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Abstract

We introduce a new manifold-based construction for fittirgrenoth surface to a triangle mesh of arbitrary topology.
Our construction combines in novel ways most of the besufeatof previous constructions and, thus, it fills the
gap left by them. We also introduce a theoretical framewbdt provides a sound justification for the correctness of
our construction. Finally, we demonstrate thEeetiveness of our manifold-based construction with a fencoete
examples.
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1. Introduction domain. Because the patches need to be “pieced” to-
gether, ensuring continuity along the borders has proved
The problem of fitting a surface with guaranteed o pe a dfficult problem, particularly for closed meshes.
topology and continuity to the vertices of a polygonal Ajthough there is a large number 6%/G* construc-
mesh of arbitrary topology has been a topic of major tjons based on the “stitching” paradigm and catered
research interest for many years. The maifii@ilty to triangle meshes [1], only very few go beyo@d-
of this problem lies in the fact that, in general, meshes continuity [2, 3]. Existing constructions (even tha3#
of arbitrary topology cannot be parametrized on a sin- gnd below) are typically complex, they lack shape con-
gle rectangular domain and have no restriction on ver- 1o and cannot achieve good visual quality without ad-
tex connectivity. Most existing solutions rely on mathe- (itional processing. Very few were ever implemented
matical and computational frameworks capable of guar- gnd the degree of the polynomial patches required by
anteeing low degrees (i.eC* and below) of continu-  most constructions grows rapidly with the desired or-
ity only. However, higher order surfaces are often re- ger of continuity, which tend to yield surfaces with poor
quired for certain numerical simulations and to meet vi- yisyal quality.
sual, aesthetic, and functional requirements. While a g pgivision surface is another popular approach

few high order constructions do exist, most are expen- \\hich has been extensively investigated in the past

sive, complex, arydr_diﬁiculttoimplement. 30 years [4, 5, 6, 7, 8, 9, 10]. These techniques
Much of the previous researctiterts has been fo- 516 intuitive, simple to implement and in general pro-

cused on stitching parametric polynomial patches t0- q,ce smooth surfaces of good visual quality. How-
gether along Fhelr seams, yvhgre each patch is the IM-gver, constructions that go beyoB4/G? are rare, and
age of a distinct parametrization of a closed, planar g,aranteeing continuity arourektraordinary vertices
is difficult [11, 12]. Furthermore, previoudferts by

*DCT-CCET-UFMS, Av. Costa e Silva/8, Cidade Universiria, Prautzsch and Reif k[13, 14] indicate that subdivision
Campo Grande, MS, Brazil, CEP: 79070-900, TEAX: +55 67 schemes to produdg” surfaces, for larg&, cannot be
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division schemes. our approach, we focus this section on manifold-based
Unlike the two aforementioned approaches, the techniques. For a more detailed review of the manifold-
manifold-based approach pioneered by Grimm and based approach and its applications, we refer the reader
Hughes [15] has proved well-suited to fit, with relative to [19].
easeCX-continuous parametric surfaces to triangle and ~ The first manifold-based construction for surface
quadrilateral meshes, includikg= o [15, 16, 17, 18]. modeling was proposed by Grimm and Hughes [15].
The mathematical theory of manifolds was conceived Their seminal work has since then been the basis of
with built-in arbitrary smoothness, and thefdrential most subsequent constructions, including ours. Their
structure of a manifold provides us with a natural setting construction takes a triangle mesh as input, subdivides
for solving equations on surfaces. Manifold-based con- by one step of Catmull-Clark subdivision scheme, and
structions also share some of the most important prop- then considers the dual of the subdivided mesh (which is
erties of splines surfaces, such as local shape controlno longer a triangle mesh). Surface topology is defined
and fixed-sized local support for basis functions. Thus, from a structure they nameuoto-manifold which con-
as pointed out by Grimm and Zorin [19], a manifold is tains a finite setA of connected open sets R? (the
an attractive surface representation form for a handful theory holds inR" indeed) and a set of transition func-
of applications in graphics, such as reactioffeiion tions that, together with the mesh connectivity, dictate
texture, texture synthesis, fluid simulation, and surface how the sets irA overlap with each other. Each type of
deformation. mesh element (vertex, edge, and face) gives rise to a dif-
Unfortunately, existing manifold-based constructions ferent open set, requiring the construction of three dif-
present some drawbacks that limit their wide use in ferent types of transition functions. Geometry is added
practical applications. In particular, constructionseabl by handling the mesh geometry through control points
to handle triangular meshes either make use of an intri- and blending functions explicitly defined from the open
cate mechanism to define the manifold structure [15] or sets. The construction in [15] yiel@-continuous sur-
cannot guarantee smoothness in every point of the sur-faces only, but it was later simplified and improved [20]
face [18]. On the other hand, methods with a simpler to produceC*-continuous surfaces, for any finite integer
construction [16] as well as arbitrary smoothness [17] k. SubsequentfBorts [16, 17] aimed at providing a con-
do not establish a complete framework for handling tri- struction that requires a smaller set of open sets, con-

angular meshes.

1.1. Contributions

In this paper, we present a new manifold-based con-

struction for fitting surfaces of arbitrary smoothness
(i.e., C*-continuous) to triangle meshes. Our con-
struction combines, in the same framework, most of
the best features of previous constructions. In par-
ticular, it is more compact and simpler than the one
in [15], more powerful than the construction in [18],
and shares with [17], a construction devised for quadri-
lateral meshes, the ability of produci@j°-continuous
surfaces and the flexibility in ways of defining the ge-
ometry of the resulting surface. We also introduce a
theoretical framework that provides a sound justification
for the correctness of our manifold-based construction.
This framework is a slight improvement upon the one
given by Grimm and Hughes [15], which was used to
undergird the constructions described in [15, 16, 17].

2. Prior Work

Extensive literature exists on fitting smooth surfaces

sists of simpler transition functions, and achie@%
continuity.

Based on the concept of proto-manifold, Navau and
Garcia [16] introduced a construction that takes a
guadrilateral mesh and two integeksandn, as input.
The integek specifies the desired degree of (finite) con-
tinuity, while niis related to the extent of the open sets in
A. Their construction assigns an open set to each mesh
vertex. Diferently from [15], only two types of open
sets are built, one associated with regular vertices (va-
lence equal 4) and other with irregular vertices. How-
ever, three distinct types of transition functions aré stil
needed so as to glue regular-regular, regular-irregular,
and irregular-irregular open sets. The size of thefset
grows withn, but it also depends on the mesh topol-
ogy. In fact, it can be larger than the sizeAin [15]
even for smaller values af. Geometry is defined quite
similarly as in [15]. An extension of [16] to meshes of
arbitrary topology has been proposed [21], but it shares
with the construction in [16] the same advantages and
drawbacks.

Ying and Zorin [17] devised a very elegant proto-
manifold structure from quadrilateral meshes. Making
use of only one type of open set and a simple ana-

from meshes. However, in order to better contextualize lytical transition function, the resulting surface@s’-
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continuous. This work improves upon the two previous familiar n-dimensional Euclidean space, and on which
techniques considerably. Another contribution is that we can do calculus (e.g., compute derivatives, integrals,
control points are replaced by general polynomials, thus volumes, and curvatures). For that, each manifisldis

offering a more flexible control of the geometry of the

equipped with aratlas which is a collection otharts

resulting surface. Their construction can be extended to Each chart is a pairl], ¢), whereU is an open set

deal with triangle meshes, but one has to work out cer-
tain elements of its proto-manifold, which are not en-
tirely obvious.

More recently, Gu, He, and Qin [18] introduced a
triangle-based manifold construction calledanifold
splines which is based on a theoretical framework of
its own. This construction employsfame transform as
transition functions and (rational) polynomial functions
to derive the geometry. This is the first manifold-based
construction to yield a purely (rational) polynomial sur-
face. Having a surface specified by a (rational) polyno-
mial expression is very desirable in practice. However,

of Mandy : U — ¢(U) ¢ R" is a homeomor-
phism. Furthermore, the charts of an atlas must cover
M. The open setd); andU,, of any two distinct charts,
(U1, ¢1) and Uz, ¢2), may overlap (see Figure Ijran-
sition functions ¢21 @ 1(Ur N U3) — ¢o(Us N Uyp)

and g1z : @2(Ug NUy) — ¢1(Up N Uy), are defined

to move between the overlapped regions consistently.
These functions are required to satisfy two conditions:
@21 = @p 0 gaIl andgp = ¢ 0 <p§1. Basically, func-
tions ¢21 and ¢1, define which points inp1(Uy N Uy)

and ¢»(Uy N Uy) correspond to the same point M
unden,o;l and gogl. Transition functions are often re-

as closed surfaces (except tori) cannot be covered by anquired to beCk-continuous, so that the necessary degree

"affine atlas” (see [22]), singular points not belonging

of “smoothness” to computefiierential properties df

to any open set must appear on the surface, thereby afdis ensured.

fecting the visual quality in the vicinity of these points.

Making use of discrete Ricci flow, Gu et al. [23] have

improved the manifold spline construction to reduce to
only one singular point on the entire surface.

Our construction is based on the theoretical frame-
work developed by Grimm and Hughes [15], yet it dif-
fers from the aforementioned constructions in the fol-
lowing aspects: the proto-manifold counterpart of our
construction is given two additional conditions that ren-
der it more general and stronger than the proto-manifold
in [15]. As in [17], our construction also has only one
type of open set and (simple) transition function, can
produceC* surfaces, and defines the geometry of the
resulting surfaces using polynomials. fidrently from
Ying and Zorin [17], our construction is devised to work
with triangle meshes, which are far more popular than
quadrilateral meshes in graphics applications [24]. In
addition, we define geometry from simpler polynomials
(i.e., rectangular Bzier patches) which means that the
resulting surface is contained in the convex hull of all
control points defining its patches. This property allows
us to optimize for speed ray tracing and collision de-
tection algorithms. The surfaces produced by our con-
struction are not polynomial, but they do not contain
any singular points. Finally, our construction is simple
to implement.

3. Mathematical Background

The formal definition of a manifold can be found in
standard mathematics textbooks, such as [25]. Infor-
mally, manifolds are spaces that locally behave like the
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Figure 1: Constituents of a manifold.

A manifold-based approach for surface construction
requires first building a manifoldvl, which is a smooth
surface inR3. The classic definition of a manifold as-
sumes the existence of a manif@lgbriori, which is not
very helpful from the constructive point of view. Fortu-
nately, it is possible to defin®l in a constructive man-
ner from a set ofjluing dataand a set oparametriza-
tions(see Figure 2).

Definition 1. Let n be an integer with & 1 and let k be
either an integer with k> 1 or k = co. A set of gluing
datais a triple,

G = ((Qiier, (Qj)dj)erxt» (@ji).jek) »

satisfying the following properties, where | and K are
(possibly infinite) countable index sets, and | is non-
empty:
1. For every i€ I, the setQ); is a non-empty open sub-
set ofR" called parametrization domajifior short,



p-domain and theQ; are pairwise disjoint (i.e.,
QNQ;=0foralli # j).

. For every pair(i, j) € | x I, the set(;; is an open
subset ofy;. Furthermore,Q; = Q; andQ; # 0

if and only ifQ;; # 0. Each non-emptg;; (with

i # ]) is called agluing domain

. If we let

K:{(i,j)elxl|§2i,~¢(2)},

theng; : Qjj — Qjis a C* bijection for every

(i, j) € K called atransition function(or gluing

function) and the following conditions hold:

(@) @i =idg,, foralli eI,

(b) ¢ij = ¢;*, forall (i, j) € K, and

(c) Foralli, j,k, if Qj N Qj # 0, then<pﬁl(§2]i N
Qjk) € Qi and gwi(X) = ¢kj o ¢;ji(x), for all
X € (pﬁl(jS a ij).

. For every pair(i, j) € K, withi # j, for every

X € 0(Qi;) N Q and y € 0(Q;j) N Qj, there are

open balls, Y and \{, centered at x and y, so that
no point of \{ N Qj is the image of any point of

Vy ﬂQij by‘#’ji-

Figure 2: Constituents of a parametric pseudo-manifold.

e each parametrizatios; : Q; — M, is the inverse,
¢, of the mapp; : Ui — R, of the chart, Ui, ¢i).

Condition 3(c) is called theocycle conditiorand it
plays a crucial role in Theorem 1, which states that an
n-dimensionalC* manifold can be constructed from a
set of gluing data. In turn, condition 4 ensures that the
resulting manifold is Hausdfit There are two subtle
differences between our definition of gluing data and
the definition of a proto-manifold in [15]. First, our
cocycle condition (see Definition 1) is stronger than
the one in [15], as the latter does not always guaran-
tee that a (valid) manifold can be constructed from a
proto-manifold (see [26]). Second, in the definition of
a proto-manifold, there is no condition similar to condi-
tion 4. In order to ensure that the manifold built from
a proto-manifold is Hausdéit Grimm and Hughes [15]
require that the manifold be embeddableRA. This
requirement is stronger than condition 4, as it prevents
us from obtaining certain manifolds such as a 2-sphere
resulting from gluing two open discs i? along an an-
nulus.

Theorem 1. For every set of gluing data,

G = ((Qier» ()i jperxt» (@ji)i.jek) »

there is an n-dimensional'Gnanifold, M;, whose tran-
sition functions are the;’s.

Proof. See [26] for a proof. O

Our proof of Theorem 1 in [26] gives us a theoret-
ical construction, which yields an “abstract” manifold,
Mg, but no information on the geometry of this mani-
fold. FurthermoreMg may not be orientable or com-
pact. However, for the problem we are dealing with, we
are given a triangle mesh and we want to build a “con-

There is a simple correspondence between the con-Créte” manifold: a surface iR_B that approximates the
stituents of the traditional definition of a manifold and 9iven mesh. It turns out that it is always possible to de-

the ones of a set of gluing data and a set of parametriza-fine @parametric pseudo-manifoiffom any given set
tions: of gluing data, whos@nagein R? is a surface if certain

conditions hold.

e eachp-domain, Q; ¢ R", is the image,Q =

¢i(U;), of an open setJ;, of M under the mayp;
of the chart {j, ¢;) of an atlas ofM;

Definition 2. Let n and d be two integers withxhd > 1
and let k be integer with k 1 or k = co. A parametric
CX pseudo-manifold of dimensiahin R", M, is a pair,

M=(G. (@)ia),

whereG = ((Q)ier, (Qij)i.jeixi» (@ji)a.jek) IS a set of
gluing data, for some finite set |, and eaghis a C¢
e each transition functiong;; : Qj — €j, is a func- function,§; : Q; — R", called aparametrizatiorsuch
tion from¢;(U; N Uj) = Q; to ¢i(Ui N Uj) = Qij; that
and G; Zejo(pji,

e each gluing domairgy; C Q;, is the imageQ;j =
¢i(Ui N Uj), of the overlapping subsdd; N U;, of
Ui andU; under the mag; of the chart U;, ¢;) of
an atlas of\;



for all (i, j) € K. The subset, Mt R", given by

M= U 6i(€)

i€l

is called theimageof the parametric pseudo-manifold,
M.

Whend = 2 andn = 3 in Definition 2, we callM
a parametric pseudo-surfacdf we require theg;’s to
be bijective and to further satisfy two conditions, (1)
6:(4) N6;(Q) = 6() = 6;(;), forall (i, j) € K, and
(2) 6:(2)no;(Q)) = 0, forall (i, j) ¢ K, then the image,
M, of the parametric pseudo-surfagel, is guaranteed
to be a surface iR [26].

4. Overview of the Construction Process

Recall that our goal is to fit a surfac®,e R, to a tri-
angle mesH. More specifically, we want to build a sur-
faceS that approximates the vertices ofand has the
same topology as the underlying spadd, of 7 (i.e.,
|77 is the point set resulting from the union of all points
in the vertices, edges, and trianglesyof. We also as-
sume that7| is a surface irR® with empty boundary.
To build S, our construction defines a set of gluing data
and a set of parametrizations. The set of gluing data,

G = ((Q)ier, (ij)ii.perxts (@ii)i.jek) »

is defined from the elements @Gf. More specifically,
let | be the set of vertices of. Then, we define -
domain,Q,, for eachu € I. For anyu,v € |, we also
define the gluing domain§),, andQ,,, such thafy,, =
0 if and only if Q,, = 0. Finally, foru,v € | such
thatQuy # 0 (or equivalentlyQ,, # 0), we define the
transition functions

o - Quv = Quy and Yuy - Quu = Quy.

In turn, the set of parametrizations is defined by cre-

eachQ, is defined as a convex sum over all overlapping
p-domains. In particular, for each poixg Q,, we have

0 = D 0wty o eu(®), (1)
veJ,(X)
where )
Yv © @yulX
uv = 2
) 2wedo(x) Yw © Pwu(X) @
and

() ={v|xeQu}cl.

The setJy(X) contains the index of eagirdomain,Qy,
that is “glued” toQ, at x by ¢, Note thatp,(X) is the
point in Q, identified with x by ¢,,. The former point
is assigned a weighty,,(X), which can be viewed as its
contribution tod,(X). So,6,(x) adds up the contribution
of each shape function,, defined in ap-domain that
contains a pointp,y(X), identified withx in the gluing
process.

We can show that

Z wy(X) = 1, with wy(X) > 0,

veu(X)

and
0u(X) = 6y 0 pyu(X),

which ensure that the expression defingigs a convex
sum and thafi,(x) andé, o ¢,y(X) are the same point in
R3. Finally, our smooth “surfaceS is defined as the
image,

s=[ ey, (3)

Vel
of the parametric pseudo-surfag®l = (G, 6,)uei- Note
that the continuity ofS is determined by the low-
est order of continuity of all its component functions.
Since all of our transition functions, shape functions and
weight functions ar€>, so is our entire resulting sur-
face.

ating local approximations to another surface defined 5. Building a Set of Gluing Data

on 7. More specifically, we first obtain a curved sur-
face approximation td7|. This step is very flexible

To build the set of gluing dataz, we must define

and can be done a number of ways (see Section 6).its collection ofp-domains, gluing domains, and transi-

Next, for eachp-domaing,, we define ashape func-
tion, ¥, : R? — RS, as a rectangular&ier patch that
locally approximates the surface definednWe also
define a non-negativeveight functiony, : R> — R,
with compact support equal to the closuref (i.e.,
yu is zero outside or on the boundary@f and greater
than zero inside). Finally, the parametrizatiag, of
5

tion functions. These collections are defined in terms of
two abstractions, a P-polygon and its canonical triangu-
lation, and a bijective function. Now, we describe these
elements. Recall thatis the index set consisting of the

vertices of7". Letl : 1 — {1,...,]l|} be a map that as-
signs a uniqudabel from {1,...,|l|} with each vertex,
u,inl.



For each vertex of 7, theP-polygon, R, associated
with uis the regular polygon iiR? given by the vertices

o).

for eachi € {0,...
u (see Figure 3).

,m, — 1}, wherem, is the valence of

Definition 3. For every ue I, the pdomainQ, is the
set

Qu = {6 y) € R? | (x—2-1(u))* +Y? < [coser/m)]?}

where ) is the valence of vertex u. Note th@y, is
the interior, in{C,), of the circle, G, inscribed in the
P-polygon, R.

RZ

Figure 3: A P-polygon (left) and its canonical triangulatigight).

Note that everyp-domain is a non-empty, open set of
R2. Furthermore, for any twe,w € |, with v # w, the
p-domainsQ, and Q,, must be disjoint, as they reside
inside P, and P, respectively, whose interiors are dis-
joint. So, the collection{Q},¢, of p-domains satisfies
condition 1 of Definition 1. To build gluing domains
and transition functions, we define a triangulation of the
P-polygons and a bijective function that is a composi-
tion of two rotations, an analytic function, and a double
reflection.

We can triangulat®, by addingm, diagonals and the
vertex,u’ = (2-1(u), 0), toP,. Each diagonal conneat$
to a vertexy, of Py, foreachi = 0,...,m,— 1. The re-
sulting triangulation, denoted By, is called thecanon-
ical triangulation of R, (see Figure 3). Denote the set of
vertices ofT, by V(T,), and letN'(u, 7°) be the subset of
vertices of7” such thatv € N(u,7") ifand only ifv=u
or v is a vertex connected by an edge,U, V], of 7.
Then, we can define a bijectiog, : N(u,7) — V(Ty),
such thats,(u) = v and [u, u;, uj441] is a triangle in7" if
and only if [sy(u) = U, su(u), su(uiz1)] is a triangle in
Tu, wherei = 0,1,...,m, — 1 andi + 1 should be con-
sidered congruent moduta,. We can extend the bijec-
tion s, to map triangles incident tein 7~ onto triangles

6

in Ty. In particular, ifo = [u,u;, Ui;1] is a triangle of
7 thens,(o) = [u, su(W), su(ui,1)] is its corresponding
triangle inTy. Unless explicitly stated otherwise, we
may occasionally denote verte(v) by v/, for every
ve N, 7).

For eachu in | and for eachp € R?, with p # (2-
I(u),0), letgy : R? — {(2-1(u),0)} — R? - {(0,0)} be
given by

gu(p) = fuo tu(p), (4)

wheret, : R> — R? is the unique rigid transformation
(i.e., a translation) that takes (2(u), 0) to the origin,
(0,0), of R?, and f, : R? — {(0,0)} — R? - {(0,0)} is
given by

cosfr/6)

fu(@) = gu((6.1)) = % -6, cos@r/my)

r) NG

where 0, r) are the polar coordinates gk R?—{(0, 0)}.
Functiong, has the following interpretation (refer to
Figure 4): it maps the interior of the circular sector,
A, of C, onto the interior of the circular sectdB, of
the circle of radius cos(6) and centers at (0), where
A'is such that,(A) (i.e., the translation oA given by
ty) consists of (00) and all points with polar coordi-
nates §,r) € [-2r/my, 2r/my] x (0, cosgr/my)] and B
consists of (00) and all points with polar coordinates
(B, 9s) € [-7/3,7/3] x (O, cosfr/6)]. We say thaB is the
canonical sectarNote thatg, is a bijection. Its inverse,
g;t, is given by

G'(@) =t o f(a), (6)
where
o gy (M, CoSE/m)
ORI C T LA RC

for everyq e R? — {(0, 0)} with polar coordinatess s).

.
N
¢

Figure 4: The action ofj, upon a pointp € C.
Leth : R? — R? be the function

h(p) = h((x.y)) = (1 - x.-Y)., (8)



for every pointp € R? with rectangular coordinates
(x,y). Functionh is a “double” reflection:p = (X, )
is reflected over the ling = 0.5 and then over the line
y=0.

Finally, for any two verticesi, v of 7~ such that {i, v]
is an edge of", let

Guw) - Cu—1{(2-1(u),0)} — Cy, = {(2-1(v), 0)}

be the composite function given by

9)

for every p € Cy — {(2 - I(u),0)}, where Ry, is

a rotation around (2 I(u),0) that identifies the edge
[su(u) = U, sy(v)] of Ty with its edge {r,ug]. Like-

wise, RF}U is a rotation around (21(v), 0) that identi-
fies the edged,(v) = Vv, v] of T, with its edge {/,v’j],
wherej € {0,1,...,m, — 1} and s,(v’j) = u. Figure 5
shows the action djj,) upon a given poinp in the set

Cu—{(2-1(u), 0)}.
RZ
(@

g(u,v)(p) = R(_V?u) o 9\71 ohogyo F\’(u,v)(p) s

YT su(v)
Quo R(u,v)
q

su(w)

sv(2)

sv(u)

s/(W)
Figure 5: The action afiy,) upon a poinp € Cy.

Functiong,) also has the following interpretation:
it maps the interior of a sectoA, of C, onto the in-
terior of a sector,B, of C,. These two sectors are
closely related. Letv and z be the two vertices of
7 such that {i,v,w] and [u,v,Z are the two trian-
gles of 7 sharing the edgeu[v]. Then, sectorA is
the circular sector ofC, contained in the quadrilat-
eral [sy(u) = U, sy(w), sy(v), su(2)], while sectorB is
the circular sector o€, contained in the quadrilateral
[s/(V) = V', s(2), su(u), s\(w)]. Functiong,) is also a
bijection, and its inverseg(‘u%v), is equal to the function ;

Jv.u)-
Yy (Q) = R(_u%v) og;tohogyoRyy(@),

for everyq € C, — {(2 - 1(v),0)}. Functiong,) plays
a crucial role in the definitions of gluing domains and
transition functions.

(10)

Definition 4. For any uv € |, thegluing domainQ,, is
defined as

{ Oor(9u(Qu) N Q)  if [u,V] is an edge of,
Quy = 0

otherwise.

Although it is not obvious to see, the above defini-
tion of gluing domain satisfies condition 2 of Defini-
tion 1 [26]. In particular, the fact thaR,, = 0 if and
only if Q,, = 0 is crucial to defining transition func-
tions in a consistent manner. In what follows we give
the formal definition of a transition function in our con-
struction:

Definition 5. Let K be the index set,
K={uVv)elxIl|Qu#0}.
Then, for any pailu, v) € K, thetransition function
vt Quv = Quu,
is such that, for every p Qu, we letoyu(p) = guv(p).
Figure 6 illustrates Definition 5.

RZ

QV Qu

su(w)

sv(2

Figure 6: lllustration of Definition 5.

It is important to emphasize that our transition func-
tions are bijective an€*-continuous, as functiogy,
is defined as a composition 6f°-continuous, bijective
functions. In addition, they satisfy condition 3 of Defi-
nition 1 [26].

6. Building Parametrizations

Let G be a set of gluing data built from a triangle
mesh, 7", as in Section 5. We want to define a fam-
ily of parametrizations{f(..,}wer, from G. For now,



we assume that we are given a surfage,c R3, that
approximateg7|. More specifically, we assume that
S’ is the union of finitely many parametric patches,
b, : R?2 — R3, each of which is associated with a tri-
angle,o, of 7" and all of them are defined in affiae
frame,a c R

9=Umm.

oeT

In addition, we requireS’ be at leastC°-continuous.
We can viewS’ as describing the geometry we want
to locally approximate with the parametrizations in
{0w) e - To define each parametrizatidg. ), we
need to specify a family{ () }(swel, Of shape func-
tions and a family{y (.} -yl » Of Weight functions (see

Eq. (1)).

Definition 6. For each ue |, we define theshape func-
tion,

Yy R? - R3,
associated witl), as the Bézier surface patch of bi-
degree(m, n),

v = D D, bl BIX)- BiO).

0<j<mO<k<n

where(x, y) are the coordinates of g R? with respect
to the gfine frame[—L + 2 - I(u), —L] x [L + 2 - I(u), L],
with L = cosr/my), {b‘j{k} c RR® are thecontrol points

I e

is the ith Bernstein polynomial of degreeover the
affine frame g, r], for every ie {0,1,...,1}. We let the
bi-degree(m, n), of y, be(m, + 1, m, + 1), where my is
the valence of u.

The controls points are determined by solving a least

squares fitting problem. In particulabj{k} is the family
of control points that uniquely defines @Ber patch of
bi-degree i, n) (i.e., Y(-y) Which best fits if a least
squares sen3e finite set,P, of pairs, €. p), of points,
whereq belongs toP, and p belongs to the surfac®’.
We computeP iteratively by starting withP = ¢ and
then proceeding as follows:

¢ We uniformly sample the quadrilatefal, = [-L +
2-1(u), ~L] x[L+2-1(u), L] c R? to generate a set,
Q c Py, with 4-(m,+1)? points. Note thaf], is the
smallest quadrilateral that contaif¥s. Note also
that a uniform sampling af], will contain points
that are not irP,. These points are not placed into
Q.

8

e For each poing € Q, we find the triangler of
7 such thafg is contained in the trianglg,(r) of
Ty. Then, we compute the barycentric coordinates,
(1, v,n), of gwith respect tas,(7) and use these co-
ordinates to compute a poimt= 1-a+v-b+n-c, in
A = [a,b, c], wherea is the common fiine frame
of all parametric patches definir®. To compute
(1,v,n) in a consistent manner, we must fix an or-
dering for the vertices of and for the vertices of
eachsy(t), so that we know which coordinate is as-
sociated with each vertex af(r) andA. Finally,
we computeb.(r), let p = b.(r), and add the pair,
(g, p), to P. Figure 7 illustrates the computation of
gandp.

Figure 7: Local sampling d&’ (white-filled vertices are not i).

OnceP is computed, we use a standard least squares
fitting procedure to comput{é)ﬁ‘,k} (see [1], p- 278). To
define the family{y(,.u}(o.uwel» Of weight functions, we
first need specify two functions. For everye R, let
h: R — Randé¢: R — R be two functions defined as
follows:

1 ift<0
ift>1
ht) =3 5. o1t (11)
e t—-1 otherwise
and
1 if t < L,
0 ift>L
f(t) = h(L) 2 (12)
otherwise

h(L) + h(1- L)

wherelLy, L, are constant, with < L; < Ly < 1,

andL = (t - L;)/(L2 — Ly). Function¢ was borrowed
from [17]. Note thaté(t) is constant fot < L; and
t > Ly, and it is strictly decreasing whenvaries from
L; to L,. Functioné(t) is C*, and itsi-th derivative,



D'&(t), vanishes fot < Ly andt > Ly, and it is nonzero
fort € (L1, Ly) c R. Figure 8 shows a plot af(t), for
te[0,1].

Definition 7. For each ue I, theweight function,
wiR? SR,
associated witl), is given by

yu(P) = &(lp — (2 1(u), O)II) ,

for every pe R?, where||p - (2 - I(u),0)| is the Eu-
clidean distance from p to the centé,- I(u), 0), of the
inscribed circle, @, of P,, and the constants;land L,
(in the definition of) are set td0.25- L, andcosfr/m),
respectively.

By construction, functiory, is positive for all points
inside itssupport supgyu), which is thep-domaing,,.
Note thaty, attains its maximum, which is equal to 1,
atp = (2-I(u),0) and in the neighborhood ¢f given
by {g e Q| llp-dl < Li}. Moreover, functiony,
decreases ag moves towards the boundary ©f, and
vanishes outsid€,. This is becausgp — q|| > L, for
every pointg € R? on the boundary of), or outside
it. So,yy is non-negative and its supposiipfyy), is
compact.

£

Figure 8: Plot of(t) fort € (0,1) c R, usingL; = 0.2 andL, = 0.8.

7. Implementation Details and Results

a method to compute a poiptin the parametric pseudo-
surface,S, as given by Eq. (3). This method hides
from the user the fact the is the union of a collec-
tion of parametrizations. In other words, the user does
not have to know about the existence of gluing data and
parametrizations. In particular, the user provides the
method with a triangleg, of 7 and a point,p, in o
suchthatp = A-u+v-v+n-w, whereu, v, w are the
vertices ofc- and A, v, andn are the barycentric coor-
dinates ofp with respect tay, v, w, in this order. The
idea behind our method is to magto a point in either
Qu, Qy, or Q,. To do so in a consistent manner, we
fix a vertex, saw, of o- and always map to the point
g=A-a+v-b+n-c wherea = gy o Ryy(su(w),

b = gu © Ruy(S:(¥)), andc = g, o Ruy(su(w)). In other
words,a = [a, b, c] is either the lower or the upper trian-
gle that encloses half of the canonical sector in Figure 4.
Next, we mapq to Q,, Q,, andQ,, using Iﬁu}v) o gzl

F%}u) ogl, andFr(viu) o g}, respectively. By construc-

tion, at least one quu%V) o gzX(q), %}u) o g;1(q), and
R © %' (0) is guaranteed to be insid@®&, Cy, andCy,
respectively. Without loss of generality, assume that
containsr = R(lev o g;1(g). So, we compute the point
s=6,(r) € S. This point can be viewed as the counter-
part of pointp € 7.

The input of our implementation consists f and
S’. In our experiments, we defined the surf&eeither
as a PN triangle surface [28] or a Loop subdivision sur-
face [29]. In the latter case, we replaced the funchign
with the algorithm for exact evaluation of Loop subdi-
vision surfaces at any parameter point of its base mesh,
T (see [30]).

7.1. Examples

We ran the aforementioned implementation of our
code on the mesh models in Table 1. For each mesh,
we generated two parametric pseudo-surfaces (PPSs),
one of which approximates a PN triangle surface de-
fined from the mesh, while the other one approximates

To implement our manifold-based construction, we a Loop subdivision surface defined on the mesh. Table 2
augmented a simple object-oriented, topological data shows the CPU time for the construction of each PPS,
structure, such as a DCEL [27], to store the informa- which is highly dominated by the least squares proce-

tion about the set of gluing datg;, and the family of
parametrizations{fu}uwer . It is worth mentioning
that there is no need to explicitly compute and store

dure that computes the control points of the shape func-
tions. This procedure is executagtimes, wheren, is
the number of vertices of the input mesh model. Each

domains, gluing domains, P-polygons and their associ- execution solves a system of about @n, + 1)? lin-

ated triangulations. Transition functions, shape func- ear equations using LU decomposition and substitution,
tions, and weight functions become “methods” asso- wherem, is the valence of the vertex associated with the
ciated with the edges and vertices of the data struc- shape function. Later, we used our method for placing a
ture. Our implementation also provides the “user” with point on a PPS to sample the PPSs in a triangle midpoint

9



subdivision manner. We did the same for sampling the of previous constructions, and thus it fills the gap left by

corresponding PN triangles and subdivision surfaces.

[ ModelID [ n, Ne ni | m [nc]
1 172 512 344 111
2 50 144 96 0] 1
3 3,674 11016 7,344 0] 1
4 60,880 | 183636 | 122424 | 173 | 7

Table 1: Mesh model identifier (first column) and the number of ver
tices (second column), edges (third column), faces (fourthnen),
holes (fifth column), and connected components (sixth colurhtieo
mesh.

[ Model ID | Approximated surfac§ CPU time (ms)]
1 PN triangle 3,025
1 Loop 1,640
2 PN triangle 786
2 Loop 446
3 PN triangle 65,800
3 Loop 34,128
4 PN triangle 1,223128
4 Loop 609129

Table 2: CPU time in milliseconds for the construction of theSPP
surfaces from the models in the first column and the approximated
surfaces in the second column. The timing was measured on a sin-
gle Mac 1.83 Hz Intel Core Duo CPU machine with 1 Gb RAM and
running Mac OS X.

Figure 9 shows the mesh models in Table 1. Fig-
ures 10-13 show Gaussian curvature plots for the PN
triangle, Loop subdivision, and parametric pseudo-
surfaces in Table 2. These plots demonstrate two im-

portant features of our pseudo-surfaces. First, they show

that our PPSs “mimic” closely the shape of the PN tri-
angle or Loop subdivision surface being approximated,
which are somewhat fierent from each other. Sec-
ondly, they also show the smoothinfiert of the PPSs

around the vertices and edges of the PN triangles sur-

faces and around the extraordinary vertices of the Loop

subdivision surfaces. In general, PN triangles surfaces

are onlyCP-continuous around their vertices and edges.
In turn, Loop subdivision surfaces may present curva-
ture continuity problems at extraordinary vertices (the
curvature can be zero).

8. Conclusions and Ongoing Work

In this article we have introduced a new manifold-
based construction for fitting a smooth surface to a trian-
gle mesh of arbitrary topology. Our construction com-

other methods. More specifically, the manifold struc-
ture produced by our construction is more compact and
effective than the ones in [15, 16], because it has only
one type ofp-domains and transition functions, and the
transition functions are simpler. Our construction shares
several desirable properties with the one in [17], includ-
ing the ability for producingC*-continuous surfaces
and the flexibility in ways of defining their geometry.
However, diferently from the construction in [17], ours
generates surfaces from triangle meshes, rather than
guadrilateral meshes, and the surfaces are contained in
the convex hull of all control points used to define their
geometry. Unlike the surfaces produced by the con-
struction in [18], the ones produced by our construction
are not given by purely (rational) polynomial functions.
However, our surfaces af@& -continuous everywhere,
while the ones generated in [18] may present singulari-
ties.
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Figure 9: Mesh models (a) 1, (b) 2, (c) 3, and (d) 4 from Table 1.

Finally, our construction is based on a solid theoret-
ical framework, which ensures its correctness, and we
provided experimental examples of the surfaces gener-
ated by our construction. In particular, the results in
Section 7 show that our construction can be combined
with parametric and subdivision schemes fttep the
user a “black-box” procedure to generat€a surface

bines in the same framework most of the best features from a small or large triangle mesh. We believe that

10



our construction can be very useful for applications in [11]
need of a “black-box” procedure to fit a higher-order
continuous surfacegiven by an analytic expressipto

a triangle mesh.

We are currently working on the problem of adap-
tively fitting C* surfaces to dense triangle meshes. To [13]
this end, we are developing a new solution to the fitting
problem that closely approximates meshes with a very [14]
large number of vertices by a smooth pseudo-parametric
manifold containing a small number of charts. We also
plan to extend this adaptive fitting algorithm to generate
a hierarchical manifold structure that can represent sur-
faces in multiresolution. In addition, we intend to fur-
ther investigate the existence of (rational) polynomial [
transition functions that can replace the ones currently
used by our construction.
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Figure 12: Curvature plots for the surfaces generated frorshme
model 3: (a) PN triangle, (b) PPS from the surface in (a), (®d,0
and (d) PPS from the surface in (c).

(© (d)

Figure 10: Curvature plots for the surfaces generated frorshme
model 1: (a) PN triangle, (b) PPS from the surface in (a), (@d,0
and (d) PPS from the surface in (c).

(b)

© (d) (© (d)

Figure 11: Curvature plots for the surfaces generated froshme ~ Figure 13: Curvature plots for the surfaces generated frorshme
model 2: (a) PN triangle, (b) PPS from the surface in (a), (®p,0 model 4: (a) PN triangle, (b) PPS from the surface in (a), (®f,0

and (d) PPS from the surface in (c). and (d) PPS from the surface in (c).
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