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Abstract

Spatial sampling methods have acquired great popularity due to the number of
applications that need to triangulate portions of space in various dimensions. One
limitation of the current techniques is the handling of the final models, which are
large, complex and need to register neighborhood relationships explicitly. Addition-
ally, most techniques are limited to Euclidean bidimensional or tridimensional spaces
and many do not handle well adaptive refinement. This work presents a novel method
for spatial decomposition based on simplicial meshes (the J{* triangulation) that is
generally defined for Euclidean spaces of any dimension and is intrinsically adaptive.
Additionally it offers algebraic mechanisms for the decomposition itself and for defi-
nition of neighbrs that allow to recover all the information on the resulting mesh via
a set of rules. This way it is possible to balance the cost of storage and manipulation
by calculating the needed information instead of storing it. Results additionally show
good quality meshes with efficient calculation.



1 Introduction

The iso-surface extraction problem has achieved large popularity over the last two decades.
The interest in this subject is motivated by the large number of applications that rely on
iso-surfaces as a mechanism to investigate surface reconstruction, solid modelling, and
visualization from images.

Different strategies have been proposed to generate iso-surfaces from volumetric data,
which can be grouped in three main categories [1]: surface fitting, surface tracking, and
spatial sampling. Surface fitting methods aim at progressively adapting an initial ap-
proximation to the desired iso-surface [8, 10]. Surface tracking techniques make use of
continuation methods to approximate the iso-surface from a seed [13]. The most popular
iso-surface extraction methods belong to the spatial sampling category, which generate an
approximation of the iso-surface by decomposing the domain in a finite number of cells
[14].

One of the most famous spatial sampling method is marching cubes [14], which works on
a regular hexahedral grid decomposition of a region of interest and builds a triangulation
by computing the intersection between the grid and the iso-surface of interest. Although
very popular, the marching cubes algorithm presents some of the intrinsic problems of
spatial sampling techniques, particularly ambiguity in the triangulation and large number
of triangles.

Ambiguity appears because certain configurations of cubes allow more than one choice of
triangulation, producing holes in the final surface. Several methods have been proposed
to overcome the ambiguity problem [17], as for example to decompose the hexahedral cells
in tetrahedra [12]. The main problem with tetrahedral decomposition is the even larger
number of triangles produced [9)].

The number of triangles is usually not critical for surface fitting and surface tracking
techniques, as they handle this problem through adaptive mechanisms [11, 1]. Adaptive
schemes allow to keep the density of the mesh under control. However, they are not so
common in spatial sampling methods. Memory requirements, the data structures involved
and their complex implementation are some reasons for avoiding adaptive schemes in
spatial sampling methods.

In this paper we introduce a new adaptive spatial sampling method, called the J{ tri-
angulation. Based on an algebraic framework, the J{ handles an adaptive tetrahedral
decomposition in any euclidean space, with low cost of memory and very simple data
structures.

Another important contribution of this work is the criterion used to adapt the triangu-
lation. Our approach provides a refinement mechanism based on submanifolds, i.e., the
piecewise linear manifold that approximates an implicity manifold can be refined around



implicitly defined submanifolds. The methodology proposed here is efficient for modelling
objects obtained by user-defined mathematical functions as well as for the reconstruction
from real data.

This work is organized as follows: Section 2 presents a brief description of related works.
In Section 3 we introduce some basic concepts necessary to understand the subsequent
sections. Section 4 describes the J{ triangulation and its properties. The adaptive mecha-
nism is presented in Section 5. Some computational results that illustrate the applicability
of the proposed framework are shown in Section 6. Finally, conclusions are presented in
Section 7.

2 Related Works

In this section we present previous work on spatial decomposition. For each work we
emphasize the strategy used for decomposition, the adaptive mechanisms applied (when
present) and how the neighborhood relationship among cells is obtained by them.

In general, iso-surface extraction based on sampling methods employ cubes or tetrahedrons
as basic cells and evaluate the sign of a potential field at the vertices of the cells to define
a configuration from which the polygonal approximation of the iso-surface is produced [4].

Spatial sampling methods that utilize tetrahedrons generally start from a cubic grid and
generate a tessellation of the space either by decomposing each cube in a set of tetrahedrons
as in the work by Guéziec and Hummel [12] or by constructing the tetrahedral tessellation
from the vertices contained in the cubic grid as presented in other works [21, 7]. An
important fact that deserves attention is that the quality of the tetrahedral tessellation of
the domain depends on the type of decomposition employed, affecting the polygonization
for the target surface.

As pointed out by Chan and Purisima [7], the type of tetrahedral decomposition named
body-centered, which has the center of a cubic unit as a vertex of the tetrahedral mesh,
has advantages when compared to other types of decompositions, such as the classic cubic
subdivision in tetrahedrons (vertices of tetrahedrons are the vertices of the unit cube) and
the face-centered subdivision (new vertices are added in the center of each face of the unit
cube). A detailed description of these decompositions can be found in the book by Mckie
and Mckie [15]. The main advantages of the body-centered decomposition are its degree
of regularity and the good ratio between the lengths of the longer edges and the lengths
of shorter edges. That feature imposes a better quality for the body-centered tessellation,
resulting in a more appropriate polygonal approximation of the iso-surface. These nice
properties have motivated the use of body-centered decomposition in several recent works
[21, 7].

As already mentioned in the introduction, an adaptive mechanism can be a powerful tool



to reduce the number of elements in the polygonal approximation of an iso-surface. It is
not very common for strategies based on sampling methods to employ adaptive schemes to
extract iso-surfaces. One of the main reasons for this is the fact that it can be difficult to
combine elements in different levels of refinement without introducing cracks [20]. Another
reason that discourages the use of adaptive schemes with sampling methods is the difficulty
to control the neighborhood relationship among elements, an essential feature to allow
efficient traversal through the tessellation [2].

In general, the combination of elements in different levels of refinement is done by imposing
that adjacent elements stay in consecutive refinement levels [23], i.e., if an element of the
decomposition is at level i then its neighbors are at levels i —1, i or i+ 1 (this notation only
makes sense in decomposition from cubic grids). This restriction on the level of refinement
of the neighbor elements allows that the decomposition be done in a more effective way,
as shown in various works [16, 5].

The literature has presented several approaches to deal with the neighborhood relationship
of elements in a tetrahedral decomposition, namely: labelling schemes [12, 21], topological
data structures [2], and spatial partition trees [16]. The last two are commonly employed
in adaptive tetrahedral decomposition of complex domains, for instance, those utilized in
finite elements problems. In handling regular domains, labelling schemes are more attrac-
tive, since they offer a traversal mechanism that saves memory while allowing efficient
access to neighboring elements. The main problem with labelling schemes is that they are
not easily conceived to adaptive decompositions. This is a shortcoming handled efficiently
by the work presented here.

The J}' triangulation presented in this paper is an adaptive domain decomposition that
starts from an adaptive cubic grid and generates a simplicial tessellation of the domain,
which is a hybrid of the body-centered and face-centered decompositions. This hybrid
approach produces a decomposition with good quality in any euclidean space R, which
can be employed in a variety of applications, from implicit manifold reconstruction to
extraction of iso-surfaces from images. An important aspect of the J{ triangulation is
that its simplices can be defined through an algebraic mechanism, resulting in very large
memory savings. Besides this algebraic mechanism to specify the simplices, the Ji tri-
angulation offers a labelling scheme for traversing and accessing, in any dimension, the
neighborhood relationship of any simplex contained in the decomposition. As opposed to
other approaches that handle multiple dimensions ([3, 18]), the adptive mechanism intrin-
sic to Jf is applicable to any dimension. Therefore, the Ji' triangulation comprises the
good properties of adaptive tetrahedral decompositions with the advantage of being valid
in euclidean spaces of any dimension.



3 Basic Concepts

This section introduces the basic concepts and terminology used in the remaining of the
text. Definitions and results presented in this and the following sections are restricted to
m-dimensional Euclidean spaces.

Let S = {vp,v1,...,v,} beaset of points in R™. Theset c = {v € R™;0 = Y"1 ( A\vi, 2 i g Ai =
1 e A; > 0} is called a convex cell generated by S. The dimension of ¢, denoted dim(c),
is the number of linearly independent vectors in the set {vg — v1,...,v9 — vy }.

A cell decomposition of K C R™ it is a finite collection C of convex cells satisfying:

1. K = Uccc;

2. if ¢1, ¢ € C, then either ¢ Ncg = P or ¢;1 Neg €C.

A cell decomposition C of K C R™ is a n-dimensional piecewise linear manifold (n-

dimensional PL-manifold) if each vertex v; (0-dimensional cell), |J¢; is homeomorphic to
C; DV;

an n-dimensional sphere, where c; are the n-dimensional cells containing v;. From such

a definition we have that each (n — 1)-dimensional cell in C is contained in one or two

n-dimensional cells of C.

The boundary of a n-dimensional PL-manifold C is the set of (n — 1)-dimensional cells
that are contained in only one n-dimensional cell of C.

A k-simplex in R™ is a convex cell of dimension k& generated by k + 1 points S =
{vo,...,vx} of R™. Each subset of S generates an [-simplex that is called an [-face (or
face for short) of the original simplex. In particular, O-simplices are called vertices, 1-
simplices are edges, 2-simplices triangles, and 3-simplices tetrahedra. A triangulation
of a set K C R™ is a cell decomposition T" where each cell of T' is a simplex. If T is a
PL-manifold then it is called a triangulated PL-manifold.

Each point v contained in a m-simplex ¢ = [vg,...,v,] € T can be uniquely written
m m

by v = > \wv;, where Y>> A; = 1 and A; > 0, i = 0,...,m. That way, given a map
i=0 i=0

F: K CR™— R"™ and a triangulation 7" of K, we can define the affine map F, : ¢ — IR"
as follows:

m m
Fa(’l)) = FJ(Z )\zvz) = Z )\ZF(UZ)
i=0 i=0
where 0 = [vg, ..., v,] € T. It is easy to see that F, is a linear interpolation of the values

of F' in the vertices of o.

;From the above, we can define a piecewise linear approzimation (PL-approximation)



Fr: K C R™ — R"™ for F as follows:
Fr(v)=F,(v); veoeT

That way, Frpr is a linear interpolation of the values of F' in the vertices in T

4 J{ Triangulation

In this section we present the J}' triangulation and the algebraic mechanism that allows the
implicit representation and traversing of its simplices. In order to improve understanding,
we try to outline the main ideas through examples in two or three dimensions.

4.1 Description

Let I = {I1,...,I,,} be a set of m closed intervals in R, i.e., I; = [a;,b;]. A hypercube
D™ C R™ is defined as the product of the intervals in I, i.e., D™ = I; X ... X I,.

A k-dimensional face f of D™, k < m is the product of a subset of intervals S C I
with the ends of the interval in I — S, ie., f=1; x--- X I;, X aj xX---Xaj ,, where
{il, e ,ik} N {jl, . 7jm—k} =, {il, R ,ik} U {jl, R 7jm—k} = {1,2, e ,m}, and either
aj, = aj, or o, = bj,.

For instance, in R? a hypercube is a cube, such as the one in Figure 1, where I; =
[a1,01], 1o = [a2,bs] and I3 = [as,bs]. Figure 1 also presents examples of 2—, 1—, and
0—dimensional faces. For the 2—dimensional face fi in Figure 1, f1 = [a1, b1] X [ag, b3] X bs.
In this case i1 = 1,i = 3 and j; = 2. Here we have {i1,i2} N {j1} = &, {i1,i2} U
{j1} = {1,2,3} For the 1—dimensional face fs in Figure 1, fo = [ag,bs] X by X bg and
i1 = 2,71 = 1 and jo = 3. Here we have {i1} N {j1,jo} =<, {in} U {j1,72} = {1,2,3} For
the 0—dimensional face f3 in Figure 1, f3 = a1 X as X b3 and j; = 1,jo = 2 and j3 = 3.
Here we have, {j1, 72,73} = {1,2,3}

A refinement of D™ is a decomposition D" = D" U D3* U ... U D3}, in 2™ identical
hypercubes such that D;" N D" = f, where f is either empty or a common face of D;"
and D7, j # i. Note that the refinement can be seen as a recursive process, i.e., each D}"
can also be refined. The initial hypercube is called a 0-block and a hypercube generated
by the refinement of a i-block is called (i + 1)-block. A set of blocks generated from this
recursive refinement scheme is called a grid in R™, denoted G.

In order to define the adaptive scheme of the J{ triangulation correctly, it is necessary to
restrict the blocks of a grid G in such way that every i-block, i > 0, of G is adjacent to
only (¢ —1),7 and (i 4+ 1)-blocks (and 0-blocks are only adjacent to 0 and 1-blocks of G).
Therefore, the refinement of a i-block may imply in the refinement of neighbor blocks in



Figure 1: Examples of k—dimensional faces in R?

order to satisfy this restriction. In the remaining of the text we assume that all grids in
satisfy the restriction.

If an i-block is not adjacent to (i 4 1)-blocks then it is called basic block. Otherwise, it is
called transition block. Transition blocks are responsible for the connection among basic
blocks in different levels of refinement. Figure 2 shows a two-dimensional grid containing
blocks in three levels of refinement.

Figure 2: Basic (white) and trasition (gray) blocks in a Level 2 refinement of grid.

A particularly important hypercube in R™, called standard hypercube, is generated by
the product of intervals centered in the origin with length 2, i.e., D™ = [—1,1] x [-1,1] X

x [—1,1]. This kind of hypercube is important because all other hypercubes in R™ can
be obtained from it by translation and scaling and its faces can be labeled in a straight
way: if the coordinate axis of R™ are denoted by {1,2,...,m}, then an m — 1-face of D™
is marked with the label i, i = 1,...,m if it intersects the positive part of the i*" axis.
Otherwise, if it intersects the negative part of the i** axis, it is labeled —i. The label of the



(m — k)-faces, 1 < k < m, are derived from the labels of the (m — 1)-faces in accordance
with their intersections. For example, in Figure 3, the highlighted vertex and edge are
labeled {—2,1,3} and {1,2} respectively as they are generated by the intersection of the
2-faces {—2},{1},{3} and {1}, {2} respectively. Note that the label of a i-face is a set of
numbers without ordering, i.e., the label {1,2} can also be represented by {2,1}.

Figure 3: Labeling the faces of a standard hypercube.

A standard hypercube D™ in R™ can be decomposed in a set of simplices through an
algebraic process that encapsulates their geometrical information. This decomposition is
produced by combining, in an appropriate way, the vectors of the canonical basis. In

order to describe this combination, suppose that S™ = {s1,...,som} is the set of all
m-dimensional vectors in R whose components are 1 or —1 and B™ = {eq,...,en}
is the canonical basis of R™. Also suppose that II" = {m,..., 7} is the set of all
m-dimensional vectors generated by permuting (1,2,...,m). For example, in R2?, §? =
{(1,1),(=1,1),(1,-1),(~1,-1)}, B* = {(1,0),(0,1)} and I1*> = {(1,2),(2,1)}. Each
s; € S™ and 7; € II™ gives rise to a m-simplex contained in D™ whose vertices [vo, .. . , U]

are obtained as follows:

Vo = (0,...,0)

7l
vy = vy + sijeﬂ} (1)
Um = Um—1+S;° erm
k
where s;’ is the Wf th component of s; and W;? is the k" component of m; € 1™, For
1 2
example, if 7; = (7’[']1-,71']2») = (1,2) and s; = (—1,1) then 3?3 =sl=—1and 3?3 =s2=1



In order to illustrate the construction above, suppose D? = [-1,1] x [~1,1], §? =
{(1,1),(-1,1),(1,-1),(=1,-1)}, 7 = (1,2), and B% = {(1,0),(0,1)}. If sy = (1,1) then
a 2-simplex in D? can be defined by the vertices vg = (0,0), v1 = v + 1.(1,0) = (1,0),
and vy = vl +1.(0,1) = (1,1), as shows Figure 4a). A permutation of the vectors in B?
generates the 2-simplex given by the vertices vg = (0,0), v = vo + 1.(0,1) = (0,1), and
vo = v1 + 1.(1,0) = (1,1) as in Figure 4b). It is not difficult to see that each s; € S?
jointly with all permutations of B2 (given by II?) generates the simplices that triangulate
a quadrant of D?2.

a) b)

Figure 4: Simplices generated from a) s; = (1,1) and m; = (1,2); b) s; = (1,1) and
T = (2, 1).

The same construction can be used to generate a triangulation of D™ C R™. Particularly
inR3,if D3 = [—1,1]x[-1,1]x[-1,1], $3 = {(1,1,1),(=1,1,1), (1, -1,1),...,(=1,—1,—1)},
3 = {(1,2,3),(1,3,2),...,(3,2,1)} and B® = {(1,0,0),(0,1,0),(0,0,1)}, each s; € S>
jointly with all elements 7; € II3 generate a triangulation of an octant of D3.

It is worth noting that the algebraic definition of the simplices presented above is capable
of encoding all geometrical information and it allowing traversal of the simplices without
their explicit representation. In the J{ triangulation, all the basic blocks of a grid G are
triangulated in the same way as the scheme exemplified above.

In order to complete the definition of the Ji* triangulation from a grid G it is necessary
to show how to triangulate the transition blocks of G. Suppose that D™ is a transition
i-block in a grid G, i.e., some faces of D™, called refined faces, are generated by the
union of faces contained in adjacent (¢ + 1)-blocks. Figure 5a) shows an example of a
transition block in R? with a two- and a one-dimensional refined face.

Let ® = {¢1,...,¢r} be the set of labels of the refined faces of D™. In Figure 5a), ® =
{{3},{1,2}}. The main problem with the triangulation of a transition block is that the
simplicial decomposition of its refined faces demand a special attention. Before introducing
the algebraic mechanism that produces the vertices of the simplices in a transition block,
we present an important construction that will be essential in the definition of such vertices.

Consider s; € S™ and 7; € II"™ a permutation of (1,2,...,m). Let h be the smallest
integer such that there is a ¢ € ® where ¢, C {sl-lel», .. ,5?7‘1’? (h = m if there is no
o C {32-171]1-, e ). For example, if s; = (1,1,1) and 7; = (3,2, 1) in the transition



block of Figure 5a) then h =1 as 8217'(']1- ={3} € ®. If r; = (2,1,3) then h = 2 because
{8}71'}-,8?71’3—} = {2,1} and there is the refined face {1,2} in ®. For 7; = (1,3,2), h also
equals 2 since {3} € ® and {3} C {1,3}. Consider T™" the set of all m-dimensional
vectors in R™ whose i*" component is 1 or —1 if i > h an 0 otherwise. For example, if

h =2 in then 732 = {(0,1,1),(0,—1,1),(0,1,—1),(0, -1, —1)}.

Let D™ be a transition block whose labels of its refined faces are in ®. For each permu-
tation 7; € II"™ and s, € S™ we can compute an h such that the vertices of the simplices
in D™ can be specified as follows:

Vo = (0, e ,0)
v; = vi_1+szje7ri_ 0<i1<h-1 (2)
J
1o T
Uh= Vh-1t3 D, S €ns (3)
s=h+1
i s
v; = Uh-l-% > tkjeﬂ—é_‘ h<i<m (4)
s=h-+1 J

i

where tzj is the 7T;- th component of a t;, € T™".
It is important to note that the vertices [vg,...,vp,...,vny] of each simplex o generated
from the scheme above are sorted in a such way that {vy,...,v,,} generates the face of o

that is contained in a refined face of D™.

Another important fact to be noted is that if A # m then the rightmost term in expression
(3) above computes the vertices of the simplices in D™ that are the center of the faces
contained in the (i 4+ 1)-blocks adjacent to D™ and right most term in (4) computes the
others vertices of the simplicial decomposition of these faces.

For example, the vertices of the simplex o7 in Figure 5b), that appear in the simplicial
decomposition of the transition block in Figure 5a), are defined from s; = (1,1,1) and
mj = (3,2,1) (then h = 1), has its vertices defined as vy = (0,0,0), v; = (0,0,1) +
(1/2,1/2,0) = (1/2,1/2,1) (expression (3)), vo = (1/2,1/2,1) + (0,1/2,0) = (1/2,1,1)
and v3 = (1/2,1/2,1) + (0,1/2,0) + (1/2,0,0) = (1,1,1), as ¢t = (0,1,1). If we take
si =(1,1,1) and m; = (1, 3,2) (thus h = 2), we can generate the simplex oy of Figure 5b)
whose vertices are vy = (0,0,0), v; = (1,0,0), v2 = (1,0,1) 4+ (0,1/2,0) = (1,1/2,1) and
vy = (1,1/2,1) + (0,1/2,0) = (1,1,1), as tx = (0,0,1). It is not difficult to note that a
complete decomposition of D™ can be obtained changing s;, 7, and ;. Figure 5¢) shows
the boundary of the complete decomposition of the transition block in Figure 5a).

JFrom both algebraic arrangements above (for basic and transition blocks) it is possible to

generate a complete simplicial decomposition for a grid G and this decomposition is called

the J{ triangulation of G. A property of the J{* triangulation that will be important
1 1

10



)

Figure 5: Refinement of D™. a) Transition block with a two-dimensional and a one-
dimensional refined face. b) Two tetrahedrons in a transition block. ¢) The boundary of
the complete refinement of the transition block in a).

to the development of the pivoting rules describe bellow is that all m-simplices of a D™
block share the central vertex of the block. In the following sections we shall assume the

convention that vy in a m-dimensional simplex o = [vg,...,vy] is the central vertex of
D™,

In the next section we present an efficient mechanism that allows to explore the adjacency
relationship of the simplices in a J{ triangulation.

4.2 Labeling and Pivoting Rules

In Section 4.1 above we show how the J{ triangulation decomposes standard hypercubes
in a set of simplices. Since a generic hypercube in R™ can be seen as a standard hypercube,
the same decomposition can be used in each block in a grid G. The main problem with
applying this decomposition scheme to the blocks of a grid G is that the location of
each simplex and its neighbors would demand the storage of a large set of additional

11



information, compromising the applicability of the J{ triangulation.

In order to solve this problem we propose a labeling scheme that allows to locate any
simplex of the J{ triangulation and traverse its neighborhood very efficiently also reduc-
ing storage requirements. This labeling scheme consists in associating a set of integer
numbers to each simplex o and retrieve, from these integers, the spatial localization and
the neighborhood relationships of o.

4.2.1 Labeling

As shown here, only four integers are sufficient to specify any simplex in a basic block. In
a transition block six integers are needed. The labeling of a simplex ¢ is derived from the
algebraic mechanism that defines the vertices of ¢ jointly with a numbering of the blocks

ing.

The numbering of the i-blocks in G is generated as follows: let nq,ns,...,n, be the
number of initial 0-blocks of G in each coordinate axis of R™. If we sort the 0-blocks from
negative to positive direction in each coordinate axis, we can associate to each 0-block D
an m-dimensional vector gOD where the k** component of g% corresponds to the positioning
of the 0-block in the k** axis. For example, in Figure 6a) the 0-block D is associated with
the vector g% = (1,2). The same idea can be employed to a general i-block of G. If we
suppose that all blocks in G are in the same level i, we can associate for each i-block
D a vector gf:) as above. An example of this association is shown in Figure 6b) where
two blocks D1 and D5 in levels of refinement 1 and 2 respectively are associated with the
vectors gjlj1 =(2,4) and 91232 = (5,11). From the level of refinement and the vectors gt, we
can generate a unique label to each i-block D € G by making use of the following function:

lo(gh) =Y big
j=1

where giDj is the j™ component of g}) and b; is given by by = 1, b; = bj_12'n;_1; j =
2,...,m.

The function above defines the blocks in G uniquely, i.e., given [ g(g}')) we can recover g}')
through the following recurrency relation:

iy _ ng(g%))J
Do =b 4
lg(gZD)‘_lg(ng) mOdbj7 j:m7“‘7271
where |a| is the biggest integer smaller or equal than a.

Note that the labeling scheme above makes it possible to restore any block D € G from only
two integers, namely, the level of refinement of D and l4(g%,) (since we have n;, i = 1,...,m
and the configuration of the original domain from which the 0-blocks are derived).

12
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Figure 6: Labeling of i-blocks. a)0-refinement in R?. b)l-refinement in R?

As the simplices in a basic i-block are generated from s; € S and 7; € 1I'", if we define
two bijective maps s : S — N and I : I — N we can recover any simplex contained in a
basic i-block from the integers given by g4, I, I and 7. In a transition block, in addition
to these four integers already, we also need to make use of h and I; : T™" — N, where I is
also a bijective map. Examples of how such bijective maps can be constructed are given
in the book by Page and Wilson [19]. As a consequence of the above construction it is also
possible to define relationships, such as neighborhood between simplices, algebraically.
Adjacency, for instance, can be given by the pivotin rules presented in the next section.

4.2.2 Pivoting Rules

This section presents the pivoting rules of the Jla triangulation. They are responsible
to define adjacency relationships algebraically. The advantage of pivoting using algebraic
relations is to avoid explicit storage of neighborhood, as opposed to other triangulation
methods that have no means of finding a neigboring element unless it is explicitly rep-
resented in the data structure. Additionally, by pivoting to find a neighbor, it becomes
feasible to avoid storing of the simplicial elements altogether.

The pivoting rules therefore are responsible for the localization of neighbor simplex in the
Ji{ triangulation. This neighborhood relationship is derived from the definition of pivoted
of a simplex.

Let T be the J{ triangulation obtained from a grid G, o1 an m-simplex in 7" generated by
the vertices [vg,...,vn], and 7 an (m — 1)-face of o1 given by [vo, ..., Vk—1,Vk11,s -+, Um].
If 7 is not in the boundary of T', then there is exactly one m-simplex oo in T generated by

13



[V0, ..., Vk—1, W, V11, - - Um), called pivoted of o1 by the k" vertex. Note that o1 and
oo have 7 as a common face. Figure 7 illustrates a pivoted simples. As a general rule, the
pivoted of a simplex o by a vertex v, is the simplex in 7' (if any) that shares with o the
face that does not contain v.

Let D™ be a basic block in G and ¢ = [vg, ..., vy] a simplex of the J{* decomposition of
D™. Tt is not difficult to see that the pivoted of o by vg is always in an adjacent block to
D™ and that the pivoted of o by the vertices v1,...,v,, are all contained in D™. Based

on that fact, we can generate a set of rules that, from the labels of a simplex, identify
its pivoted. For example, consider the simplex ¢ in Figure 7 generated from 7; = (2,1)
and s; = (1, —1). The pivoted of o by the 2nd vertex (v;) is obtained by maintaining the
label of the block (sj) and the level of refinement unchanged, only changing 7; to (1,2)
(see Figure 7).

V,
0 -
Gpivoted
by Vl
o
V1 V2

Figure 7: Pivoting by a vertex.

If the pivoting rule is defined as a map piv : N* — N*, that maps labels to labels then we
can write:

in(ZQ(D2)7 i, lﬂ((27 1))7 Ls (Sk)) - (ZQ(D2)7 i, ZW((L 2))7 ZS(Sk))

There are two different sets of pivoting rules, one for basic blocks and another for transition
blocks. These sets of pivoting rules are listed in Appendix A, and are capable of handling
all possible cases. The proof that this set of pivoting rules are really capable of computing
the pivoted of any simplex correctly is very exhaustive and is document in a Technical
Report [6].

The J{ triangulation lends itlef naturally to adptive refinement. One form of adaptive
refinement implemented for the method is presented in the next section.
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5 Adaptive Mechanism Based on Submanifolds

In this section we describe the adaptive mechanism implemented in code. As already
mentioned, any adaptive strategy could be adopted, as for example curvature [22]. Here
we choose to present a scheme for refinement based on submanifolds.

Let M = F~1(0) be an implicitly defined manifold where F : Q C IR™ — IR". An
implicity submanifold N of M can be defined by N = H~1(0), where H = (F,G)?, with
G : Q ¢ R™ — IRF. Notice that N is given by the intersection between M and the
implicity manifold which is the zero set of GG, as shown in Figure 8a).

/= [

a) F(x)=0 b)

c)

Figure 8: Refinement on submanifold.
a) one level of refinement. b) two levels of refinement.

Let o = [v, ..., V) be a simplex and N = H~1(0) be an implicit submanifold of M. In
a similiar way as described in Section 2 we can define a linear aproximation for N in o as
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Ny ={v € alv = Aovo + - - + AU, }, where:

Ao
1 1 1 N 1
F(vg) F(v1) F(vp) : =10
G(vg) G(v1) G(vm) )\' 0

Note that N, C M, since, for every v € Ny, \gF(vg) + - -+ + A F'(vy,) = 0 is satisfied.

Therefore, to construct an adaptive approximation of M close to IV, all that is necessary
is to mark as a block to be refined the blocks whose simplices have N, # (). The process
is repeated for every refined block until the desired level of refinement is reached. Is
worth reminding that every refinement imply in the calculation and re-triangulation of
the transition blocks. Figure 8 illustrates two levels of the refinement process when N is
a submanifold given by two points of the circle F'(x) = 0.

It is well worth noting that the process of detecting the submanifolds in a model gives as
a result all the indexes that actually represent the submamifold, due to the characteristics
intrinsic of the labeling process. Therefore, if a separate representation of the submanifold
is needed, it can be completely obtained in a single pass, while the reconstruction is carried
out. An example of this type of adaptive mechanism is given in the next section.

The next section also presents the results of applying J{ to a number of cases and compares
its efficiency with using Marching Cubes decomposition.

6 Results

In this section we present two sample applications where the J{ triangulation can efficiently
be employed, namely: iso-surface extraction from a sequence of images and implicit man-
ifold reconstruction. In both cases we emphasize how the intrinsically adaptive behavior
of the J{ triangulation can be useful both in the improvement of the visualization and in
the accuracy of the model.

6.1 Iso-Surface Extraction
To test the behavior of the J{ triangulation in iso-surface extraction from images, we make
use of a synthetic data set and another generated from real images of a heart.

First we generated a set of twenty images of disks by slicing a cylinder. Those were
input into the algorithm. Figure 9a) shows the resulting mesh where a 5 x 5 x 5 initial
grid is employed without any refinement. No interpolation scheme was used, in order

16



to illustrate the effect of the adaptive refinement. This effect can be seen in Figure 9b)
where two levels of refinement were employed in a predefined region. Figure 9c) shows the
result of reconstructing the cylinder through the marching cubes (MC) algorithm with a
40 x 40 x 40. This is equivalent in terms of resolution to two levels of refinement applying
Jit over a 5 x 5 x 5 grid. As the MC algorithm does not adaptively refine, in order to
improve the resolution in a specific region it is necessary to refine the whole domain. Table
1 shows the number of faces (triangles) generated by the MC against the J{ triangulation.
It can be seen from table 1 that although the J{ triangulation generates more faces than
the marching cubes algorithm in an uniformly refined domain, this number is considerable
smaller when adaptive procedures are employed in 25% of the domain. Most applications
in fact need progressive refinement depending on object feature, which renders J{* a good
alternative. Also, the labeling and pivoting strategies given offer the possibility of larce
savings in storage.

Table 1: Number of faces in J{ vs. MC

dDXHxb OXHxXD
Jit | without refinement | with two levels of refinement
3,088 8,232
10 x 10 x 10 40 x 40 x 40
MC 784 13,804

Different criteria could be used to define where the adaptive refinement must be done, such
as curvature for example. In our implementation of iso-surface extraction, the refinement is
performed in portions of space, previously specified by the user. Although very simple, this
approach to specify the refinement is appropriate to some applications we are interested
in, such as fluid flow simulation in complex domains. An example of such domain is shown
in Figure 10a) where the surface of the heart bounds the simulation domain. As can be
seen from Figure 10b), refinement was realized around the main artery, which is the target
region in our simulations, i.e., the region where it is necessary to obtain more accurate
results. It is worth noticing that the J{ triangulation can be just as efficiently utilized to
decompose the interior of the domain, not just the surface. This interior decomposiction
produces simplices that are robust and thus appropriate to numerical simulations [5].

6.2 Implicit Manifold Reconstruction
In the case of implicit manifolds, the J{ triangulation has also performed well the recon-

struction process. In order to demonstrate how general the refinement criteria can be we
have employed a adaptive mechanism based on sub-manifolds.
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c)

Figure 9: Cylinder iso-surface extraction: a) initial grid 5 x 5 x 5 without refinement; b)
two levels of a local refinement; ¢) marching cubes in a 40 x 40 x 40 grid.

Figure 11 shows a set of implicitly defined curves on a sphere describing the word VISUAL.
We implement the refinement strategy based on submanifolds presented in Section 5 by
searching for submanifolds (curves) contained on the surface and executing the refinement
around those. Figures 12 a), b) and c¢) present the approximations of the curves in three
consecutive levels of refinement. The initial grid is 20 x 20 x 20. The respective meshes
can be seen in Figures 12 d), e) and f).

In Figure 13 we illustrate the employment of the Ji' triangulation in higher dimensions.
It presents a projection of S x S! (a surface in R%).

Note that in both image and implicit applications only the cubic grid needs to be stored
to construct the J{ triangulation, as the simplices can be generated during the track of
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Figure 10: Decomposition of a surface of a heart

Figure 11: Four levels of refinement around the sub-manifolds. a) Shading b) Mesh

the faces through the algebraic mechanisms presented in the previous sections. There is,
therefore, no need to store the triangulation itselv or to build any specific data structure to
represent neighborhood relationships. This is a considerable advantage over other known
approaches, which rely data strutures that must store adjacency relationships or otherwise

pay expensive computational cost to recover this information.

Table 6.2 shows the computational times, in seconds, for processing the models in Figures
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Figure 12: a),b) and c¢) approximations with 1,2 and 3 levels of refinement;
meshes of a),b) and c) respectively.

d),e) and f)

10, 12, and 13. It is worth mentioning that the values in table 6.2 take into
time spent to write the models on disk.

account the
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Figure 13: A projection of S x S1

Heart 8.51
Spheres
1 - Refinement | 0.39
2 - Refinement | 1.20
3 - Refinement | 3.22
St x St 8.55

Table 1: Computational times (seconds) to process the models in Figures 10, 12, and 13.

As a final example to illustrate the employment of J{* with a refinement process based on
curvature, we have reconstructed a implicitly defined model of two spheres connected by
a thin cylinder. Figure 14 show two reconstructions. The original reconstruction (Figure
14 a)), without refinement, is unable to detect the correct topology of the object, whilst a
refinement drawn by an estimate of the curvature radius will correctly generate the object.
The magnitude of the curvature radius dictates the level of refinement necessary. In the
example of figure 14 the decision criteria indicated two further levels of refinement in the
region with lowest curvature radius, generating the correct topology for the object.

7 Conclusions

This paper described a novel spatial decomposition technique that handles three problems
adequatelly: decomposition in any dimension, control of storage requirement and intrin-
sic adaptive behaviour (also in any dimension). These features of the J{ triangulation
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a) b) &=

Figure 14: Curvature based refinement of an implicit model, supporting correct detection
of object topology. a) No refinement b)Two levels of refinement based on curvature radius

are mainly due to the provision of algebraic mechanisms that are capable of generating
the simplices that form the simplicial mesh as well as the adjacency relationship between
simplices. These mechanisms allow the generation of geometrical and topological data
about the simplicial mesh without explicitly storing either the neighborhood relationships
or even the mesh itself. Results have shown the efficiency of the process for meshes gener-
ated in applications such as iso-surface construction, implicit manifold reconstruction with
submanifold refinement, and surface tracking in dimension higher than three. No known
spatial decomposition strategy is capable of offering all these characteristics together.

As a future development it is our intention to apply the adaptive mesh generation technique
presented here to problems of 3D reconstruction from projections, an important problem
areas such as medical images, and to problems in 3D computational fluid dynamics.

Additionally, we are studying the use of J{ in compression/decompression of models.

8 Acknowledgements

We wish to acknowledge the Brazilian financial agenncies CNPq (proc. 307268/2003-9)
and FAPESP (proc. 03/02815-0) involved in financing the project that generated these
results.

Appendix A

This appendix contains the pivoting rules for the J{ triangulation. Supose that v; repre-
sents the it vertice of a simplex ¢ contained in a r-block D™, whose associated vector
is gpm, and that o is generated from s, m; and t,. We represent the changes of g7,m,
sk, m; and ¢, during the pivoting by g%,m, g, 7; and ¢, respectively (Note that just some
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elements need to change during the pivoting).

If D™ is a basic block then:

1. if 0 < i < m then

T = (77]14,...,71';7 ST
2. if i = m then
piv(lg(gTDm)ﬂ;;lﬂ(Wj)JlS(Sk)) = (lg(gTDm)=rﬂ ZF(T‘—J’)JZS(W))

S5 = S — 2st exm

3. if i =0 and g},m is a basic block then
Piv(ly(gpm); 7 ln(mj), Ls(sk)) = (g (9pm ), 7 Ln (7)), Us (55))
Tom = Gpm + 8 Cx1

T
Sk = S — 28,° exm
Sk k Sk~ En7

1
4. if i = 0 and g7,.. is a transition block with ¢ = {ﬂ'Jl-Szj} a refined face then
piv(lg(gTDm)v T, lﬂ'(Trj); ZS(Sk)) = (lg(gTDm); T, lﬂ-(ﬂ'j), 15(5); h7 lt(g)
1
J

7 qTDTrm qgiin 7

9pm = D) 671-]1."'""" ) 671';""'5]@ efr]la

T=r—

_ ra? rolt l

Sk = (2(gpm mod 2) = 1)ez2 + -+ + (2(gpm mod 2) — 1)exm — 53 €1
J J

h=1

.

ty = s, ewjz_—l—---—i—sk exm

[ 71'1,
5. if i = 0 and ¢}, is a transition block where ¢ = {w}skj} is not a refined face then
PiV(lg(QBm)a T lTrl(Wj)v ZS(SIC)) = (lg(gTDM)J T lﬂ(ﬂ—j)J ZS(S_k)v h, lt(g))

T T T
Ipm = Gpm + S, €l
1
7l
Sp = Sk — 28,7 e_1
k k k 7'rj

If D™ is a transition block then:
6. if i =0, h =1 and g}, is a basic block then
PiV(lg(QBm)a T{ lw(le), ZS(Sk)v h7 lt(tp)) = (lg(gTDm)v T, lﬂ(wj)v lS(%))
R T Ti4+1 rot 741
9pm = 3(49pn + 5 Jemy 00+ s(4gpn + 5y
T=r+ 11

_ 5 5 5
Sk = =S e tip'ez+ -+ 1p eqm
J J

) J
exm + 8 €r

m

7. ifi =0, h=1and g}, is a transition block then _
Piv(ly(gpm ), 7 bn (), Ls(sk), B li(tp)) = (Lg(gpm )s T b (75), Ls (35), o, L (2 ))
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10.

11.

12.

13.

14.

15.

rT i1 ro’ 741 ot
Ipm = 2(4gpa + 5 Jemt +--+ (4gpin + s, Jexm + 5,7 €x
r=r+1
o ! 2 m
S = —s, e +tp’ e+ 1y eqm
h=m
tp, =(0,...,0)

1
if i =0, ¢ is a refined and szj T; € ¢ then

piv(lg (QE)M)v T lx (Wj)J ls (Sk)J h, lt(tp)) = (lg (-937)7 T, lﬂ(wj)v Ls (ﬁ), h, lt(g))

7‘71'} 7‘7\'§n 1
T _ | 9pm 44 | S g
9hm = 2| Ent 5 Er T S Exly

r=r—1

2 m 1
5 = (2(gps mod 2) = 1egz + -+ (2(gps mod 2) = Dexm — 57 €
_ J J
h=1 | .
g: Szjew? —+ - +S;€r] 671-;71

if i =0, h =m and g}, is a basic block then

Piv(ly(gpm); 7 ln(mj), Ls(sk), by e (tp) = (lg(gpm ), 1 L (m5), Ls (3k))
Ghm = Ghm + 5, €rt,

Sk = S — 282;677]1_

if i =0, h =m and g}, is a transition bloc@en

Piv(ly(gpm)s 7 ln(my), Ls (k) b () = (g (g )5 7 Ln (1), Ls (55), Py e (1))
9hm = gpm +ls7,:j €nt,

7l
Sk =Sk —2s,’e 1
k k k L&

ifi=0and 1 <h < m then
Piv(lg(gpm), T lfrl(ﬂj), Ls(sk), by Ui (tp)) = (Lg(gpm ), 7 ln (1), Ls (k) by Ui (tp))
Tpm = Gpm + 55 Cxt

1
— _ 77]-
S = Sk 2Sk 6,1.]1_

if i = m, h = m and for all refined face ¢, —s,’ exm is not in ¢ then

piv(lg(gTDm)v 7:771171'(71']')’ ZS(Sk)v h, lt(tp)) = (lg(gTDm)v T, l‘ﬂ'(ﬂ'j)v ZS(Q)a h, lt(tp))

_ L
Sk = sk — 28, exm
J

if i =m and 0 < h < m then

piv(lg(gTDm)vj:v l‘ﬂ'(ﬂj)a ZS(Sk)a h, lt(tp)) = (lg(gTDm)v T, l‘ﬂ'(ﬂj)a ZS(Sk)a h, lt(g))

Ty =ty — 2t exm

if 0 <i <m and h = m then
piv(lg(gTDm)v T, _l‘fl'(Trj)_’ lls(Sk), hv lt( ;D))

7 i— i i m
7Tj—(7Tj,...,7Tj R s P

if0<i< h—1then
Pl (g () (00 i) = (o) ), ) o )

7T_j=(7rj,...,7rj R S P

24
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. if 0 < h <i<m then

pr(l (ngm) T lfgwj)i‘_lf(sk)’ h, lt(tp)) = (lg(gTDm)v T, lﬂ(w_j)J ZS(Sk)J h, lt(tp))
T =T,y T S PN )

71'}.7'+1 7'r’.1+1

17. f0<h=4i<mands,’ #t,° then
piv(lg (gTDm)v 7;7 llﬂ' (Trj)a ZS (Sk)a hv lt (tp)) = (lg (gTDm)v T, lﬂ' (Trj)a ZS (ﬁ)a hv lt (tp))
5p = S — QSZj €, ht1
h+1 J

tp = t — 2tp 6ﬂ_;;+1

Let ¢ be a refined face of D™ and ¢(w;, sk, ¢) difined as:

m T m
0 ) if¢¢{SkJ7TJ1-,...,Sk )
min{i|¢ C {s,’ T sk '7'}}  otherwise
ghtt 7rh+1 7t T
18. if0<i=h<m,s,’ =t/ andh+1=min{q(7,5%, ¢)¢ C {_skjwi,...,skj 77'}} then
Piv(lg(9pm), 7 I (m5), Ls (s8), 1 1(tp)) = (lg(gpm ), 7 Ln (7). s (5k), P Le(£))
.. — 1 h h+1 h m
ZJ—(wj,...,ﬂ'j ST T T
h=h+
— 71'}."+1
tp = tp — tp] € _h+1
ﬂ_i_z,+1 71,h«+»1 71,1‘ Tm
19. if0<i=h<m,s,’ =t,’ andh=min{q(7F,5x ¢)|¢ C {s,'n},...,s,’ 7]"}} then
piv(lg(ngDm) T lx ( );L-li-sl Sk})lv h, lt(tp)) = (lg(gTDm)v T lﬂ(w_j)J ZS(Sk)J h, lt(g))
?:(ﬂ'j,...,ﬂ'j R N )
h=h+
_ n o
by =tp —tp’ € h+1 + Sk] €rh
J J

20. fi=h—-1,1<h<mandh—1=min{q¢(7T},3 ¢)|¢ C {sk J,...,sz;nw;"}} then
P_iV(lg(lem)a7‘7 lw(”j);ls(}fﬁ)la hvlt(tp)) = (lg(gTDm)7T7 lﬂ( ]),ls( )thlt(g))

_ h—2 __h m
T = (T, m T
h=h-1
— ah—1

— J
bp=1lp+s8;" €

J

21. ifi=h—1,1<h <mand h = min{q(7;,5g, ¢)|¢ C {sk iy szgﬂw}”}} then
P71y (g ). (1) L (51). o)) = (g 71w 5 5. . )
= (7TJ,...,7TJ- ST T ,...,w;”)
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