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Abstract

We introduce a new manifold-based construction for fitting asmooth surface to a triangle mesh of arbitrary topology.
Our construction combines in novel ways most of the best features of previous constructions and, thus, it fills the
gap left by them. We also introduce a theoretical framework that provides a sound justification for the correctness of
our construction. Finally, we demonstrate the effectiveness of our manifold-based construction with a few concrete
examples.
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1. Introduction

The problem of fitting a surface with guaranteed
topology and continuity to the vertices of a polygonal
mesh of arbitrary topology has been a topic of major
research interest for many years. The main difficulty
of this problem lies in the fact that, in general, meshes
of arbitrary topology cannot be parametrized on a sin-
gle rectangular domain and have no restriction on ver-
tex connectivity. Most existing solutions rely on mathe-
matical and computational frameworks capable of guar-
anteeing low degrees (i.e.,C2 and below) of continu-
ity only. However, higher order surfaces are often re-
quired for certain numerical simulations and to meet vi-
sual, aesthetic, and functional requirements. While a
few high order constructions do exist, most are expen-
sive, complex, and/or difficult to implement.

Much of the previous research efforts has been fo-
cused on stitching parametric polynomial patches to-
gether along their seams, where each patch is the im-
age of a distinct parametrization of a closed, planar
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domain. Because the patches need to be “pieced” to-
gether, ensuring continuity along the borders has proved
to be a difficult problem, particularly for closed meshes.
Although there is a large number ofCk/Gk construc-
tions based on the “stitching” paradigm and catered
to triangle meshes [1], only very few go beyondC2-
continuity [2, 3]. Existing constructions (even thoseC2

and below) are typically complex, they lack shape con-
trol and cannot achieve good visual quality without ad-
ditional processing. Very few were ever implemented
and the degree of the polynomial patches required by
most constructions grows rapidly with the desired or-
der of continuity, which tend to yield surfaces with poor
visual quality.

Subdivision surface is another popular approach
which has been extensively investigated in the past
30 years [4, 5, 6, 7, 8, 9, 10]. These techniques
are intuitive, simple to implement and in general pro-
duce smooth surfaces of good visual quality. How-
ever, constructions that go beyondC2/G2 are rare, and
guaranteeing continuity aroundextraordinaryvertices
is difficult [11, 12]. Furthermore, previous efforts by
Prautzsch and Reif [13, 14] indicate that subdivision
schemes to produceCk surfaces, for largek, cannot be
as simple and elegant as existingC1/G1 andC2/G2 sub-
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division schemes.
Unlike the two aforementioned approaches, the

manifold-based approach pioneered by Grimm and
Hughes [15] has proved well-suited to fit, with relative
ease,Ck-continuous parametric surfaces to triangle and
quadrilateral meshes, includingk = ∞ [15, 16, 17, 18].
The mathematical theory of manifolds was conceived
with built-in arbitrary smoothness, and the differential
structure of a manifold provides us with a natural setting
for solving equations on surfaces. Manifold-based con-
structions also share some of the most important prop-
erties of splines surfaces, such as local shape control
and fixed-sized local support for basis functions. Thus,
as pointed out by Grimm and Zorin [19], a manifold is
an attractive surface representation form for a handful
of applications in graphics, such as reaction-diffusion
texture, texture synthesis, fluid simulation, and surface
deformation.

Unfortunately, existing manifold-based constructions
present some drawbacks that limit their wide use in
practical applications. In particular, constructions able
to handle triangular meshes either make use of an intri-
cate mechanism to define the manifold structure [15] or
cannot guarantee smoothness in every point of the sur-
face [18]. On the other hand, methods with a simpler
construction [16] as well as arbitrary smoothness [17]
do not establish a complete framework for handling tri-
angular meshes.

1.1. Contributions

In this paper, we present a new manifold-based con-
struction for fitting surfaces of arbitrary smoothness
(i.e., C∞-continuous) to triangle meshes. Our con-
struction combines, in the same framework, most of
the best features of previous constructions. In par-
ticular, it is more compact and simpler than the one
in [15], more powerful than the construction in [18],
and shares with [17], a construction devised for quadri-
lateral meshes, the ability of producingC∞-continuous
surfaces and the flexibility in ways of defining the ge-
ometry of the resulting surface. We also introduce a
theoretical framework that provides a sound justification
for the correctness of our manifold-based construction.
This framework is a slight improvement upon the one
given by Grimm and Hughes [15], which was used to
undergird the constructions described in [15, 16, 17].

2. Prior Work

Extensive literature exists on fitting smooth surfaces
from meshes. However, in order to better contextualize

our approach, we focus this section on manifold-based
techniques. For a more detailed review of the manifold-
based approach and its applications, we refer the reader
to [19].

The first manifold-based construction for surface
modeling was proposed by Grimm and Hughes [15].
Their seminal work has since then been the basis of
most subsequent constructions, including ours. Their
construction takes a triangle mesh as input, subdivides
by one step of Catmull-Clark subdivision scheme, and
then considers the dual of the subdivided mesh (which is
no longer a triangle mesh). Surface topology is defined
from a structure they namedproto-manifold, which con-
tains a finite setA of connected open sets inR2 (the
theory holds inRn indeed) and a set of transition func-
tions that, together with the mesh connectivity, dictate
how the sets inA overlap with each other. Each type of
mesh element (vertex, edge, and face) gives rise to a dif-
ferent open set, requiring the construction of three dif-
ferent types of transition functions. Geometry is added
by handling the mesh geometry through control points
and blending functions explicitly defined from the open
sets. The construction in [15] yieldsC2-continuous sur-
faces only, but it was later simplified and improved [20]
to produceCk-continuous surfaces, for any finite integer
k. Subsequent efforts [16, 17] aimed at providing a con-
struction that requires a smaller set of open sets, con-
sists of simpler transition functions, and achievesC∞-
continuity.

Based on the concept of proto-manifold, Navau and
Garcia [16] introduced a construction that takes a
quadrilateral mesh and two integers,k andn, as input.
The integerk specifies the desired degree of (finite) con-
tinuity, whilen is related to the extent of the open sets in
A. Their construction assigns an open set to each mesh
vertex. Differently from [15], only two types of open
sets are built, one associated with regular vertices (va-
lence equal 4) and other with irregular vertices. How-
ever, three distinct types of transition functions are still
needed so as to glue regular-regular, regular-irregular,
and irregular-irregular open sets. The size of the setA
grows with n, but it also depends on the mesh topol-
ogy. In fact, it can be larger than the size ofA in [15]
even for smaller values ofn. Geometry is defined quite
similarly as in [15]. An extension of [16] to meshes of
arbitrary topology has been proposed [21], but it shares
with the construction in [16] the same advantages and
drawbacks.

Ying and Zorin [17] devised a very elegant proto-
manifold structure from quadrilateral meshes. Making
use of only one type of open set and a simple ana-
lytical transition function, the resulting surface isC∞-
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continuous. This work improves upon the two previous
techniques considerably. Another contribution is that
control points are replaced by general polynomials, thus
offering a more flexible control of the geometry of the
resulting surface. Their construction can be extended to
deal with triangle meshes, but one has to work out cer-
tain elements of its proto-manifold, which are not en-
tirely obvious.

More recently, Gu, He, and Qin [18] introduced a
triangle-based manifold construction calledmanifold
splines, which is based on a theoretical framework of
its own. This construction employs affine transform as
transition functions and (rational) polynomial functions
to derive the geometry. This is the first manifold-based
construction to yield a purely (rational) polynomial sur-
face. Having a surface specified by a (rational) polyno-
mial expression is very desirable in practice. However,
as closed surfaces (except tori) cannot be covered by an
”affine atlas” (see [22]), singular points not belonging
to any open set must appear on the surface, thereby af-
fecting the visual quality in the vicinity of these points.
Making use of discrete Ricci flow, Gu et al. [23] have
improved the manifold spline construction to reduce to
only one singular point on the entire surface.

Our construction is based on the theoretical frame-
work developed by Grimm and Hughes [15], yet it dif-
fers from the aforementioned constructions in the fol-
lowing aspects: the proto-manifold counterpart of our
construction is given two additional conditions that ren-
der it more general and stronger than the proto-manifold
in [15]. As in [17], our construction also has only one
type of open set and (simple) transition function, can
produceC∞ surfaces, and defines the geometry of the
resulting surfaces using polynomials. Differently from
Ying and Zorin [17], our construction is devised to work
with triangle meshes, which are far more popular than
quadrilateral meshes in graphics applications [24]. In
addition, we define geometry from simpler polynomials
(i.e., rectangular B́ezier patches) which means that the
resulting surface is contained in the convex hull of all
control points defining its patches. This property allows
us to optimize for speed ray tracing and collision de-
tection algorithms. The surfaces produced by our con-
struction are not polynomial, but they do not contain
any singular points. Finally, our construction is simple
to implement.

3. Mathematical Background

The formal definition of a manifold can be found in
standard mathematics textbooks, such as [25]. Infor-
mally, manifolds are spaces that locally behave like the

familiar n-dimensional Euclidean space, and on which
we can do calculus (e.g., compute derivatives, integrals,
volumes, and curvatures). For that, each manifold,M, is
equipped with anatlas, which is a collection ofcharts.
Each chart is a pair (U, ϕ), where U is an open set
of M and ϕ : U → ϕ(U) ⊆ R

n is a homeomor-
phism. Furthermore, the charts of an atlas must cover
M. The open sets,U1 andU2, of any two distinct charts,
(U1, ϕ1) and (U2, ϕ2), may overlap (see Figure 1).Tran-
sition functions, ϕ21 : ϕ1(U1 ∩ U2) → ϕ2(U1 ∩ U2)
andϕ12 : ϕ2(U1 ∩ U2) → ϕ1(U1 ∩ U2), are defined
to move between the overlapped regions consistently.
These functions are required to satisfy two conditions:
ϕ21 = ϕ2 ◦ ϕ−1

1 andϕ12 = ϕ1 ◦ ϕ−1
2 . Basically, func-

tions ϕ21 andϕ12 define which points inϕ1(U1 ∩ U2)
and ϕ2(U1 ∩ U2) correspond to the same point inM
underϕ−1

1 andϕ−1
2 . Transition functions are often re-

quired to beCk-continuous, so that the necessary degree
of “smoothness” to compute differential properties ofM
is ensured.

M U1 U2

ϕ1 ϕ2

ϕ1(U1) ϕ2(U2)

ϕ21

ϕ12

ϕ1(U1 ∩ U2) ϕ2(U1 ∩ U2)

R
n

Figure 1: Constituents of a manifold.

A manifold-based approach for surface construction
requires first building a manifold,M, which is a smooth
surface inR

3. The classic definition of a manifold as-
sumes the existence of a manifolda priori, which is not
very helpful from the constructive point of view. Fortu-
nately, it is possible to defineM in a constructive man-
ner from a set ofgluing dataand a set ofparametriza-
tions(see Figure 2).

Definition 1. Let n be an integer with n≥ 1 and let k be
either an integer with k≥ 1 or k = ∞. A set of gluing
datais a triple,

G = (

(Ωi)i∈I , (Ωi j )(i j )∈I×I , (ϕ ji )(i, j)∈K
)

,

satisfying the following properties, where I and K are
(possibly infinite) countable index sets, and I is non-
empty:

1. For every i∈ I, the setΩi is a non-empty open sub-
set ofRn calledparametrization domain, for short,
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p-domain, and theΩi are pairwise disjoint (i.e.,
Ωi ∩Ω j = ∅ for all i , j).

2. For every pair(i, j) ∈ I × I, the setΩi j is an open
subset ofΩi . Furthermore,Ωii = Ωi andΩ ji , ∅
if and only ifΩi j , ∅. Each non-emptyΩi j (with
i , j) is called agluing domain.

3. If we let

K = {(i, j) ∈ I × I | Ωi j , ∅} ,

thenϕ ji : Ωi j → Ω ji is a Ck bijection for every
(i, j) ∈ K called a transition function(or gluing
function) and the following conditions hold:
(a) ϕii = idΩi , for all i ∈ I,
(b) ϕi j = ϕ

−1
ji , for all (i, j) ∈ K, and

(c) For all i , j, k, if Ω ji ∩ Ω jk , ∅, thenϕ−1
ji (Ω ji ∩

Ω jk) ⊆ Ωik andϕki(x) = ϕk j ◦ ϕ ji (x), for all
x ∈ ϕ−1

ji (Ω ji ∩Ω jk).
4. For every pair (i, j) ∈ K, with i , j, for every

x ∈ ∂(Ωi j ) ∩ Ωi and y ∈ ∂(Ω ji ) ∩ Ω j , there are
open balls, Vx and Vy, centered at x and y, so that
no point of Vy ∩ Ω ji is the image of any point of
Vx ∩Ωi j byϕ ji .

M θ1(Ω1)

θ2(Ω2)

θ1 θ2

Ω1 Ω2

Ω12 Ω21
ϕ21

ϕ12

θ1(Ω12) = θ2(Ω21)

R
n

Figure 2: Constituents of a parametric pseudo-manifold.

There is a simple correspondence between the con-
stituents of the traditional definition of a manifold and
the ones of a set of gluing data and a set of parametriza-
tions:

• each p-domain,Ωi ⊆ R
n, is the image,Ωi =

ϕi(Ui), of an open set,Ui , of M under the mapϕi

of the chart (Ui , ϕi) of an atlas ofM;

• each gluing domain,Ωi j ⊆ Ωi , is the image,Ωi j =

ϕi(Ui ∩U j), of the overlapping subset,Ui ∩U j , of
Ui andU j under the mapϕi of the chart (Ui , ϕi) of
an atlas ofM;

• each transition function,ϕi j : Ω ji → Ωi j , is a func-
tion fromϕ j(Ui ∩ U j) = Ω ji to ϕi(Ui ∩ U j) = Ωi j ;
and

• each parametrization,θi : Ωi → M, is the inverse,
ϕ−1

i , of the mapϕi : Ui → R
n, of the chart, (Ui , ϕi).

Condition 3(c) is called thecocycle conditionand it
plays a crucial role in Theorem 1, which states that an
n-dimensionalCk manifold can be constructed from a
set of gluing data. In turn, condition 4 ensures that the
resulting manifold is Hausdorff. There are two subtle
differences between our definition of gluing data and
the definition of a proto-manifold in [15]. First, our
cocycle condition (see Definition 1) is stronger than
the one in [15], as the latter does not always guaran-
tee that a (valid) manifold can be constructed from a
proto-manifold (see [26]). Second, in the definition of
a proto-manifold, there is no condition similar to condi-
tion 4. In order to ensure that the manifold built from
a proto-manifold is Hausdorff, Grimm and Hughes [15]
require that the manifold be embeddable inR

n. This
requirement is stronger than condition 4, as it prevents
us from obtaining certain manifolds such as a 2-sphere
resulting from gluing two open discs inR2 along an an-
nulus.

Theorem 1. For every set of gluing data,

G = (

(Ωi)i∈I , (Ωi j )(i, j)∈I×I , (ϕ ji )(i, j)∈K
)

,

there is an n-dimensional Ck manifold, MG, whose tran-
sition functions are theϕ ji ’s.

Proof. See [26] for a proof.

Our proof of Theorem 1 in [26] gives us a theoret-
ical construction, which yields an “abstract” manifold,
MG, but no information on the geometry of this mani-
fold. Furthermore,MG may not be orientable or com-
pact. However, for the problem we are dealing with, we
are given a triangle mesh and we want to build a “con-
crete” manifold: a surface inR3 that approximates the
given mesh. It turns out that it is always possible to de-
fine aparametric pseudo-manifoldfrom any given set
of gluing data, whoseimagein R

3 is a surface if certain
conditions hold.

Definition 2. Let n and d be two integers with n> d ≥ 1
and let k be integer with k≥ 1 or k = ∞. A parametric
Ck pseudo-manifold of dimensiond in R

n,M, is a pair,

M = (G, (θi)i∈I ) ,

whereG = (

(Ωi)i∈I , (Ωi j )(i, j)∈I×I , (ϕ ji )(i, j)∈K
)

is a set of
gluing data, for some finite set I, and eachθi is a Ck

function,θi : Ωi → R
n, called aparametrizationsuch

that
θi = θ j ◦ ϕ ji ,
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for all (i, j) ∈ K. The subset, M⊂ R
n, given by

M =
⋃

i∈I
θi(Ωi)

is called theimageof the parametric pseudo-manifold,
M.

Whend = 2 andn = 3 in Definition 2, we callM
a parametric pseudo-surface. If we require theθi ’s to
be bijective and to further satisfy two conditions, (1)
θi(Ωi)∩θ j(Ω j) = θi(Ωi j ) = θ j(Ω ji ), for all (i, j) ∈ K, and
(2) θi(Ωi)∩ θ j(Ω j) = ∅, for all (i, j) < K, then the image,
M, of the parametric pseudo-surface,M, is guaranteed
to be a surface inR3 [26].

4. Overview of the Construction Process

Recall that our goal is to fit a surface,S ∈ R
3, to a tri-

angle meshT . More specifically, we want to build a sur-
faceS that approximates the vertices ofT and has the
same topology as the underlying space,|T |, of T (i.e.,
|T | is the point set resulting from the union of all points
in the vertices, edges, and triangles ofT ). We also as-
sume that|T | is a surface inR3 with empty boundary.
To buildS, our construction defines a set of gluing data
and a set of parametrizations. The set of gluing data,

G = (

(Ωi)i∈I , (Ωi j )(i, j)∈I×I , (ϕ ji )(i, j)∈K
)

,

is defined from the elements ofT . More specifically,
let I be the set of vertices ofT . Then, we define ap-
domain,Ωu, for eachu ∈ I . For anyu, v ∈ I , we also
define the gluing domains,Ωuv andΩvu, such thatΩuv =

∅ if and only if Ωuv = ∅. Finally, for u, v ∈ I such
thatΩuv , ∅ (or equivalently,Ωvu , ∅), we define the
transition functions

ϕvu : Ωuv→ Ωvu and ϕuv : Ωvu→ Ωuv .

In turn, the set of parametrizations is defined by cre-
ating local approximations to another surface defined
on T . More specifically, we first obtain a curved sur-
face approximation to|T |. This step is very flexible
and can be done a number of ways (see Section 6).
Next, for eachp-domainΩu, we define ashape func-
tion, ψu : R

2 → R
3, as a rectangular B́ezier patch that

locally approximates the surface defined onT . We also
define a non-negativeweight function, γu : R

2 → R,
with compact support equal to the closure ofΩu (i.e.,
γu is zero outside or on the boundary ofΩu and greater
than zero inside). Finally, the parametrization,θu, of

eachΩu is defined as a convex sum over all overlapping
p-domains. In particular, for each pointx ∈ Ωu, we have

θu(x) =
∑

v∈Ju(x)

ωuv(x) · ψv ◦ ϕvu(x) , (1)

where

ωuv(x) =
γv ◦ ϕvu(x)

∑

w∈Ju(x) γw ◦ ϕwu(x)
(2)

and
Ju(x) = {v | x ∈ Ωuv} ⊆ I .

The setJu(x) contains the index of eachp-domain,Ωv,
that is “glued” toΩu at x by ϕvu. Note thatϕvu(x) is the
point inΩv identified with x by ϕvu. The former point
is assigned a weight,ωuv(x), which can be viewed as its
contribution toθu(x). So,θu(x) adds up the contribution
of each shape function,γv, defined in ap-domain that
contains a point,ϕvu(x), identified withx in the gluing
process.

We can show that
∑

v∈Ju(x)

ωuv(x) = 1, with ωuv(x) ≥ 0 ,

and
θu(x) = θv ◦ ϕvu(x) ,

which ensure that the expression definingθu is a convex
sum and thatθu(x) andθv ◦ ϕvu(x) are the same point in
R

3. Finally, our smooth “surface”S is defined as the
image,

S =
⋃

v∈I
θv(Ωv) , (3)

of the parametric pseudo-surface,M = (G, θu)u∈I . Note
that the continuity ofS is determined by the low-
est order of continuity of all its component functions.
Since all of our transition functions, shape functions and
weight functions areC∞, so is our entire resulting sur-
face.

5. Building a Set of Gluing Data

To build the set of gluing data,G, we must define
its collection ofp-domains, gluing domains, and transi-
tion functions. These collections are defined in terms of
two abstractions, a P-polygon and its canonical triangu-
lation, and a bijective function. Now, we describe these
elements. Recall thatI is the index set consisting of the
vertices ofT . Let l : I → {1, . . . , |I |} be a map that as-
signs a uniquelabel from {1, . . . , |I |} with each vertex,
u, in I .
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For each vertexu of T , theP-polygon, Pu, associated
with u is the regular polygon inR2 given by the vertices

u′i =

(

2 · l(u) + cos

(

2π · i
mu

)

, sin

(

2π · i
mu

))

,

for eachi ∈ {0, . . . ,mu − 1}, wheremu is the valence of
u (see Figure 3).

Definition 3. For every u∈ I, the p-domainΩu is the
set

Ωu =
{

(x, y) ∈ R
2 | (x− 2 · l(u))2 + y2 < [cos(π/mu)]2

}

,

where mu is the valence of vertex u. Note thatΩu is
the interior, int(Cu), of the circle, Cu, inscribed in the
P-polygon, Pu.

u′
u′0

u′0

u′1u′1

u′2u′2
u′3u′3

u′4u′4

u′5u′5

u′6u′6

u′7 u′7

R
2

x

y

Figure 3: A P-polygon (left) and its canonical triangulation (right).

Note that everyp-domain is a non-empty, open set of
R

2. Furthermore, for any twov,w ∈ I , with v , w, the
p-domainsΩv andΩw must be disjoint, as they reside
insidePv andPw, respectively, whose interiors are dis-
joint. So, the collection,{Ωu}u∈I , of p-domains satisfies
condition 1 of Definition 1. To build gluing domains
and transition functions, we define a triangulation of the
P-polygons and a bijective function that is a composi-
tion of two rotations, an analytic function, and a double
reflection.

We can triangulatePu by addingmu diagonals and the
vertex,u′ = (2·l(u),0), toPu. Each diagonal connectsu′

to a vertex,u′i , of Pu, for eachi = 0, . . . ,mu − 1. The re-
sulting triangulation, denoted byTu, is called thecanon-
ical triangulation of Pu (see Figure 3). Denote the set of
vertices ofTu by V(Tu), and letN(u,T ) be the subset of
vertices ofT such thatv ∈ N(u,T ) if and only if v = u
or v is a vertex connected tou by an edge, [u, v], of T .
Then, we can define a bijection,su : N(u,T )→ V(Tu),
such thatsu(u) = u′ and [u,ui ,ui+1] is a triangle inT if
and only if [su(u) = u′, su(ui), su(ui+1)] is a triangle in
Tu, wherei = 0,1, . . . ,mu − 1 andi + 1 should be con-
sidered congruent modulomu. We can extend the bijec-
tion su to map triangles incident tou in T onto triangles

in Tu. In particular, ifσ = [u,ui ,ui+1] is a triangle of
T thensu(σ) = [u′, su(ui), su(ui+1)] is its corresponding
triangle in Tu. Unless explicitly stated otherwise, we
may occasionally denote vertexsu(v) by v′, for every
v ∈ N(u,T ).

For eachu in I and for eachp ∈ R
2, with p , (2 ·

l(u),0), let gu : R
2 − {(2 · l(u),0)} → R

2 − {(0,0)} be
given by

gu(p) = fu ◦ tu(p) , (4)

wheretu : R
2 → R

2 is the unique rigid transformation
(i.e., a translation) that takes (2· l(u),0) to the origin,
(0,0), of R

2, and fu : R
2 − {(0,0)} → R

2 − {(0,0)} is
given by

fu(q) = gu((θ, r)) =

(

6
mu
· θ, cos(π/6)

cos(π/mu)
· r

)

, (5)

where (θ, r) are the polar coordinates ofq ∈ R
2−{(0,0)}.

Function gu has the following interpretation (refer to
Figure 4): it maps the interior of the circular sector,
A, of Cu onto the interior of the circular sector,B, of
the circle of radius cos(π/6) and centers at (0,0), where
A is such thattu(A) (i.e., the translation ofA given by
tu) consists of (0,0) and all points with polar coordi-
nates (θ, r) ∈ [−2π/mu,2π/mu] × (0, cos(π/mu)] and B
consists of (0,0) and all points with polar coordinates
(β, s) ∈ [−π/3, π/3]× (0, cos(π/6)]. We say thatB is the
canonical sector. Note thatgu is a bijection. Its inverse,
g−1

u , is given by

g−1
u (q) = t−1

u ◦ f −1
u (q) , (6)

where

f −1
u (q) = f −1

u ((β, s)) =

(

mu

6
· θ, cos(π/mu)

cos(π/6)
· s

)

, (7)

for everyq ∈ R
2 − {(0,0)} with polar coordinates (β, s).

su(u)
u′0

p

gu

gu(p)

R
2

x

y

Figure 4: The action ofgu upon a pointp ∈ Cu.

Let h : R
2→ R

2 be the function

h(p) = h((x, y)) = (1− x,−y) , (8)
6



for every point p ∈ R
2 with rectangular coordinates

(x, y). Functionh is a “double” reflection:p = (x, y)
is reflected over the linex = 0.5 and then over the line
y = 0.

Finally, for any two verticesu, v of T such that [u, v]
is an edge ofT , let

g(u,v) : Cu − {(2 · l(u),0)} → Cv − {(2 · l(v),0)}

be the composite function given by

g(u,v)(p) = R−1
(v,u) ◦ g−1

v ◦ h ◦ gu ◦ R(u,v)(p) , (9)

for every p ∈ Cu − {(2 · l(u),0)}, where R(u,v) is
a rotation around (2· l(u),0) that identifies the edge
[su(u) = u′, su(v)] of Tu with its edge [u′,u′0]. Like-
wise, R−1

(v,u) is a rotation around (2· l(v),0) that identi-
fies the edge [sv(v) = v′, v′0] of Tv with its edge [v′, v′j ],
where j ∈ {0,1, . . . ,mv − 1} and sv(v′j) = u. Figure 5
shows the action ofg(u,v) upon a given pointp in the set
Cu − {(2 · l(u),0)}.

p

su(u)

su(w)

su(v)
su(z)

sv(v)sv(z)

sv(u)
sv(w)

h

gu ◦ R(u,v)

R−1
(v,u) ◦ g−1

v

R
2

x

xx

x

y

y

y

y

Figure 5: The action ofg(u,v) upon a pointp ∈ Cu.

Functiong(u,v) also has the following interpretation:
it maps the interior of a sector,A, of Cu onto the in-
terior of a sector,B, of Cv. These two sectors are
closely related. Letw and z be the two vertices of
T such that [u, v,w] and [u, v, z] are the two trian-
gles ofT sharing the edge [u, v]. Then, sectorA is
the circular sector ofCu contained in the quadrilat-
eral [su(u) = u′, su(w), su(v), su(z)], while sectorB is
the circular sector ofCv contained in the quadrilateral
[sv(v) = v′, sv(z), sv(u), sv(w)]. Functiong(u,v) is also a
bijection, and its inverse,g−1

(u,v), is equal to the function

g(v,u):

g(v,u)(q) = R−1
(u,v) ◦ g−1

u ◦ h ◦ gv ◦ R(v,u)(q) , (10)

for everyq ∈ Cv − {(2 · l(v),0)}. Functiong(u,v) plays
a crucial role in the definitions of gluing domains and
transition functions.

Definition 4. For any u, v ∈ I, thegluing domainΩuv is
defined as

Ωuv =

{

g−1
uv (guv(Ωu) ∩Ωv) if [u, v] is an edge ofT ,
∅ otherwise.

Although it is not obvious to see, the above defini-
tion of gluing domain satisfies condition 2 of Defini-
tion 1 [26]. In particular, the fact thatΩuv = ∅ if and
only if Ωvu = ∅ is crucial to defining transition func-
tions in a consistent manner. In what follows we give
the formal definition of a transition function in our con-
struction:

Definition 5. Let K be the index set,

K = {(u, v) ∈ I × I | Ωuv , 0} .

Then, for any pair(u, v) ∈ K, thetransition function,

ϕvu : Ωuv→ Ωvu ,

is such that, for every p∈ Ωuv, we letϕvu(p) = guv(p).

Figure 6 illustrates Definition 5.

su(u)
su(v)

su(w)

su(z)

sv(v)

sv(u)

sv(w)

sv(z)
ΩuΩv

p

ϕvu(p)

ϕvu

R
2

Figure 6: Illustration of Definition 5.

It is important to emphasize that our transition func-
tions are bijective andC∞-continuous, as functionguv

is defined as a composition ofC∞-continuous, bijective
functions. In addition, they satisfy condition 3 of Defi-
nition 1 [26].

6. Building Parametrizations

Let G be a set of gluing data built from a triangle
mesh,T , as in Section 5. We want to define a fam-
ily of parametrizations,{θ(σ,u)}(σ,u)∈I , from G. For now,
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we assume that we are given a surface,S′ ⊂ R
3, that

approximates|T |. More specifically, we assume that
S′ is the union of finitely many parametric patches,
bσ : R

2 → R
3, each of which is associated with a tri-

angle,σ, of T and all of them are defined in an affine
frame,△ ⊂ R

2:

S′ =
⋃

σ∈T
bσ(△) .

In addition, we requireS′ be at leastC0-continuous.
We can viewS′ as describing the geometry we want
to locally approximate with the parametrizations in
{θ(σ,u)}(σ,u)∈I . To define each parametrizationθ(σ,u), we
need to specify a family,{ψ(σ,u)}(σ,u)∈I , of shape func-
tions and a family,{γ(σ,u)}(σ,u)∈I , of weight functions (see
Eq. (1)).

Definition 6. For each u∈ I, we define theshape func-
tion,

ψu : R
2→ R

3 ,

associated withΩu as the Bézier surface patch of bi-
degree(m,n),

ψu(p) =
∑

0≤ j≤m

∑

0≤k≤n

bu
j,k · Bm

j (x) · Bn
k(y) ,

where(x, y) are the coordinates of p∈ R
2 with respect

to the affine frame[−L + 2 · l(u),−L] × [L + 2 · l(u), L],
with L = cos(π/mu), {bu

j,k} ⊂ R
3 are thecontrol points,

and

Bl
i(t) =

(

l
i

)

( r − t
r − s

)l−i ( t − s
r − s

)i

is the i-th Bernstein polynomial of degreel over the
affine frame [s, r], for every i∈ {0,1, . . . , l}. We let the
bi-degree,(m,n), ofψu be(mu + 1,mu + 1), where mu is
the valence of u.

The controls points are determined by solving a least
squares fitting problem. In particular,{bu

j,k} is the family
of control points that uniquely defines a Bézier patch of
bi-degree (m,n) (i.e., ψ(σ,u)) which best fits (in a least
squares sense) a finite set,P, of pairs, (q, p), of points,
whereq belongs toPu andp belongs to the surfaceS′.
We computeP iteratively by starting withP = ∅ and
then proceeding as follows:

• We uniformly sample the quadrilateral�u = [−L+
2 · l(u),−L] × [L+2 · l(u), L] ⊂ R

2 to generate a set,
Q ⊂ Pu, with 4·(mu+1)2 points. Note that�u is the
smallest quadrilateral that containsΩu. Note also
that a uniform sampling of�u will contain points
that are not inPu. These points are not placed into
Q.

• For each pointq ∈ Q, we find the triangleτ of
T such thatq is contained in the trianglesu(τ) of
Tu. Then, we compute the barycentric coordinates,
(λ, ν, η), of q with respect tosu(τ) and use these co-
ordinates to compute a point,r = λ·a+ν·b+η·c, in
△ = [a,b, c], where△ is the common affine frame
of all parametric patches definingS′. To compute
(λ, ν, η) in a consistent manner, we must fix an or-
dering for the vertices of△ and for the vertices of
eachsu(τ), so that we know which coordinate is as-
sociated with each vertex ofsu(τ) and△. Finally,
we computebτ(r), let p = bτ(r), and add the pair,
(q, p), to P. Figure 7 illustrates the computation of
q andp.

S′

su(u)

su(v)

su(w)

su(τ)

u

v

w τ

Ω(σ,u)

p = bτ(r)

bτ

q

r
△

R
2

R
3

a b

c

Figure 7: Local sampling ofS′ (white-filled vertices are not inQ).

OnceP is computed, we use a standard least squares
fitting procedure to compute{bu

j,k} (see [1], p. 278). To
define the family,{γ(σ,u)}(σ,u)∈I , of weight functions, we
first need specify two functions. For everyt ∈ R, let
h : R → R andξ : R → R be two functions defined as
follows:

h(t) =































1 if t ≤ 0
0 if t ≥ 1

e

2 · e−1/t

t − 1 otherwise

(11)

and

ξ(t) =



























1 if t ≤ L1

0 if t ≥ L2
h(L)

h(L) + h(1− L)
otherwise,

(12)

where L1, L2 are constant, with 0< L1 < L2 < 1,
andL = (t − L1)/(L2 − L1). Functionξ was borrowed
from [17]. Note thatξ(t) is constant fort ≤ L1 and
t ≥ L2, and it is strictly decreasing whent varies from
L1 to L2. Functionξ(t) is C∞, and itsi-th derivative,
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Diξ(t), vanishes fort ≤ L1 andt ≥ L2, and it is nonzero
for t ∈ (L1, L2) ⊂ R. Figure 8 shows a plot ofξ(t), for
t ∈ [0,1].

Definition 7. For each u∈ I, theweight function,

γu : R
2→ R ,

associated withΩu is given by

γu(p) = ξ(‖p− (2 · l(u),0)‖) ,

for every p ∈ R
2, where‖p − (2 · l(u),0)‖ is the Eu-

clidean distance from p to the center,(2 · l(u),0), of the
inscribed circle, Cu, of Pu, and the constants L1 and L2

(in the definition ofξ) are set to0.25·L2 andcos(π/mu),
respectively.

By construction, functionγu is positive for all points
inside itssupport, supp(γu), which is thep-domainΩu.
Note thatγu attains its maximum, which is equal to 1,
at p = (2 · l(u),0) and in the neighborhood ofp given
by {q ∈ Ωu | ‖p − q‖ < L1}. Moreover, functionγu

decreases asp moves towards the boundary ofΩu and
vanishes outsideΩu. This is because‖p − q‖ ≥ L2, for
every pointq ∈ R

2 on the boundary ofΩu or outside
it. So, γu is non-negative and its support,supp(γu), is
compact.

0.2 0.4 0.6 0.8 1
t

0.2

0.4

0.6

0.8

1

ξ(t)

Figure 8: Plot ofξ(t) for t ∈ (0,1) ⊂ R, usingL1 = 0.2 andL2 = 0.8.

7. Implementation Details and Results

To implement our manifold-based construction, we
augmented a simple object-oriented, topological data
structure, such as a DCEL [27], to store the informa-
tion about the set of gluing data,G, and the family of
parametrizations,{θ(σ,u}(σ,u)∈I . It is worth mentioning
that there is no need to explicitly compute and storep-
domains, gluing domains, P-polygons and their associ-
ated triangulations. Transition functions, shape func-
tions, and weight functions become “methods” asso-
ciated with the edges and vertices of the data struc-
ture. Our implementation also provides the “user” with

a method to compute a pointp in the parametric pseudo-
surface,S, as given by Eq. (3). This method hides
from the user the fact thatS is the union of a collec-
tion of parametrizations. In other words, the user does
not have to know about the existence of gluing data and
parametrizations. In particular, the user provides the
method with a triangle,σ, of T and a point,p, in σ

such thatp = λ · u+ ν · v+ η · w, whereu, v, w are the
vertices ofσ andλ, ν, andη are the barycentric coor-
dinates ofp with respect tou, v, w, in this order. The
idea behind our method is to mapp to a point in either
Ωu, Ωv, or Ωw. To do so in a consistent manner, we
fix a vertex, sayu, of σ and always mapp to the point
q = λ · a + ν · b + η · c, wherea = gu ◦ R(u,v)(su(u)),
b = gu ◦R(u,v)(su(v)), andc = gu ◦R(u,v)(su(w)). In other
words,△ = [a,b, c] is either the lower or the upper trian-
gle that encloses half of the canonical sector in Figure 4.
Next, we mapq to Ωu, Ωv, andΩw usingR−1

(u,v) ◦ g−1
u ,

R−1
(v,u) ◦ g−1

v , andR−1
(w,u) ◦ g−1

w , respectively. By construc-
tion, at least one ofR−1

(u,v) ◦ g−1
u (q), R−1

(v,u) ◦ g−1
v (q), and

R−1
(w,u) ◦g−1

w (q) is guaranteed to be insideCu, Cv, andCw,
respectively. Without loss of generality, assume thatCu

containsr = R−1
(u,v) ◦ g−1

u (q). So, we compute the point
s= θu(r) ∈ S. This point can be viewed as the counter-
part of pointp ∈ T .

The input of our implementation consists ofT and
S′. In our experiments, we defined the surfaceS′ either
as a PN triangle surface [28] or a Loop subdivision sur-
face [29]. In the latter case, we replaced the functionbσ
with the algorithm for exact evaluation of Loop subdi-
vision surfaces at any parameter point of its base mesh,
T (see [30]).

7.1. Examples

We ran the aforementioned implementation of our
code on the mesh models in Table 1. For each mesh,
we generated two parametric pseudo-surfaces (PPSs),
one of which approximates a PN triangle surface de-
fined from the mesh, while the other one approximates
a Loop subdivision surface defined on the mesh. Table 2
shows the CPU time for the construction of each PPS,
which is highly dominated by the least squares proce-
dure that computes the control points of the shape func-
tions. This procedure is executednv times, wherenv is
the number of vertices of the input mesh model. Each
execution solves a system of about 4· (mu + 1)2 lin-
ear equations using LU decomposition and substitution,
wheremu is the valence of the vertex associated with the
shape function. Later, we used our method for placing a
point on a PPS to sample the PPSs in a triangle midpoint
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subdivision manner. We did the same for sampling the
corresponding PN triangles and subdivision surfaces.

Model ID nv ne nf nh nC

1 172 512 344 1 1
2 50 144 96 0 1
3 3,674 11,016 7,344 0 1
4 60,880 183,636 122,424 173 7

Table 1: Mesh model identifier (first column) and the number of ver-
tices (second column), edges (third column), faces (fourth column),
holes (fifth column), and connected components (sixth column) of the
mesh.

Model ID Approximated surface CPU time (ms)

1 PN triangle 3,025
1 Loop 1,640
2 PN triangle 786
2 Loop 446
3 PN triangle 65,800
3 Loop 34,128
4 PN triangle 1,223,128
4 Loop 609,129

Table 2: CPU time in milliseconds for the construction of the PPS
surfaces from the models in the first column and the approximated
surfaces in the second column. The timing was measured on a sin-
gle Mac 1.83 Hz Intel Core Duo CPU machine with 1 Gb RAM and
running Mac OS X.

Figure 9 shows the mesh models in Table 1. Fig-
ures 10-13 show Gaussian curvature plots for the PN
triangle, Loop subdivision, and parametric pseudo-
surfaces in Table 2. These plots demonstrate two im-
portant features of our pseudo-surfaces. First, they show
that our PPSs “mimic” closely the shape of the PN tri-
angle or Loop subdivision surface being approximated,
which are somewhat different from each other. Sec-
ondly, they also show the smoothing effect of the PPSs
around the vertices and edges of the PN triangles sur-
faces and around the extraordinary vertices of the Loop
subdivision surfaces. In general, PN triangles surfaces
are onlyC0-continuous around their vertices and edges.
In turn, Loop subdivision surfaces may present curva-
ture continuity problems at extraordinary vertices (the
curvature can be zero).

8. Conclusions and Ongoing Work

In this article we have introduced a new manifold-
based construction for fitting a smooth surface to a trian-
gle mesh of arbitrary topology. Our construction com-
bines in the same framework most of the best features

of previous constructions, and thus it fills the gap left by
other methods. More specifically, the manifold struc-
ture produced by our construction is more compact and
effective than the ones in [15, 16], because it has only
one type ofp-domains and transition functions, and the
transition functions are simpler. Our construction shares
several desirable properties with the one in [17], includ-
ing the ability for producingC∞-continuous surfaces
and the flexibility in ways of defining their geometry.
However, differently from the construction in [17], ours
generates surfaces from triangle meshes, rather than
quadrilateral meshes, and the surfaces are contained in
the convex hull of all control points used to define their
geometry. Unlike the surfaces produced by the con-
struction in [18], the ones produced by our construction
are not given by purely (rational) polynomial functions.
However, our surfaces areC∞-continuous everywhere,
while the ones generated in [18] may present singulari-
ties.

(a) (b)

(c) (d)

Figure 9: Mesh models (a) 1, (b) 2, (c) 3, and (d) 4 from Table 1.

Finally, our construction is based on a solid theoret-
ical framework, which ensures its correctness, and we
provided experimental examples of the surfaces gener-
ated by our construction. In particular, the results in
Section 7 show that our construction can be combined
with parametric and subdivision schemes to offer the
user a “black-box” procedure to generate aC∞ surface
from a small or large triangle mesh. We believe that
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our construction can be very useful for applications in
need of a “black-box” procedure to fit a higher-order
continuous surface,given by an analytic expression, to
a triangle mesh.

We are currently working on the problem of adap-
tively fitting C∞ surfaces to dense triangle meshes. To
this end, we are developing a new solution to the fitting
problem that closely approximates meshes with a very
large number of vertices by a smooth pseudo-parametric
manifold containing a small number of charts. We also
plan to extend this adaptive fitting algorithm to generate
a hierarchical manifold structure that can represent sur-
faces in multiresolution. In addition, we intend to fur-
ther investigate the existence of (rational) polynomial
transition functions that can replace the ones currently
used by our construction.

Acknowledgments

We would like to thank Jos Stam for making available
to us his own implementation of the algorithm in [30].
All mesh models used in Section 7.1 are provided cour-
tesy of INRIA and MPII by the AIM@SHAPE reposi-
tory, except for Model 1.

References

[1] G. Farin, Curves ans Surfaces for CAGD: A Practical Guide, 5th
Edition, Morgan-Kaufmann, 2002.

[2] G. Greiner, H.-P. Seidel, Modeling with Triangular B-Splines,
IEEE Computer Graphics and Applications 14 (2) (1994) 56–
60.

[3] H. Prautzsch, G. Umlauf, Parameterization of triangulargk

spline surfaces of low degree, ACM Transaction on Graphics
25 (4) (2006) 1281–1293.

[4] E. Catmull, J. Clark, Recursively Generated B-Spline Surfaces
on Arbitrary Topological Surfa ces, Computer-Aided Design
10 (6) (1978) 350–355.

[5] D. Doo, M. Sabin, Behaviour of Recursive Division Surfaces
Near Extraordinary Points, Computer-Aided Design 10 (6)
(1978) 356–360.

[6] C. T. Loop, Smooth Subdivision Surfaces Based on Trian-
gles, Master’s thesis, Department of Mathematics, University
of Utah, Salt Lake City, Utah, USA (1987).

[7] N. Dyn, D. Levine, J. A. Gregory, A Butterfly Subdivision
Scheme for Surface Interpolation with Tension Control, ACM
Transactions on Graphics 9 (2) (1990) 160–169.

[8] J. Peters, U. Reif, The Simplest Subdivision Scheme for
Smoothing Polyhedra, ACM Transactions on Graphics 16 (4)
(1997) 420–431.

[9] L. Kobbelt,
√

3 Subdivision, in: Proceedings of the 27th annual
conference on Computer graphics and interactive techniques
(SIGGRAPH ’00), New Orleans, Louisiana, USA, 2000, pp.
103–112.

[10] L. Velho, D. Zorin, 4-8 Subdivision, Computer Aided Geometric
Design 18 (5) (2001) 397–427.

[11] J. Peters, U. Reif, Shape Characterization of Subdivision Sur-
faces – Basic Principles, Computer Aided Geometric Design
21 (6) (2004) 585–599.

[12] K. Karciauskas, J. Peters, U. Reif, Shape Characterization of
Subdivision Surfaces – Case Studies, Computer Aided Geomet-
ric Design 21 (6) (2004) 601–614.

[13] H. Prautzsch, U. Reif, Degree Estimates forCk Piecewise Poly-
nomial Subdivision Surfaces, Advances in Computational Math-
ematics 10 (2) (2004) 209–217.

[14] U. Reif, A Degree Estimate for Subdivision Surfaces of Higher
Regularity, Proceedings of the American Mathematical Society
124 (7) (2006) 2167–2174.

[15] C. M. Grimm, J. F. Hughes, Modeling Surfaces of Arbitrary
Topology Using Manifolds, in: Proceedings of the 22nd ACM
Annual Conference on Computer Graphics and Interactive Tech-
niques (SIGGRAPH 95), ACM, 1995, pp. 359–368.

[16] J. C. Navau, N. Pla-Garcia, Modeling Surfaces from Meshes of
Arbitrary Topology, Computer Aided Geometric Design 7 (1)
(2000) 643–671.

[17] L. Ying, D. Zorin, A Simple Manifold-Based Construction
of Surfaces of Arbitrary Smoothne ss, ACM Transactions on
Graphics 23 (3) (2004) 271–275.

[18] X. Gu, Y. He, H. Qin, Manifold Splines, Graphical Models
68 (3) (2006) 237–254.

[19] C. M. Grimm, D. Zorin, Surface Modeling and Parameteriza-
tion With Manifolds, in: ACM SIGGRAPH 2006 Courses (SIG-
GRAPH ’06), ACM Press, New York, NY, USA, 2006, pp. 1–
81.

[20] C. M. Grimm, J. J. Crisco, D. H. Laidlaw, Fitting Manifold
Surfaces to Three-Dimensional Point Clouds, Journal of Biome-
chanical Engineering 124 (1) (2002) 136–140.

[21] J. C. Navau, N. Pla-Garcia, M. Vigo-Anglada, A Generic Ap-
proach to Free Form Surface Generation, in: Proceedings of the
2002 ACM Symposium on Solid Modeling (SM’02), 2002, pp.
35–44.

[22] J. Milnor, J. D. Stasheff, Characteristic Classes, Vol. 76 of An-
nals of Mathematics Studies, Princeton University Press, 1974.

[23] X. Gu, Y. He, M. Jin, F. Luo, H. Qin, S. ng Tung Yau, Mani-
fold Splines with Single Extraordinary Point, Computer-Aided
Design 40 (6) (2008) 676–690.

[24] M. Botsch, M. Pauly, C. R̈ossl, S. Bischoff, L. Kobbelt, Geo-
metric Modeling Based on Triangle Meshes, in: SIGGRAPH
Course Notes, ACM, 2006.

[25] M. Berger, B. Gostiaux, Differential Geometry, Manifolds,
Curves, and Surfaces, Vol. 115 of GTM, Springer-Verlag, 2006.

[26] M. Siqueira, D. Xu, J. Gallier, Construction ofc∞ surfaces
from triangular meshes using parametric pseudo-manifolds,
Tech. rep., University of Pennsylvania,http://repository.
upenn.edu/cis_reports/877 (2008).

[27] M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf,
Computational Geometry: Algorithms and Applications, 2nd
Edition, Springer-Verlag, 2000.

[28] A. Vlachos, J. Peters, C. Boyd, J. L. Mitchell, Curved PNtri-
angles, in: Proceedings of the ACM Symposium on Interactive
3D Graphics, Research Triangle Park, NC, USA, 2001, pp. 159–
166.

[29] C. T. Loop, AG1 Triangular Spline Surface of Arbitrary Topo-
logical Type, Computer Aided Geometric Design 11 (3) (1994)
303–330.

[30] J. Stam, Evaluation of Loop Subdivision Surfaces, in: ACM
SIGGRAPH 1999 Courses (SIGGRAPH ’99), ACM Press, New
York, NY, USA, 1999, pp. 1–15.

11



(a) (b)

(c) (d)

Figure 10: Curvature plots for the surfaces generated from mesh
model 1: (a) PN triangle, (b) PPS from the surface in (a), (c) Loop,
and (d) PPS from the surface in (c).

(a) (b)

(c) (d)

Figure 11: Curvature plots for the surfaces generated from mesh
model 2: (a) PN triangle, (b) PPS from the surface in (a), (c) Loop,
and (d) PPS from the surface in (c).

(a) (b)

(c) (d)

Figure 12: Curvature plots for the surfaces generated from mesh
model 3: (a) PN triangle, (b) PPS from the surface in (a), (c) Loop,
and (d) PPS from the surface in (c).

(a) (b)

(c) (d)

Figure 13: Curvature plots for the surfaces generated from mesh
model 4: (a) PN triangle, (b) PPS from the surface in (a), (c) Loop,
and (d) PPS from the surface in (c).
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