined on a canonical triangle to each
face of the base triangulation. We design templates
(Fig. 5) that can be consistently arranged over the base
triangulation to produce an all-quad mesh. To ensure
that we always obtain such a consistent arrangement, we
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Figure 2: Harmonic functions computed for each feature curve (a) are
compiled (b) to guide the segmentation of the model (c).

devised an optimization procedure based on classical re-
sults from graph theory. A distinguishing feature of our
optimization procedure is that it naturally incorporates
important quad mesh attributes. The set of templates
can be enriched to accommodate for local changes in
the mesh structure (Sec. 7).

Finally, a vertex optimization procedure improves the
quality of the final all-quad mesh, moving vertices over
the input surface based on the edge length ratios de-
fined by the templates. It is important to emphasize that
our approach is valuable as an iterative framework for
user designed quad-only meshes. While the user identi-
fies feature information, the method automatically man-
ages element alignment and mesh structure. The results
and design task can be augmented by automated fea-
ture identification [3, 20, 23], which alleviates user in-
put (Fig. 10).

4. Base Triangulation Construction

The base triangulation provides the underlying space
in which the templates are applied to produce the fi-
nal quad mesh. The base triangulation is indeed a con-
strained triangulation, since each feature curve identi-
fied over the input surface is represented by an edge of
the base triangulation. This section describes a method
for robustly generating the base triangulation, and also
explains how triangles from the input triangular mesh
can be related to triangles in the base triangulation.

4.1. Feature-based Cell Decomposition

Let P = {p1, . . . , pm} and C = {cm+1, . . . , cn} be a
set of sites and a set of curves on a triangle surface S ,
respectively, such that pi cannot belong to any curve in
C and ci ∩ c j is either empty or an end point of ci and
c j, for every i, j. The algorithm for creating the base
triangulation decomposes the underlying space, S , of S

(i.e., the set of all points in R3 spanned by the points,
edges, and triangles of S ) into a set of cells, S 1, . . . , S n,
which defines a cell complex decomposition of S , S =

∪S i and int(S i)∩int(S j) = ∅, where int(S i) is the interior
of S i. Each cell S i corresponds to either a site in P or a
curve in C, and is given by the following set of points:

S i = {x ∈ S ⊂ R3 | hi(x) ≥ h j(x), for all i , j} , (1)

where the hi(x)’s are harmonic functions defined on the
underlying surface, S , which can be obtained by solving
the Laplace equation

∇2hi = 0 (2)

with the following Dirichlet boundary conditions:{
hi(x) = 1 if x = pi or x ∈ ci

hi(x) = 0 if x = p j or x ∈ c j, i , j

Figure 2a illustrates the individual harmonic fields ob-
tained by solving Eq. (2) for a given set of feature sites.

We discretize Eq. (2) using cotangent weights as de-
scribed in [39]. Moreover, we use the CHOLMOD li-
brary [9] to solve the linear system derived from the
discretization of Eq. (2). The library implements a
supernodal scheme to update the Cholesky factoriza-
tion [13], which efficiently supports iterative inclusion
and removal of constraints via penalty schemes [55].
Identifying Cells. Once the harmonic functions hi, for
all i = 1, . . . , n+m, have been obtained, the S i’s are com-
puted as follows. Let v be a vertex of the input triangle
surface S . The label k is assigned to v if hk(v) > hi(v),
for all i , k. The cell S k contains the set of vertices of
S assigned label k, as well as all edges and triangles of
S spanned by these vertices. Note that each cell S k can
be decomposed as a simplicial subcomplex of S .

Each triangle t in S can be classified as belonging
to a single cell S i, being between two cells, S i and S j,
or being in the intersection of three cells, S i, S j, and
S k, depending on whether the vertices of t are assigned
one, two of three different labels, respectively. The cell
decomposition ∪S i is fully determined by the vertex la-
bels, which allows for a discrete and robust representa-
tion of the cell decomposition.

Unlike Dijkstra-based fast marching region growing
schemes, our cell decomposition method generates sim-
ilar results regardless of the underlying triangulations.
Further, this harmonic-based scheme handles curves in
a more natural way than geodesic-based methods. Fig-
ure 2c illustrates a cell decomposition where triangles
whose vertices were assigned one (resp. two or three)
distinct labels are shown in green (resp. black or red).
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Figure 3: (a) Cell decomposition. (b) Base triangulation obtained as
the dual of the cell decomposition. (c) Feature curve constraints in-
corporated into the base triangulation by vertex splits.

4.2. Base Triangulation

Those familiar with space partition theory will notice
the resemblance between Eq. (1) and the definition of
Voronoi cells. Inspired by the principles of the Delau-
nay triangulation [16], we define a coarse triangulation,
called base triangulation, as the dual structure of the
cell decomposition ∪S i. Hereafter, we denote this base
triangulation by T .

More precisely, if we view triangles of S with three
distinct labels as the intersection points of the three cells
(i.e., Voronoi vertices), then the triangles of T are dual
to those intersection points. The vertices of T corre-
spond to the cells defined by the features in P or C. In
fact, if the set of feature curves C is empty, then the sites
in P are the vertices of T . Because T is populated when
three cell regions intersect at an element in S , it is nec-
essary that such an element exists in order to construct
a base domain triangulation. The union of feature sites,
P ∪ C, must be greater than three.

The duality described above represents the feature
curves in C as vertices of T (Fig. 3b). However, each
curve in C should correspond to an edge of T . In order
to build a one-to-one correspondence between curves in
C and edges in T , we make use of a scheme based on
vertex split (Fig. 3c). Suppose that a curve ci ∈ C con-
sists of a single segment. Then, by splitting the vertex
in T corresponding to ci and moving the resulting two
vertices to the locations of the endpoints of ci, we can
build a correspondence between ci and an edge of T .
The newly defined edge has the same endpoints as ci. If
curve ci consists of multiple connected segments, then
multiple vertex split operations are required.

Figure 4: Input mesh is mapped to the base triangulation.

4.3. Surface Correspondence

In the second stage of our approach, during template
meshing, we map points from the base triangulation
T to the input surface S . To construct the correspon-
dence between these two triangulations, we first asso-
ciate each triangle tb of T with a geodesic triangle tg
on S . The edges of tg are formed by three approximate
discrete geodesic curves on S connecting the vertices of
tb, which are also vertices of tg (Fig. 4). Next, we cut
S along the geodesic arcs, and then modify the triangle
surface S accordingly. Finally, we map all triangles in-
side tg to tb, establishing a many-to-one correspondence
between the triangles of (the modified triangle surface)
S and the ones of T . To map the triangles of tg to tb, we
first parametrize the boundary curves of tg in the cor-
responding edges of tb by arc length, and then use the
Mean Value Parametrization [15] to map interior of tg
to tb.

5. Template-Based Meshing

Templates can be seen as textures that, when mapped
to triangles in the base triangulation, T , produce an all-
quad mesh. A naı̈ve template definition, such as to
split each base triangle into three quads by connecting
the edge midpoints to the centroid of the triangle, in-
troduces one extraordinary vertex per triangle, violat-
ing our goal of producing a semi-regular, all-quad mesh
with only a few extraordinary vertices. In what follows,
we present a new scheme to map templates to the base
triangulation, T , in order to create an all-quad mesh.
This scheme tries to avoid the insertion of new extraor-
dinary vertices into the final quad mesh, while ensuring
the alignment of quad elements with the input features.
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Figure 5: The regular template is designed to align with two edges in
each base triangle (a). An all-quad mesh is produced by arranging the
templates consistently (b). The singular template (c) resolves isolated
triangles resulting from the matching scheme.

5.1. Regular and Singular Templates
Consider the template defined within the triangle in

Fig. 5a, which we call the regular template. This tem-
plate has two types of edges: alignment edge (i.e., the
two yellow edges) and non-alignment edge (i.e., the
dark green edge). The regular template has two impor-
tant properties: 1) it is aligned with the two alignment
edges of the triangle, and 2) if the templates of any two
adjacent triangles match consistently, an all-quad mesh
is obtained (Fig. 5b).

Property 1 can be exploited to align quads with fea-
ture curves. In fact, as each feature curve has a corre-
sponding edge in the base triangulation, one can choose
these corresponding edges to be the alignment edges of
the regular template, thus naturally aligning quads to
feature curves.

As we shall see in the next section, a consistent tem-
plate matching (see Property 2) can always be found.
However, if we wish to enforce the regular template
alignment edges to be aligned with feature curves, then
a consistent template matching may not exist. Edge
alignment, though, is crucial for generating high qual-
ity quad meshes. So, to obtain a consistent template
matching which also incorporates edge alignment, we
combine the regular template with other template types
(Fig. 5c).

There is at most one configuration in which a con-
sistent template matching cannot be obtained by using
only regular templates. In this case, all three edges of
a triangle t of the base triangulation, T , are alignment
edges, indicative of an isolated triangle formed during
the matching process. Our approach handles this sce-
nario by using the singular template (Fig. 5c), in which
we introduce an additional extraordinary vertex. In the
next section, we present an optimization mechanism,
that relies on classical results from graph theory, to ob-
tain an all-quad mesh using our templates.

5.2. Template Arrangement
Suppose initially that we are not interested in en-

forcing mesh alignment to the feature curves. In other

Figure 6: The graph matching template arrangement (a). Red edges
define the matching of the dual graph of the base triangulation. Light
gray edges have been removed from the dual graph to enforce edge
alignment. Templates are consistently mapped to base triangles (b).
Template vertices are mapped to the input surface based on the corre-
spondence as discussed in Sec. 4.3 (c).

words, we assume that the set, C, of feature curves is
empty, which means that the base triangulation, T , has
been generated using only the sites in P. The prob-
lem we face is how to arrange regular templates on T
to avoid the use of singular templates. Note that we
can solve this problem by finding a perfect pairing of
triangles of T (if one exists), then mapping the regular
template to each triangle.

Finding a perfect pairing of triangles of T is equiva-
lent to solving the problem of finding a perfect match-
ing on the dual graph of T . Indeed, given a graph G,
a matching M on G is a subset of edges of G such that
no two edges of M are incident with the same node of
G [26]. A matching M on G is said to be perfect iff all
vertices of G are incident to an edge of M. In turn, the
dual graph, GT , of T is a graph in which every node is
associated with a distinct triangle of T , and every trian-
gle of T has a node in GT associated with it. Further-
more, GT has an edge connecting two of its nodes iff
their associated triangles share an edge in T (Fig. 6a).

Since no two edges of a matching share a node, and
since every node is incident with (exactly) one edge of a
perfect matching, a perfect matching on the dual graph,
GT , of T defines a perfect pairing of the triangles of
T . The theorem by Julius Peterson [37] asserts that ev-
ery cubic graph (a graph in which all nodes have va-
lence 3) with at most two bridges (edges whose removal
increases the number of connected components in the
graph) has a perfect matching. The dual graph, GT , of
T is clearly cubic (unless T has boundary edges), and
it can be shown that GT is bridgeless. As a result, by
Petersen’s theorem GT admits a perfect matching.

Let us now assume that the set C of feature curves is
not empty, and quad edges should be aligned to these
curves. Therefore, the edges of GT dual to the edges of
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Figure 7: The twisting artifacts observed on the final quad mesh (up-
per right) are avoided by the orthogonality metric (lower right) used
to prioritize the graph-based matching of the base domain elements.

T that correspond to feature curves should not be part
of the matching. To enforce this constraint, we remove
these dual edges from GT , producing a restricted dual
graph G′T . Because G′T may not be cubic nor bridgeless,
Petersen’s theorem no longer holds. Instead, the best
we can ask for is a maximum cardinality matching on
G′T (maximizing the number of matched nodes) that can
be computed in O(n1.5) time [26] (n is the number of
nodes).

Not every node of G′T is guaranteed to be matched.
Unmatched nodes correspond to unpaired triangles of T ,
to which regular templates cannot be applied. To gen-
erate an all-quad mesh, singular templates are mapped
to unpaired triangles of T . Figure 6a illustrates a max-
imum cardinality matching on the restricted dual graph
of the base triangulation of the Egea model. Matching
edges are shown in red. The resulting template arrange-
ment is presented in Fig. 6b, while Fig. 6c shows the
quad mesh after the template vertices are mapped to the
input triangle surface.

5.3. Orthogonality and Planarity

In addition to enforcing mesh alignment, the graph-
based matching can be modified to take into account the
orthogonality and planarity. We aim at improving these
metrics measured on the quadrilaterals that result from
the pairing of two triangles. As such, we select trian-
gle pairings that yield quads whose angles are as close
as possible to 90o and are near planar. Our approach
makes similar considerations to existing triangle pair-
ing schemes [5]; but combines the multiple factors into
a single term without threshold tests.

It turns out that orthogonality and planarity can be
naturally incorporated in the graph matching by assign-
ing weights to the edges of G′T . We define a weight
function, w : E′T → R, where E′T is the set of edges of

G′T , and then compute a maximum weight matching on
G′T that maximizes the sum

∑
e∈E′T

w(e), where

w(e) =
1

exp
[
λ ·

{
1 −

(
µ · o(e) + (1 − µ) · p(e)

) } ] ,
(3)

λ ∈ R+ and µ ∈ [0, 1] ⊂ R are predefined constants, and
o, p : E′T → [0, 1] ⊂ R are functions that represent the
degrees of orthogonality and planarity, respectively, of
the quad formed by pairing up the triangles sharing the
dual edge in T of edge e in G′T . More specifically, let tα
and tβ be the two triangles of T sharing the edge eαβ in
T , where eαβ is the dual in T of edge e in G′T . The value
of o at e is

o(e) =
sin(α j) + sin(β j) + sin(αi + βi) + sin(αk + βk)

4
,

(4)
where αi, α j, and αk (resp. βi, β j, and βk) are the angles
of tα (resp. tβ), as illustrated
on the right. The value of p
at e is

p(e) =
1 + nα · nβ

2
, (5)

where nα and nβ are the unit
normals of tα and tβ, respec-
tively, and nα · nβ is their
dot product. Note that the
degree of orthogonality and
planarity is proportional to w(e). Constant µ controls
the influence of o(e) and p(e) over w(e), while constant
λ is used to scale the range of function w. In our results,
µ = 0.5 and λ = 10 (Sec. 7).

We used the algorithm devised by Gabow [17] to
compute a maximum weight matching on G′T , which
computes the pairing in O(n2 log n) time, where n is
the number of nodes of G′T . Figure 7 compares two
quad meshes obtained using a maximum cardinality
matching (upper right) and a maximum weight match-
ing (lower right) with the weight function in Eq. (3).
The mesh produced by the maximum cardinality match-
ing presents twisted regions, which result from pairing
triangles without taking into account orthogonality and
planarity. The twisting effect disappears when the max-
imum weight matching is used, as the weights given by
Eq. (3) are measures of orthogonality and planarity.

6. Vertex Optimization

The final stage of our quad meshing approach con-
sists of a vertex optimization, which modifies template
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Figure 8: Quad meshes designed using our system, highlighting the
extraordinary vertices in yellow and green depending on their valence
count.

vertex locations in order to compensate for parametric
distortions in the template mapping. To carry out this
optimization, we use a standard Laplacian-based mesh
smoothing approach that iteratively minimizes the dif-
ference between vertex locations and the average loca-
tion of their 1-ring neighborhood vertices. The move-
ment vectors, computed in 3D space, are projected onto
the input triangle mesh, restricting the movement over
the surface.

The input features, used during the construc-
tion of the base triangulation, are maintained with

additional considera-
tions. Template vertices
that map to feature
curves are allowed to
move within a cylin-
drical space enveloping
the curve. In this way,
as illustrated to the
right, we simultaneously

improve the quality of quads around features, while
smoothing feature noise. To maintain correctly oriented
elements, movement of non-feature vertices is further
restricted by limiting the motion within the boundary
curve of the 1-ring neighborhood. In practice foldovers
became problematic only in the region of constrained
vertices and could be further avoided by associating a
small, localized repulsion force with the feature curves.

Figure 9: The complexity of the model and diligence of the user im-
pact the time for base triangulation construction from a few seconds
(left) to a several minutes (right).

7. Results and Discussion

Our quad meshing approach produces semi-regular
meshes in which quad elements are well-aligned with
surface features (Fig. 8). In practice, input features are
symmetrically defined so as to split the model in homo-
geneous regions, where base triangles are more likely to
be matched. As a result, unpaired triangles, which give
rise to additional extraordinary vertices, tend to appear
between homogeneous regions, which is highly desir-
able.

The quality of the quad meshes generated by our ap-
proach depends on the features from which the base tri-
angulation is built. In some cases, features can be de-
fined quite easily with a few curves (the Moai model,
Fig. 9 left). But, some models may demand a more
elaborate definition of feature curves, which can take
several minutes of user interaction to be completed, (the
Botijo model, Fig. 9 right). An alternative is to use
automatic feature detection mechanisms (Fig. 10 top).
Our approach was able to generate a reasonable quad
mesh from the automatically defined features in Fig. 10.
However, better alignment is obtained with additional
user input, additional feature curve segments illustrated
in the bottom row of Fig. 10. Since our mesh generation
pipeline does not distinguish between automatically de-
fined and user defined features, our approach turns out
to be very flexible and easy to use. In addition, it can be
readily combined with quad mesh design tools.

Another interesting property of our approach is the
ability of locally changing the quad mesh structure. In
fact, any template having two alignment edges can be
mapped to triangles paired by the graph matching. To
illustrate this point, we change the template mapped to
the knuckles of the hand model in Fig. 11. The new tem-
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plate is designed to better reproduce the configuration
usually observed in quad meshes designed for character
animation purposes.

7.1. Quality and Performance Analysis

Table 1 report timings and quality statistics of our
approach recorded while producing the models shown
throughput this paper. Input Sizes specifies the num-
ber of mesh vertices (|Vm| is the dimension of our lin-
ear system), feature curves (|C|) and the total number
of constrained vertices (|Vc|). Algorithm Timings times
three significant stages of our approach: (1) the linear
system solve for a single feature curve (Laplace), (2)
the mapping of the input triangles to the base domain
(Mapping), and (3) the projection of the template ver-
tices to the input surface mesh using the mean value
parametrization (MVP). The base triangulation (map-
ping and vertex splitting) and the graph matching stages
are not reported in these timings because they occur
near instantaneously. The output statistics include the
number of triangles in the base domain models (|T|), the
number of vertices in the final mesh (|Quad V|) and ex-
traordinary vertices (|ExV|), as well as the average angle
deviation from the ideal 90◦ (Avg (|90◦− < |)).

Loading all feature curves from file at input, the base
triangulation requires 42s in the worst case (the Botijo
model). However, when adding feature curves incre-
mentally within an interactive construction or editing
framework, the recomputation of the linear systems can
be localized a subset of the feature curves. In practice,
only 5 or 6 curves are affected by curve insertion or
deletion. As such, the update times of the base triangu-
lation are reduced to below 3s, providing quicker visual
feedback. This feature allows for an iterative construc-
tion process in contrast with other base triangulation and
state-of-the-art quadrilateral meshing methods.

Figure 10: Automatic feature detection can be used to generate initial
results (top), but may benefit from additional user interaction (bot-
tom).

Figure 11: Interaction with the applied mesh templates changes the
regular sampling of the hand knuckles (left and top) to mesh configu-
rations observed in animation-based models (right and bottom).

A visual comparison of the Rocker Arm model
(Fig. 12) illustrates the differences between recent
meshing algorithms [7, 43] and our approach. On a
qualitative level, we produce a similar number of ex-
traordinary vertices (38) as [7] (36) and [43](54). Addi-
tionally, the histograms of the mesh angles demonstrate
a quality on par with other approaches, despite vertex
optimization not being a focus of this work. On the
Rocker Arm models, the edges emanating from the ex-
traordinary vertices are highlighted, tracing across reg-
ular vertices until reaching another extraordinary ver-
tex. These traced edges can be used to describe bound-
ary components of a coarse, quad-only decomposition
of the model.

In this comparison, we direct the reader’s attention
towards two fundamental differences between our ap-
proach and existing methods. First, our meshes ex-
hibit a regular structure with aligned extraordinary ver-
tices, characterized by decomposing the model into a
coarse number of large quadrilateral patches. Second,
we align the quadrilateral elements to feature curves,
exactly reconstructing sharp edges as highlighted (the
misaligned elements are shown in red) in the zoom in-
sets. These structural components are desirable for sub-
sequent geometry processing, i.e., texture mapping and
smooth surface fitting [53], and avoid geometric arti-
facts and feature smoothing during mesh subdivision.
These structural attributes occur naturally in our ap-
proach, yet are challenging tasks for approaches that
rely on numerical integration of tensor data [7, 43].
While it may be possible to modify the parametrization
schemes of such approaches to ensure feature and ex-
traordinary vertex alignment, to the best of our knowl-
edge, this remains a challenging and unsolved task.

The structural regularity of our meshes are further
demonstrated in the comparison of the Botijo model
with a more recent meshing result [57] (Fig. 13). We
produce a similar number of extraordinary vertices (73)
versus [57] (78), which is driven by the number of
identified feature curves. This comparison again de-
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Table 1: Timings and quality statistics for models used throughout this paper.
Input Constraints Algorithm Timings Base Domain Output Vertices Angle Statistics

Model |V| |C| |V| (Laplace / Mapping / MVP) |T| (|V| / |Ex|) Avg(|90◦− < |)
Botijo (Figs. 7,13) 20K 78 13K 0.53s / 7.5s / 16.3s 334 11K / 73 12◦

Egea (Figs. 2,6,8) 24.9K 25 656 0.36s / 4.4s / 35.1s 96 3.2k / 22 11◦

Fertility (Fig. 8) 20K 54 845 0.33s / 2.9s / 22.2s 232 5K / 43 18◦

Hand (Fig. 11) 20K 68 866 0.25s / 7.1s / 13.3s 270 2.2k / 112 9◦

Moai (Figs. 3,4,8,9) 10.5K 30 545 0.09s / 1.3s / 9.6s 80 2.7K / 34 12◦

Nicolo (Fig. 1) 25K 73 1345 0.49s / 5.2s / 19.6s 159 5.3K / 41 13◦

composes the models, by tracing between extraordinary
vertices, to demonstrate the structural regularity of our
model. Further, the zoom inset of the models’ base
demonstrates the alignment of the boundaries edges to
feature curves. Additionally, the handle inset demon-
strates the ability to create anisotropic elements, which,
due to the regular template design, is linked to the length
of the identified feature curves and the space between
them.
Limitation. Guaranteeing topological equivalence be-
tween the input triangle surface and the base triangu-
lation is one of the main limitations of our approach.
This is important for the parameterization of the original
model to the base domain in order to map the quad ele-
ments of the applied templates to the final surface. De-
spite not guaranteeing topological equivalence through
the construction process, we did not face any difficul-
ties in producing base triangulations homeomorphic to
the input model. However, this could become an issue
when handling complex high genus models. Adapta-
tion of existing sampling methods, in particular farthest
point insertion [10], can be implemented to automati-
cally ensure topologically coherent base domains.

8. Conclusion

This paper describes a new approach for generating
all-quad meshes from triangle surfaces. This approach
uses input feature points and curves to steer the quad
mesh construction, allowing for a simple mechanism to
control quad mesh alignment as well as extraordinary
vertex placement. The main contributions of the ap-
proach are a harmonic-based algorithm for partitioning
a triangle surface mesh; a set of triangle-based, quad-
dominant templates for generating quad-only meshes;
the application of a graph-based algorithm to compute
a consistent template arrangement on a coarse triangle
mesh; and a metric for measuring orthogonality and pla-
narity of quad elements formed by triangle pairing.

The use of harmonic functions to build cell decompo-
sitions from triangle surfaces describes a simple scheme
to generate coarse triangulations. This can be very

useful to other application domains, such as subdivi-
sion surfaces and surface-based remeshing. The graph-
based template arrangement mechanism produces well
structured and aligned quad meshes. Distinct template
patterns provided the capability of generating irregu-
lar quadrilateral configurations, which are similar to
those observed in animation-based meshes, a charac-
teristic rarely found in quad mesh schemes previously
described in the literature. We believe that the simplic-
ity of the user interactions from which our method is
able to generate quality meshes, presents an attractive
approach towards user involvement in quad-only mesh
generation.
Future Work. We believe that templates can also be
arranged on the base triangulation by a graph coloring
rather than a graph matching algorithm. A coloring
scheme would allow the use of a rich library of tem-
plates, increasing the flexibility and ability of our ap-
proach to deal with irregular quad configurations. Ad-
ditionally, we are interested in extending our harmonic-
based scheme to building coarse triangulations that are
homeomorphic to the input triangle surface. Beyond
homeomorphism, building base models for the purpose
of subdivision surfaces is an interesting (and useful) re-
search project.

The vertex optimization scheme, a black box com-
ponent of our algorithm, should be improved in order
to ensure a better distribution of quad vertices. For
instance, using the movement vectors as computed by
Lp-CVT [31] may obtain better quality elements while
considering principal curvature directions. However, to
maintain the quality mesh structure it would be neces-
sary to fix the mesh connectivity; and thus, limit vertex
movements in cases to avoid inverted and non-convex
elements.
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