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Abstract. We propose a hybrid genetic algorithm (GA) for solving a 

sustainable supply chain design problem that arises in the public sector. There 

is little research being done in mathematical modeling and solutions methods 

for these problems. The paper describes a mixed-integer 0-1 model (MIP) for 

this sustainable problem in which we have to determine in a network of two 

layers the number of facilities to be located at sites chosen from among a 

given set of candidate sites. Sustainable issues are integrated into the model 

by reducing the greenhouse gas emissions produced by the transportation and 

the operation of the facilities. We report computational results for instances 

generated from a known OR test library. 

1. Introduction 

In 1987 the United Nations World Commission on Environment and Development 

(UNWCED) published Our Common Future Report. In this report was defined 

sustainable development as “development that meets the needs of the present without 

compromising the ability of future generations to meet their own needs”. This report 

was a kick-off for a number of interdisciplinary studies in the field of sustainability. 

 By 2020 the economic impact of climate change in the world will reach 20% of 

the global GDP. Considering the magnitude of the impact on the global economy, the 

environment and the society, many agencies of the government and international 

institutions are taking actions to reduce and to control the emission of GHG. In this 

respect, this paper focuses on how governments can deploy supply chain networks for 

servicing people while minimizing the costs of installation, operation and transportation 

and, at the same time reducing the GHG emissions. 

 Governmental agencies and companies adopting a friendly sustainable 

management are facing a number of changes, from the strategy level till the operational 

point of view, affecting their people and impacting their business processes and their 

technology. In this regard, as Simchi-Levi et al. (2007) pointed out, “the strategic level 

deals with decisions that have a long-lasting effect on the firm. These include decisions 

regarding the number, location and capacities of warehouses and manufacturing plants, 



  

or the flow of material through the logistics network”. They established a clear link 

between facility location models and strategic decisions of supply chain management 

(SCM). Also, governmental agencies and companies realized that to be committed with 

sustainable practices could imply changes in the criteria to design and to manage supply 

chain. That is to say, in addition to the costs of transport, operation and installation and 

considerations on the level of service, the sustainable models need to consider GHG 

emission costs.  

 Supply chain design based on economic consideration has been well covered in 

the literature. On the other hand, the field of sustainable supply chain design and 

management (SSCM) is quite new (Seuring and Muller, 2008). The greatest benefits of 

applying SCM are obtained by an extended analysis including organizations upstream -

closer to the raw materials- and downstream -closer to the consumer- of the supply 

chain and then back again so that the unsold products are recycled. But, by extending 

the focus, what this really does implies more organizations, multiplying the relation 

between the organizations and getting a more complex supply chain (SC) to manage. 

Considering that, according to Choi and Wu (2009) the focus of the supply chain 

management literature has been on dyadic networks (supplier units-customer units). 

 This paper proposes a genetic algorithm for solving a supply chain network 

design problem that arises in the public sector considering sustainable constraints in the 

form of restrictions on the dioxide carbon equivalent emissions. The authors are not 

conscious of any article tackling the problem of sustainability that arises in the location 

of such public facilities as schools or hospitals. We present a mixed-integer 0-1 network 

design model who allows to analyze the impact of restrictions in the GHG emissions on 

the fixed and transportation costs and in the location of facilities in a network of two 

layers. 

 In this paper, in Section 2 is analyzed some literature in connection with the 

problem. In section 3 is presented the mixed-integer 0-1 programming model. In section 

4, we discuss the genetic algorithm implementation for solving the problem. In section 5 

we provide some numerical results. Finally in section 6 we give some conclusions of the 

work. 

2. Literature Review 

The UNWCED report published in 1987 defined sustainable development as 

“development that meets the needs of the present without compromising the ability of 

future generations to meet their own needs”. 

 Above and beyond other aspects, there are principally two kinds of questions 

related to the sustainability. One of them is the emission of GHG. For the production of 

a big quantity of GHG to satisfy the present needs – for example, in the processes of 

manufacture and distribution - we affect the climate of a dangerous way that finally is 

going to compromise the capacity so that future generations could satisfy their own 

needs. In this paper we focus on reducing the GHG emissions caused by the operation 

of public facilities and the transportation activities to satisfy the demand. We model the 

problem considering a network of two layers. We locate facilities in these layers to 

satisfy a fixed demand, minimizing installation and operating costs and constraining the 

GHG emissions. 



  

 Supply chain management (SCM) is being used to address the problem of 

reducing the economic impact of climate change generated by GHG emissions. For the 

purpose of this paper, SCM is a multidisciplinary management approach to master a set 

of interacting organizations. These organizations share different resources, products, 

services and information, with the target to obtain competitive advantages and to 

improve the profitability, both in the individual form and in the collective form. 

(Simchi-Levi et al., 2007). Given the complexity of the network, according to Choi and 

Wu (2009), the focus of the literature of SC has been in networks of dyadic (supplier 

firms – customer firms). 

 Disciplines integrating environmental practices into the supply chain have been 

called in a number of different ways. Some of them are: Sustainable Supply Chain 

Management (SSCM) and, Green Supply Chain Management (GSCM). Srivastava 

(2007) did a careful review of the literature and he showed that a wide frame of 

reference for GSCM has not been sufficiently developed. He defined GSCM as an 

integrated environment, including product design, sourcing and selection of material, 

manufacturing processes, delivery of the final product to the consumers, and end-of-life 

management of the product after its useful life. In this paper, we do not make any 

distinction between sustainable and green supply chain. 

 Mathematical modeling for designing sustainable supply chain is attracting 

many researchers to this field. But, according to Seuring and Muller (2008), the field of 

sustainable supply chain design and management (SSCM) is quite new. In this work, the 

proposed model focuses on two sustainable issues: economic and environmental aspects 

of GHG emissions. On the other side, till now much research has been done in the field 

of private companies’ location theory. The authors are not aware of any paper 

addressing the sustainable problem that arises in the location of such public facilities as 

schools or hospitals.  

 Hugo and Pistikopoulos (2004) develop a multi-objective mixed-integer 0-1 

model for deciding location and capacity expansion of facilities (plants), and 

transportation issues in a given planning horizon. They maximize profit and minimize 

the environmental impact of the plant operations while satisfying the market demand for 

products. They presented numerical results for a small problem of 3 candidate plants, 3 

customers, 2 products, 2 raw materials and 5 periods. In a later work, Hugo and 

Pistikopoulos (2005) extend the previous model and reformulate the problem as a 

stochastic programming model that can address the decision-making process under 

uncertainty. Ramudhin et al. (2008) propose a mixed-integer 0-1 programming model 

for the GSC design problem. Taking into account environmental aspects, they analyze 

the impact of transportation, subcontracting, and production activities on the design of a 

supply chain network. The model is tested considering the case of a steel product 

manufacturer with three freight transportation modes, a product with two semi finished 

products that are manufactured from four parts, and at least two suppliers are competing 

to supply each part. The model is first solved by CPLEX Interactive Optimizer V10.0. 

The authors also use Goal Programming to determine the best trade-offs between two 

conflicting objectives: the total logistics cost and carbon emissions. In Chaabane et al. 

(2010) is extended the previous model considering life cycle assessment (LCA) 

principles in addition to the traditional material balance constraints at each node in the 

supply chain. They propose a multi-objective mixed-integer 0-1 model to support 

sustainable supply chain design over a long-term period of time. The model 



  

distinguishes between solid and liquid wastes, as well as gaseous emissions due to 

various production processes and transportation modes. The model is used to evaluate 

the tradeoffs between economic and environmental objectives under various cost and 

operating strategies for an aluminum company. Finally, Diabat and Simchi-Levi (2010), 

use a mixed-integer 0-1 programming model including carbon emissions restrictions for 

designing green supply chains. The problem is to decide which plants and Distribution 

Centers (DCs) to open, how the DCs are allocated to the plants, and how the DCs 

distribute multiple types of products to satisfy retailers’ demands. The objective is to 

minimize the total facility opening and products distribution costs subject to the total 

carbon emission is not more than a predetermined emission cap. They formulate the 

problem as a two-echelon multi-commodity facility location problem with a carbon 

emission constraint. They present numerical results for a 7 candidate plants, 18 

candidate DCs, 63 retailers, and a single type of product. To solve the instances, the 

authors use ILOG CPLEX 11.0 MIP solver in the GAMS modeling language. 

 The problem of locating facilities and allocating customers is not new to the 

operations research community and covers the key aspects of supply chain design 

(Daskin et al., 2005). Simchi-Levi et al. (2007) establish a clear link between location 

models and strategic SCM. Altiparmak et al. (2006) pointed out that this problem is one 

of “the most comprehensive strategic decision problems that need to be optimized for 

long-term efficient operation of the whole supply chain”. Notice that some small 

changes to classical facility location models are quite hard to solve (Farahani and 

Hekmatfar, 2009). For example, in Lai-Jun et al. (2009) a genetic algorithm was used to 

solve a kind of facility location problem on test networks with 10 potential facility sites 

and 30 demand points. In this paper we focus on the sustainable supply chain design 

problem that arises in governmental agencies, where you have to decide the location of 

schools, hospitals, police stations, fire stations, and so on, taking into account 

sustainable issues. 

3. Problem Formulation 

The sustainable supply chain network design problem consists in deciding the number 

and location of facilities, and the allocation of customers to these facilities, minimizing 

the installation and transportation costs integrated with GHG emissions constraints. We 

consider a public supply chain that provides products/services and it consists of two 

layers hierarchically related. In the general case, these supply chain consists of two 

layers (mid and high) of distinct types of facility. For example, health care systems may 

consist of local clinics and hospitals or medical centers; higher education systems may 

consist of technical schools and universities. For further details on related problems see 

the paper by Bastani and Narges Kazemzadeh (2009). Our problem is uncapacitated by 

nature, following most of the research on locating public facilities, i.e., we do not 

restrict the capacity of the facilities to service the demand. Our interest is to analyze 

how service costs of governmental agencies located in both layers will be affected by 

sustainable restrictions. We assume that GHG emissions come mainly from the 

operation of the facilities located in both layers and from the transportation activities 

involved to service a fixed demand. Notice that, the clients can be attended by only one 

facility of the mid layer and each mid layer facility must be allocated to one high layer 

facility. We suppose that GHG emissions are proportional to the demand, i.e. population 

to be attended, and the travel distance. Then each facility has a carbon footprint 



  

proportional to the demand attended. We model this using a parameter to be adjusted 

from the IPCC recommendations.  

 We introduce the following inputs and sets: 

J   = the set of demand nodes indexed by j 

I   = the set of candidate facility locations at the mid layer, indexed by i 

K  = the set of candidate facility locations at the high layer, indexed by k 

hj = demand at customer location j ∈ J 

fi  = fixed cost of locating a mid layer facility at candidate site i ∈ I 

gk = fixed cost of locating a high layer facility at candidate site k ∈ K 

cij = is the unit cost of supplying demand j ∈ J  from a mid layer facility located in i ∈ I  

lik = is the unit cost of supplying demand i ∈ I  from a high layer facility located in k ∈ 

K  

M = cardinality of J  

αi = GHG emissions factor of a facility located at candidate site i ∈ IUK , in tons of 

CO2e per unit demand 

βij = GHG emissions factor per unit distance and per unit demand between candidate 

facility site i ∈ I and customer location j ∈ J, in tons of CO2e per km and unit demand. 

We also use this factor for facilities located at a higher layer (k ∈ K) that are serving 

mid layer facilities (i ∈ I). 

 We consider the following decision variables: 

�� �  � 1 if we locate a facility at candidate site � � �      
  0 otherwise                                                                     

� 

�� � �1 if we locate a high layer facility at candidate site ! � "
0 otherwise                                                                                   

� 

xij  = �1 if the demand of  $ ∈  % is serviced by a facility located at � ∈  �
0 otherwise                                                                                                     

� 

wik = �1 if the demand of  � ∈  � is serviced by a facility located at ! ∈  "
0 otherwise                                                                                                     

� 
The general supply chain design problem with sustainable constraints ((GUSSCP) is 

defined by: 
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 The objective function (1) minimizes the sum of the installation facility costs 

and the demand-weighted supplying costs. Constraints (2) warranty that all demand at 

area j ∈ J is met by one mid layer facility. Constraints (3) warranty that a demand node j 

∈ J must be allocated to a mid layer facility i ∈ I already opened. Constraints (4) ensure 

that each open mid layer facility must be allocated to one high layer facility. Constraints 

(5) warranty that the demand of a mid layer facility must be serviced by a high layer 

facility. Constraint (6) limits the total Greenhouse Gas (CO2e) emissions to GHG. 

Constraints (7) are standard binary constraints. Regarding constraints (3), when they are 

replaced by constraints 

:�8  I ��                                                                                                                          G � � �, G $ � %    )3V/ 
we got a stronger formulation for the problem, as it was also discussed in a related 

facility location problem (Cornuejols et al., 1977). This problem is NP-hard as 

generalization of well-known location problems, and therefore cannot be solved in 

polynomial time. 

4. Genetic Algorithm Implementation 

Genetic Algorithms (GAs) are a type of evolutionary algorithms (EVA) used to solve a 

number of combinatorial optimization problems. See for further details the papers by 

Goldberg (1989). According to Osman and Kelly (1996), an EVA is composed by five 

basic components: (a) a genetic representation of solutions to a problem; (b) a way to 

create an initial population of solutions; (c) an evaluation  function; (d) genetic 

operators that alter the genetic composition of children  during reproduction and (e) 

values for the parameters. In this section we briefly describe these components and the 

GA implementation for solving the GUSSCP problem. The basic scheme of our GA can 

be represented as follow:  

1. Generate an initial population; 

2. Compute the fitness of each individual in the population; 

3. while not Finish do 

a. Compute the Fitness for all the individuals in the population; 

b. Apply selection process; 

c. Do a crossover of individuals; 

d. Generate individuals using the mutation operation; 

e. Apply the feasibility procedure 

4. Endwhile;  



  

4.1. Representation, Initial Population and Feasible Solutions 

 In our implementation, each solution (individual) to the problem is coded as a 

chromosome such that each gene corresponds to a facility location decision variable at 

both layers, taking value 1 if a facility is open either at the mid or high layer, and zero 

otherwise. We use a (|�| 6 |"|/ dimensional string to represent facilities located at both 

layers. 

 The initial population of 100 individuals is generated randomly. Then we 

recombine this initial population and generate randomly two sets of 100 individual each. 

Each gene of the chromosome is generated by a 0-1 uniform probability distribution. 

For each chromosome we apply a solution procedure. This procedure consists in getting 

a solution to GUSSCP disregarding sustainable constraints as follows: Given a 

chromosome, for every customer $ � % we assigned its nearest opened mid layer facility. 

Then for each opened mid layer facility we assigned its nearest opened high layer 

facility. Regarding the GHG emissions, that mechanism of generating chromosome 

could generate unfeasible solutions for GUSSCP, but our strategy was to explore the 

behavior of the algorithm based on an initial population composed of a number of 

unfeasible solutions. For our test problems, the GA implemented in this way rapidly 

generated a large number of unfeasible solution and we obtained poorer solutions than 

the next approach we will discuss it. In the second approach, after the crossover and 

mutation operations, we introduce a greedy-random procedure to generate to every 

iteration of the GA at least 50% of feasible solutions. Then our new population in every 

iteration has at least 50% of feasible solutions. The procedure is as follow: we generate 

a random individual consisting of a number of facilities opened/closed. Then based on 

the transportation costs we apply the solution procedure, i.e., we allocate the nearest 

customer to each opened mid layer facility and then for each mid layer facility we find 

the nearest opened high layer facility. We repeat the procedure till we get 50% of 

feasible solutions for the new population. We replace unfeasible solutions for the new 

individuals obtained through this procedure. Finally the best 100 individuals will be part 

of the new initial population to start the main iteration of GA. As we can see later in this 

paper, computational results are very good. 

 The fitness of a chromosome is calculated using the objective function (1). To 

compute the first term (installation costs) of (1) is straight forward from the 

chromosome. To compute the second term (transportation costs) of (1), we use the 

solution procedure described above: for each customer we find its nearest opened 

facility (minimal transportation cost) and the we do the same for each opened mid layer 

facility. Then we sum up both parts (installation and transportation costs) to get the 

objective function value for each individual of the population. 

4.2. Genetic operators 

We use the standard genetic operators. The crossover generates two new individual 

(chromosome) exchanging the genetic material of two (parental) individuals expecting 

that "good" solutions can generate "better" ones. We selected these individuals 

randomly from a two sets of individuals, each set composed of 100 individuals as 

described earlier. We do not limit the number of new chromosomes generated by 

crossover. In this work crossover probability (cross_p) is set to 0.7 (70%) and we 

perform one-point crossover. In the crossover procedure we generate a random value, if 

the cross_p value is greater than the random value then we pick one individual from 



  

each set. We generate another random value between one and the number of potential 

facility sites for each layer, i.e, a cut point dividing each individual (parent) into two 

segments. The first child is created by combining the first segment from the first parent 

and the second segment from the second parent. The second child is created from the 

first segment of the second parent and the second segment of the first parent. The 

mutation operator changes the value of a chromosome with some small probability. In 

our case, we get this probability to 0.1 (10%) and remain constant through generations 

of the GA. The gene in the chromosome is selected randomly and we switch its value 

(0-1). We do not limit the number of new chromosomes generated by mutation. After 

the crossover and mutation procedures, we got a number of unfeasible solutions in the 

population. In the next step we correct this; 

4.3. Additional GA aspects 

The selection operator is based on elitist selection, favoring individuals of better fitness 

value to reproduce more often than the worse ones when generating the new population. 

In every iteration the whole population (200 individuals) is ranked in a non-decreasing 

order of the objective function value. As we described earlier, feasibility of constraints 

(6) is verified. In case there is lesser than 50% of feasible solutions in the population, a 

greedy-random procedure was implemented to generate new (feasible) individuals. The 

best (100) solutions passed to the next iteration 

 In our case the total size of population is 200 individuals, and 100 of new 

individuals are generated each iteration. We set the total number of iteration to six. 

5. Computational Results 

The GA solution method for this problem was coded and implemented by Scilab 

software. According the sustainable supply chain literature discussed in previous 

sections, for testing our GA implementation we generated 11 size instances of GUSSCP. 

These instances correspond to test networks up to 26 potential sites and up to 50 

demand nodes taken from the ORLIB (Beasley, 1996). For every instance we use one 

layer. As we do not know in advance how well is going to perform the GA, in order to 

validate our GA solutions we used GAMS on integer linear programming model 

described in section 3. Every test problem was running 5 times and we present an 

average value in Table 1. The optimal objective values were obtained by GAMS. As we 

can see in Table 1, besides the few number of iteration (6) used in our GA, the GAP 

obtained is quite small. Both methods (GA and GAMS) quickly converge on mentioned 

GUSCPS instances and their running times are not reported. The alpha (α) and beta (β) 

parameters were set to one and two respectively. This was done to analyze the behavior 

of the algorithm and also to check how the solution change when you penalty the 

transportation GHG emissions. Total GHG emissions were limited to values between 

3,200.00 and 10,000.00 thousands. 

 We notice that, when you reduce the total amount of GHG emissions permitted, 

and the number of facilities remain free, the number of facilities to open increase, also 

increasing the cost of the solution but reducing the amount of GHG emitted by the 

transportation component.  



  

6. Conclusions 

In this paper, we introduced a novel kind of sustainable supply chain network design 

problem with a GHG emission constraint. The problem addressed the design of supply 

network arising mainly in the public sector, where we need to satisfy the demand for 

services like education and health care locating a number of facilities in two layers. We 

limit the GHG emissions generated by the facilities located in the mid and high layer 

and also the transportation involved in servicing the customers. The problem was 

formulated as a mixed integer 0-1 linear programming problem (MIP) and solved using 

a genetic algorithm coded in Scilab. We conducted an experimental study on instances 

taken from the ORLIB. In order to validate our GA solutions we used GAMS to obtain 

optimal objective values on the MIP. The genetic algorithm performs very good 

considering we set a few number of iterations.  We observed that when you reduce the 

total amount of GHG emissions permitted, and the number of facilities remain free, the 

number of facilities to open increase, also increasing the cost of the solution but 

reducing the amount of GHG emitted by the transportation component. 

Table 1. Computational Results. First column indicates number of problem 
instance; Fixed Costs in thousands; z* is the optimal solution; z(GA) is the 

solution value provided by GA. 

# Probl Fixed Costs Total GHG z* z(GA) GAP (%) 

1 25,000 10,000 1,746,347 1,775,425 1.7 

2 17,500 10,000 1,727,848 1,731,842 0.2 

3 12,500 10,000 1,700,236 1,700,841 <0.1 

4 25,000 5,000 1,746,348 1,775,425 1.7 

5 25,000 3,200 1,953,224 1,953,224 0.0 

6 17,500 3,200 1,840,724 1,840,724 0.0 

7 12,500 3,200 1,765,724 1,765,724 0.0 

8 7,500 3,200 1,690,724 1,690,724 0.0 

9 7,500 3,300 1,663,018 1,684,578 1.3 

10 12,500 3,300 1,700.236 1,765,723 3.9 

11 17,500 3,300 1,730,236 1,773,011 2,5 
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