
1

DO MORE
w w w . r i s e . c o m . b r

RiPLE: The RiSE Process forRiPLE: The RiSE Process for
Product Line Engineering

Eduardo Almeida Marcela Balbino Danuza Neiva Ednaldo Dilorenzo

2Sep 10th 2009 SBCARS 2009 – Natal - Brazil

Eduardo Almeida, Marcela Balbino, Danuza Neiva, Ednaldo Dilorenzo,
Paulo Silveira, Ivan Machado, Thiago Burgos, Vanilson Burégio, Silvio Meira

2

Agenda

• Part I
– Software Process

– Introduction to RiPLE

– Software Product Lines: An overview

– RiPLE process

• Riple-SC

• Riple-RE

• Riple-DE

• Part II
– RiPLE process (cont.)RiPLE process (cont.)

• Riple-TE

• Riple-EM

– Case Study

– Conclusion

– Future Directions

Software Process

4Sep 10th 2009 SBCARS 2009 – Natal - Brazil

3

Software Process

• Software Development
– complex systemscomplex systems

– time-to-market

– distributed development

– ….

• Experts

• Turnover

Software Process – cont.

• Importance
– WhoWho

– What

– When

– How

• Users

• Organization

4

Software Process – cont.

• A software process is a set of activities that leads to the
production of a software product p p

• Influences
– Project | Methods | Tools

– Knowledge

– Cost

– ContractContract

– …..

[Sommerville, 2008]

Software Process – cont.

• Process Model
– Software ReuseSoftware Reuse

• Why a new process?

5

The State-of-the-Art [Almeida, 2007]

….

The State-of-the-Art – cont.

• Systematic Reviews
– ScopingScoping

• in evaluation

– Requirements
• in evaluation

– Design
• European Conference on Software Architecture (ECSA 2008)

– Testing
• in evaluation

– Evolution
• in evaluation

– Tools
• Journal of Information and Software technology 2009

6

RiPLE – The RiSE Process for Product Line
Engineering

Integrated Effort

7

RiPLE – RiSE Product Line Engineering Process

• Steps
– Core Assets Development

P d t D l t– Product Development

• Concepts
– Domain

– Feature

• Foundations
– Process Model

– Domain-driven

– Iterative | Incremental

RiPLE – cont.

• Elements
– GuidelinesGuidelines

– Principles

– Language

– Roles

– Assets

– Activities

8

Software Product Lines (SPL)

15Sep 10th 2009 SBCARS 2009 – Natal - Brazil

A little bit of history…

16

9

The basis of Product Line Engineering....

• Henry Ford
• “The father of assembly-line automation”

• Model T production (1908)

• Main concept: Interchangeble parts
• based on the ideas of Honoré Blanc and Eli Whitney

• Streamlined the production process

The Economy of scale!

• Line of motor cars

• affordable, built quickly, high quality

“Any customer can have
a car painted any colour
that he wants so long as
it is black” - Henry Ford

10

The Economies of scale!

• Line of motor cars

• affordable, built quickly, high quality

“Any customer can have
a car painted any colour
that he wants so long as
it is black” - Henry Ford

Certain choices where
extremely limited!

Product Line Engineering (PLE)

• Economies of Scope
• Mass customization:

producing goods and services toproducing goods and services to

meet individual customers
needs

• Create an underlying
architecture for an

organization's product
Economies of
scale

Economies of
scope g p

platform

• Core assets can be reused to
engineer new products from the

basic family

multiple identical
instances of a
single design are
produced
collectively, rather
than individually

multiple similar
but distinct
designs and
prototypes are
produced
collectively, rather
than individually

11

Software Product Lines (SPL)

• Based on the ideas of PLE

• Fundamental principle: variability
managementmanagement
• Allows to adapt a product to

the customer needs

• Adaptation is typically performed
during SPL development

The roots....

• On the Design and
Development of Program
Families
Parnas, D.L.;

IEEE Transactions on
Software Engineering,
Vol. 02, Issue 01, March
1976, pp. 1 - 9

David Lorge Parnas

12

13

14

Software Product Lines

“A ft d t li i t f ft i t i“A ft d t li i t f ft i t i“A software product line is a set of software-intensive
systems sharing a common, managed set of

features that satisfy the specific needs of a

particular market segment or mission and

that are developed from a common set of core

assets in a prescribed way

“A software product line is a set of software-intensive
systems sharing a common, managed set of

features that satisfy the specific needs of a

particular market segment or mission and

that are developed from a common set of core

assets in a prescribed wayassets in a prescribed way.

Paul Clements and Linda Northrop, 2002

assets in a prescribed way.

Paul Clements and Linda Northrop, 2002

15

Essential Factors

• Investment

• Planning• Planning

• Direction

• Business Strategy

Management

Is Product Lines a new approach?

• Small-Grained Reuse

• Single-System Development with Reuse

• Component-Based Development

• Reconfigurable Architecture

• Release and versions of

Single Products

16

Organizational Benefits

• To achieve large-scale productivity gains

• To improve time to market• To improve time-to-market

• To maintain market presence

• To improve product quality

• To increase customer satisfaction

• To achieve reuse goals

• To enable mass customizationTo enable mass customization

Product Line asset repository Benefits

• Requirements

• Architecture

• Components

• Modeling and Analysis

• Testing

• Planning

17

Essential Activities

Core Asset
Development

Product
Development

Management

Domain Engineering Application Engineering

Core Asset Development

Core Asset
Development

Management

18

Core assets

• Core assets are the basis for production of products in
the product line

• Core assets
– Architecture {scope, styles, patterns, and frameworks}
– Components
– Test plans, Test cases
– Documentation
– Domain modelsDomain models
– Requirements
– Commercial off-the-shelf (COTS) components

Production Plan

• A production plan describes how the products are
produced from the core assets p
– {reuser’s guide}

• A Set of attached process {with the glue}

• Production Plan describes:
– Tools– Tools
– Metrics, Metric Plan

19

Product Development

Product
Development

Management

Management

• Critical role in the successful fielding of a product
line

• Technical
– Core asset development
– Product development

• Organizational• Organizational
– Training
– Funding
– Risks

20

Some Successful Cases

Product Line Hall of Fame

http://www.sei.cmu.edu/productlines/plp_hof.html

21

Nokia: Mobile Phones

• Case study
– Mobile phones– Mobile phones

• Previous scenario

– The initial software architecture for this product line addressed
variations in hardware, communication standards, and user
interfaces

22

• Challenges

L Ch ll Ab t t

Nokia: Mobile Phones

– Language Challenge Abstract

– The Hardware Challenge

– The Feature Challenge

• Strategies

– The current architecture is component based in the client-

server style. It allows separate service providers to be plugged

in or taken out without restarting the system

• Current Scenario

32 diff t h f t d i i

Nokia: Mobile Phones

– 32 different phones are manufactured covering six
different protocol standards, a wide variety of functional
features and capabilities, different user interface designs,
and many platforms and environments

• Results and Metrics

– Nokia Mobile Phones is the world's largest mobile phone

manufacturer, and they believe that software product line

engineering has helped it to reach that position

23

PHILIPS: Product Line of SW for TV Sets

• Case study
– Televisions sets– Televisions sets

• Previous scenario

– While initially solely consisting of hardware, TVs now contain
fully equipped embedded computers to control the hardware
and to implement extra features

– These computers started small, with 1 kilobyte of code around
1980, resulting in many million lines of code today

• Challenges

C l it

PHILIPS: Product Line of SW for TV Sets

– Complexity

– Diversity, since televisions are produced in many different

variants

24

• Strategies

The first step was the definition of a software component

PHILIPS: Product Line of SW for TV Sets

– The first step was the definition of a software component

model

– The second step was the creation of a product line architecture

– Changes had to be made to the existing development

processes, which were optimized for the creation of single

products

– The fourth step was the adaptation of the development

organization to accommodate product line development

• Current Scenario

Si 2002 ll Phili ' id d hi h d t l i i

PHILIPS: Product Line of SW for TV Sets

– Since 2002, all Philips' mid-range and high-end televisions

have software derived from this product line

– The product line supports three different hardware platforms

• Results and Metrics

T d th 20 diff t ft l– Today, there are 20 different software releases per

year, where each release serving 1-5 different

product types

25

Background ImportantBackground – Important
Concepts

49Sep 10th 2009 SBCARS 2009 – Natal - Brazil

Motivation

• Variability
– The ability or the tendency to change

• Variability modelling
G l T t th d l t d th f i bl d l t t– Goal: To support the development and the reuse of variable development assets

– Iterative process

• Abstraction levels
–– CommonCommon and VariableVariable features of the domain {spl} are identified
– Domain requirements
– Domain architecture
– Implementation
– Test

• Where
–– DomainDomain engineeringengineering {definition}
– Application engineering {exploited}

• Defining variability
– The sumsum ofof allall activitiesactivities concerned with the identification and documentation of

variability

26

Definitions

• Managed Variability
– Defining and exploiting variability throughout the different life cycle stages of a spl
– Issues

• Supporting activities concerned with defining variability
• Managing variable assets

S pporting acti ities concerned ith resol ing ariabilit• Supporting activities concerned with resolving variability
• Collecting, storing, and managing trace information necessary to fulfil these tasks

• Examples
–– A software A software componentcomponent cancan supportsupport differentdifferent implementationsimplementations
– A search can be active oror passive
– A GUI component for threethree differentdifferent mobile phones

• How to identify variability?
–– WhatWhat does does varyvary? ?

• Variability subject – is a variable item of the real world or a variable property ofy j p p y
such na item

–– WhyWhy does it does it varyvary??
•• StakeholderStakeholder needsneeds, , technicaltechnical reasonsreasons, , marketmarket

–– HowHow does it does it varyvary??
• Variability object – is a particular instance of a variability subject

• Examples
– Variability subject - Search
– Variability object – Active, Passive, Content...

Definitions (cont.)

• Variation Point
– It is a representation of a variability subject within domain assets enriched by contextual information

• Variant
– It is a representation of a variability object within domain assets

• Variation Point and Variants
– Used to define the variability of a domain [spl]

• How to identify them?
1. To identify the item of the real world that varies {variability subject}
2. To define a variation point
3 To define the variants3. To define the variants

• Examples
– Customers, Analysts, Researchers.... – Search: “Passive”, “Active” {1}

– Variation Point –Search Types
– Variants – Passive, Active, Content, Facets, Keywords....

27

Definitions (cont.)

• Variability in time
– It is the existence of different versions of an asset that are valid at different times

– Single-system engineering or domain {spl} engineering

– Evolution {configuration management}

• Variability in space
– It is the existence of an asset in different shapes at the same time

– Browsing {requirements, use cases, test cases, components...}

– New trend in research

• External and Internal Variability
– External – visible to customers

– Internal – hidden from customers

R

L
E
V
E
L
S

O
F

A
B
S
T
.

E
F
I
N
E
M
E
N
T

Internal Variabilty Tests

Components

Design

Requirements

Customer needs…

Documentation of Variability

• Required information
– What varies?

• Documentation of the variation points

– Why does it vary?
• Textual annotations of variation points and variants

– How does it vary?
• Documenting the available variants and linking them to domain elements

– For whom is it documented?

• Benefits
– Decision making

– Communication

– Traceability

28

Variability constraints

• Variant constraint dependency
– Variant requires variant

• Notification x Interest
Variant excludes variant– Variant excludes variant

• Variant to Variation Point constraint dependency
– Variant requires variation point

• Asset publish x Access control
– Variant excludes variation point

• Variation Point constraint dependency
– Variation Point requires Variation Point

• Publish x Search
– Variation Point excludes Variation Point

Features and Feature Model

• Feature
– An end-user-visible characteristic of a system

– A distinguishable characteristic of a concept that is relevant to some stakeholder of
the concept

• Elements
– Feature diagram

– Feature definitions

– Composition rules

– Rationale for features

29

Example

Conference

Mandatory
Features

Notification

Complete

Optional
FeatureSubmission Review

Notification

Partial

Alternative
Features

News
Assigment

Result

Accept/RejectIndication

Alternativep

Automatic Manual

Features

Feature Modeling: The importance

• Reusable software
– Variability

• Key technique
– To Identify and capture variability

• To avoid
– Relevant features and variations points are not included in the reusable

software

Many features and variations points are included but never used {complexity– Many features and variations points are included but never used {complexity,
costs}

30

Feature Models

• Represents the common and the variable features of concept
instances and ...

• Dependencies between the variable features

• Elements
– Feature Diagram
– Semantic descriptions of each features
– Client programs
– Exemplar systems
– Constraints
– Priorities

Mandatory Features

Feature Diagrams (cont.)

C

f2f1

f4f3

Feature set {C, f1, f2, f3, f4}

31

Optional Features

Feature Diagrams (cont.)

C

f2f1

f3

Feature set {C} , {C, f1}, {C, f1, f3}, {C, f2}, {C, f1, f2}, {C, f1, f3, f2}

Alternative Features

Feature Diagrams (cont.)

C

f1 f2 f3 f4 f5

Feature set {C, f1, f3} , {C, f1, f4}, {C, f1, f5}, {C, f2, f3}, {C, f2, f4}, {C,
f2, f5}

32

RiPLE – The RiSE Process for Product Line
Engineering

RiPLE

• RiPLE-SC: Scoping

• RiPLE-RE: Requirements

• RiPLE-DE: Design

• RiPLE-TE: Test

• RiPLE-EM: Evolution

33

RiPLE-SC: Scoping Processp g

Scoping on SPL

• What is Scoping?

– It is the initial phase of a SPL

– It aims to identify products, features, potential of the domain and
reusable assets

• Why Scoping?

– It determine the viability of the SPL

– It maximizes the economical value of the SPL

34

Software Product Lines (SPL) and Agile Methods (AM)

• A SPL aims to determine a set of products and features associated
and have as base a reusable platform

• AM are a set of methods that have how base the values defined by
the Agile Manifesto, these are:

– individuals and interactions over processes and tools;

– working software over comprehensive documentation;

– customer collaboration over contract negotiation; and

– responding to change over following a plan

67

• But, in spite of clear differences, both can have their particular
benefits joined in search of a same objective

RiPLE - SC

• Motivation

L k f l t i hi h i i th– Lack of a complete scoping process which maximize the
potential of the union among AM and SPL

Goal

– To define an agile scoping process by providing phases, tasks,
inputs, outputs, roles and guidelines for construction of a

l i it ti d i t l hi h b ilplanning iterative and incremental which use as base agile
aspects, making possible determine of form agile a scope which
maximize the economical return with the SPL

35

RiPLE - SC :: Overview

• It is performed in an iterative and incremental way using
agile values, principles and techniquesg , p p q

• It is defined in a systematic way

RiPLE - SC :: Overview

• The RiPLE-SC consists of four main phases
– Pre-Scoping

Domain Scoping– Domain Scoping

– Product Scoping

– Assets Scoping

• The roles are relevant in these phases
– Scoping expert

– CustomerCustomer

– Domain expert

– Marketer

– Developer

– Architect

– SPL manager

36

RiPLE - SC :: Pre-Scoping

• Pre-Scoping meeting
– It defines stakeholders and respective rolesIt defines stakeholders and respective roles

– It identifies business goals

– It identifies the organizational and operational contexts

• Analyze Market
– It is optional

– Analyze market is not a trivial tasky

– The marketers’ knowledge about the tendencies of the domain
market segments in which the product lines are inserted is essential
in this phase

RiPLE - SC :: Domain Scoping

• It is defined in a workshop of domain analysis

• It aims to identify the domains and sub-domains more
relevant for SPL

• The workshop presents four well-defined steps
– Review domains

Id tif b d i– Identify sub-domains

– Analyze sub-domains and

– Prioritize domains and sub-domains

37

RiPLE - SC :: Product Scoping

• The goal is to identify the products more relevant for SPL
and their features

• Five tasks
– Identify products

– Construct user stories

– Identify features

– Features review meeting andFeatures review meeting and

– Construct product map

RiPLE - SC :: Product Scoping – Product Map

38

RiPLE - SC :: Assets Scoping

• The goal of the assets scoping is to determine an
appropriate set of assets for product linepp p p

• Three tasks:
– Create metrics of characterization and benefit

– Apply metrics

Prioritize product map– Prioritize product map

RiPLE - SC :: Assets Scoping

• Example of characterization and benefit metrics in a generic
domain:

39

RiPLE-RE: Requirements Engineering

Introduction

• Software Product Lines

– Activities

R i t E i i• Requirements Engineering

– More products and
stakeholders

– Attention to variabilities and
commonalities

– Lack of a systematic processy p

78

(Clements and Northrop, 2001)

40

RiPLE-RE :: Overview

79

RiPLE-RE :: Activity Model Scope

Tasks

80

41

RiPLE-RE :: Task Elicit

• Identifying commonalities and variabilities

• Identifying future needs

• Information source x Context• Information source x Context

81

RiPLE-RE :: Task Model Feature

Types Constraints

82

yp

42

RiPLE-RE :: Task Verify

Incompleteness, inconsistency, ambiguity, traceability
and standardization in the DRS

Instantiated DRS is useful to verify the consistency,
completeness and ambiguities

Verification Report

• - Problem type, cause and severity

83

yp , y

RiPLE-RE :: Activity Define Requirements

Tasks

84

43

RiPLE-RE :: Task Describe Requirements [1]

Variability Scope

– Whole requirement (Mandatory and variant)

R i f (V i i P i)– Requirement text fragment (Variation Point)

Requirement Attributes

– Id

– Type

– Name

– Variability Type

– Binding Time

Point Variation Attributes

– Id

– Description

– Variants

– Cardinality

– Binding Time

85

– Binding Time

– Priority

– Rationale

– Description

– Implication

– Exclusion

– Binding Time

– Implication

– Exclusion

RiPLE-RE :: Task Describe Requirements [3]

• Template in XML

86

44

RiPLE-RE :: Task Describe Requirements

87

88

45

RiPLE-RE :: Activity Define Use Cases

Tasks

89

RiPLE-RE :: Task Describe Use Cases [1]

• Variability Scope

– Whole use case (Mandatory and variant)

U (V i i P i)– Use case part (Variation Point)

Use Case Attributes

– Id

– Name

– Variability Type

– Binding Time

– Main Flow

– Alternative Flow

– Exception Flow

P C di i

Point Variation Attributes

– Id

– Description

– Cardinality

Variants

90

Binding Time

– Rationale

– Actors

– Dependency

– Preconditions

– Post Conditions

– Implication

– Exclusion

– Variants

– Binding Time

– Implication

– Exclusion

46

RiPLE-RE :: Task Describe Use Case
V

ar
ia

ti
o

n
 P

o
in

t
sm

al
l v

ar
ia

ti
o

n
s

91

V
in

RiPLE-RE :: Traceability

External Association
Composition
Implication
ExclusionExclusion
Internal Association

92

47

RiPLE-DE - Design

RiPLE-DE Overview

48

RiPLE-DE Overview

• The main purpose is to be pluggable
– Requirements, implementation, evolution

• Inputs
– Features model (Mandatory)

– Stakeholders list (Mandatory)

– Non-functional requirements (Mandatory)

– Quality scenarios (Optional)

– Domain requirements (Optional)

– Domain use cases (Optional)

• Outputs
– Domain Specific Software Architecture (DSSA)

– Quality Scenarios Document

Architectural Drivers Identification

• Develop quality scenarios (If not provided)

Id tif i f t• Identify main features

• Identify main quality attributes

49

Architecture Details Definition

• Define which architectural views will be documented and in
which level of details based on stakeholders listwhich level of details based on stakeholders list
– Structural view (Mandatory)

– Behavioral view (Mandatory)

– Process view (Optional)

Architecture Details Definition

50

Architecture Details Definition

• View Levels

– Structural View

• Low: modules definition• Low: modules definition

• Medium: modules and component definitions

• High: modules, components, and classes

– Behavioral View

• Low: main sequence diagrams

• High: sequence diagrams for all use cases• High: sequence diagrams for all use cases

– Process View

• Low: main processes activities of the domain

• High: all processes activities of the domain

Represent Architecture

• Structural View
Consists of defining modules components and classes with its– Consists of defining modules, components, and classes with its
variability

51

Structural View

• Components are defined
based on the featurebased on the feature
model

• Groups of features are
defined to form a
component

• The group top level• The group top level
feature defines the
component variability

Structural View

• Classes are defined
according to the featuresaccording to the features
relationship using the
guideline proposed by
[Almeida2007]

52

Behavioral View

• Define sequence diagrams based on classes defined in
structural view and the messages variabilityg y

• Variant messages are represented with the variant id
stereotype.

Process View

• Define the main process for the domain

• Define process variabilities

• It is not mandatory if the domain does not have complex
processes

53

Identify Design Decisions

• Consists of identifying and recording the main architectural
decisions for the domaindecisions for the domain

– Ex.: Programming language

– Application server

• Useful for avoiding architecture deprecation

• It can be defined during all the process life cycle

RiPLE-TE - Testing

106

54

Introduction

• Software Product Line Testing
– Testing as a Software Quality instrumentTesting as a Software Quality instrument

• Assist developers to identify faults

• Determine whether a product can perform as specified by its
requirements

– Peculiar Aspects to Product Lines
• Examines Core Assets

• Examines Product-Specific Software

Interactions among them• Interactions among them

– Responsibilities distribution across the organization

– Planning looking at extracting strategic reuse benefits

Source: [Clements, 2001], [McGregor, 2001]

107

Testing Strategies

• Testing Product by Product

– Critical Systems

• Incremental Testing of Product Families

– Regression Testing

• Reusable Asset Instantiation

Test Assets created in CAD

108

– Test Assets created in CAD

• Division of Responsibilities

– CAD and PD

Source: [Tevanlinna, 2004]

55

The RiPLE Testing Process

• Testing considered along the Software Dev. Lifecycle
– Testing Phases X Development PhasesTesting Phases X Development Phases

– Traceability is truly necessary

– Variability concerns must be handled

• Interaction with other RIPLE disciplines

– Scoping – RIPLE-SC

Requirements RIPLE RE

109

– Requirements – RIPLE-RE

– Analysis & Design – RIPLE-DE

– Implementation - RIDE

– Evolution – RIPLE-EM

The RiPLE Testing Process

Core Asset Development

RiPLE-
RE

RiPLE-
DE

RiDE
RiPLE-

TE

RiPLE-
SC

RiPLE-

RiPLE-
EM

Core Asset Development

110

Req. Design Impl.
RiPLE

TE

Product Development

56

The RiPLE Testing Process

• Testing Roles
– Test ManagerTest Manager

– Test Architect

– Test Analyst

– Tester

• Other Stakeholders
– Developer

– Customer

One can assume more
than a role as well as a
role can be assumed by
more than one individual.

111

– Software Architect

– Project Manager

– Requirements Analyst

– Configuration Manager

The RiPLE Testing Process

• Testing Artifacts
– Test PlansTest Plans

– Test Cases

– Test Reports

– Test Logs

– Test Scripts

– Test Suites

112

Source: [IEEE, 1998], [McGregor, 2001], [Clements, 2001], [Pressman, 2005],

57

The RiPLE Testing Process

Test Planning Static Analysis

Unit Testing Integration
Testing (CAD)

CADCAD

113

System Testing
Acceptance

Testing
Integration

Testing (PD)

PDPD

The RiPLE Testing Process

Test Planning

CADCAD

• Scope, Approach, Resources, Schedule

• Items and Features to be tested

• Testing Tasks to be performed

• Roles and Attributions

• Risk Analysis

114

• Risk Analysis

58

The RiPLE Testing Process

Static Analysis

CADCAD

• Validate:
– Feature Model

– Use Cases and Requirements

– Design

– Feature Dependency

115

• Checklists and Validation Meeting

• We are not covering “Inspection”

The RiPLE Testing Process

Unit Testing Integration
Testing (CAD)

CADCAD

• Activities
– Plan Tests

– Create Test Assets

– Execute Tests

– Report Tests

116

• Regression Testing when necessary

• A Component is considered a Unit in this approach

59

RiPLE-TE : Unit Testing

• Objective:
E i it (t) f d– Exercises a unit (component) of code

– Classes and methods integration

• Source information
– Component Code

117

– Component Specification

RiPLE-TE : Unit Testing

118

60

RiPLE-TE : Unit Testing

119

RiPLE-TE : Integration Testing (CAD)

• Objective:
– Reference Architecture Conformance (Code x Specification)Reference Architecture Conformance (Code x Specification)

– Module Testing

– Components integration testing

• Source information
– Architecture Specification (e.g.: Behavioral and Structural views)

– Feature ModelFeature Model

– Feature Dependency

– Code

120

61

RiPLE-TE : Integration Testing (CAD)

• Integration Testing StrategiesIntegration Testing Strategies

– Non-Incremental (Big-Bang)

– Incremental

• Bottom-up

• Top-Down

• Depth-First

Depth-First

• Breadth-First

121

Breadth-First

Feature Model

Rise Chair

122

62

Test Asset Creation

123

RiPLE-TE : Integration Testing (CAD)

• Combinatorial Explosion

124

63

The RiPLE Testing Process

PDPD
System Testing

Acceptance
Testing

Integration
Testing (PD)

• Activities
– Plan Tests

– Create Test Assets

– Execute Tests

– Report Tests

125

• Regression Testing whenever necessary

RiPLE-TE : Integration Test (PD)

• Objective:
– Product Specific Components Integration TestingProduct Specific Components Integration Testing

– Product Architecture Testing

• Source information
– Product Map

– Feature Model

– Feature Dependency

126

Feature Dependency

– Architecture Specification

64

Architecture Regression Testing

• Objective
– Test the reference architecture after modification or evolutionTest the reference architecture after modification or evolution

– Conformance between product and reference architectures

– Test product specific architecture

127

Types Of Regression

Corrective Regression Progressive Regression
• Specification is not changed • Specification is changed

• Involves minor modification to
code

• Involves major modification

• Many test cases can be reused • Fewer test cases can be reused

128

• Invoked at irregular intervals • Invoked at regular intervals

65

Regression Testing Approach steps 1/3

1. Graph Generation
– Control Flow GraphControl Flow Graph

– Control Dependency Graph

– Program Dependency Graph

– JIG (Java Interclass Graph)

2. Graph Comparison
– Compare the graphs for each version of the software (Original p g p (g

and Modified)

– Identify critical paths

129

Regression Testing Approach steps 2/3

3. Changed Paths Analysis
– Analysis the critical pathsAnalysis the critical paths

– Classify existing Test Case

• Obsolete

• Reusable

• Retestable

4. Instrumentation4. Instrumentation
– To be sure about the test cases efficiency and coverage

130

66

Regression Testing Approach steps 3/3

5. Test Design
– Design new test cases (Specification Changes)Design new test cases (Specification Changes)

– Update test cases

6. Test Suite Composition
– Group Related Test Cases

7 Test Case Priorization7. Test Case Priorization
– Critical Variabilities First

– Features for a specific product

– Specific architecture quality attribute

131

RiPLE-EM - Evolution

132

67

RiPLE-EM :: Overview

• 2 Flows

– Core Assets FlowCore Assets Flow

– Product Flow

• 3 Disciplines

– Change Management

– Build Management

– Release ManagementRelease Management

RiPLE-EM :: Overview

68

RiPLE-EM :: CADxPD Communication

• The Propagation Request (PR) is a way to propagate the
evolution (changes made to an asset or product) of a certain
asset or product to another asset or product.

• It is managed by the change control tool used.

RiPLE-EM CAD :: Macro Flow

69

RiPLE-EM CAD ::
Release Planning

• This activitiy is performed in
parallel with the development, p p ,
and it can be refined until the
release execution moment

RiPLE-EM CAD :: Macro Flow

70

RiPLE-EM CAD :: Change Management

RiPLE-EM CAD :: Macro Flow

71

RiPLE-EM CAD ::
Build Management

RiPLE-EM CAD :: Macro Flow

72

RiPLE-EM CAD :: Release Execution

RiPLE-EM PD :: Macro Flow

73

RiPLE-EM PD ::
Release Planning

• This activitiy is performed
in parallel with the p
development, and it can
be refined until the
release execution moment

RiPLE-EM PD :: Macro Flow

74

RiPLE-EM PD ::
Change Management

RiPLE-EM PD :: Macro Flow

75

RiPLE-EM PD :: Build Management

RiPLE-EM PD :: Macro Flow

76

RiPLE-EM PD :: Release Execution

Case Study: Papers ManagementCase Study: Papers Management
Software Product Line

152

77

Motivation

• Lack of accessible and integrated SPL processes
– Isolated projects focused on specific issuesIsolated projects focused on specific issues

• Scope, requirements, design, etc...
– Lack of details about the processes and their practical results

• Integration and validation of the RiPLE process
– Different disciplines have been developed by different students

Necessity for validating each discipline and its interaction with– Necessity for validating each discipline and its interaction with
others in a more practical way

153

Main Goal

• Creation of a comprehensive reference project

– Dissemination of the reuse culture

• Fully documented SPL (results available online)

– Case study with international visibility

– Acquisition and transference of knowledge among the
participants

– Improvement of the reuse/SPL techniques and tools

154

78

First step: Domain Selection...

155

Domain

• Document submission systems

– Submission

– Review

– Notification

– Logging

– Report

–

79

Domain

• Initial domain: paper submission
– Easier to understand

– Experts accessible
• Some rise members developed

applications in such domain

– Variabilities enough to create a SPL
– Conferences, journals,

workshops, etc...

Involved people

• Team
– 13 people (reuse specialists)

• 4 Ph.D students

• 9 M.Sc. students

• 1 customer and 3 domain experts
– Professors

• Roles

– Internal
• SPL manager; SPL Engineers (SPL Architect Developer Testers);• SPL manager; SPL Engineers (SPL Architect, Developer,Testers);

Requitements Analyst; Domain Analyst; Scoping Expert; SQA; CCB

– External
• Domain Expert; Customer; End Users

80

Schedule

Phase Period

Phase I – Implementation of core assets and an initial product May-09 - Oct-09

Phase II – Addition of new features and implementation of other products Oct-09 – Mar-10Phase II Addition of new features and implementation of other products Oct 09 Mar 10

Phase III – Inclusion of a new product in the product line Mar-10 – Aug-10

• Phase I – macro activities
– Scope definition
– Domain analysis
– Domain modeling

Domain architecture– Domain architecture
– Identification of core assets
– Core assets: implementation and componentization
– Initial product derivation
– Process adaptation

Overview of the process and artifacts

Components (code)

Core Asset Development

Feature
model Reference

Management

SPL PlanNon‐code assets

Use Cases

Product Development

ode

Quality
scenarios

Product
Map

e e e ce
Architecture

CM Plan

Project
website

RiPLE
Process (EPF)

Traceability
matrix

Test docs

Scope
docs

Features
Interaction

Prototype

September 10, 2009

Product Development

Product 1

Set of
features 1

Product 2 Product N

Product Plan

Risk Plan

Trainings

Set of
features 2

Set of
features N

...

81

Products: RiSE Chair Family

• R-CHAIR
– Conference management

– Submission/revision procedures

• R-CHAIR Plus
– Journal management

– Different submission/revision life cycle

• Smart R-CHAIR
– General event management

– Papers reviewers are defined automatically (conflicts)

Scoping

162

82

Scoping

• Main activities executed
– Analysis of existing systemsAnalysis of existing systems

– Identification of features

– Identification of products

– Creation of the product map

• Artifacts
– Feature list, product map, products description

Scoping: problems and solutions

• Understanding the domain...
– Analysis of existing systems

• 11 systems analyzed

• Different groups• Different groups

• Initial identification of features

Tool URL

CyberChair http://borbala.com/cyberchair/

EasyChair http://www.easychair.org/

JEMS SBC https://submissoes.sbc.org.br/

Journal IET Software http://mc.manuscriptcentral.com/iet-sen

IS Technology Journal http://ees elsevier com/infsof/IS Technology Journal http://ees.elsevier.com/infsof/

Agil FACEPE http://agil.facepe.br/

E-Fomento CNPq http://efomento.cnpq.br/efomento/

Aptor Submission http://www.aptor.com.br/portal/eventos/submissao.php

UFBA http://disciplinas.dcc.ufba.br/MATA63/ProjetoFinal

CMT Microsoft http://cmt.research.microsoft.com/cmt/

Sigepe http://celepar7.pr.gov.br/fup/index.asp?fund=4

83

Scoping: problems and solutions

Initial list of features
(consolidated)

• Consolidation of the features

– Problems with Features
Definition
– Granularity level

– Lack of a “deep” knowledge of
the domain
– the most experienced

professionals were included in the
group of domain experts g p p

Scoping: problems and solutions

Product map

• Identification of products and
creation of the product map

– Lack of metrics to support
the decisions
– What features should be

included in the products?

84

Scoping - Contributions

• Main improvements to the RiPLE-SC

– Pre-scoping phasep g p
– Identification of business goals

– Domain scoping
– Workshop of domain analysis

– Prioritize domains and sub-domains

– Product scoping
– Features review meeting

– Assets scoping
– Create metrics of characterization and benefit

– Prioritize product map

Requirements

168

85

Requirements

• Main activities
– Construction of the Feature ModelConstruction of the Feature Model

– Identification, specification and validation of
requirements and Use Cases

– Contruction of the traceability matrix
– Split

Requirements

• Artifacts
– Feature model, requirements , use cases,

traceability matrix

86

Requirements

• Problems and Solutions

Redundancy of information (req x ucs x FM)– Redundancy of information (req x ucs x FM)
– Construction of tools to manage such redundancies and

the xml specifications
– Adaptation of the “Split tool”

– Feature validation process
– internal member responsible for validating the features

before sending them to “external evaluation”g

Requirements

• Problems and Solutions
– Granularity level of the features (recurrent problem!)

– Re-analysis of the feature model
– Distinct feature models (abstraction level)()

– Using a model for each (major) stakeholder view
– Different tools were used

87

Requirements

• Problems and Solutions
– Difficult to identify variabilities in

screens
Solution: Prototypes– Solution: Prototypes

Screen_UC03_VP1.V1-FromPrevious Screen_UC03_VP1.V2-FromScratch

Design

174

88

Design

• Main activities
– Identification and priorization of quality attributesIdentification and priorization of quality attributes

– Definition of architectural views

– Specification of modules, components and classes

Design

• Artifacts
– Domain specific software architecture document; diagrams

(components, classes, modules)
• core business: submission event management revision• core-business: submission, event management, revision

• Shared services: logging, notification, reporting, accesscontrol

– Specification of variabilities

89

Design

• Quality scenarios documentation
– Scenarios -> quality attibutes

– Specification of variabilities in the scenarios

Design

• Problems and solutions
– Lack of a deploy view

– Non-fuctional variants should be considered
• It is important to stablish a limit

• Otherwise the creation of an architecture could be inviable

– Specification of features interactions
• Modification dependency

• Concurrent dependencyConcurrent dependency

• Sequential dependency

• Decomposition and Generalization Dependency

• Usage dependency

• Exclude dependency

90

Implementation

179

• The architecture was divided in two
layers

Implementation

– The front-end (gui): related to
the products

– Responsible for the product
customization and “glue”

– The back-end: related to the
core assets

Product

180

core assets

– Common services
– Business rules

Core Assets

91

Implementation: Technologies

• In the beginning of the implementation phase some technologies
were discussed by the team

• Front-end: Flex
– Rich interface
– Flexibility to create new components

• Variability can be developed

– Easy integration with other technologies as Java

• Back-end: Java

181

Back end: Java
– Maturity and team knowledge
– Java frameworks used:

• JPA using Hibernate for the persistence
• Spring for the inversion of control of the application, transaction and

security management

Implementation: Trainings

• Flex: a new technology for some members
– Some trainings were necessarySome trainings were necessary

• Some trainings
– Flex concepts

– Flex and Java integration

– Using of Cairngorm as the Flex MVC architecture

182

92

Implementation: core assets

• Core assets developed (8/13):
– Event Management
– AccessControlServiceAccessControlService
– DataAccessService
– FileUploader
– SubmissionManagementService
– PdfGenerator
– ReportService
– Notifier

183

• The core assets were developed with Java
– These components will be used by the products
– Each product should have the user interface developed in Flex,

as showed previously

Implementation: Variabilities

• Decorator Design Pattern
– Optional variability type

– Features:
• Event (mandatory)

• CreateEventFromScratch (variant – mandatory)

• CreateEventFromPrevious (variant – optional)

• Dependency Injection
– OR variability typeOR variability type

– Features:
• Report (mandatory)

• PdfExtension type (variant - optional)

• HtmlExtension (variant - optional)

93

Some data: time distribution

Scope
23%

Trainings
6%

Process
adaptations

7%
Other activities

9%

180

200

Time distribuition

Requirements
23%

Design
17%

Implementation
15%

6%

0

20

40

60

80

100

120

140

160

180

H
o

u
rs

Activities

Scope
Requirements
Design
Implementation
Trainings
Process adaptations
Other activities

Some data

• Scope

– 3 products

– 41 features identified

• Requirements

– 49 functional

– 18 non-functional

– 28 use cases specified

– 23 screens (prototype)

• Design

– 15 quality scenarios

– 13 components

– 7 modules

• Implementation

– 8 core assets implemented

– 20 classes

94

General Issues and Lessons Learned

• Feature definition and granularity level
– The team should share the same vision!

• Domain expert Vs Experienced users
– Two different concepts!

• Initial SPL tasks can be time wasting

• Difficult to follow the process
– Lack of standardization among the RiPLE disciplines

– Adaptations were peformed during the projectp p g p j

• Big team and people idle
– Too many people to work in the same activity

• Team motivation: conflict of interests

• Difficulty of dealing with distribution

Next Steps

Phase I Phase II Phase III

May 09 Out 09 Mar 10 Aug-10

We are here!

May-09 Out-09 Mar-10 Aug-10

• Derivation of products

• Validation of the RiPLE-EM
• Products evolution and derivation

• Validation of the RiPLE-TE
• Assets and products

95

RiPLE – Future Directions

189

New Directions

• Research
– Risk Management

– Measurement

– Feature Interaction

– Architecture Recovery

– Quality Attributes

– Quality
• Inspection

• Test case selection | priorization

– Product Derivation

– Introduction in Companies

– Tools

• Agile

96

Conclusions

191

Conclusions

• RiPLE
– Scoping

– Requirementsq

– Design

– Test

– Evolution

• Case Study
– On going project

– You can participate!

• Industrial case

• New directions

97

More information

• RiSE – www.rise.com.br

• RiSE Labs – www.rise.com.br/researchRiSE Labs www.rise.com.br/research

• INES – www.ines.org.br

• World of Reuse – worldofreuse.blogspot.com/

• CRUiSE - http://cruise.cesar.org.br/

• Events
– WiRE – http://www.rise.com.br/eventos/wire2009/

– RiSS - http://riss.rise.com.br/

RiPLE: The RiSE Process forRiPLE: The RiSE Process for
Product Line Engineering

Eduardo Almeida Marcela Balbino Danuza Neiva Ednaldo Dilorenzo

194Sep 10th 2009 SBCARS 2009 – Natal - Brazil

Eduardo Almeida, Marcela Balbino, Danuza Neiva, Ednaldo Dilorenzo,
Paulo Silveira, Ivan Machado, Thiago Burgos, Vanilson Burégio, Silvio Meira

