Scheduling Based on Process Behavior Analysis
Paulo H. R. Gabriel! and Rodrigo F. de Méllo*

lUniversidade de Sao Paulo
Instituto de Ciéncias Matematicas e de Computagao
Av. Trabalhador sao-carlense, 400 — Sao Carlos — SP —IBrazi

{phrg, mel l o}@ cnt. usp. br

Abstract. Process scheduling researches attempt to understand tremdygs of
applications in order to improve resource allocation patis. Recent studies in
this area have analyzed the behavior of single processdwutitconsidering
how they interact with each other. This drawback motivates paper, which
proposes a new process scheduling approach based on howatpmts interact
when competing for resources. This approach is based oreptsof dynamical
systems theory which state that stabler organizations eareached by means
of perturbations in system components. First, we analypegss occupation
variables to obtain behavioral states which represent aessyscomponent here.
Next, we combine the execution of processes by priorittnegne with higher
estimated CPU load. The execution of processes is therleatexd accord-
ing to their predicted workloads and the system tends to &lelest Here, the
term system refers to the combination of behavioral statedl processes. To
validate this approach, we consider simulated scenarigsesenting different
workloads of a computational environment, obtaining séoexecution times
and, therefore, higher performance as result.

Resumo. Pesquisas narea de escalonamentérh procurado entender a dina-
micidade de aplica@es, a fim de melhorar piticas de alocago de recursos.
Estudos recentes analisam o comportamento de processueglings sem con-
siderar como eles interagem entre si. Essa linétagnotivou este trabalho,
gue profe uma nova abordagem de escalonamento de processos comabase
maneira como as aplicédgs interagem quando competindo por recursos. Essa
abordagemé baseada em conceitos de sistemasuicos segundo 0s quais
organiza@es ediveis podem ser alcancadas por meio de pertébagos com-
ponentes do sistema. Foram analisados processos comrd#srecupages a

fim de obter estados comportamentais que representam unooemte do Sis-
tema. Em seguida, combinou-se a ex@oude processos, priorizando os de
maior carga estimada de CPU. Intercala-se, portanto, a eg&g de processos
de acordo com suas cargas de trabalhos preditas, o que tenda aistema
mais esivel. No contexto deste artigo, o termo sistema se réfe@mbinado

de estados comportamentais de todos 0s processos. Padawalabordagem,
considerou-se cemios simulados representando diferentes cargas de um-ambi
ente computacional obtendo, como resultado, tempos degemenores, ou
seja, maior desempenho.

1. Introduction

The interaction of multiple systems is a major researchctégi different scientific ar-
eas [Kennedy et al. 2001, Alligood et al. 1996, Gonzaleraktia 2004]. In Physics, for
example, the synchronization of multiple out-of-phasertanic oscillators has been stud-
ied and formalized. In Astronomy, Kepler equations are paseveral studies to analyze
the influences of planets’ orbits on satellites, comets, let@iology, the relationship of
predators and preys can be described by Lotka-Volterratieapsa Still in Biology, the
behavior of swarms, such as birds migration and organizati@nt and bee colonies has
been studied in an attempt to understand emergent chasticger

More recently, different branches of Computer Science® havked for inspi-
ration in such studies. For example, bio-inspired metaibges, like ant colony and
particle swarm, have been successfully applied to solverakeptimization and compu-
tational intelligence problems [Kennedy et al. 2001].18tithis area, process scheduling
researches have been attempting to understand the dynahapglications to improve
resource allocation policies [Mello and Yang 2009, Dodoansg Mello 2010]. The main
studies in this subject consider the monitoring and anglysapplication occupation vari-
ables €.g, CPU load, memory accesses, and hard disk utilization ave)tin order to
characterize behavioral states and, based on those, im@source allocation. However,
these studies analyze single processes and, consequkeetby,is no particular study to
understand how they interact with each other

The possibility of understanding the behavior of individpeocesses and also
their interactions and influences has motivated this papkich proposes a new pro-
cess scheduling approach based on how applications ihteteen competing for re-
sources. This approach is based on dynamical systems twlligood et al. 1996,
Gonzalez-Miranda 2004] and considers how the behavioiffdrent processes can be
rearranged or combined over time in order to obtain stabjeachical systents By
finding a stabler representation for the combination of ipldtprocesses, we attempt to
optimize resource allocation over time. For example, byifgatwo or more processes
competing for the same CPU, we analyze occupation varidbtesvery one and, thus,
obtain behavioral states associated with each procesh.sates represent, for instance,
amounts of CPU, memory and hard disk consumed. Afterwardsattempt to inter-
leave the execution of both processes by prioritizing thewith higher estimated CPU
load. This strategy tends to a stabler system, resultinigorier execution times, meaning
higher performance. All these steps are performed by owedsding policy.

The remainder of this paper is organized as follows: Se@jgresents some re-
lated work, focusing on how predictions improve schedutiegisions; Section 3 address
concepts of dynamical systems; Section 4 details our apprgaresents experimental
results and also the analysis; Conclusions and futuretdrescare reported in Section 5.

1This interaction is related to how processes compete tdrob¢gources and modify one each others
behavior.

2|t is important to make clear that ‘stabler’ is a term relai@dynamical systems which means there is
less behavioral variation. Such variations could jeopardiystem forecasting.

2. Related Work

Several studies have confirmed that application knowle@geirmprove scheduling de-
cisions. Many of these researches confront features pedvdy a set of computational
resources in order to optimize allocation and minimize #sponse time of processes. In
this venue, [Ferrari and Zhou 1988] performed an experialesttdy considering some
load balancing algorithms proposed in the literature.dttstlooking for clues to confirm
the costs related to resource allocation and decision rgakissing analytical models
and simulation, [Sevcik 1989] demonstrated that it is guesio substantially improve
scheduling decisions using knowledge about applications.

Following this same research venue, [Devarakonda and B&9]ldeveloped one
of the first studies employing a pattern recognition techeitp predict the utilization of
resources, such as CPU processing, input/output opesadizthmemory accesses. They
employed &-means algorithm to identify states of resource occupati@monoproces-
sor UNIX system. The authors, however, did not consider camoation and synchro-
nization costs. On the other hand, their study motivatetth&srworks focused on the use
of historical information.

[Feitelson and Nitzberg 1995], for example, showed thatekecution time of
parallel applications can be estimated from repeated &x&s, indicating that histori-
cal behaviors of applications can be used to improve futaheduling decisions. The
authors also analyzed production data and confirmed thabsippately two thirds of ap-
plications are executed multiple times. In another stuBgjtglson et al. 1997] noticed
that repeated executions of the same application tend gepteimilar patterns of re-
source utilization.

Other researchers, like [Gibbons 1997], [Smith et al. 2G#] [Downey 1997]
focused their studies on the prediction of response timgsaddllel applications based
on previous executions. [Gibbons 1997] made predictioasnxing categories of appli-
cations while [Smith et al. 2004] used search techniqued) as greedy search and ge-
netic algorithms, to find historical information based oplagation similarity. They used
such information to characterize and predict the behaviaoew applications. The same
methodology was followed by [Krishnaswamy et al. 2004], vgnoposed algorithms to
estimate the process execution times.

On the other hand, [Downey 1997] estimated process exectitites by mod-
eling cumulative distribution functions for every applica category. The author
employed them to approximate the behavior of future aptina. More recently,
[Schopf and Berman 1999] proposed the use of stochastiegses to parametrize per-
formance characteristics, such as bandwidth, availablé, Gissage size and operation
accounting. Later, [Lee and Schopf 2003] adopted regressiodels to establish rela-
tionships between performance characteristics and eredirnes of past applications.

Still in terms of historical information, [Dinda 2001] sted the scheduling prob-
lem considering a different point of view: the resource hbrainstead of the process
one. The author assumed an auto-regressive model witresixtefficients to estimate
the CPU load of computers. According to his policy, processe allocated on computers
at lower predicted loads. He concluded that this policy imps load balancing, which
was also later confirmed by [Chunlin and Layuan 2009].

Looking for a more precise prediction, [Melloand Yang 200%nd
[Dodonov and Mello 2010] considered dynamical systems eptsc and nonlinear
prediction techniques to model and predict process betsviMello and Yang 2009]
monitored processes occupation variables over time anidiaea their similarity and
recurrence of behavioral patterns. They calculated theired) number of past variable
observations to efficiently forecast their future occucesng.g, CPU load, memory oc-
cupation, etc.). The authors presented a theoretical foefficiency for the estimation
of the embedded and separation dimensions using real-apptcation traces. Such
estimations are applied to Takens’ immersion theorem [Tal®80] in order to predict
future process occupations. The study was extended by [dand Mello 2010], who
proposed a framework to provide an on-line and adaptivesdehgrediction mechanism
for an efficient application scheduling based on the ardiagm of communication events.
Results obtained in heterogeneous environments confirreficeency of the prediction
mechanism, which outperforms conventional schedulingigsl.

All these studies have highlighted the relevance of usingiegtion knowledge
in process scheduling. However, even works that attempbtaim more precise pre-
dictions [Mello and Yang 2009, Dodonov and Mello 2010] areited to the analysis of
individual processes and do not consider the interactiomwtiple processes and how
it can affect the scheduling. In order to overcome this diaskb we here study and
consider adaptations in the interaction of multiple preessto reach a stabler resultant
system. Such stability, derived from dynamical system$igabd et al. 1996], improves
the predictability of behavioral states. The next sectiesatibes the dynamical systems
concepts considered in our approach.

3. Dynamical Systems

A dynamical system is composed of a set of possible stategaote that determines
its current state in terms of past ones. Mathematically,rmadycal system is described
by z,.1 = f(x,), wheren € B (B C R) denotes timegx : B — R represents the
state of the system anfl: R — R is the rule or evolution law [Alligood et al. 1996]. In
this case, the rule defines the next state in function of pass$,aherefore this system is
characterized as deterministic. Besides deterministitesys, there is also another class,
named stochastic, in which rules also involve random teriiggpod et al. 1996]. In
addition, such dynamical systems also rely on initial cbads. These conditions define
the input values for the rule which, consequently, affestay outputs.

In order to illustrate a dynamical system, let us considerltbgistic map pre-
sented in Equation 1, which is traditionally used to modgdylation growth over time.
Let this map start with the following initial conditions = 3.8 andz, = 0.5, for
t € [0,500] iterations.

Ti41 = b- Tt - (]_0 — I't) (1)

Figure 2(a) shows the Logistic map outputs given the preseadnditions. By
conducting a detailed analysis, one can conclude this ifumgiresents low recurrence,
chaoticity and behavior instability [Alligood et al. 1996[herefore, it is difficult to pre-
dict such a system by using statistical methods. Howevercan reconstruct this system

in order to observe internal regularities and simplify itglarstanding. This reconstruc-
tion supports the estimation of the rule, which indicates tiee system evolves over time.
Consequently, by reconstructing a given set of outputspoaeobtain that particular sys-
tem rule, understand and predict it.

[Whitney 1936] observed the possibility of reconstructish@ta in multidimen-
sional spaces, applying the concept of differential madi#oMathematically)/ c R*
is a manifold of dimensiom: if, for each pointp € M, there is a neighborhodd C M
of p and a homeomorphism: U — U,. U, is an open set dR™, such that the inverse
homeomorphism~! : Uy — U C R* is an immersion of clas§>. In summary, for
eachu € Uy, the derivativeflfl—z) : R™ — R* is biunivocal.

Figure 1 shows an example of a plane parametriza&itn' x R, toR*. Given a
pointq’, we can, by means of, : H, — H N M, find a corresponding poigte M. This
example illustrates the mapping of a point and its neightodhin a space with a higher
number of dimensions.

¢g: Hy— HNM

¢, Uyg—UNM

-

N

Ho{ .)
\ ¥

U~~~ SN

>
>

\ / m—1
N / R X]R+

Figure 1. Example of a manifold.

This mapping allow understanding unobservable or undersemted behav-
iors which are better described in a higher number of dinmerssi From this study,
[Whitney 1936] proposed his immersion theorem, wherebyyetrajectory inm dimen-
sions can be mapped into a space With+ 1 dimensions.

Based on such a theorem, [Takens 1980] proved that, insfead@ping states
into a 2n + 1-dimensional space, one can improve reconstruction censgl time
offsets. Thus, the outputs of a dynamical system, here sseeamaone-dimensional
time serieszg, x1,...,z,_1, can be unfolded in a multidimensional (or phase) space
in the formx,(m,7) = (Tn, Tpirs - - Tpgm—-1)-), Wherem is the embedded dimen-
sion andr represents the time delay. This theorem has been sucdgssfybloyed to
estimate dynamical system rules, thus, simplifying thealbairal studies and predic-
tions [Alligood et al. 1996]

To illustrate the concepts of embedded dimension and tinaydee consider the
output of the Logistic map (Equation 1) unfolded iR-@limensional space.¢., m = 2)
and withT = 1, which results in pairs of point&,, x;,1) (see Figure 2(b)). After such
unfolding, we can observe the rule which generated the ¢sigmd, consequently, study,
understand and model other real-world problems by usingAsikmmersion theorem.
By making a regression of the resulting point pairs, we obiila@ dynamical system rule

and can determine future states.

1

| ot
v o7 ~
08 f # \
- L4
g 07t Vi \%
§ z 0.6 [3’ ﬁ%
3 s ¢ N
E E os| %
5 04 f 3y
2 ,;
03 *ﬁi 1
02t %
“o 100 20 30 400 500 *lo1 02 03 04 05 06 07 05 09 1
Time Time t
(a) Logistic map outputs. (b) Logistic map reconstructed with embed-

ded dimensior2 and time delayl.

Figure 2. Study on Logistic map.

The embedded dimension defines the number of axis of the sipase, which
are required to unfold the inherent behavior of systems. hia ¢éxample, the series
demands two axis, but other cases may require magg ¢the Lorenz map requires
axis [Alligood et al. 1996]). Several methods have been @sep to determine the em-
bedded dimension as well as the time delay. The most accepestare the False Nearest
Neighbors [Kennel et al. 1992] for the embedded dimensi@hthe Auto-Mutual Infor-
mation [Fraser and Swinney 1986] for the time delay.

In this paper we employ such methods to estimate embeddeendions and
time delays in order to improve the reconstruction of sysbemputs in multidimensional
spaces. By estimating dynamical system rules, we are allederstand and make pre-
dictions for a given system. Systems of interest here aregsses and their outputs are
composed of occupation variables which change over timewdsre particularly in-
terested in how CPU load varies over time, we monitor thaiale for every process
and, then, reconstruct each process in a different mulédsional space, obtaining the
rule for every process which determines its CPU occupatates. The states of different
processes may influence one each other, reducing and/oovingrperformance. This
paper focuses essentially on how to modify such influencesder to make processes
run faster.

4. The Proposed Approach

This paper was motivated by influences and interactions dfipheidynamical systems
[Gonzalez-Miranda 2004]. For example, a systémmay modify the behavior of another
systemB as they compete for resources. Understanding such inflseneeclaim that
it is possible to modify the points of interaction among thand, thus, improve perfor-
mance.

In order to illustrate the main ideas that motivated thislgtgonsider two dynam-
ical systems represented by the following rul¢sr) = sin(z) andg(z) = sin(z/2.0 +
y) - 2.0. The outputs of such systems are shown in Figure 3(a). Alssider that the
person who obtained those outputs does not know the rules hi/she needs to obtain
them by using the procedure described in Section 3. One &gfmstruct the outputs by

computing the False Nearest Neighbors and the Auto-Mutfalmation methods and
apply the resultant embedded dimension and time delay teriEakmmersion theorem
[Takens 1980], obtaining the reconstructions present&iguare 3(b).

st/ JEY L5t
1 1

0.5 0.5

Series observation

0 rE) 0r
-05 e -05
-1 F \ ; -1
15 b /’ \\\ ‘,»"; 1 15 ¢ /
2) ())) o K-)))))))
0 500 1000 1500 2000 2500 3000 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
Time Time t
e 2] \ ITEN) 20) ——— \
(a) Functionsf(z) andg(x). (b) Attractors off (z) andg(x) functions.

Figure 3. Functions f(z) and g(z) and their attractors.

Now consider that both systems are combined through a sisypieof observa-
tions. This combination results in a third system which espnts the same computer
receiving both processes at the same time; the scheduleheril attempt to run both to-
gether. This third system is characterized by function) = sin(x)+sin(z/y+2.0)+2.0,
whose outputs are illustrated in Figure 4(a). The recontttubehavior of this third sys-
tem (Figure 4(b)) has a region with a behavior different fribrat previously observed
when evaluating single processes. This reconstructiofiramthat the combination of
systems forces their interactions in terms of resourcézatibn, modifying the recon-
structed behavior, which will also be called dynamical egsattractor or simply attractor
from now on.

Series observations

E
1k
2k
0 500 1000 1500 2000 2500 3000 -3 -2 -1 0 1 2 3
Time Time t
(a) Function(z). (b) Attractor ofh(z) function.

Figure 4. Function h(x) and its attractor.

Additional combinations of functiong(z) andg(z) are illustrated in Figure 5(a).
We observe that the attractors (Figure 5(b)) show diffebetavior for different combi-
nations, motivating the search for situations in which, bgnbining distinct functions in
different ways (.e., in terms of time displacements), there is an equilibriutaeen these
functions, generating stabler attractors and, theretoneore uniform behavior.

Time t-1

Series observations
(=]

AN

i I I et I I | 3 L= I I I I I
0 500 1000 1500 2000 2500 3000 -3 -2 -1 0 1 2 3

Time Time t

‘ Combination 1

Combination 3 - Combination 1 Combination 3 -
Combination 2 - Combination 4

Combination 2 - Combination 4

(a) Offsets off (x) andg(x) (b) Attractors of the offsets.

Figure 5. Offsets of f(z) and ¢g(z) and their attractors.

To apply this study in the context of process scheduling, aeehproposed an
analytical model to evaluate combinations (in terms of tofigplacements) considering
the behavior of two processes characterized by the samédong(z) = ¢(z) = 50 -
sin(x) + 50. Through offsets in:-axis (which represents time), different attractors were
obtained, allowing assessing and obtaining stabler gitusit Figure 6 shows the response
time according to such a model.

500

450

400

Time (s)

350

300 -

250

50 100 150 200 250

Offsets in x-axis

Figure 6. Response times.

We can observe that, for certain offsetsazinthe response time is significantly
lower, providing evidence that some combination®(@f) andq(z) result in a more ap-
propriate scheduling in terms of makespan (makespan remiethe total execution time
of an application). Figures 7, 8 and 9 illustrate the behavi@ombinations op(x) and
q(z) varying offsets inc. The respective attractors are also shown.

By considering this example, we observe that a stablercadirdhas been ob-
tained by using offse81 on z-axis, i.e., the combined behavior of processes tends to
a region of higher stability. Such stability is observedtearms of dynamical systems
[Alligood et al. 1996], because there is a slight variatiothe resulting attractor formed
by the combination of both systems, as seen in Figure 8(ln)fferent words, the states of
the resulting system are more concentrated in a specifiome@n the other hand, when
such combination results in unstabler systems, we obsemad arbits being formed such
as in Figure 9(b) (two well-defined concentric orbits). Timegence of more orbits indi-
cates the system has higher probability to vary, makingiptied more complex. This

200 T
180 -

160 -

140 -

120

100 [

80
60
40
20

CPU load
Time t-1

T T T T 200 T T T T T T T -
PR
. 180 | L b!
r
1 160 | . - J
- &
1 140 . - ;* 1
i 120 F . - ff J
] 100 f@“‘ Hﬂﬂi L +£4]
. +
] 80 j‘ . L7]
] 60 b ;* +++ - e 4
+ o
— 40 - B
f . o
| 0% -]
L L L L L L 0 #*’“nm Mm*“*ww L
60 80 100 120 140

0 20 40 60 8 100 120 140 160 180 200

Time (s) Time t

(a) Offset 0. (b) Attractor to offset 0.

Figure 7. Combination of p(x) and ¢(z) with offset 0.

110 T T T T T T T 120

100 | 100 ++++t,+t+#+t+t,+‘;+i:*”*o
+ M +++++*+
9 80 f Lt A
E . L E
= sf T 60 Lt i
70 + 40 ¢
L
60 20 .
;
50 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ %
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120
Time (s) Time t
(a) Offset 31. (b) Attractor to offset 31.

Figure 8. Combination of p(z) and ¢(x) with offset 31.

offset corresponds to the point in Figure 6 whose responseis minimal.

Based on these initial observations, we designed and ingited two heuristics
in a simulator. By considering series collected during tkecation of real applications,
they schedule processes according to equilibrium sitngtio

4.1. Proposed Heuristics and Results

The first heuristic proposed, Heuristic A, considers theperal behavior of the pro-
cesses and performs the scheduling based on their pred@i&ddusage. This heuristic
assumes the prediction of the processes behavior in a tioee (glfter the current mo-
ment). For example, considering a series= {zg, z1,...,x,_1} With n observations,
we perform the prediction of the next observatignbased on the approach proposed in
[Mello and Yang 2009]. Based on such a prediction, Heuriatschedules the process
with higher CPU utilization at the next observatign Thus, it maximizes the processor
utilization and reduces the response time of processes.

By prioritizing processes with higher CPU usage, Heuridtiends to delay the
execution of others with lower demands. To avoid this litnta, we have proposed a
variation of the first heuristic which introduces a probmshit term to select the next
process to run. This term is proportional to the next obsmmwa:,, for every process and

200

200 —————
"
180 180 .
-
1 160 L S
140
-
120 PR .

N
00 + e Lot
+ +
+ o . +
80 + o +
R
+ +

60 + .
+ #
40 | :
[e
o -
20) +

160 -
140 -
120 -
100 -

CPU load
Time t-1

80
60
40
20

o

E w7

. 0 Bl e

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 160 180 200
Time (s) Time t

(a) Offset 64. (b) Attractor to offset 64.

0

Figure 9. Combination of p(x) and ¢(x) with offset 64.

is computed as follows. L&®; be the probability of a proceggo be selected, then

)
T
P = ="

Sl

wherez!, is the next observation of processthat is, the predicted CPU usage. For
instance, given a set of three processes running, assuimadhie workload of every
process in the next time slice {&. = 13.96,22 = 6.53,22 = 2.27}, the probability
of selecting each one to execute in the next time slice isnge{P, = 0.61, P, =
0.28, P = 0.11}. Thus, even processes that demand less resources may aksledted.
This new heuristic has been called Heuristic B.

In order to validate both heuristics, we considered five agen representing dif-
ferent environment workloads. Such scenarios were dedigased on execution trades
of the toolgr ep and also on &-language version of thei bonacci algorithm.The
tool gr ep was executed in two different ways:

grep -r "?" [,

which prints the result in standard output, alternating potation with 1/0O operations,
and

grep -r "?" | > [dev/null,

which avoids output operations, increasing CPU usage. WisergFi bonacci , no
output was generated.

Figures 10(a) and 10(b) show the CPU loaddoep andFi bonacci , respec-
tively. Forgr ep, we observe there is an alternated pattern of CPU utilimatial output
operations, whild-i bonacci demands a higher and constant CPU usage.

Based on the obtained traces (shown in Figure 10), the hiesngere simulated
and compared against tRound-Robir{RR) policy. Only for clarification purposes, RR
assigns identical CPU times for each process, which areneg in a circular queue.

3We developed a script to run on GNU/Linux to obtain CPU usagevary 150 ms, that reads file
/ proc/id/stat —id corresponds to the process identifier.

20 T T T T T T 20
= =
g g
5 10 5 10
a9 -9
Q @]

5 5|

0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000
Time (s) Time (s)
(a) CPU usage for toar ep. (b) CPU usage foFi bonacci algorithm.

Figure 10. CPU usage.

Table 1 presents the results for figeep processes simultaneously started in the compu-
tational environment, thus competing for resources. In¢hse, we assume the execution
of gr ep generating outputs. We here compare the total executiom @iinakespan), the
process average running time, the time necessary to svotdlexis (CS), that is, the to-
tal time the scheduling policy requires to select the neatess to run, and, finally, the
average CPU utilization.

Table 1. Five identical executions of gr ep.
Policy Total Time AVG Time CSTime AVG Utilization

RR 33,440.0 6,688.0 13.34 1.90
Heuristic A 34,680.0 6,936.0 1,82 1.83
Performance Gain -3.57%

Heuristic B 33,769.0 6,753.0 14.00 1.88
Performance Gain -0.96%

In this case, RR presented better results, since all pres@spose the same work-
load and, thus, a simply execution interleaving tends ttebeésults, in opposition to
strategies proposed by both heuristics evaluated. We sanodilserve that Heuristic B
reduced response time and improved resource usage whermuezhip Heuristic A.

In a second scenario, we considered three identical exesutifFi bonacci al-
gorithm. In such a circumstance, we obtained a similar bieh&vr all policies (Table 2),
due to the high CPU utilization imposed by evé&iybonacci process.

Table 2. Three identical executions of Fi bonacci algorithm.
Policy Total Time AVG Time CSTime AVG Utilization

RR 21,347.0 7,115.0 4.27 46.73
Heuristic A 21,347.0 7,115.0 4.27 46.73
Performance Gain 0.00%

Heuristic B 21,347.0 7,115.0 4.27 46.73
Performance Gain 0.00%

These two scenarios are composed of processes with iddoicaviors; in such
a situation our heuristics do not improve performance. Harevhen a different set of
processes is executed, the heuristics indeed affect tHepfnformance. For example,

Table 3 presents folugr ep processes, writing in the standard output, and one executio
of gr ep redirecting the output to the null device (as previouslysmo We then observe

that Heuristic A reduced the response time to approximat&ly when compared to RR
and also improved the resource utilization. The performasfcHeuristic B is slightly

below A, but still better than RR.

Table 3. Five executions of gr ep (four identical and one different).

Policy Total Time AVG Time CSTime AVG Utilization
RR 18,324.0 3,664.0 6.98 3.07
Heuristic A 8,814.0 1,762.0 3.07 3.75
Performance Gain +51.91%
Heuristic B 9,493.0 1,898.0 3.19 3.64
Performance Gain +48.19%

In another scenario, we simulated higher demands for CPUryimg threegyr ep
processes, writing in the standard output, gnep execution without outputs and, fi-
nally, oneFi bonacci process. In this case, Heuristics A and B outperformed RR in
terms of response time (reducing it in ab8ut and28%, respectively) and CPU utiliza-

tion (Table 4).

Table 4. Four executions of gr ep (three identical and one different) and one exe-

cution of Fi bonacci algorithm.

Policy Total Time AVG Time CSTime AVG Utilization
RR 22,382.0 4,476.0 6.98 16.81
Heuristic A 15,448.0 3,089.0 4.15 23.61
Performance Gain +30.98%
Heuristic B 16,005.0 3,201.0 4.27 22.83
Performance Gain +28.49%

Finally, in the last scenario (Table 5), we increased CPUatets by adding an-
otherFi bonacci process in the previous scenario. In this case, performansealso
improved by Heuristics A and B, however, such improvemerstaver than the previous
scenario because, by adding anothebonacci process, the total CPU workload was
too high to be treated by a single computer. If we add moreqa®es, there will even
be reductions in the resulting improvement, tending, inrlmasled situations, to the same

performance of RR.

Table 5. Four executions of gr ep (three identical and one different) and two exe-

cution of Fi bonacci algorithm.

Policy Total Time AVG Time CSTime AVG Utilization
RR 29,364.0 4,894.0 8.38 23.92
Heuristic A 22,564.0 3,760.0 5.58 30.90
Performance Gain +23.17%
Heuristic B 23,064.0 3,844.0 5.65 30.26

Performance Gain

+21.45%

We have concluded that the proposed heuristics improve patiormance and
resource usage when heterogeneous processes are suburtitieénvironment. Another
important point is that when processes barely use CPU, cunidties do not provide
improvements (Tables 1 and 3). A second situation occurvghecesses impose too

heavy workloads; in such scenario, heuristics tend to ptessults closer to RR. How-
ever, when processes present a different behavior and enpgither too heavy nor too
low CPU usage, both heuristics strongly improve perforreaiesults as well as resource
utilization. This last scenario is typical in desktop cortgga. Furthermore, we can also
employ such heuristics in grid computing environments lyding the overload of single
computers and making such heuristics responsible for kdadduling.

5. Conclusions

This paper has presented studies on behavioral interasatioprocesses, motivating the
proposal of two heuristics which allocate resources basdww processes demand CPU
in future time slices. Both heuristics were implemented isiraulator and compared

against the Round-Robin policy.

Results have confirmed that, when processes demand the sasmeilar CPU
usage, both heuristics are slightly inferior to Round-RobStill, when processes are
similar, but under higher CPU utilization, the heuristissngell as Round-Robin present
similar performance. Finally, when processes have diffebehaviors, both heuristics
outperform Round-Robin in terms of reducing the total executime and improving
CPU utilization.

Furthermore, we remember that many computational enviessnare mostly
characterized by processes with different behavior, aktdesystems, confirming the
potential usage of such heuristics in real-world scena&wgn large-scale environments,
such as grids, could take advantage of the proposed hearlsfi using them as local
scheduling policies.

Acknowledgments

This paper is based upon work supported by FAPESP (Sao Ragiearch Foundation),
Brazil, under grant no. 2009/15338-1. Any opinions, findingnd conclusions or rec-
ommendations expressed in this material are those of tthe@uand do not necessarily
reflect the views of FAPESP.

References

Alligood, K. T., Sauer, T. D., and Yorke, J. A. (199&)haos: An Introduction to Dynam-
ical SystemsSpringer-Verlag.

Chunlin, L. and Layuan, L. (2009). A system-centric schadupolicy for optimizing
objectives of application and resource in grid computi@pmputers and Industrial
Engineering57(3):1052-1061.

Devarakonda, M. V. and lyer, R. K. (1989). Predictabilitypbcess resource usage:
A measurement-based study on UNIKEEE Transactions on Software Engineering
15(12):1579-1586.

Dinda, P. A. (2001). Online prediction of the running timaadks. INEEE International
Symposium on High Performance Distributed Compytpages 383-382.

Dodonov, E. and Mello, R. F. (2010). A novel approach for ritistted application
scheduling based on prediction of communication everisture Generation Com-
puter System26(5):740-752.

Downey, A. B. (1997). Predicting queue times on space-sbgarallel computers. In
International Symposium on Parallel Processipgges 209-218.

Feitelson, D. G. and Nitzberg, B. (1995). Job charactesstif a production parallel
scientific workload on the NASA ames iPSC/860. Job Scheduling Strategies for
Parallel Processingvolume 949 olLNCS pages 337-360. Springer-Verlag.

Feitelson, D. G., Rudolph, L., Schwiegelshohn, U., SewikC., and Wong, P. (1997).
Theory and practice in parallel job scheduling.Jbb Scheduling Strategies for Paral-
lel Processingvolume 1291 of NCS pages 1-34. Springer-Verlag.

Ferrari, D. and Zhou, S. (1988). An empirical investigatmnload indices for load
balancing applications. Imternational Symposium on Computer Performance Mod-
elling, Measurement and Evaluatiopages 515-528.

Fraser, A. M. and Swinney, H. L. (1986). Independent coatdia for strange attractors
from mutual informationPhys. Rev. A33(2):1134-1140.

Gibbons, R. (1997). A historical application profiler foreusy parallel schedulers. ob
Scheduling Strategies for Parallel Processimglume 1291 ofLNCS pages 58-77.
Springer-Verlag.

Gonzalez-Miranda, J. M. (2004gyncronization and Control of Chaos: An Introduction
for Scientists and Engineermperial College Press.

Kennedy, J., Eberhart, R. C., and Shi, Y. (2008yvarm IntelligenceMorgan Kaufmann
Publishers.

Kennel, M. B., Brown, R., and Abarbanel, H. D. I. (1992). Detaning embedding
dimension for phase-space reconstruction using a gearaktonstructionPhys. Rev.
A, 45(6):3403-3411.

Krishnaswamy, S., Loke, S. W., and Zaslavsky, A. (2004)inksting computation times
of data-intensive applicationtEEE Distributed Systems Onling(4):1-12.

Lee, B.-D. and Schopf, J. M. (2003). Run-time prediction afgllel applications on
shared environments. IEEE International Conference on Cluster Computipgges
487-491.

Mello, R. F. and Yang, L. (2009). Prediction of dynamicalphioear, and unstable process
behavior.The Journal of Supercomputing9(1):22—41.

Schopf, J. M. and Berman, F. (1999). Stochastic schedulm@§CM/IEEE Conference
on Supercomputing

Sevcik, K. C. (1989). Characterizations of parallelism pplécations and their use in
scheduling.Performance Evaluation Review7(1):171-180.

Smith, W., Foster, I., and Taylor, V. (2004). Predicting kgagion run times with histori-
cal information.Journal of Parallel and Distributed Computin§4(9):1007-1016.

Takens, F. (1980). Detecting strange attractors in turmgle InDynamical Systems and
Turbulencepages 366—381. Springer.

Whitney, H. (1936). Differentiable manifoldsThe Annals of Mathematic87(3):645—
680.

