
IGMN: An Incremental Gaussian Mixture Network that
Learns Instantaneously from Data Flows

Milton Roberto Heinen1, Paulo Martins Engel1 and Rafael C. Pinto1

1Informatics Institute – Universidade Federal do Rio Grande do Sul (UFRGS)
Caixa Postal 15064, CEP 91501-970, Porto Alegre-RS, Brazil

{mrheinen,engel,rcpinto}@inf.ufrgs.br

Abstract. This works proposes IGMN (standing for Incremental Gaussian Mix-
ture Network), a new connectionist approach for incremental concept formation
and robotic tasks. It is inspired on recent theories about the brain, specially the
Memory-Prediction Framework and the Constructivist Artificial Intelligence,
which endows it with some unique features that are not present in most ANN
models such as MLP and GRNN. Moreover, IGMN is based on strong statisti-
cal principles (Gaussian mixture models) and asymptotically converges to the
optimal regression surface as more training data arrive. Through several exper-
iments using the proposed model it is demonstrated that IGMN is also robust to
overfitting, does not require fine-tunning its configuration parameters and has
a very good computational performance, thus allowing its use in real time con-
trol applications. Therefore, IGMN is a very useful machine learning tool for
incremental function approximation.

1. Introduction
Artificial neural networks (ANNs) [Haykin 2008] are mathematical or computational
models inspired by the structure and functional aspects of biological neural networks.
They are composed by several layers of massively interconnected processing units, called
artificial neurons, which can change their connection strength (i.e., the synaptic weights
values) based on external or internal information that flows through the network during
learning. Modern ANNs are non-linear machine learning [Mitchell 1997] tools frequently
used to model complex relationships between inputs and outputs and/or to find patterns
in data. In the past several neural network models have been proposed. The most well-
known model is the Multi-Layer Perceptron (MLP) [Rumelhart et al. 1986], which can
be used in function approximation and classification tasks. The MLP supervised learning
algorithm, called Backpropagation, uses gradient descent to minimize the mean square
error between the desired and actual ANN outputs.

Although in the last decades neural networks have been successfully used in sev-
eral tasks, including signal processing, pattern recognition and robotics, most ANN mod-
els have some disadvantages that difficult their use in incremental function approximation
and prediction tasks. The Backpropagation learning algorithm, for instance, requires sev-
eral scans over all training data, which must be complete and available at the beginning
of the learning process, to converge for a good solution. Moreover, after the end of the
training process the synaptic weights are “frozen”, i.e., the network loses its learning ca-
pabilities. These drawbacks highly contrast with the human brain learning capabilities
because: (i) we don’t need to perform thousands of scans over the training data to learn

something (in general we are able to learn using few examples and/or repetitions, the so
called aggressive learning); (ii) we are always learning new concepts as new “training
data” arrive, i.e., we are always improving our performance through experience; and (iii)
we don’t have to wait until sufficient information arrives to make a decision, i.e., we can
use partial information as it becomes available. Besides being not biologically plausible,
these drawbacks difficult the use of ANNs in tasks like incremental concept formation,
reinforcement learning and robotics, because in this kind of application the training data
are available just instantaneously to the learning system, and in general a decision must
be made using the information available at the moment.

This paper proposes a new artificial neural network model, called IGMN (standing
for Incremental Gaussian Mixture Network) [Heinen 2011], which is able to tackle great
part of these problems described above. IGMN is based on parametric probabilistic mod-
els (Gaussian mixture models), that have nice features from the representational point of
view, describing noisy environments in a very parsimonious way, with parameters that are
readily understandable. In [Heinen and Engel 2010a, Heinen and Engel 2010b] a previ-
ous version of IGMN, called IPNN, was proposed. That previous version is based on the
supposition of conditional independence among distinct domains, called “naive Bayes”
hypothesis. The neural network model proposed in this paper, on the other hand: (i) takes
into account the correlation among distinct domains, thus fully implementing a multivari-
ate hypothesis; (ii) uses an error driven mechanism to decide if it is necessary to add a
neuron to the neural network; and IGMN (iii) has a unique neural network topology in
which there is no distinction between sensory and motor stimuli.

Moreover, IGMN is inspired on recent theories about the brain, specially the
Memory-Prediction Framework (MPF) [Hawkins 2005] and the constructivist artificial
intelligence [Drescher 1991], which endows it with some unique features that are not
present in other neural network models such as: (i) it learns incrementally using a single
scan over the training data; (ii) the learning process can proceed perpetually as new train-
ing data arrive; (iii) it can handle the stability-plasticity dilemma and does not suffer from
catastrophic interference; (iv) the neural network topology is defined automatically and
incrementally; and (v) IGMN is not sensitive to initialization conditions. The remaining
of this paper is organized as follows. Section 2 presents the ANN model proposed in this
paper; Section 3 describes some experiments performed to evaluate the proposed model;
and Section 4 provides some final remarks about this work.

2. Incremental Gaussian Mixture Network

Figure 1 shows the general architecture of IGMN. It is composed by an association region
P (in the top of this figure) and many cortical regions, NA,N B, . . . ,N S . All regions
have the same number of neurons, M . Initially there is a single neuron in each region
(i.e., M = 1), but more neurons are incrementally added when necessary using an error
driven mechanism. Each cortical region NK receives signals from the kth sensory/motor
modality, k (in IGMN there is no difference between sensory and motor modalities), and
hence there is a cortical region for each sensory/motor modality.

Another important feature of IGMN is that all cortical regions N execute a com-
mon function, i.e., they have the same kind of neurons and use the same learning algo-
rithm. Moreover, all cortical regions can run in parallel, which improves the performance

Figure 1. General architecture of the proposed neural network model

specially in parallel architectures. Each neuron j of region NK performs the following
operation:

p(k|j) =
1

(2π)DK/2
√∣∣∣CKj ∣∣∣ exp

{
−1

2
(k− µKj)TCKj

−1
(k− µKj)

}
, (1)

i.e., a multivariate Gaussian distribution, where DK is the dimensionality of k (different
sensory/motor modalities k can have different dimensions DK). Each neuron j maintains
a mean vector µKj and a covariance matrix CKj .

In IGMN the regions are not fully connected, i.e., the neuron j ofNK is connected
just to the jth neuron of P , but this connection is bidirectional. It is important to notice
that there are no synaptic weights in these connections, i.e., all IGMN parameters are
stored in the neurons themselves. A bottom-up connection between NK and P provides
the component density function p(k|j) to the jth neuron in P . Therefore, a neuron j in
the association region P is connected with the jth neuron of all cortical regions N via
bottom-up connections and computes the a posteriori probability using the Bayes’ rule:

p(j|z) =
p(a|j) p(b|j) . . . p(s|j) p(j)∑M
q=1 p(a|q) p(b|q) . . . p(s|q) p(q)

, (2)

where it is considered that the neural network has an arbitrary number, s, of cortical
regions and z = {a,b, . . . , s}. The dotted lines in Figure 1 above indicate the lateral
interaction among the association units for computing the denominator in (2).

Each neuron j of the association region P maintains its a priori probability, p(j),
an accumulator of the a posteriori probabilities, spj , and an association matrix to store
the correlations among each sensory/motor modality. If a neural network has two cor-
tical regions, NA and N B, for instance, then the association matrix CABj will have two
dimensions and size DA × DB. Note that it is not necessary to maintain CBAj because
CBAj = CABj

T . The top-down connections between P andNK, on the other hand, returns
expectations to NK which are used to estimate k̂ when k is missing. This architecture

is inspired on the memory-prediction framework (MPF) [Hawkins 2005], which states
that different cortical regions are not fully connected in the neocortex. Instead, they are
linked to the association areas P through bottom-up and top-down connections, thus pro-
viding predictions and expectations, respectively, to all cortical regions NK . The main
advantage of this strategy is to speed up IGMN and make it more suitable to real-time and
critical applications, because it is much faster to invert two covariance matrices of size
M than a single covariance matrix of size 2M . Moreover, a large number of samples is
required to obtain good estimates from a large covariance matrix, and therefore using this
strategy IGMN becomes more aggressive, i.e., it is able to provide good estimates using
few training samples. Next subsections describe the IGMN operation in details.

2.1. IGMN operation
IGMN has two operation modes, called learning and recalling. But unlike most ANN
models, in IGMN these operations don’t need to occur separately, i.e., the learning and
recalling modes can be intercalated. In fact, even after the presentation of a single training
pattern the neural network can already be used in the recalling mode (the acquired knowl-
edge can be immediately used), and the estimates become more precise as more training
data are presented. Moreover, the learning process can proceed perpetually, i.e., the neu-
ral network parameters can always be updated as new training data arrive. As described
in [Heinen 2011], BP-trained MLP neural networks cannot learn perpetually because: (i)
they suffer from catastrophic interference; (ii) do not have means to handle the stability
plasticity dilemma; and (iii) require that the entire database be available at the beginning
of the learning process [Haykin 2008].

IGMN adopts an error-driven mechanism to decide if it is necessary to add a neu-
ron in each region for explaining a new data vector zt. This error-driven mechanism is
inspired on the Constructivist IA [Drescher 1991, Chaput 2004], where the accommo-
dation process occurs when it is necessary to change the neural network structure (i.e.
to add a neuron in each region) to account for a new experience which is not explained
for the current schemata (i.e., the current ANN structure), and the assimilation process
occurs when the new experience is well explained in terms of the existing schemata [Pi-
aget 1954]. In mathematical terms, the ANN structure is changed if the instantaneous
approximation error ε is larger that a user specified threshold εmax.

The following subsections describe the IGMN operation during learning and re-
calling. To simplify our explanation, we will consider that the neural network has just
two cortical regions,NA andN B, that receive the stimuli a and b, respectively. It will be
also considered that we are estimating b̂ from a in the recalling mode. But it is important
to remember that: (i) IGMN can have more than two cortical regions (one for each sen-
sory/motor stimulus k); and (ii) after training it can be used to estimate either â or b̂ (i.e.,
there is no difference between inputs and outputs in IGMN).

2.2. Learning mode
The learning algorithm used by IGMN is based on the incremental Gaussian mixture
model learning algorithm presented in [Engel and Heinen 2010a,Engel and Heinen 2010b],
but it has many modifications which adapt it to supervised tasks such as incremental func-
tion approximation and prediction. Before learning starts the neural network is empty, i.e.,
all regions have M = 0 neurons. When the first training pattern z1 = {a1,b1} arrives,

a neuron in each region is created centered on z1 and the neural network parameters are
initialized as follows:

M = 1; sp1 = 1.0; p(1) = 1.0; CAB1 = 0;

µA1 = a1; µB1 = b1; CA1 = σAini
2
I; CB1 = σBini

2
I,

where the subscript ‘1’ indicates the neuron j = 1 in each region,M is the number of neu-
rons in each region (all regions have the same size M), sp is an accumulator of posterior
probabilities maintained in the association region P , 0 is a zero matrix of size DA ×DB,
σAini and σBini are diagonal matrices that define the initial radius of the covariance matrices
(the pdf is initially circular but it changes to reflect the actual data distribution as new
training data arrive) and I denotes the identity matrix. σAini and σBini are initialized using
a user defined fraction δ of the overall variance (e.g., δ = 1/100) of the corresponding
attributes, estimated from the range of these values according to:

σKini = δ [max(k)−min(k)] , (3)

where [min(k),max(k)] defines the domain of a sensory/motor modality k (throughout
this paper the symbol k will be used to indicate any sensory/motor modality, i.e., either a
or b in this case). It is important to say that it is not necessary to know the exact minimum
and maximum values along each dimension to compute σKini, but just the approximate
domain of each feature instead.

When a new training pattern zt arrives, all cortical regions are activated, i.e.,
p(k|j) is computed using Equation 1 above, and the probabilities p(zt|j) are sent to the
association region P , which computes the joint posterior probabilities p(j|zt) using the
Bayes’ rule in (2). After this, the posterior probabilities p(j|zt) are sent back to the corti-
cal region N B, which compute its estimate as follows:

b̂ =
M∑
j=1

p(j|zt)[µBj + CBAj CAj
−1

(at − µAj)], (4)

where CABj is the jth association matrix maintained in association region P and CBAj is
its transpose. Note that as the covariance matrix CBj was already inverted when N B was
activated in the bottom-up direction, we don’t need to invert it again, i.e., we can tem-
porarily store the corresponding inverse matrix to speed up the IGMN learning algorithm.
Using the estimate b̂ the normalized approximation error ε is given by:

ε = max
i∈DB

[
‖bti − b̂i‖

max(bi)−min(bi)

]
(5)

where [min(bi),max(bi)] defines the domain of the sensory/motor feature bi. Again
min(bi) and max(bi) do not need to be the exact minimum and maximum values of b
– they may be just approximations of the domain of each bi feature (in fact min(bi) and
max(bi) are just used to make IGMN independent from the range of the data features). If
ε is larger than a user specified threshold, εmax, than zt is not considered as represented
by any existing neuron in the cortical regions. In this case, a new unit j is created in each
region and centered on zt and all priors of the association region P are recomputed by:

p(j)∗ =
spj∑M∗
q=1 spq

. (6)

Otherwise (if z is well explained by any of the existing Gaussian units), the a posteriori
probabilities p(j|zt) are added to the current value of the sp(j) on the association region:

sp∗j = spj + p(j|zt), ∀j, (7)

and the priors p(j) are recomputed using (6). Then ωj = p(j|zt)/sp∗j is sent back to all
cortical regions, and the parameters of all neurons inNK are updated using the following
recursive equations derived in [Engel and Heinen 2010a, Engel and Heinen 2010b]:

µKj
∗

= µKj + ωj

(
zt − µKj

)
(8)

CKj
∗

= CKj − (µKj
∗ − µKj)(µKj

∗ − µKj)T + ωj

[
(z− µKj

∗
)(z− µKj

∗
)T −CKj

]
, (9)

where the superscript ‘∗’ refers to the new (updated) values. Finally the association matrix
CABj is updated using the following recursive equation:

CABj
∗

= CABj − (µAj
∗ − µAj)(µBj

∗ − µBj)T + ωj

[
(at − µAj

∗
)(bt − µBj

∗
)T −CABj

]
, (10)

which is derived using the same principles described in [Engel and Heinen 2010a, Engel
and Heinen 2010b]. This equation is another important contribution of this paper, because
it allows computing the covariances among distinct cortical regions incrementally, and
thus estimating a missing stimulus k without having to maintain and invert a complete
variance/covariance matrix. In fact, using (10) the complete variance/covariance matrix
is broken down in separate submatrices that can be efficiently maintained.

2.3. Recalling mode

In the recalling mode, a stimulus (e.g., a) is presented to a partially trained neural network
(as the learning process proceeds perpetually, in IGMN we never consider that the training
process is over), which computes an estimate for another stimulus (e.g., b̂). As said
before, IGMN can be used to estimate either â or b̂, but to simplify our explanation in
this and the following sections we will consider that we are estimating b̂ from a.

Initially the stimulus a is received in the cortical regionNA, where each neuron j
computes p(a|j) using (1). These predictions are sent to the association region P through
the bottom-up connections, which is activated using just p(a|j):

p(j|a) =
p(a|j) p(j)∑M
q=1 p(a|q) p(q)

. (11)

After this, p(j|a) is sent to the cortical region N B via the top-down connections, and
N B computes the estimated stimulus b̂ using Equation 4. More details about the IGMN
learning and recalling algorithms are found in [Heinen 2011].

The main drawback of IGMN is that it is necessary to invert the covariance matri-
ces CKj for each training sample (a,b, . . . ,k), and this requires Dlog2 7 operations using
the Strassen algorithm [Strassen 1969]. A way to reduce the computational complexity is
to separate the data features in more sensory/motor areas, thus dividing a big covariance
matrix in many matrices of smaller size.

3. Experiments
This section describes several experiments to evaluate the performance of IGMN in func-
tion approximation and prediction tasks. The first set of experiments, described in Subsec-
tion 3.1 presents some experiments in which IGMN is used to identify a nonlinear plant
originally proposed in [Narendra and Parthasarathy 1990]. These experiments are also
used to assess the sensitivity of the proposed model to its configuration parameters. The
second set of experiments, described in Section 3.2 evaluates the performance of IGMN
using a more complex, three-dimensional “Mexican hat” function. The computer platform
used in all experiments is a Dell Optiplex 755, equipped with an Intel(R) Core(TM)2 Duo
CPU 2.33GHz processor, 64 bits architecture, 1.95GB of RAM memory, GPU Intel and
operating system Ubuntu Linux 10.04 LTS of 64 bits. Other experiments, some of them
related to incremental robotic tasks, can be found in [Heinen 2011].

3.1. Estimating the outputs of a nonlinear plant

The first experiment consists in identifying a nonlinear plant originally proposed by [Naren-
dra and Parthasarathy 1990] for the control of nonlinear dynamical systems using MLP
neural networks. This plant is assumed to be of the form:

yp(k + 1) = f [yp(k), yp(k − 1), yp(k − 2), u(k), u(k − 1)], (12)

where yp(k + 1) is the next time sample of the plant output, yp(k) is the current output,
yp(k− 1) and yp(k− 2) are delayed time samples of the output, u(k) is the current input,
u(k − 1) is the previous input, and the unknown function f(·) has the form:

f [x1,x2,x3,x4,x5] =
x1x2x3x5(x3 − 1) + x4

1 + x2
2 + x2

3

. (13)

In [Narendra and Parthasarathy 1990] this plant was identified using a MLP neu-
ral network composed by five neurons in the input region, 20 neurons in the first hidden
region, 10 neurons on the second hidden region and a single neuron in the output re-
gion. This neural network was trained using the standard backpropagation algorithm for
100,000 steps using a random input signal uniformly distributed in the interval [−1, 1] and
a step size of η = 0.25. During the identification procedure (i.e., the learning process) a
series-parallel model was used, in which the output of the plant values (i.e., the desired
answers) were used in the delay units yp(k − 1) and yp(k − 2). After identification the
performance of the model was assessed using a parallel model, in which the actual neural
network outputs are fed into the delay units. The identified plant (i.e., the trained neural
network) was tested using the following function as input:

u(k) =

{
sin(2πk/250) if k ≤ 500
0.8 sin(2πk/250) + 0.2 sin(2πk/25) if k > 500

(14)

In [Specht 1991] a GRNN network is used to approximate the function f(·) above.
In that experiment the identification procedure was carried out for 1000 time steps using a
random input signal uniformly distributed in the interval [−1, 1], the spreading parameter
was set to σ = 0.315 and 1000 pattern units were used to represent this plant (one for
each random input signal used to identify the plant). Unfortunately in [Specht 1991] the

approximation error computed using the testing function (14) is not informed, and thus we
reproduced that experiment 10 times using the original conditions (a standard GRNN net-
work with σ = 0.315) and different random input signals in each replication. Figure 2(a)
shows the best identification performed by GRNN. The averaged NRMS error computed
over 10 replications was 0.053267, and 0.213 seconds were necessary to perform each
replication.

(a) Identification using GRNN (b) Identification using IGMN

Figure 2. Identification of a nonlinear plant using 1000 training samples

To compare the performance of IGMN against the ANN models described above,
we have repeated this experiment using the same conditions described above, i.e.:

• A series-parallel model for training and a parallel model for testing;
• The identification procedure was carried out for 1000 time steps using a random

input signal uniformly distributed in the interval [−1, 1];
• After learning the identified model was tested using inputs given by Equation 14;
• The whole experiment was repeated 10 times using different random input signals

in each replication.

Figure 2(b) shows the identification performed by IGMN using default parameters,
i.e.,εmax = 0.05, δ = 0.01 and Ω = 6. Observing Figure 2(b) we can notice that the
identification performed by IGMN is superior than that performed by GRNN (Figure
2(a)). The average NRMS error computed over 10 replications was 0.037, 19 neurons
were added by IGMN during learning and 0.089 seconds were spent in each replication.

Table 1. Assessing the sensitivity of IGMN to the εmax parameter
εmax 0.1 0.075 0.050 0.025 0.010
Error 0.0474 0.0399 0.0370 0.0394 0.0304
M 8.30 12.60 19.10 38.10 80.40
Time 0.055s 0.089s 0.095s 0.125s 0.285s

To assess the sensitivity of IGMN to the εmax parameter, this experiment was
repeated using δ = 0.01 and varying the value of the εmax in the interval [0.01, 0.1].
Table 1 shows the results obtained in this experiment (averaged over 10 replications), and

Figures 3(a) and 3(b) show the boxplot graphs of the NRMS error and the number of units
added during learning, respectively. It can be noticed in these figures that εmax = 0.05
is a good choice, because it allows a good compromise between the model complexity
(number of neurons) and the approximation level (NRMS error).

(a) NRMS error (b) Number of neurons

Figure 3. Assessing the sensitivity of IGMN to the εmax parameter

The next experiment aims to assess the sensitivity of IGMN to δ using this plant,
where εmax was kept fixed at 0.05 and δ was varied in the interval [0.0025, 0.075]. Table 2
shows the average results obtained in this experiment, and Figures 4(a) and 4(b) show
the boxplot graphs of the NRMS error and the number of units added during learning,
respectively. It can be noticed that the IGMN performance is practically the same using
any value of δ in the interval [0.005, 0.05], although using δ = 0.025 the NRMS error is
slightly lower. Therefore we can notice that just extreme values of δ degrade the IGMN
performance and/or require many Gaussian units.

Table 2. Assessing the sensitivity of IGMN to the δ parameter
δ 0.0025 0.005 0.0075 0.01 0.025 0.05 0.075

Error 0.042 0.037 0.037 0.037 0.032 0.039 0.037
M 18.60 20.20 19.20 19.10 24.70 24.40 38.80

Time 0.09s 0.09s 0.09s 0.09s 0.11s 0.10s 0.12s

In [Specht 1991] it is also pointed out that results similar to those presented in Fig-
ure 2(a) can be obtained using just 100 training samples. To validate this affirmation, we
repeated this experiment using N = 100 training samples randomly chosen in the interval
[−1, 1]. Using GRNN the NRMS error averaged over 10 replications was 0.090904, and
using IGMN it was just 0.067239. Moreover, using IGMN the average number of neu-
rons added during learning was just 3.6, whilst GRNN had used 100 pattern units in each
replication.

(a) NRMS error (b) Number of neurons

Figure 4. Assessing the sensitivity of IGMN to the δ parameter

3.2. Approximating the “Mexican hat” function

In the previous experiments we have used a training data set composed by just two data
features, a and b. The next experiment uses a three-dimensional data set composed by
N = 5000 data samples given by:

b = sin(a1)/a1 sin(a2)/a2, (15)

were a1 and a2 are randomly chosen in the interval [−10, 10]. Figure 5(a) shows the target
surface, also known as “Mexican hat”. The IGMN net used to learn this data set has two
cortical regions: NA, composed by two data features (a1 and a2), andN B, composed by a
single feature (b). This data set was randomly divided into two subsets, called training and
testing data sets, each of them composed by 2500 data samples. Moreover, the training
data was presented to IGMN in a random order (i.e., the data set was shuffled).

To assess the sensitivity of IGMN to εmax over this data set we have repeated
this experiment using different configurations of εmax, and the results obtained in this
experiment are shown in Table 3. The first row shows the configuration of the εmax

parameter. The following rows show, respectively, the NRMS error, number of neurons
added during learning (M) and the learning time. The δ parameter was kept fixed at 0.01,
but the results are practically the same using δ in the interval 0.005 ≤ δ ≤ 0.05.

Table 3. Approximating the “Mexican hat” function using IGMN
εmax 0.1 0.075 0.05 0.025 0.01
NRMS 0.071302 0.067699 0.065824 0.051815 0.014288
M 19 25 37 83 184
Time 0.088s 0.104s 0.188s 0.656s 2.292s

Table 3 shows that the NRMS error is reduced as the εmax parameter is decreased,
whilst the number of neurons added during learning is increased. Using εmax = 0.01,

(a) Target surface (b) εmax = 0.1 (c) εmax = 0.075

(d) εmax = 0.05 (e) εmax = 0.025 (f) εmax = 0.01

Figure 5. Approximating the “Mexican hat” function using IGMN

for instance, the NRMS error is just 0.014288, but 184 neurons are added to each region
during learning. If εmax ≈ 0 then the approximation error will be almost zero (remember
that this data set is noise-free), but a huge number of neurons will be added during learn-
ing. Just for illustration purposes, Figures 5(b) to 5(f) show the surface approximated by
IGMN using each εmax setting. We can notice in these figures that using just 21 neurons
(Figure 5(b)) the proposed model is able to learn the general structure of the target surface,
and using 184 neurons (Figure 5(f)) the approximated surface is quite good.

Using a MLP neural network trained with the Levenberg-Marquardt (LM) algo-
rithm and 20 hidden neurons, the average NRMS error computed over the testing data set
was 0.015265 (we needed to repeat this experiment 10 times due to the random initializa-
tion of the synaptic weights in a MLP network), and the time required for learning was
20.633 seconds. However, using MLP we had to perform an exhaustive search to find out
the best number of hidden neurons. Using GRNN with σ = 1.0, on the other hand, the
NRMS error was 0.017395 and the learning time was 0.189 seconds. As said before, the
number of neurons added by GRNN is equal to the number of pattern neurons, i.e., 2500
pattern neurons in this case.

4. Conclusion

This paper has presented IGMN [Heinen 2011], a new connectionist approach for incre-
mental function approximation and prediction. IGMN is inspired on recent theories about
the brain, specially the Memory-Prediction Framework (MPF) [Hawkins 2005] and the
constructivist artificial intelligence [Drescher 1991], which endows it with some unique

features that are not present in other ANN models such as MLP and GRNN. Moreover,
IGMN is based on strong statistical principles and asymptotically converges to the optimal
regression surface as more training data arrive. The performed experiments demonstrated
that IGMN is a very useful machine learning tool for incremental function approximation.

Acknowledgment
The authors acknowledge the support granted by CNPq.

References
Chaput, H. H. (2004). The Constructivist Learning Architecture: A Model of Cognitive

Development for Robust Autonomous Robots. PhD thesis, Univ. Texas, Austin, TX.

Drescher, G. L. (1991). Made-up Minds: A Constructivist Approach to Artificial Intelli-
gence. The MIT Press, Cambridge, MA.

Engel, P. M. and Heinen, M. R. (2010a). Concept formation using incremental Gaussian
mixture models. In Proc. 15th Iberoamerican Congr. Pattern Recognition (CIARP),
LNCS, São Paulo, SP, Brazil. Springer-Verlag.

Engel, P. M. and Heinen, M. R. (2010b). Incremental learning of multivariate Gaussian
mixture models. In Proc. 20th Brazilian Symposium on AI (SBIA), volume 6404 of
LNCS, pages 82–91, São Bernardo do Campo, SP, Brazil. Springer-Verlag.

Hawkins, J. (2005). On Intelligence. Owl Books, New York, NY.

Haykin, S. (2008). Neural Networks and Learning Machines. Prentice-Hall, Upper Saddle
River, NJ, 3 edition.

Heinen, M. R. (2011). A Connectionist Approach for Incremental Function Approxima-
tion and On-line Tasks. Ph.D. thesis, Informatics Institute – Universidade Federal do
Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.

Heinen, M. R. and Engel, P. M. (2010a). An incremental probabilistic neural network for
regression and reinforcement learning tasks. In Proc. 20th Int. Conf. Artificial Neural
Networks (ICANN 2010), LNCS, Thessaloniki, Greece. Springer-Verlag.

Heinen, M. R. and Engel, P. M. (2010b). IPNN: An incremental probabilistic neural net-
work for function approximation and regression tasks. In Proc. 11th Brazilian Neural
Networks Symposium (SBRN), pages 39–44, São Bernardo do Campo, SP, Brazil.

Mitchell, T. (1997). Machine Learning. McGrall-Hill, New York.

Narendra, K. S. and Parthasarathy, K. (1990). Identification and control of dynamical
systems using neural networks. IEEE Trans. Neural Networks, 1:4–27.

Piaget, J. (1954). The construction of Reality in the Child. Basic Books, New York, NY.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning Internal Represen-
tations by Error Propagation. The MIT Press, Cambridge, MA.

Specht, D. F. (1991). A general regression neural network. IEEE Trans. Neural Networks,
2(6):568–576.

Strassen, V. (1969). Gaussian elimination is not optimal. Numerische Mathematik,
13(3):354–356.

