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Abstract This paper describes a novel template-based
meshing approach for generating good quality quadrilateral
meshes from 2D digital images. This approach builds upon
an existing image-based mesh generation technique called
Imesh, which enables us to create a segmented triangle mesh
from an image without the need for an image segmenta-
tion step. Our approach generates a quadrilateral mesh us-
ing an indirect scheme, which converts the segmented trian-
gle mesh created by the initial steps of the Imesh technique
into a quadrilateral one. The triangle-to-quadrilateral con-
version makes use of template meshes of triangles. To en-
sure good element quality, the conversion step is followed
by a smoothing step, which is based on a new optimization-
based procedure. We show several examples of meshes gen-
erated by our approach, and present a thorough experimental
evaluation of the quality of the meshes given as examples.
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1 Introduction

Generating meshes from 2D digital images is an important
problem, which has been investigated in several different
contexts such as image representation and numerical sim-
ulation. Most methods for generating meshes from imaging
data rely on schemes based on two-stages: image segmen-
tation and mesh generation itself. The image segmentation
stage is responsible for partitioning the image in well de-
fined regions, which are then “meshed” in the mesh genera-
tion stage.

An alternative approach was adopted by the Imesh algo-
rithm [21,10] (Figure 1). The Imesh approach combines im-
age segmentation and mesh generation into a single process-
ing stage, requiring only a couple of parameters to trigger
the meshing process directly from the input image. More-
over, Imesh is able to segment the mesh in accordance with
image features, making it possible to identify and build a
correspondence between regions of the image and partitions
of the mesh. The Imesh output is a provably good qual-
ity triangulation which contains smaller triangles along the
boundary of image regions, and larger triangles in their in-
terior.

Triangle meshes have been extensively investigated by
the meshing community, and their theoretical properties are
now well understood [4]. In addition, algorithms for gen-
erating good triangle meshes of polygonal and curved pla-
nar domains, such as the one used by Imesh, have been pro-
posed and implemented [28,23]. In contrast, the generation
of good-quality quadrilateral meshes is not so well under-
stood [3]. Directly generating quadrilateral meshes from a
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(b) Mesh Generation

(c) Mesh Partition

(d) Mesh Improvement

Fig. 1 The original image and the three main steps of Imesh.

description of the domain is intrinsically harder than gen-
erating triangle meshes. Yet, quadrilateral meshes are more
appropriate than triangle meshes for certain applications [2,
19,22].

1.1 Contributions

We describe an extension of Imesh which generates
quadrilateral meshes directly from imaging data. Our
extension combines two ingredients: a template-based
triangulation-to-quadrangulation conversion strategy, and an
optimization-based smoothing procedure. The former aims
at generating quadrilateral meshes that respect the image
object boundaries (as defined by the mesh partition step
of Imesh), while the latter improves the quadrilateral shape
quality.

The use of a template-based meshing approach makes
it possible for Imesh to generate a quadrilateral mesh indi-
rectly, i.e., from a triangle mesh rather than directly from
a description of a polygonal domain. This indirect strategy
makes the quadrilateral mesh generation task easier. Tem-
plates also enabled us to devise a novel and simple smooth-
ing procedure to locally improve the quality of the quadrilat-
erals, while preserving the previously defined image object

boundaries. Our experimental results indicate that the com-
bination of our template-based mesh generation approach
with the new smoothing procedure is very effective, render-
ing Imesh one of the few techniques to generate quadrilateral
mesh straightly from images (i.e., without the need for an
image segmentation or image object boundary delimitation
step).

2 Related Work

In this section we summarize the main techniques devoted
to generate meshes from images as well as to convert trian-
gle meshes of planar domains into quadrilateral meshes. A
comprehensive overview, mainly in the context of surfaces
in 3D, is beyond the scope of this paper and can be found
in [1].

2.1 Mesh generation from images

Techniques for generating meshes from digital images can
be grouped into two main classes: mesh-based image repre-
sentation and image modeling for simulation. Mesh-based
image representation techniques build meshes that mini-
mize the approximation error between the original image
and the image represented by the mesh. In this class one
finds adaptive methods, which iteratively refine the mesh
until a lower-bound error is reached [14,13,9], mixed meth-
ods [18], and error diffusion schemes [37]. A main draw-
back of most mesh-based image representation methods is
the use of interpolation error to guide the mesh generation
process, which is not effective in textured and color images,
impairing the use of such methods in a wide class of prob-
lems. Image modeling for simulation techniques divide the
mesh generation process in two main steps: pre-processing
and mesh generation. The pre-processing step aims at filter-
ing and segmenting the image in order to detect regions of
interest, which are meshed in the mesh generation step [8].
Binarization combined with implicit function reconstruc-
tion [5,38], pre-segmentation with Delaunay meshing [6],
and shape deformation [33] figure among the most popular
approaches, all of them relying on an image-segmentation
stage.

2.2 Quadrilateral mesh generation

Generating a quadrilateral mesh of a polygonal domain is
intrinsically harder than producing a triangular mesh. In-
deed, if we require the set of vertices of the mesh to be the
set of vertices of the input polygon, then a triangular mesh
can always be obtained. In contrast, additional vertices may
be necessary in order to generate a quadrilateral mesh. In
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addition, the theoretical properties to generate good quality
quadrilateral meshes are not as well understood as the ones
for producing good quality triangular meshes [3]. So, several
researchers adopted an indirect approach to produce quadri-
lateral meshes [12,7,26,32,24,36,27]: a triangle mesh of
the domain is generated, and then converted to a quadrilat-
eral mesh.

The indirect approach relies on the premise that a quadri-
lateral mesh can be more easily generated from an existing
triangle mesh of the target domain. Here, we adopt a two-
stage indirect approach. First, we combine adjacent trian-
gles to form quadrilaterals and produce a hybrid, triangle-
quadrilateral mesh. Second, we convert the hybrid mesh into
an all-quadrilateral mesh using template subdivisions of tri-
angles and quadrilaterals. Template subdivisions of mesh
elements have been used before for refining quadrilateral
meshes [29] and respecting domain boundaries [3]. We use
template subdivisions for mesh conversion and optimization
purposes. To our best knowledge, this is the first work that
exploits the potential of template subdivisions for both pur-
poses.

3 Preliminaries

This section introduces basic concepts from Computational
Geometry and Digital Topology, which are used in the de-
scription of the Imesh algorithm in the following section.
We refer the reader to [34,28, 16] for detailed discussions of
those concepts.

Let S be a finite set of points in R2. A triangulation,
Z(S), of S is a set of triangles, along with their edges and
vertices, such that (1) the set of vertices of .7 (S) is exactly
S, and (2) the intersection of any two triangles, ¢ and 7, of
7 (8S) is either empty or a common vertex or edge of ¢ and
7. The underlying space, |7 (S)|, of 7 (S) is the point set
consisting of all points of R? that belong to the triangles of
Z (S). Similarly, we define a quadrangulation, 2(S), of S as
a set of quadrilaterals, along with their edges and vertices,
such that (1) the set of vertices of 2(S) is exactly S, and
(2) the intersection of any two quadrilaterals, u and v, of
2(S) is either empty or a common vertex or edge of y and
v. The underlying space, |-2(S)|, of 2(S) is the point set
consisting of all points of R? that belong to the quadrilaterals
of 2(S). Hereafter, we will use quad as an abbreviation for
quadrilateral.

A Delaunay triangulation, 27 (S), of S is a triangula-
tion of S such that (1) the underlying space, |2.7 (S)|, of
27 (S) is the convex hull of S (i.e., the smallest convex
set that contains §), and (2) the interior of the circumcir-
cle of every triangle of 2.7 (S) does not contain any ver-
tex of 2.7 (S). Given a planar straight-line graph (PSLG),
G = (V,E), where V is a set of points of R? and E is a set

of line segments in R? with endpoints in V, we define a con-
forming Delaunay triangulation of G as any Delaunay tri-
angulation, 2.7 (§), for some S C R2, such that (1) V C §
and (2) each edge e of E is an edge of 2.7 (S) or a union of
edges of 2.7 (S). We say that 2.7 (S) conforms to the ver-
tices in V and edges in E (edges in E are called constrained
edges).

As customary in Digital Topology, we call each p € Z?
a grid point, and we regard p as the center of a grid square,
denoted by O(p), with edges of unit length and oriented par-
allel to the Cartesian coordinate axes. We commonly refer
to O(p) as a pixel. A 2D digital (multivalued) image is a
function .# : G, 5, — C from a nonempty and finite sub-
set of Z2, Gy, = {(g1,82) € Z* | i € [1,ni],i = 1,2},
to a nonempty and finite subset, C, of R, where n; and n;
are positive integers. The domain G, ,, of .# is called a
2D grid of size n; X np. The elements of the co-domain
C of . are called colors. So, the image .# is a function
that assigns a color .#(p) from C to each p € Gy, »,. The
union set, Uyeg,, ,, O(p), of all pixels whose centers are
in G, », is the continuous analog of G, ,,, which is de-
noted by [J(Gy, »,,). By definition, we have that (G, »,)
is a rectangle.

Given a 2D digital image, .# : G, »,, — C, we define a
triangle mesh of .# as any triangulation, 7 (S), for some fi-
nite subset S of R?, such that the underlying space, |.7 (S)|,
of 7 (S) is the continuous analog, (G, »,), of the image
grid, Gy, »,. We can define a quad mesh of .# in a similar
way. In the following section we describe the Imesh algo-
rithm for computing a triangulation .7 (S) from the given
image, 7.

4 Imesh Overview

This section describes Imesh, an algorithm for directly gen-
erating a triangle mesh from a 2D digital image (see [10]
and [21] for a more detailed description of the algorithm).
Imesh is comprised of three steps: mesh generation, mesh
partitioning, and mesh improvement, each of which is de-
scribed in an individual section below. The input of the al-
gorithm consists of a 2D digital image, .¥ : G,, ,, = C, a
threshold t, € [0,1] C R for an error measure, and a classi-
Sfier, which is defined as a function, g : G, », — L, where L
is a set of “labels”. Each label can be viewed as an identifier
for a group of interesting features and/or objects represented
by the image. For any p € G, »,,, the value of g at p is deter-
mined by .#(p) and the values of .# in a neighborhood of
p. The output of the algorithm is a partitioned triangle mesh
of .#. Each mesh partition (i.e., a subset of triangles of the
mesh) corresponds to image regions labeled the same by the
classifier, g.
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4.1 Mesh Generation

The first step of Imesh builds a Delaunay triangulation,
2.7 (S), from a set S of points in [(Gy,, 4, ). This mesh is
built in two stages (refer to Figure 1(a)-(b)). First, an ini-
tial Delaunay triangulation is constructed from a set Sp with
four points, namely, the top-left, top-right, bottom-left, and
bottom-right vertices of the rectangle CI(Gy, »,). Second, the
initial triangulation is iteratively refined by inserting more
points from (G, ,,) into the initial set So. The inserted
points are approximately located at the boundary of the im-
age regions defined by the classifier. In what follows we
briefly describe the details of this iterative point insertion
process.

By definition, the Delaunay triangulation 2.7 (Sp) has
only two triangles and four vertices. For every i € Z with
i > 1, the i-th iteration of the refinement stage finds exactly
one point, say g;, in (G, »,), inserts g; into S;_ to pro-
duce a set S;, and then computes a new Delaunay triangu-
lation, 2.7 (S;). To choose g;, the algorithm considers one
triangle o of 2.7 (S;_1) at a time. For each o, the algorithm
computes an error measure inside . If the error associated
with o is larger than the threshold, ., a point from the inte-
rior of ¢ is chosen as a candidate to be g;. Among the can-
didate points the farther from the existing vertices is added
to the triangulation by using an incremental insertion proce-
dure for updating the Delaunay triangulation [15], 2.7 (S;)
from 2.7 (S;—1). The refinement stage ends when the error
associated with every triangle of the current triangulation,
27 (Si), is no larger than the input threshold z,.

The error measure, e : 7;(S) — R, is a function from
the set, Z;(S), of triangles of a point set triangulation, .7 (S),
to the set of nonnegative reals. For each 6 € .Z/(S), the value
of e(0) is given in terms of the classifier g and all image
pixels intersected by the three medians of o. More specifi-
cally, let m{, m$, and mg be the three medians of . Then,
we define the set Pm;r as made up of pixels (p) € Gy, »,
such that (see red square in Figure 2): for each j = {1,2,3},
O(p) € Poe if (1) m{ intersects LJ(p), and (2) there exists
r € Gy, 5, such that r # p, g(p) # g(r), m§ N O(r) # 0, and
O(r)NO(p) is a common vertex or edge of both squares
(i.e., p and r are neighbors in Z?). Intuitively, the set Pm;r
consists of every pixel [J(p) intersected by m? and located
around the boundary between two image regions labeled
distinctly by g. Finally, we can define e(c) as follows: if
Pm;; =0, for all j € {1,2,3}, then ¢(o) = 0; otherwise, the
error ¢(0) is equal to the maximum value of the following
set:

3
{aa(p) eR|Op el Pm;r} ,
j=1

where 0 (p) is the smallest barycentric coordinate of point
p with respect to the vertices of triangle ¢ containing p. So,

Fig. 2 Image pixels intersected by the three medians. Gray squares are
pixels where the classifier g changes its value. The red square is the
pixel that will be added to the Delaunay triangulation.

e(o) €[0,1] C R. Note that the value of e(0) is related to
how far the pixels in Pm;; are from the vertices of ¢. The
farther they are the larger the value of e(o), and the farther
the boundary between two distinctly labeled regions of .#
is from a vertex of ©. So, if (o) is “large”, the aforemen-
tioned boundary is not faithfully approximated by an edge of
c. So, we insert a point ¢; in the interior of ¢ whenever e(0)
is larger than the predefined threshold 7., with 0 <7, <1 .
In particular, if e(o) > 1, then ¢; is chosen to be any point
p, with O(p) € U;:lpm?’ such that e(0) = ag(p) (see red
square in Figure ). Note that the error e(o) is a “normal-
ized” value, as the error measure e was defined in terms of
barycentric coordinates. Finally, note also that point g; is al-
ways a point from Gy, ,,. Since Gy, ,, is a finite set and
the same point from G, ,, is never considered for insertion
twice, the termination of the refinement stage is assured. If
k is the last iteration, then we let S = S;. From now on, we
omit the set S, and denote 2.7 (S) by simply 2.7 .

4.2 Mesh Partitioning

The mesh partitioning step generates a partition, &2, of the
set of triangles, 2.7, of the Delaunay triangulation, 2.7,
produced by the mesh generation step. To build &7, the
Imesh algorithm makes use of a function, h: 2.9, — L,
which assigns a label from L to each triangle ¢ € 2.7 ,. Two
triangles, o and 7, of 2.7, belong to the same set A € &
iff h(o) = h(t). To compute h(c), Imesh considers the set
Ag of all points p € Gy, ,, such that O(p) is intersected by
a median of ©. Then, label (o) is defined as the most fre-
quent one among the labels (given by the classifier g) of all
points in Ag. If there is a tie, which may happen when 7, is a
large value, Imesh picks any of the most frequent labels. Fig-
ure 1(c) shows the partitioning of the mesh in Figure 1(b).
Most algorithms for generating meshes from imaging
data require an image segmentation preprocessing step [6].
The goal of this preprocessing step is to define a set of
boundaries delimiting the distinct objects represented by
the image. In contrast, Imesh bypasses the image segmen-
tation step, as the distinct objects represented by the image
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are delimited as a result of the mesh partitioning step. So,
in some sense, the image segmentation problem becomes
a mesh partitioning problem, which is also a well-known
problem [30]. The advantage of delimiting image objects
while generating a mesh, as done by Imesh, is that there is no
need for the mesh to strictly respect predefined boundaries.

4.3 Mesh Improvement

The mesh generated by Imesh in the first two steps is in
general a mesh with poor-quality triangles, i.e., triangles
with very small and/or very large angles. This kind of tri-
angle is extremely unsuitable for many mesh-based appli-
cations [31]. As we can see in Figure 1(b), the reason why
poor-quality triangles arise is two-fold. First, triangulation
vertices are placed along the boundaries and features of
the image objects only. Second, the length of triangulation
edges along the boundary is in general very small compared
to the length of the triangulation edges across the interior of
the image objects.

To overcome the aforementioned poor-quality mesh
problem, Imesh further refines the Delaunay triangulation,
2.7 . To do that, Imesh modifies 2.7 by iteratively insert-
ing points in the triangulation until all current triangles have
good quality. Since the mesh has already been partitioned,
the insertion of a new point into the triangulation must be
carried out carefully, so that the boundaries found by the
mesh partitioning step are preserved.

To ensure that boundaries are preserved while new
points are inserted, Imesh makes use of an adaptation of
Ruppert’s algorithm for generating conforming Delaunay
triangulations [28]. The input consists of 2.7 and a PSLG
G = (V,E), where V is the subset of all vertices of 2.7
incident to a constrained edge of 2.7, and E is the set of
constrained edges of 2.7. An edge e of .7 is said to be
constrained iff e belongs to only one triangle of 2.7 or e is
shared by two triangles of 2.7, each of which belongs to a
distinct set of 2. In other words, set E contains the edges
of 9.7 that delimit the distinct image objects. The output of
Ruppert’s algorithm is a conforming Delaunay triangulation,
2.7, of G such that the domains of 2.7* and 2.7 are the
same (i.e., |27 =|2.7|) and 2.7 has no poor-quality
triangle.

Triangulation 2.7 is also iteratively constructed. In
particular, it is the last triangulation of a finite sequence,
(27;)"_,, of conforming Delaunay triangulations of G,
where 9.7 = 9.7, and 9.7 ; is obtained from 2.7 ;_,
by a point insertion operation. More precisely, for each i €
{2,...,n}, the triangulation 9.7 ; is obtained from 2.7,_,
by the insertion of the circumcenter of a “poor-quality” tri-
angle of 2.7 ;_; into the vertex set of 2.7,;_,. However, if
the circumcenter of a poor-quality triangle o lies in a trian-
gle T such that h(o) # h(7) (or outside the image domain),

then it is not inserted into the vertex set of 2.7;_. In this
case, the circumcenter belongs to the diametral circle of one
or more edges of 2.7,_1, which in turn belong to the bound-
ary of two distinctly labeled partitions (or to the boundary of
the image domain). So, instead of the circumcenter, the mid-
point of such edges are computed and inserted in the vertex
setof 2.7 ;_,.

A triangle of 9.7; is said to have poor-quality if it con-
tains an unconstrained angle less than a quality threshold,
t4, where ¢, must be no larger than 26.4°. An unconstrained
angle is an internal triangle angle defined by two edges that
are not both constrained edges of #.7;. All triangulations
2.7 in (2.7;)}_, have at least one poor-quality triangle,
except for 2.7,. An upper bound of 26.4° for the quality
threshold, 7,4, and some further conditions discussed in [10]
ensure that (2.7;)_, is indeed finite and that 2.7 has no
poor triangle (see [23] for a detailed discussion on the up-
per bound of 26.4° for f,). Figure 1(d) shows the result of
the mesh-improvement step of Imesh applied to the mesh in
Figure 1(c).

5 Quadrilateral Meshing

We now describe our new approach for generating good-
quality quadrilateral meshes from imaging data. As we men-
tioned in Section 2.2, our approach generates a quad mesh
indirectly, i.e., by converting a given triangle mesh into a
quad one. In particular, the quad mesh is generated in two
stages, namely: femplate-mapping and optimization. The
former stage converts a given triangle mesh into a quad one,
while the latter stage improves the shape quality of the quads
generated by the former. The result is a good-quality quad
mesh.

The template-mapping stage consists of three main
steps: boundary and mesh simplification, triangle pairing,
and template-based subdivision. In turn, the optimization
stage consists of two main steps: boundary adaptation and
relaxation. In what follows we give an overview of all steps,
and then describe the details of each of them in an individual
section.

5.1 Overview

The template-mapping stage starts by pairing up triangles
of the given triangle mesh in a greedy manner. This pairing
process follows two simple rules: (1) each triangle of the
given triangle mesh can belong to at most one pair, and (2)
the two triangles of each pair must share an edge, and must
belong to the same mesh partition. Next, the common edge
of each pair of triangles is removed from the original trian-
gle mesh (see Figure 6(b) and Figure 3). The resulting mesh
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Fig. 3 A mesh obtained by pairing up triangles of the mesh in Fig-
ure 6(b).

may be either a quad-only mesh or a hybrid mesh consist-
ing of quads and (unpaired) triangles of the given triangle
mesh. Finally, each quad and each unpaired triangle (if any)
is subdividided into several quads using a subdivision de-
fined template meshes. The resulting mesh is a quad-only
mesh of the same domain as the given triangle mesh (see
Figure 7(a)).

The pairing and subdivision procedures described above
can be applied to any triangle mesh. So, one may find it
tempting to consider the output, good-quality triangle mesh
of Imesh as the input triangle mesh of the template-mapping
stage. Unfortunately, the final triangle meshes produced by
Imesh are not suitable for our purposes. The reason for that
is two-fold. First, since each quad and (unpaired) triangle re-
sulting from the pairing procedure are subdivided into sev-
eral quads, the resulting quad-only mesh could have an un-
necessarily large number of quads. Second, Imesh tends to
generate unnecessarily small triangles along the boundary
curves separating adjacent mesh partitions (see Figure 1(d)).
As a result of the pairing and subdivision procedures, those
triangles would give rise to unnecessarily small quads as
well.

The presence of unnecessarily small triangles has to do
with the way Imesh inserts new vertices into the initial trian-
gulation during its mesh generation step. In particular, these
vertices are not guaranteed to be placed along a smooth
(and imaginary) curve nor are they guaranteed to be dis-
tributed according to the curvature variation of this curve.
So, the curves defining the boundary of the mesh partitions
may be “jagged” or unnecessarily sampled in some regions.
Since Ruppert’s algorithm is sensitive to vertex proximity
and local curvature variation, the mesh improvement step of
Imesh tends to create small triangles along the more jagged
or overly sampled regions of the curves to ensure mesh qual-
ity.

To avoid the two problems described above, we consider
the Delaunay triangulation, 2.7, resulting resulting from
the mesh partition step of Imesh as the input triangle mesh of

(b)

Fig. 4 (a) The Delaunay triangulation resulting from the mesh parti-
tion step of Imesh. (b) The PSLG defined by its constrained edges and
their vertices.

(a) (b)

Fig. 5 PLSG in Figure 4(b) before (a) and after (b) simplification (red
colored circles represent end points of the polygonal curves generated
by our preprocessing).

the template-mapping stage. On the one hand, 2. is usu-
ally much coaser than the triangle mesh generated by the
mesh improvement step of Imesh. On the other hand, the tri-
angles of 2.7 tend to have poor-quality (i.e., they are very
thin and elongated), and the boundary curves are also jagged
or unnecessarily sampled in some regions (see Figure 1(c)).
However, we can more easily modify 2.7 to create a trian-
gle mesh that works well with our pairing and subdivision
procedures.

To create a new triangle mesh from 2.7, we first con-
sider the PSLG defined by its constrained edges. An edge of
2.7 is said to be constrained iff it is adjacent to only one
triangle (i.e., it belongs to the image boundary) or to two
distinctly labeled triangle. Let G = (V, E) be the PSLG such
that V consists of all vertices of 2.7 that are incident to a
constrained edge of 2.7, and E consists of all constrained
edges of 2.7 . Figure 4(a) shows a triangulation 7.7 result-
ing from the mesh partition step Imesh, while Figure 4(b)
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(a) (b)

Fig. 6 (a) A Delaunay triangulation that conforms to the PSLG in Fig-
ure 5(b). (b) A better quality Delaunay triangulation that also conforms
to the PSLG in Figure 5(b).

Fig. 7 (a) A template-based quad mesh that conforms to the PSLG
in Figure 5(b). (b) A template-based quad mesh that approximates the
edges of the PSLG in Figure 5(a).

shows the PSLG G obtained from the triangulation in Fig-
ure 4(a).

Once we have G, we simplify the polygonal curves cor-
responding to chains of edges of G, and then generate a De-
launay triangulation that conforms to the graph defined by
the vertices and edges of the simplified curves. The simpli-
fication yields curves with longer edges (see Figure 5(b)),
preventing the triangulation from having thin and elongated
triangles (see Figure 6). If the triangulation still contains
very poor-quality triangles, these triangles are eliminated by
point insertion, just like in the mesh improvement step. For
instance, the triangulation in Figure 6(b) was obtained from
the one in Figure 6(a) by iteratively inserting points in the
latter.

After obtaining a suitable triangle mesh, we effectively
start the pairing and subdivision procedures. If the pairing
procedure leaves unpaired triangles, these triangles are sub-
divided into a small, fixed number of quads using a tem-
plate (see Figures 8(a)-(b)). As a result we obtain an all-quad

mesh (see Figure 7(a)). Later, quad vertices are moved to-
ward the original constrained edges (the ones from G) in or-
der to better adapt the quadrilateral mesh to the original ob-
ject boundaries (see Figure 7(b)). Finally, an optimization-
based smoothing is executed to improve mesh quality (see
Figure 10).

5.2 Boundary and Mesh Simplification

Consider the PSLG G = (V, E) given as input for the quadri-
lateral meshing step, that is, edges and vertices in G are
shared by triangles from different regions of the partitioned
mesh (or they are incident to image boundary edges). Re-
call that each edge in E is a constrained edge, which we
call a c-edge. The goal of the boundary simplification step
is to simplify the polygonal curves defined by the set of all
c-edges and their vertices. To do that we used a well-known
line simplification algorithm [11]. This algorithm can only
handle simple, open polygonal curves. However, the set of
all c-edges defines polygonal “curves” that are not neces-
sarily simple nor open (i.e., they are closed and may form
T-junctions). So, we preprocess the set of all c-edges in or-
der to define a set of maximally longer, simple , and open
polygonal curves (see Figure 5(a)), and then execute the
aforementioned line simplification algorithm on the result-
ing curves.

Formally, let C; = V UE. We wish to partition Cg into a
set of maximal polygonal curves. A polygonal curve c from
Cg is a path or a cycle in G such that each vertex of a c-
edge of c is incident to at most another c-edge in c, that is,
each polygonal curve in Cg is simple. A polygonal curve c is
maximal if it is not properly contained by another polygonal
curve.

Note that c is an open polygonal curve iff ¢ is not a cy-
cle. Note also that every c-edge in E must belong to exactly
one maximal polygonal curve. We devised an algorithm for
partitioning Cg into maximal polygonal curves. The algo-
rithm starts by picking an arbitrary edge e from E. Initially,
all edges in E are said to be unmarked. Then, a chain ¢ of
edges in E is grown from e. To do so, the algorithm consid-
ers one of the two end vertices of ¢ at a time. Let v be such
a vertex. If v is not an image boundary corner and v is inci-
dent to exactly two edges of E, one in ¢ and the other being
an unmarked edge not in ¢, then the edge not in c, say €',
is marked and added to ¢, and so is its vertex not in ¢ (if ¢
is now a cycle, both vertices of ¢’ are already in c). Other-
wise, the algorithm considers the other end vertex of c. If ¢
cannot grow further, all edges of E in ¢ are already marked,
and an unmarked edge from E is selected by the algorithm
to build a new chain. If there is no unmarked edge in E, the
algorithm ends.

Upon termination, every chain c is either an open or a
closed, simple polygonal curve from Cg. For each closed
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curve, we choose an arbitrary edge e in ¢, and then remove e
from c, creating an open curve. Next, the line simplification
algorithm is executed on each open polygonal curve, ¢, pro-
ducing a simplified curve ¢’ from c. Curve ¢’ approximates
c and its vertex set is a subset of the vertex set of c. It is
important to point out that the line simplification algorithm
provides error bounds that allow us to precisely drive the
simplification [11]. As a result we obtain a set of simplified
c-edges, which defines a PSLG, G' = (V',E’), such that V’
and E’ are the vertex and edge sets of all simplified curves,
respectively. The edges and vertices of G’ also delimit the
image objects, as shown in Figure 5(b). Finally, a conform-
ing Delaunay triangulation, 2.7, is generated from G’ (see
Figure 6(a)).

It might be the case that 2.7’ contains some poor-
quality triangles (see Figure 6(a)). If so, before executing
the triangle pairing step, we run Ruppert’s algorithm on
27" in order to remove poor-quality triangles (see Fig-
ure 6(b)). However, to avoid creating a dense triangula-
tion (which would cause the resulting quad-only mesh to be
overly dense), we relax the quality measure threshold of the
algorithm and limit the number of point insertions. Unfor-
tunately, we noticed that there is no value for this threshold
that is suitable for every possible input mesh. Besides, we
still have not implemented an automatic way of finding the
suitable value for each mesh. In our experiments, we have
manually tuned and selected the quality threshold, #,, for
each quad mesh we generated. In Section 6, we offer a dis-
cussion on how to automatically set a value to 7,, for any
given 2.7,

5.3 Triangle Pairing and Template-Based Subdivision

The goal of the template-based subdivision stage is to gener-
ate a quad mesh from the previously computed conforming
Delaunay triangulation, 2.7’. To that end, adjacent trian-
gles of 2.7’ are paired up using a straightforward modi-
fication of the triguad procedure from [35]. The modified
procedure maintains a max-heap H of ordered pairs, (e,k),
where e is an unconstrained edge from 2.7’ and k is the
length of e. Initially, all edges in H are said to be unmarked.
The procedure removes one pair (e, k) at a time from the top
of the heap. If e is unmarked, then the two triangles of 2.7
sharing e are paired up to form a quad, and all unconstrained
edges of this quad are marked. However, if the quad is not
strictly convex, the pairing is discarded. The procedure ends
when H is empty, and it may leave several unpaired trian-
gles.

Let .# be the collection of triangles and quads result-
ing from the pairing procedure. Regardless of whether .#
consists of quads only, each triangle or quad in .# is sub-
divided into a small and fixed amount of quads to produce
an all-quad mesh. The subdivision of a triangle (or a quad)

(@) (b) © (d)

Fig. 8 Templates for the canonical (a) triangle and (b) square subdivi-
sions, and the uniform subdivisions of the canonical (c) triangle and (d)
square for defining the control net of triangular and rectangular Bézier
patches.

into quads is based on the templates shown in Figures 8(a)-
(b). More specifically, each template is a fixed subdivision
of a canonical triangle or square, which is then mapped
by an affine map or a bilinear map to triangles or quads
in ., respectively. After mapping the canonical templates
to the triangles and quads in .#, we obtain a quadrangula-
tion, 2, that conforms to the edges of G’ and respect the
triangle mesh partition, i.e., every edge of G’ is either an
edge or a union of edges of 2. Furthermore, we have that
|2| =|2.7'| and that the partition is preserved (see Fig-
ure 7(a)).

5.4 Optimization-Based Smoothing

The final stage of the remeshing step carries out two inter-
related tasks. First, the quad mesh, 2, resulting from the
previous stage is adapted to the image object boundaries,
i.e., to the original polygonal curves from Cg (see Sec-
tion 5.2). By adapting, we mean to move mesh vertices to-
ward the original polygonal curves of Cg. As a result the
quad mesh of each mesh partition element faithfully approx-
imates its corresponding region defined by the PSLG G. Sec-
ond, the quality of the adapted mesh quads is improved by
a new optimization-based relaxation. Both tasks are related
with each other by the fact that we adapt and optimize the
mesh by moving mesh vertices with the guidance of Bézier
surface patches.

5.4.1 Boundary Adaptation

Recall that every quad of 2 belongs to either a triangle or
a quad from the mesh .# resulting from the triquad proce-
dure (see Section 5.3). To move the vertices of 2, we assign
a triangular Bézier patch b of total degree 3 to each trian-
gle ¢ in . . Similarly, we assign a rectangular Bézier patch
by, of bi-degree (3,3) to each quad u in .. The patch bs
(resp. by) is responsible for guiding the movement of the
mesh vertices of the quads inside triangle ¢ (resp. quad ).
Since 2 is a planar mesh, and since each bs (resp. by) is
a mapping from a canonical triangle (resp. square ) in R?
to R3, we regard all vertices of 2 as points in the xy plane
of R3, and set the z coordinate of all control points of bs
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(resp. by) to 0. So, vertex movements are constrained to the
xy plane.

To compute the control points of each b, we distinguish
two cases. If o does not contain any c-edge of G, then we
uniformly subdivide the canonical triangle ¢ associated with
bs as shown in Figure 8(c), and let the control points of bs
be the image of the subdivision vertices under the affine map
that takes 7 onto ©. If ¢ contains a c-edge of G/, then we pro-
ceed as in the previous case, and then consider each c-edge e
of 0. From the simplification stage, c-edge e is an edge of a
simplified polygonal curve from C, which corresponds to a
chain of consecutive edges of a polygonal curve, say /, from
Cg. So, we redefine the control points of bs in e in such a
way that the boundary (Bézier) curve of bs closely approxi-
mates / as shown in Figure 9. The same is done for each by,
except for the facts that if yu does not contain a c-edge, then
we uniformly subdivide the canonical square g associated
with by, (see Figure 8(d)), and let the control points of b, be
the image of the subdivision vertices under the bilinear map
that takes g onto tt. In what follows b; denotes both by and
by.

As we saw in Section 5.2, a c-edge can share a vertex
with one or more c-edges. If exactly two c-edges meet at
a given vertex, we assume that their corresponding Bézier
curves should meet with tangent continuity at that vertex.
The only exception is when the vertex is explicitly marked
as a “sharp” corner. In this case, we assume that the cor-
responding Bézier curves should meet with C°-continuity
only. Currently, we manually mark the vertices we consider
sharp corners. But, for the time being, this fact is not im-
portant. Whenever three or more c-edges meet at a vertex,
we assume that the vertex is a sharp corner, and proceed as
before. In what follows, we discuss how to redefine the con-
trol points of the boundary Bézier curves in order to achieve
tangent continuity. The case for C*-continuity is similar (and
easier).

First, assume that exactly two c-edges meet at every ver-
tex of G, and that no vertex is marked as a “sharp” corner.
Then, to redefine the control points of the boundary Bézier
curve of b; associated with each c-edge e, we solve a curve
fitting problem, which can be regarded as a least squares
with equality constraints (LSE) problem. More specifically,
let

be:[0,1] = R?

be the boundary cubic Bézier curve of b; associated with e.
Then,

3
be(1) =Y B} (1)- b,
i=0

for every t € [0, 1], where B3(t), for every i € {0,1,2,3}, is
the i-th Bernstein polynomial of degree 3. Now, given a list
(t;)i of n+ 1 parameter values in [0,1] C R, where n € N,
n>4,1=0,1=1,andt; <tj, forevery j € {0,...,n—

Fig. 9 A Bézier patch that locally approximates a polygonal curve.

1}, alist (p;)'_, of n+ 1 points in R?, and two unit vectors,
n; and n$, our fitting problem consists of finding the “best”
b4(t) (in the least squares sense) satisfying two conditions:
(1) the control point bf (resp. b§) of b5 (t) is the point pg
(resp. pn), and (2) the control point b{ (resp. b5) must lie in
the line by b, (resp. b5) and perpendicular to n§ (resp. ng).
So, we are left with the problem of finding the control points
b$ and b5.

To solve the above fitting problem, we define two sys-
tems of linear equations, Kx = f and Cx = d. The former
system is assembled from n + 1 equations in four unknowns,
namely:

2
Y B (1) b5 = pi— (BY(1;) - b + B3 (1) - b5) ,
Jj=1

for all i € {0,1,...,n}, where the four unknowns are
(b1 1,1 ) and (b5 .5 ), the x and y coordinates of 5] and
b5, respectively. More specifically, matrix K has (2n+ 1)
rows and 4 columns, and the (2i+ 1)-th and (2i +2)-th rows
of K are
[Bi(ti) B3(t;) 00] and [00B(5) B3(t;)] ,

respectively. In turn, vectors f and x have 2n+ 1 and 4 ele-
ments, respectively. The (2i+ 1)-th and (2i 4 2)-th elements
of f are

Pix— (Bg(ti) ) 6,x+B%(ti) ’ g,x)
and
piy— (By(t:) - bl + B3 (1) -5,

where p; », bf),x’ and b5 . (resp. pjy, bf)_y, and bgy ) are the
x (resp. y) coordinates of p;, b, and b§. Finally, vector x is
given by

[ e e e e
1,x 2.x Ly 2.y

]T

In turn, the linear system Cx = d is assembled from two
linear equations in two unknowns each, both of which arise
from

<n8,bi—b8>=0 and <n§ab§_b(e)>:07
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where (-,-) denotes the dot product in R In particular, we
have

o [ 0 om0 [ (mgb)
0 ng,x 0 ng,y 7 <n§’b§> 7

where (n§ ,,ng ) and (n§ ,nS ) are the coordinates of nf
and nf, respectively. Note that Cx = d represents the con-
straints: b{ (resp. b%) is a point in the line by bf (resp. b%)
and perpendicular to n§ (resp. n$). Since Kx = f is overde-
termined, we solve our problem by finding the vector x that
minimizes | Kx — f||2 subject to Cx = d. To that end we used
the direct-elimination method as described in Chapter 21
of [20].

For our purposes, the set of points (p;)?_ is simply the
set of vertices of the polygonal chain / associated with the c-
edge e, while the set of parameter values, (#;)}"_,, is obtained
by a chord length parametrization of the vertices (p;)?_, of
[ over e:

1p=0 and 1;=tj +7||pj_pj_1” ;
[IPn = poll
for j € {1,...,n}. In turn, n§ and n§ are defined in such a

way that b$ meets its adjacent curves in a tangent continuous
manner. More specifically, each polygonal curve ¢ from Cg
is the union of one or more polygonal chains, each of which
corresponds to a c-edge e of G'. So, the entire curve c is
approximated by a set of Bézier curves. We assumed that the
boundary Bézier curves should meet each other with tangent
continuity at the endpoints of each polygonal chain / (see
Figure 9).

To enforce tangent continuity, we proceed as follows: let
¢’ be a c-edge in G’ adjacent to e at bf = bg’, and let v be a
triangle (or quad) of .# incident to ¢’. Then, b$ and bf,’ will
meet at bt = bgl with tangent continuity iff b{, b = bg/, and
bg are points along the same line in R?. So, we choose ny =
ngl. Similarly, we let n§ = nf)”, where ¢” is the c-edge that
meets e at b = bg”. To compute ng (and ng/), we consider the
vectors, m, and m,, perpendicular to e and ¢, respectively,
and oriented in a consistent manner (i.e., with respect to an
orientation given to curve ¢). Next, we let njj (and ngi/) be the
vector ’

We compute n§ = n(e)” in the same manner. The above strat-
egy is well-defined, except for the case in which an endpoint
of e is a meeting point of three or more edges of G'. But,
then, the vertex is a sharp corner, and we will deal with this
case later.

From the definition of the control points of the Bézier
patch bs (resp. by) associated with each triangle o (resp.
quad p) of .#, the boundary Bézier curves of adjacent
patches are exactly the same (i.e., they have the same control

1

3 (me+my)/ H; -(me+my)

points). This is obviously true for the boundary curves as-
sociated with c-edges. For the curves associated with edges
that are not constrained, our claim follows from the facts that
(1) the curve control points are placed along the edges, and
(2) they are images of canonical triangle (resp. quad) sub-
division vertices under an affine (resp. bilinear) map. But,
both affine and bilinear maps preserve distance ratio along a
line.

Now, let us consider the case in which a vertex is a sharp
corner. A vertex is a sharp corner if it is the meeting point of
three or more c-edges, or if it is the meeting point of exactly
two c-edges, but it has been explicitly marked as a sharp cor-
ner. In either case, we only require the curves to meet with
CP-continuity. Fortunately, all we have to do is to choose an
arbitrary normal to each c-edge at the common vertex, and
then solve the same problem as before. In our implementa-
tion, we choose one of the two normals of the c-edge itself
to be the normal at its endpoints. Since the normals defined
by the c-edges at any meeting vertex are not necessarily the
same, the solution of the LSE problem ensures C°-continuity
only.

5.4.2 Optimization

The goal of the optimization task is to improve the shape
quality of the quads of 2. Recall that each quad of 2 is the
image of a quad defined in a canonical triangle or quad in
# . Triangular and rectangular Bézier patches are also de-
fined on the canonical domain. So, each vertex of 2 can be
written in terms of the Bézier patches and by imposing that
adjacent Bézier patches share the same cubic Bézier curve,
one can modify the quad mesh 2 by moving the control
points of the patches.

To improve the shape qual-
ity of the quads of 2, we judi-
ciously move the control points
of all Bézier patches to improve
the shape quality of all quads
with respect to the quadrilateral
shape quality measure called
Shape and Size [17]. Let g be
a quadrilateral of Q. Then, the
Shape and Size metric for ¢q is
Ay -S4, where A, is the area of g and S, is defined by the
formula

0o o
Lol 1+ |Za] 12 [[La|[* + [ Lol [*’

Sq:2~min<

(0%) (04} )
L2l + (L1 27 [1L3] P + |IL2> )

where ¢; is the area of the i-th quadrilateral in the figure
above, and L; is the length of the j-side of ¢, for i, j =
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Fig. 10 An optimized template-based quad mesh.

1,2,3,4. The subdivision shown in the figure is obtained by
addding line segments connecting the barycenter of g to the
midpoints of its sides. In general, we can view the shape
measure as a function, s : 2, — [0, 1], where 2, is the set
of quads of 2. Function s is defined in such a way that for
each quad v € 2, the larger the value of s(v) the better the
quality of v. Therefore, the optimal positioning of the con-
trol points can be found by minimizing the following energy
function:

Y, (1-s(v))?,
veZ,
To this end, we used Powell’s method [25] defined on the
space of the coordinates of the control points. Because the
total number of control points is smaller than the number of
vertices in 2, the proposed optimization mechanism turns
out to be more effective than directly using the coordinates
of the quad vertices.

In order to avoid folding (inversion of a quad element), a
control point movement must be feasible, i.e., every control
point must be in the interior of the polygon defined by its
adjacent control points in the Bézier control net. This con-
straint is imposed when applying Powell’s method. Our pro-
cedure is iterative and runs until g is below a predefined
threshold or the number of iterations exceeds another pre-
defined threshold. Figure 10 shows the mesh resulting from
applying the optimization mechanism to the mesh of Fig-
ure 7(b).

qs =

6 Experimental Results

This section presents and discusses the results of applying
our new template-based quadrilateral meshing approach to
five images, which are called Lake, Pyramid, Hub Wheel,
Portico and Wrench (see Figure 11). Lake and Pyramid be-
long to the Berkeley Segmentation Dataset'. Hub Wheel is a
range image from the Stuttgart Range Image Database?. Por-

! http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
2 http://range.informatik.uni-stuttgart.de/htdocs/html/

tico is a photograph from the portico of the city of Gramado,
RS, in Brazil. Wrench is an artificial image we generated for
this paper.

All experiments were conducted in a PC with one Intel
Core 17-975 3.3GHz processor with 3GB RAM. To evaluate
the quality of the meshes generated by our new approach, we
used an implementation of the Shape and Size quadrilateral
quality metric available in the VERDICT library".

The colored squares in Figures 11(a) and 11(b) corre-
spond to samples used by the built-in texture classifier of
Imesh. Each color represents a distinct image region of in-
terest (label). Five and four distinct regions of interest are
defined in Figures 11(a) and 11(b), respectively. Since the
three regions in Figure 11(c) and Figure 11(e) can easily be
identified by thresholding, there is no need for using a tex-
ture classifier. Since a ground truth segmentation was avail-
able for Figure 11(d), we decided to use it so as to show
how well boundaries can be preserved by Imesh. In order
to preserve the sharp corners in Figures 11(d) and 11(e),
we only required the Bézier boundary curves meet with C0-
continuity at the corresponding vertices (see Section 5.4.1
for details).

Figure 12 shows the quadrilateral meshes resulting from
applying our approach to the images in Figure 11. The quad
meshes were generated from the triangle meshes in Fig-
ure 13. Observe that the segmentation provided by Imesh is
naturally preserved by the proposed quadrilateral meshing
step. Moreover, as a consequence of the boundary adapta-
tion and smoothing mechanisms, curves between distinctly
labeled regions are precisely represented. Furthermore, the
“jagged” effect that usually appears in triangle meshes gen-
erated by the original version of Imesh is not present in the
quad meshes.

Figure 15 shows histograms from quality measurements
involving the meshes presented in Figure 12. The verti-
cal dashed line represents the lower bound (value equal to
0.2) for quadrilateral shape quality measure. A quad ele-
ment with quality measure value below this lower bound is
considered of poor-quality according to the Shape and Size
measure [17]. Reddish and blue vertical lines correspond
to element quality measures before and after the smooth-
ing step, respectively. Note that the proposed optimization-
based smoothing mechanism was able to improve mesh
quality considerably, avoiding bad elements altogether. This
fact can also be observed in the fourth column of Table 1,
which presents the quality measure of the worst element of
the quad meshes in Figure 10 and Figure 12. The fifth and
sixth columns confirm the effectiveness of the smoothing
mechanism, showing that, on average, the quality measure
is above 0.8.

The number of vertices and quadrilaterals of the meshes
presented in Figures 10 and 12 are in the first and second

3 VERDICT - http://cubit.sandia.gov/verdict.html
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- »
(a) Lake

(b) Pyramid

(¢c) Hub Wheel

(d) Portico

(e) Wrench

Fig. 11 Images used in our experiments. Colored squares in (a) and (b) correspond to samples used by the built-in texture classifier of Imesh (each

color corresponds to a label).

columns of Table 1. The computational times in the third
column are quite acceptable for an approach that gener-
ates good quality quadrilateral meshes. We remark that the
optimization-based smoothing is the most time-consuming
step of our approach, representing 98% of the total compu-
tational time.

The ability of representing image region boundaries and
adapting the size of mesh elements locally are important fea-
tures of our quadrilateral meshing approach. Such features
can easily been seen in Figure 16, which shows quad meshes
with adaptively sized elements for the Hub Wheel image
(Figure 11(c)). Even for the coarser mesh, which contains
about 1.2K vertices, our meshing approach was able to sat-
isfactorily represent image region boundaries. It was also
able to adapt quad sizes to capture the small chink in the
lower part of the Hub. It is worth mentioning that finer quad
meshes may be obtained by simply adding new triangles in
97" before triggering the pairing process and the template

mapping.

6.1 Parameters

We carefully chose the amount of boundary simplification
in order to preserve the topology of the image region bound-
aries (i.e., the PSLG G and G’ must remain isomorphic).
To enforce topology preservation, we set a lower bound for

(a) b

Fig. 14 (a) Delaunay triangulation from a PSLG obtained from Fig-
ure 5(a) using one pixel as boundary simplification parameter. (b) The
final quad-mesh generated from (a).

the number of pixels contained in each image region delim-
ited by the simplified curves. In Figure 14(a), we show the
cashew setting one pixel of distance in the boundary simpli-
fication step. In Figure 14(b), shows the resulting quad mesh
obtained from the triangulation depicted in Figure 14(a).
We set the lower bounds of 9, 4, 4, 4, 2 and 9 pixels for
the images Cashew, Lake, Pyramid, Hub Wheel, Portico and
Wrench, respectively. We used the 4-subdivision templates
(Figures 8(a)-(b)) in all examples, except for the Hub Wheel
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(c) Hub Wheel

(d) Portico

\ [ T 1
(e) Wrench

Fig. 12 Quad meshes resulting from the images in Figure 11. The meshes are already segmented, avoiding any post-processing step.

with 1.2K quads, where we used 2-subdivision templates.
Finally, to roughly define the density of each mesh, we
set Ruppert’s refinement quality threshold to 20.7°, 20.7°,
20.7°, 18°, 18°, 26.5°, 30°, 20.7° and 20.7° for the Cashew,
Lake, Pyramid, Hub Wheel images (with 1.2K, 5K, 7K and
10K quads), Portico and Wrench, respectively.

Table 1 Number of vertices and quads (first and second columns),
computational times (third column), and quality measures (fourth to
sixth columns) — minimum (min), mean values and standard deviation
(s.d.) — for the meshes in Figures 10 and 12.

#vert #quads  meshing min  mean  s.d.
(seconds)
Cashew 1173 1120 1.8 0.227 0.868 0.088
Lake 4735 4588 17.8 0.201  0.873  0.089
Pyramid 2991 2916 7.7 0215 0.876  0.098
Hub 7307 7220 29.7 0.211 0900 0.076
Portico 8977 8880 36.6 0.202 0.872  0.094
Wrench 1123 1084 2.1 0.269 0.861 0.085

We conclude our discussion showing a comparison be-
tween our quadrilateral meshing approach and the quad
meshing algorithm, called CQMesh, described in [27].
CQMesh generates quad meshes of planar domains defined

(c) 10K

(a) 12K (b) 5K

Fig. 16 Quad meshes generated from the Hub Wheel image: a) 1.2K
vertices, b) 5K vertices, and c¢) 10K vertices.

by PLSGs by applying a clustering-based indirect approach
coupled with Laplacian smoothing as a post-processing step.
Figure 17 shows the 1.2K Hub Wheel quad mesh produced
by both approaches. Since most vertices in that coarse mesh
are constrained by the boundary curves, the control point-
based optimization barely affects the mesh quality. Even so,
our proposed approach was able to produce a better quality
quad mesh, as one can see in Figure 17(a). The computa-
tional times, in seconds, to generate the meshes in Figure 16
are in the second column of Table 2. Computational times
for CQMesh are shown in the third column. Quality mea-
sures are presented in the two last columns. As we can see,
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(a) Lake (b) Pyramid
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(c) Hub Wheel
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Fig. 15 Quality histograms for the meshes in Figure 12. Vertical dashed lines indicate the lower bound below which a quad element is considered
of bad quality. Reddish and blue vertical lines correspond to mesh quality measures before and after the smoothing step, respectively.

Table 2 Computational times (in seconds) and quality measure of the
worst quality mesh elements produced by Imesh and CQMesh from the
Hub Wheel image.

#cells Imesh CQMesh  Imesh CQMesh
times times quality  quality
1.2k 3.4 1.7 0.276 0.08
Sk 16.9 13.9 0.211 0.04
10k 39,2 23.0 0.212 0.03

although slower than CQMesh, our quadrilateral meshing ap-
proach was able to produce meshes with superior element
quality.

We finally remark that the template-based meshing strat-
egy used by our approach can be naturally extended to gen-
erate triangle meshes from imaging data as well. All we have
to do is to use templates made out of triangles instead of
quads. Figure 18 shows a triangle mesh of the Hub Wheel
image which was produced with templates made out of tri-
angles. It is worth noticing that the boundary simplification
and mesh optimization steps of our quad meshing approach
were used as they are. The ability of generating triangle
meshes with no extra effort certainly adds to the flexibility of
the template-based meshing strategy of our approach. How-
ever, we need to further investigate the quality of the gen-
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Fig. 18 A triangle mesh produced with templates made out of trian-
gles.

erated triangle meshes in order to incorporate the template-
based strategy into Imesh to also generate triangle meshes.

6.2 Limitations

Although our proposed approach can produce good-quality
quadrilateral meshes, it currently has a few limitations. As
we mentioned earlier in Section 5.2, we do not have an auto-
matic procedure for selecting a value for the quality thresh-
old, 4, of Ruppert’s algorithm in the template-mapping step
of our approach. We experimentally noticed that a value in
the range [18°,21°] was able to eliminate poor-quality trian-
gles without producing an excessively fine triangle mesh.
In fact, a value from this range was used by all exam-
ples presented in this paper, except for the very dense Hub
Wheel meshes shown in Figure 16(b) and Figure 16(c). In
both cases, we intentionally generated dense quadrilateral
meshes. We believe, however, that it is possible to design

an automatic procedure to select an appropriate value for #,.
We intend to investigate the possibility of defining a spacing
function from the PLSG G’ or from a quadtree background
mesh [39].

Our proposed approach does not come with any theoret-
ical guarantee on the quality of the produced meshes. In par-
ticular, we cannot assure that a better quad mesh will result
from a denser and better-quality triangle mesh. However,
we believe that a more powerful triangle-pairing procedure
could enable us to establish a relation between the quality
of the input triangle mesh and the quality of the output quad
mesh. Indeed, in a recent work [40], we designed a qual-
ity metric for pairing triangles on a triangle surface mesh.
The proposed metric was combined with a graph-based ap-
proach for pairing triangles. This approach allows us to find
the pairing that maximizes the total sum of the metric val-
ues among all possible pairings. The same approach can be
adapted to dealing with the planar case. It remains to be
shown that a better input triangle mesh yields a better op-
timal pairing.

7 Conclusions

This paper described a novel approach for generating
quadrilateral meshes from imaging data, which can be re-
garded as a replacement for the mesh improvement step
of Imesh. Our approach is able to generate quad-only
meshes, while preserving boundaries and regions defined in
the first steps of Imesh. To produce good quality meshes,
our approach is accompanied by a new optimization-based
smoothing procedure, which moves mesh vertices around
guided by changes of control points of Bézier patches de-
fined on the mesh domain. By changing the location of mesh
vertices via control points, our procedure reduces computa-
tional effort. We generated quadrilateral meshes from sev-
eral kinds of digital images. The meshes produced by our
approach indicate that our smoothing procedure is also quite
effective.

In addition to generating good quality quadrilateral
meshes, our approach also produces segmented meshes as
a by-product of the mesh generation process. To the best of
our knowledge, no other meshing approach generates good
quality, segmented quad meshes directly from images (i.e.,
without the need for a preprocessing image segmentation
step).

We are currently investigating how to tailor templates so
as to reduce the number of extraordinary vertices (i.e., ver-
tices with valence other than four) in the final quad mesh.
We intend to incorporate a corner detection algorithm to the
boundary adaptation and simplification step, so that we can
automatically decide which Bézier curves should meet with
CY continuity at common vertices. We are also interested
in proving lower and upper bounds for the internal angles
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of the resulting quadrilaterals. Finally, we are looking into
ways of extending some of the ideas presented here to ap-
proaches for generating hexahedral meshes from 3D imag-
ing data.
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