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Abstract. Inductive learning approaches traditionally categorized as super-
vised, which use labeled data sets, and unsupervised, which use unlabeled data
sets in learning tasks. The great volume of available data and the cost involved
in manual labeling has motivated the investigation of different solutions for ma-
chine learning tasks related to unlabeled data. The approach proposed here fits
into this context: a semi-supervised clustering algorithm is applied to a par-
tially labeled data set; the obtained results are used to automatically label the
remaining data in the set; following, a supervised learning algorithm is used
to generate fuzzy rules from the labeled data. The experiments show that this
may be a promising solution for tasks that have encountered difficulties due to
partially labeled data.

1. Introduction
In recent years, the fields of machine learning and knowledge acquisition have been fre-
quently focusing research related to Fuzzy Systems. These systems are based in the fuzzy
sets theory and are mainly characterized by the use of linguistic variables in representing
at least part of the knowledge. The utility of such systems is recognized in literature and
still motivates investigations on methodologies to automatically build and optimize these
systems aided by data sets.

Inductive learning distinguishes itself between supervised, making use of data
with known classes (labeled data), and unsupervised learning, which utilizes data with-
out classes (unlabeled data). Often enough, the scientific community addresses the need
for research efforts to treat for the great volume of available data in the most diverse
knowledge areas, due to the facility in obtaining this data accompanied by its high cost of
manual interpretation and labeling. This situation refers to the study of learning mecha-
nisms that consider both labeled and unlabeled data, which is known as semi-supervised
learning [Klose and Kruse 2005, Zhu 2005].

Both techniques of supervised and unsupervised learning have been applied to
fuzzy rule-based systems generation, the particular fuzzy systems of interest for this pro-
posal. The current stage of research evidences that the combination of methodologies
benefits the learning process as a whole, because it permits the balancing of advantages
of complementary methods.

Among the supervised learning techniques, approaches that involve hybrid meth-
ods combining fuzzy set theory and other methodologies are highlighted, especially evo-
lutionary algorithms [Cordón et al. 2004b] and neural networks [Jang et al. 1997].

As for unsupervised learning techniques, the analysis of clusters is a mechanism
often explored for generation of fuzzy rules and sets from unlabeled data. The frequent



approach is to apply a clustering algorithm and transform the result in a fuzzy rule base,
in which each cluster defines one rule. The fuzzy sets in each dimension are obtained
by projection of the clusters. Most times these projections are approximated to triangular
and trapezoidal sets.

This work investigates the combination of semi-supervised clustering algorithms
with the generation of fuzzy rules. The proposed approach applies a semi-supervised
clustering algorithm to a partially labeled data set, using the results to automatically label
the remaining data in the set. Later, a supervised learning algorithm is used to generate
fuzzy rules from the labeled data.

2. Semi-supervised Data Clustering
Methods of supervised and unsupervised learning, although useful in determined applica-
tions, present disadvantages. In supervised learning there is the need of an already labeled
data set for extraction of rules. Unsupervised learning depends on the selection of appro-
priate metric and distribution function, number of clusters to be created and appropriate
representation of significant clusters in a data set.

With the increasing complexity of data sets in many domains, complete and man-
ual data labeling becomes more difficult and onerous. In this scenario, the use both types
of data, labeled and unlabeled, becomes more interesting. A growing number of publi-
cations and conferences about semi-supervised learning is observed, reporting successful
applications, especially, in image processing [Grira et al. 2006, Pedrycz et al. 2008] and
text classification [Liu and Huang 2003, Geng et al. 2009].

The publications suggest and analyze modifications to already known methods
aiming to consider their application to a data set with little amount of labeled and mostly
unlabeled data. The work of Zhu [Zhu 2005] presents some tendencies and characteristics
of semi-supervised classification, such as self-training, co-training and generative models
[Chapelle et al. 2006], and points towards other forms of semi-supervised learning, by
means of clustering and regression tasks.

Typically, clustering methods do not use previous knowledge, such as class la-
bels. Semi-supervised clustering algorithms on other hand include mechanisms to con-
sider previous information in the process of generating clusters. These mechanisms
include: modification of the objective function, as to include restrictions satisfaction
[Pedrycz and Waletzky 1997]; reinforcement of restrictions during the clustering process
[Wagstaff et al. 2001, Grira et al. 2005]; initialization and restriction of clustering based
on labeled examples [Bensaid et al. 1996, Basu et al. 2002].

The clustering methods that incorporate semi-supervision may be divided
in two approaches, depending of available knowledge: seed-based approach
[Bensaid et al. 1996, Pedrycz and Waletzky 1997, Basu et al. 2002] and pair-restriction-
based approach [Wagstaff et al. 2001, Basu et al. 2004, Grira et al. 2008]. Seeds are la-
beled examples within a data set that may be used to establish restrictions to the algorithm,
restrictions between pairs of examples and to define cluster labels. The pair-wise restric-
tions may be of type must-link, indicating that a pair of examples must belong to the same
cluster, or cannot-link, indicating that a pair of examples must belong to distinct clusters.

An example of semi-supervised clustering is the semi-supervised Fuzzy C-Means



algorithm (ssFCM) [Bensaid et al. 1996]. This method is an adaptation of the Fuzzy C-
Means (FCM) algorithm, that considers information in the form of seeds to improve clus-
tering performance.

The suggested modifications were made aiming to solve three problems from the
application of original FCM. The first would be the difficulty in selecting the c number
of clusters, due to lack of knowledge about the data set. The second is the problem of
defining appropriate labels to each cluster after the clustering process. The last problem
relates to objective functions that tend to equal the number of examples in each cluster.

The ssFCM algorithm tries to minimize the described problems. Firstly, the initial
FCM data set would be substituted by a union of the labeled data, X l, and unlabeled data,
Xu. Let n be the number of labels represented in X l, c = n. The definition of fuzzy
pseudo-partitions is changed so that the membership of labeled examples is defined as 1
and is not altered during the updates of the pseudo-partition. Lastly, a weight is added to
each labeled example (wk) to calculate cluster prototypes, which is defined according to
the degree of influence of each example.

3. Semi-supervised Clustering in Fuzzy Rule Generation

The goal of this work is to explore the use of clustering algorithms in the generation of
fuzzy rules. This section initiates with a brief description of the most used mechanisms in
fuzzy rule generation. Following, there is a discussion on the role of clustering methods
in this process, mainly, by the unsupervised version.

3.1. Fuzzy Rule-based Systems Generation

Fuzzy Rule-based Systems (FRBS) are composed by two main components: the Knowl-
edge Base (KB) and the Inference Mechanism (IM). The automatic generation of these
systems is a frequent topic in recent researches and characterizes the approximation be-
tween the areas of fuzzy modeling and machine learning [Hullermeier 2005]. As the KB
of a FRBS includes a Data Base (DB), which contains the fuzzy sets, and a Rule Base
(RB), which contains the rules, the methods for generation of these systems vary from
adjustment of fuzzy sets, going through generation of one of the components of the KB,
to the simultaneous generation of all the components, including parameters of the IM.

Many approaches have been used to automatically generate the KB from nu-
meric data that represent samples or examples of the problem. Among the most success-
ful techniques are the clustering algorithms [Liao et al. 2003], the gradient-based meth-
ods [Nomura et al. 1992], the fuzzy decision trees [Janikow 1998], the neural networks
[Jang et al. 1997] and the genetic algorithms [Cordón et al. 2004a].

The use of clustering aiming to build a FRBS consists in identifying regions in an
input space that may form the antecedent of a rule. The results of the fuzzy clustering
may be transformed in a fuzzy RB such that each cluster represents a fuzzy rule. This
approach is discussed in the next section.

The hybrid approaches, which combine different methodologies, specially neural
networks and evolutionary computing, with fuzzy sets theory, are particularly important
for fuzzy rule learning. Evolutionary algorithms in general and genetic algorithms in par-
ticular have been extensively used for FRBS learning. In this approach there is a great



variety of mechanisms to optimize or build a FRBS or its parts, sequentially, simultane-
ously or even as a combination of other methods.

Fuzzy Systems combined with a learning process based on genetic algorithms
are named Genetic Fuzzy Systems (GFS). The research on genetic rule-base fuzzy
systems has already originated an expressive number of work and continues in activ-
ity nowadays. Important contributions that characterize the state of the art and the
main tendencies may be found in the many special editions on the subject, such as
[Cordón et al. 2004b, Casillas et al. 2007, Herrera 2008, Casillas and Carse 2009].

The GFS are particularly relevant to this work, as long as some of the supervised
methods for rule generation utilized in this work were chosen among the ones that fit this
GFS proposal.

3.2. Fuzzy Clustering in Generating Fuzzy Rule-based Systems

The most common approach to generate rules by fuzzy clustering is to consider each
cluster as a possible rule. Thus, after finding clusters through an algorithm, the antecedent
of the rule is determined by projecting the cluster on each of the input space dimensions to
obtain propositions in the form “V is A”. The conjunction of these propositions forms the
antecedent of the rule and each cluster is associated to a class. The disadvantage of this
approach is that each rule makes use of its own fuzzy sets, generated by the projection,
which may cause linguistic interpretability problems [Klose and Kruse 2005]. Examples
of pioneer work following this approach are [Sugeno and Yasukawa 1993, Yager 1993,
Babuska et al. 1994].

In recent work it is frequently found approaches that combine clustering meth-
ods with other learning mechanisms for the generation of fuzzy rules. In [Juang 2005],
for instance, the proposed method combines on-line clustering and genetic algorithm in
generating FRBS, with reinforcement. Other approaches that combine genetic algorithms
with clustering may be found in [Saez et al. 2008]. In [Lee et al. 2008] a new iterative
fuzzy clustering algorithm is presented. The fuzzy rules are obtained by an iterative pro-
cess of selecting clusters with supervision based on notions of purity and separability of
clusters.

Finally, it must be mentioned that clustering methods are very utilized in the gen-
eration of fuzzy sets, combined with the fuzzy rule generation process made by another
method [Liao et al. 2003].

The proposal developed here concerns the combination of clustering methods with
fuzzy systems generation in a way that is different from the ones usually encountered in
the literature. The proposal is presented in the following section.

4. Proposed Approach

The goal of the proposed approach is to explore and evaluate the use of semi-supervised
clustering methods in generating fuzzy rule bases. The main idea is to automatically label
partially labeled data sets, based on the partition obtained by the application of semi-
supervised clustering methods and, then, generate a fuzzy rule-based system with the aid
of a supervised classification method.



The main motivation for this work was to investigate a hybrid mechanism that use
partially labeled data, by the combination of two complementary methodologies. While
the generation of fuzzy rules is usually done by mechanisms that require labeled data, the
increasing availability of unlabeled data evidences the need to research methods that are
adequate for such situations. On the other hand, clustering methods, traditionally applied
to unlabeled data, present difficulties relative to validation and interpretation of groups
resulting from the partitioning, which might not favor its utilization to generate rules. The
proposed method aims to study alternatives to surpass those difficulties.

The method developed in this work is divided in two steps: (1) clustering and
labeling; (2) rule generation . These steps are described in the following sections.

4.1. Clustering and Labeling Step

This step aims to automatically label the training data, according to the resulting parti-
tion of the semi-supervised algorithm. The labeled data can then be used in supervised
learning, specifically, in the generation of fuzzy rules.

The clustering was based on the seeded-based ssFCM algorithm. The FCM algo-
rithm was used for comparison and clustering validation. The comparisons between the
clustering algorithms were based on the heterogeneity index R [Carvalho et al. 2006].

4.2. Rule Generation Step

The rule generation step consists of the application of a supervised fuzzy rule generation
method on the labeled data set resulting from the previous step. Aiming at providing
enough results to support the comparative analysis, four different rule generation algo-
rithms have been used in this work.

One of the algorithms used is a non-evolutionary fuzzy rule base generation
method, Fuzzy Rule Learning Model [Chi et al. 1996, Cordón et al. 1999]. The Fuzzy
Rule Learning Model (CRW) builds a fuzzy rule base by means of a technique adapted
from Wang & Mendel method, also considering weights that improve the classification.
The other algorithms selected for the rule generation task are evolutionary methods. The
hybrid fuzzy genetics-based machine learning algorithm (IH) [Ishibuchi et al. 2005] is
a method that implements a hybridism between two famous approaches: Michigan and
Pittsburgh. The steady-state algorithm for extracting fuzzy classification rules from data
(SG)[Mansoori et al. 2008] is a genetic algorithm with a finite number of generations,
which is related to the dimension of the evaluated problem. The goal of the SG is to
extract a more compact and legible rule base. The structural learning algorithm on vague
environment (SL) [González and Perez 2001] method is a genetic algorithm based on the
iterative approach.

The selected methods were applied using the KEEL (Knowledge Extraction based
on Evolutionary Learning) tool [Alcala-Fdez et al. 2009]. The evaluation of obtained re-
sults were based on the error rate, i.e., the percentage of incorrectly classified test in-
stances.

The main goal of the experiments is to compare the results of the rule bases gen-
erated from automatically labeled data set and originally labeled data set.



Table 1. Data sets used in experiments
Data Set Instances Attributes Classes
Apendicitis 109 9 2
Balance 625 4 3
Bupa 345 6 2
Ecoli 336 7 8
Glass 214 9 7
Haberman 306 3 2
Ionosphere 351 33 2
Iris 150 4 3
Monk 2 432 6 2
New Thyroid 215 5 3
Pima 768 8 2
Sonar 208 60 2
Spambase 4597 57 2
SPECTF Heart 267 44 2
Texture 5500 40 11
Vehicle 846 18 4
WDBC 569 30 2
Wine 178 13 3
Yeast 1484 8 10

5. Experiments and Results

Thirteen popular data sets, shown in Table 1were used to validate the proposal and
evaluate the results obtained by the clustering and classification methods. The nu-
merical data sets used are available at the UCI repository for machine learning
[Frank and Asuncion 2010]. Cross-validation for 5 folds was adopted to compare the
performance of clustering and classification algorithms.

The goals of the proposal allow the validation to be divided in two parts: the
validation of results obtained by clustering methods and the validation of the fuzzy rule-
base for classification generated by the rule base generation methods. Specifications of
each part are described is sections 5.1 and 5.2.

5.1. Clustering Validation

The validation of clustering methods is given by an index obtained from the results of
experiments considering two different fuzzy clustering algorithms:

FCM Unsupervised method. The original labels were removed from the data set. The
metric for instance dissimilarity metric was the Euclidean distance.

ssFCM Semi-supervised method, based on seeds. The original labels of the training sets
were partially removed and the remaining labels were used as seeds. Experiments
were made with sets of seeds sized at approximately 10%, 20% and 30% of in-
stances. The selection of seeds happened in two different ways: random selection
of n instances per label and random selection of instances from the complete train-
ing set.

The implementation of the clustering algorithms uses a few structures of the
WEKA [Hall et al. 2009] data mining software package.



This work utilizes an index based on sum of squares (SSQ) to evaluate the fuzzy
clustering results applied to quantitative data sets. The overall SSQ and between-cluster
SSQ metrics [Carvalho et al. 2006] are used in the definition of the interpretation index.

The overall SSQ metric (T ) evaluates the general heterogeneity for all n examples
in the data set, according to the distance function used in the clustering algorithm. This
metric relates each example of the data set with the general data set prototype.

Between-cluster SSQ metric (B) evaluates the dispersion of cluster prototypes
and, thus, the difference among all the clusters obtained with the application of the clus-
tering algorithm. It relates the cluster prototypes with the general data set prototype and
uses cluster membership degrees obtained by the clustering.

The general heterogeneity index (R) is obtained by R = B
T

were high values
of R indicate clusters that are more homogeneous and better represented by the cluster
prototype.

5.2. Classification Validation

The validation of the fuzzy rule-base generation is given by comparing and evaluating
results obtained by the application of classification algorithms to the data sets with the
original labels and on the data sets that have gone through the semi-supervised clustering
and labeling.

Comparison of the results is given by the Friedman test [Demšar 2006]. A post-
hoc test is applied when significant difference between results is verified.

Generally, the Friedman test is applied to evaluate algorithms. In this work, the
goal is to verify whether the application of classification algorithms to data sets that were
automatically labeled after being clustered by a semi-supervised algorithm influences the
performance of the classification algorithm.

The results for the Friedman test and the post-hoc were given by the data analyses
software GraphPad (http://www.graphpad.com/).

5.3. Results

The goal of a clustering algorithm is finding the optimal partition of a determined data
set. This implies in partitioning the data as to obtain groups that are most homogeneous
and compact as possible, given a proximity measure.

One of the difficulties in clustering tasks is that sets with high dispersion of data
may influence the results of the clustering in a negative way. Table 2 indicate the R
index, as presented in section 5.1, for results on the clustering of the used data sets. The
applied clustering methods were FCM and ssFCM. In Table 2, <data-set-name>(a,b,c), a,
b and c are the number of groups in which the data was partitioned and ssFCMi, i is the
percentage of seeds relative to the number of total instances in the training data set

Low values for R indicate a considerably disperse set. It is noted, in Table 2, that,
as the number of groups in FCM clustering increases, the value R also increases. Data
partitioning using higher numbers of groups may generate better values for the R index,
although that does not always indicate good partitioning. The value of R, for some data
sets, is inversely proportioned to the number of initial seeds. The disperse characteristic



Table 2. General heterogeneity index (R) for FCM and ssFCM
Data Set FCMa FCMb FCMc ssFCM10% ssFCM20% ssFCM30%

Balance(2,3,4) 0.0042 0.0366 0.0818 0.0192 0.0168 0.0121
Bupa(2,3,4) 0.0001 0.0187 0.0717 0.0000 0.0000 0.0000
Haberman(2,3,4) 0.8935 0.9432 0.9607 0.9049 0.8778 0.8628
Ionosphere(2,3,4) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Iris(2,3,4) 0.5224 0.6476 0.7188 0.6800 0.6815 0.6825
Monk2(2,3,4) 0.0174 0.0436 0.0697 0.0221 0.0114 0.0070
New Thyroid(2,3,4) 0.6579 0.7499 0.8184 0.6985 0.6842 0.6931
Pima(2,3,4) 0.0000 0.0006 0.0072 0.0000 0.0000 0.0000
Sonar(2,3,4) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SPECTF Heart(2,3,4) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Vehicle(3,4,5) 0.0026 0.0041 0.0058 0.0019 0.0012 0.0005
WDBC(2,3,4) 0.0025 0.0056 0.0161 0.0020 0.0016 0.0012
Wine(2,3,4) 0.0038 0.0116 0.1196 0.0003 0.0003 0.0003

Table 3. Error percentage for rule-base (O)
Data Set CRW IH SG SL
Balance 9.30 15.80 25.00 19.00
Bupa 40.87 29.57 39.89 36.20
Haberman 26.23 24.80 25.86 26.06
Ionosphere 18.61 34.61 23.29 5.41
Iris 7.17 4.83 6.08 3.17
Monk 2 30.57 4.09 19.45 2.78
New Thyroid 14.48 5.47 10.23 8.20
Pima 26.01 23.5 28.24 24.78
Sonar 20.41 51.05 27.14 21.27
SPECTF Heart 18.53 26.97 21.11 20.13
Vehicle 36.61 47.50 48.11 28.53
WDBC 5.59 8.22 8.19 7.95
Wine 4.30 8.87 9.19 4.38

of data sets may influence the partitioning using ssFCM, “confusing” the algorithm as the
number of seeds increases.

Tables 3 and 4 present the error rate for experiments made with algorithms CRW,
IH, SG and SL, with the different types of data. Table 3 contains the results for the rule-
base generated from the 100% original labeled data set (O). Table 4 presents the results
obtained from data set with planned seeds (P) and random seeds (R), which went through
a labeling process after being clustered by the ssFCM algorithm.

An initial evaluation of Tables 3 and 4 suggest that the difference in results for the
3 types of data set (original and automatically labeled) are not significant.

In the first evaluation strategy, the Friedman test was among the rule-base gener-
ation method for each data set. The goal was to verify if an algorithm a1 that performs
significantly better than another algorithm a2, when applied to data set O, will still per-
form better when applied to data sets P and R. The results obtained confirm the initial
evaluation of the error rates table: the results are not significantly different.

In the second evaluation strategy used to analyze the results of the experiments,
the comparison was made among the different data types for each rule generation method.
Considering that the labeling based on the semi-supervised clustering is successful when



Table 4. Error percentage for rule-base (P and R)
Data Set CRWP IHP SGP SLP CRWR IHR SGR SLR

Balance 14.44 15.48 15.00 15.18 20.68 19.68 22.14 17.04
Bupa 19.13 11.01 14.89 9.06 19.82 13.74 17.43 10.66
Haberman 32.21 9.88 35.95 16.9 29.74 11.15 70.32 12.25
Ionosphere 25.71 38.50 28.34 16.24 27.60 46.09 28.34 15.33
Iris 8.50 6.17 7.42 6.50 8.67 6.75 8.25 7.09
Monk 2 46.93 11.48 16.42 8.94 45.86 8.51 10.20 7.58
New Thyroid 41.16 41.16 41.16 41.16 22.85 11.63 21.57 18.67
Pima 22.62 14.06 21.26 17.97 21.78 12.50 20.93 15.02
Sonar 25.72 52.76 28.59 22.71 25.73 52.76 28.60 22.71
SPECTF Heart 18.53 26.97 21.11 20.13 16.20 31.07 28.33 17.75
Vehicle 18.91 22.31 15.82 15.38 20.97 23.52 20.91 16.11
WDBC 7.58 8.76 4.55 3.62 7.58 6.69 4.29 3.15
Wine 4.30 8.87 9.19 4.38 23.36 19.22 16.66 14.18

the labels are as close as possible to the original ones, that goal is reached if the perfor-
mance differences between the algorithms is not significant.

As this second application of the Friedman test showed no significant differences,
it is inferred, according to earlier considerations, that the resulting labels obtained after
the semi-supervised clustering may be as good as the ones in the original data sets.

6. Conclusion
This work presents a semi-supervised learning proposal that utilizes a semi-supervised
clustering approach to label data for posterior application of a method to generate a fuzzy
rule-base for classification.

This proposal suggests a solution for machine learning problems in domains that
are characterized by great volume of data and varied data types, but have a relatively small
set of labeled instances.

The results of this work suggest that considering semi-supervised clustering in
labeling data may be a good approach for learning tasks in those contexts. The discussion
presented here confirm the relevance and importance of the proposed work.

Relevant questions and considerations were raised due to the research involved in
this proposal, which may be explored in future work: adaptation and proposal of semi-
supervised clustering methods, aiming partially classified data labeling; comparison of re-
sults between distinct semi-supervised learning approaches, evaluation of results obtained
by application of the proposed method as a solution for problems in specific domains.
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