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ANNALS OF MATHEMATICS
Vol. 45, No. 1, January, 1944

THE ALGEBRA OF TOPOLOGY

By J. C. C. McKiINsEY AND ALFRED TARSKI

(Received April 23, 1943)

There are various connections between modern algebra and topology. In
both these branches of mathematics, in the first place, a peculiarly strong
tendency obtains, to define the object of investigation by means of abstract
postulates. In the domain of combinatorial topology, moreover, methods and
results of algebra are invariably applied. Such applications have occurred much
less frequently in the field of point-set topology. But on the other hand, various
fragments and arguments of point-set topology have themselves an algebraic
character; and, in view of the simplicity and elegance of an algebraic presenta-
tion, several topologists have attempted to present in this way a sizeable portion
of their subject.!

The idea therefore suggests itself, of creating an algebraic apparatus adequate
for the treatment of portions of point-set topology. In the present paper we
attempt to make a contribution to such a development. For this purpose we
shall set up the foundation of a new algebraic calculus, which could be regarded
as a sort of algebra of topology; and we shall study both the internal algebraic
properties of this calculus and its relation to topology as ordinarily conceived.
In particular our methods will enable us to settle a problem regarding the
axiomatic foundations of topology which has remained open for a rather long
time.

1n §1 we shall present postulates for the sort of algebra of topology under
consideration. This algebra, which we shall call closure algebra, is arrived at
by adding to the postulates for Boolean algebra some additional postulates which
express the properties of the closure operation® usually assumed in topology.

1 See, for instance, the following: F. Riesz, Stetigkeitsbegriff und abstrakte Mengenlehre,
Atti del 4 Congresso International dei Mathematici, Rome, 1910, vol. 2, p. 18; C. Kura-
towski, L'opération A de analysis situs, Fundamenta Mathematicae, vol. 3 (1922), pp.
182-199; C. Kuratowski, Topologie I, Warsaw, 1933; R. L. Moore, On the foundations of
plane analysis situs, Transactions of the American Mathematical Society, vol. 17 (1916),
pp. 131-164; E. W. Chittenden, On general topolegy and the relation of the properties of the
class of all continuous functions to the properties of the space, Transactions of the American
Mathematical Society, vol. 31 (1929), pp. 200-321; S. T. Sanders, Jr., Derived sets and their
complements, Bulletin of the American Mathematical Society, vol. 42 (1936), pp. 577-584;
E. C. Stopher, Cyclic relations in point set theory, Bulletin of the American Mathematical
Society, vol. 43 (1937), pp. 686-694; E. C. Stopher, Point set aperators and their interrela-
tions, Bulletin of the American Mathematical Society, vol. 46 (1939), pp. 758-762; M. Ward,
The closure operations of a lattice, these Annals, vol. 43 (1942), pp. 191-196. [Further refer-
ences are to be found in P. Alexandroff and H. Hopf, Topologie I, Leipzig, 1935. One of the
first mathematicians to emphasize the importance in topology of an algebraic algorithm
was S. Janiszewski.

* Similar methods can be applied to other topological notions which cannot be alge-
braically defined in terms of closure. Thus we could develop analogously an algebra
of derivatives. We shall make some further remarks in this connection in Part I of the
Appendix.
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142 J. C. C. MCKINSEY AND ALFRED TARSKI

This section also contains definitions of numerous notions which will be used
later, and we establish here some of the elementary properties of these notions.

In §2 we concern ourselves with the relations between closure algebras and
topological spaces. It is clear that the family of all sets of a topological space
constitutes a closure algebra (called the closure algebra over the given space), and
the same is true of certain subfamilies of this family. We shall show here that
in a certain sense the converse also holds: that every closure algebra is isomorphic
with a family of sets situated in a topological space. Thus we shall establish
here a representation theorem for closure algebras (making an essential use of
the known results on the representation of Boolean algebras). This result is
of importance to our investigations because it shows that the notion of a closure
algebra is not too broad a generalization, so far as concerns our present purposes,
of the notion of a topological space.

In §3 we define a universal closure algebra for a class ¥ of algebras, to be one
which contains a subalgebra isomorphic with each algebra of the class A. We
are interested here especially in universal algebras for all finite algebras. We
shall see that the closure algebra over any null-dimensional dense-in-itself sub-
space of Euclidean space (e.g., over Cantor’s discontinuum, or the space of all
points with rational coordinates) is a universal algebra of thiskind. Moreover we
shall show that the closure algebra over Euclidean space itself is also a universal
algebra for all finite algebras in a certain generalized sense; strictly speaking, for
every finite closure algebra K we can find an open subset S of the given Euclid-
ean space, such that K is isomorphic with a subalgebra of the algebra over S.

In §4 we introduce the notion of a closure-algebraic function. Roughly speak-
ing, a closure-algebraic function is one which corresponds to an expression built
up from variables by means of the various operations of closure algebra. Thus
such functions play somewhat the same role in our investigations as is played by
polynomials in classical algebra. In this section we establish several properties
of closure-algebraic functions, some of which are of interest in themselves, and
some of which are useful as lemmas for later developments.

The results of §§3 and 4 pave the way for the discussion in §5, which consti-
tutes the central part of our paper. In §5 we define a functionally free algebra
to be one which satisfies no topological equations except those which hold in
every closure algebra; by topological equations we understand here those whose
terms are expressions involving only the fundamental operations of closure
algebra. We show that every closure algebra of arather wide class is func-
tionally free; this class comprehends in particular the closure algebras over
Euclidean space of any number of dimensions, and more generally over an arbi-
trary dense-in-itself, separable metric space. Hence it follows that every topo-
logical equation which holds in Euclidean space of a given number of dimensions
holds also in every other Euclidean space, and in fact in every topological space.
(This is the solution of the problem which was mentioned before®.) We are also
concerned in this section with free closure algebras with given generators. We

3 See the paper by Kuratowski cited in Footnote 1. Also page 18 of his T'opologie .
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shall see that various functionally free closure algebras—among them all closure
algebias over Euclidean spaces—contain free closure algebras generated by n
elements (for n» an arbitrary positive integer). On the other hand we shall show
that no free closure algebra generated by a finite number of elements is func-
tionally free.

The appendix at the end of the paper contains some remarks on logical ques-
tions connected with our investigations, as well as some indications of possible
ways of extending these results.

§1. Fundamental Notions

Due to the nature of our subject, we shall have to use notions from several
domains: from general set theory, from topology, from Boolean algebra, and
finally from general abstract algebra. In this section we shall define some of
these notions which are of an elementary and fundamental nature, or which will
be used throughout the rest of our paper. The more special notions, and all
those of general algebra, will be introduced sibsequently as the need for them
arises.

We shall use lower-case Latin letters to denote integers, points of a space, or
elements of an algebra; and lower-case Greek letters to denote real pumbers, and
also sometimes ordinal numbers. Greek capitals will be used to denote algebras
(in those cases when they are treated as systems of sets and operations). We
use Latin capitals for sets; however sets of sets (or families of sets, as we shall
call them) and sets (classes) of algebras will usually be denoted by German
capitals.

We shall use from the general theory of sets only rather elementary notions,
which belong mostly to what is usually called the calculus of sets. The formulas

reA and A CB

will express as usual, that the element x belongs to A, or that the set A is con-
tained in B, respectively. The expressions

AUB and UX

Xell

will denote the union of two sets A and B, or of all sets of the family ¥; similarly

ANB and NX

Xell

will denote the intersection of A and B, or of all sets of the family A. The
difference of two sets A and B (i.e., the set of all elements that belong to A but
not to B) will be denoted by

A-B
and the empty set by
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By
{z} and {z:,---, za}

we mean the set whose only member is z, and the set whose only members are
Ti, -+ ,Zn. By
<z, y>

we shall mean the ordered couple whose first element is z, and whose second
element is y. In most applications we are concerned with sets all of which are
contained in a given set S; in this case, X being an arbitrary subset of S, we shall
refer to the difference S — X as the complement of X (to S); in symbols —X.
A non-empty family % of subsets of a set S is called a field of sets if together with
any two sets X and Y it contains X U Y and X N Y, and together with any set
X it contains its complement with respect to the set S (ie., S — X = —X).

It is well-known that the study of fields of sets can be developed in an abstract
way, as an independent algebraic system which is referred to as Boolean algebra.
In developing this algebra we speak, not of sets of a given family %, but of ele-
ments z, y, 2, - -+ of an arbitrary class K, for which certain operations are de-
fined: two binary operations, addition (formation of union) and multiplication
(formation of intersection), and one unary operation, complementation. Thus
strictly speaking a Boolean algebra is a system constituted by a class K (con-
taining at least two different elements), and the three operations listed above,
which are supposed to satisfy certain postulates.*

We shall still denote the sum and product of two elements x and y of a
Boolean algebra by

zUy and zNy,

respectively. It will be clear from the context in each case whether the symbols
“U” and “N” are intended in their set-theoretical or algebraic meaning.

By the zero-, or empty, element A and the universe-element V of a Boolean
algebra we understand the unique elements satisfying the formulas

A=zN -z and V=12zrU —z,

where z is an arbitrary element of the algebra. If z and y are any elements
such that

zUy =y,
we say that z is included in y, or that y contains z, in symbols
rQy.

If in addition z # y, we shall say that z is a proper part of y. Ifz Ny = A,
the elements z and y are called mutually exclusive, or disjoint.

* For postulates for Boolean algebra, see, for example, E. V. Huntington, Sets of inde-
independent postulates for the algebra of logic, Transactions of the American Mathematical
Society, vol. 5 (1904), pp. 288-309.
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An element a of a Boolean algebra is called an atom if @ = \, and if A and «
are the only elements contained in a. A Boolean algebra is called atomistic if
every non-empty element contains an atom.

Let A be any set of elements of a Boolean algebra. If there is an element z,
which contains every element of A, and is included in every other element y
which contains every element of A, then we call z the sum of the elements of A,
in symbols

Uz

ZeA
Analogously we define the product of the elements of A, in symbols

N z.

ZeA

If the sum exists for every countable set A, we say the Boolean algebra is count-
ably additive; and if it exists for every A we say the algebra is completely additive.
(A countably, or completely, additive Boolean algebra could as well be called
countably, or completely, multiplicative. For, as is known, a Boolean algebra
is, e.g., countably additive, if and only if for every countable set of its elements
the product exists.)

By saying that a set S is a topological space® with respect to a closure operation
C one means that C is a unary operation which satisfies the following condi-
tions:

1) IfACS thenAd CCA =CCACS;

(2) IfAC Sand B C S, then C(4 UB) = CA UCB,;

(3) If A € S, and A contains at most one point, then CA4 = 4.

From conditions (2) and (3) one can of course draw the immediate inference that
any finite set is equal to its own closure.

When condition (3) in the definition of topological space is replaced by the
weaker condition:

3)CA=A
then we say that S is a topological space in the wider sense.

The family of all sets of a topological space is clearly a Boolean algebra with
respect to the operations U, N, and —. For this algebra however, in addition
to the normal Boolean operations we have also a new operation—the operation
of closure. Hence, by means of the same process of abstraction which took us
from fields of sets to Boolean algebra, we go from topological spaces to closure
algebras.

DEeFiNITION 1.1. We say that a set K is a closure algebra with respect to the

operations U, N, — and C, when:

5 See Kuratowski’s paper referred to above, or the book by Alexardroff and Hopf. Alex-
androff and Hopf call a space which satisfies (1), (2), and (3) a “Trepace”, and a space
which satisfies (1), (2), and (3’) simply a ‘‘topological space”.
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1.11 K is a Boolean algebra with respect to U, N, and —,

1.12 If x is in K, then Cx 7s in K,

1.13 If xisin K, then x S Cur,

1.14 If x is in K, then CCx = Cau,

1.15 If t and y are in K, then C(x U y) = Cz U Cy,

1.16 CA = A.

When it is necessary in the interests of clarity, we shall use Greek capitals for
closure algebras, and shall speak of the closure algebra

r= (I{’ U; n: ) C)-

Oftentimes, however, we shall use the more usual way of speaking, making such
statements, for example, as that K is a closure algebra with respect to U, N, —,
and C.

As an immediate consequence of this definition® we have:

CoROLLARY 1.2. In any closure algebra

i CvV =Y,

(ii) If = C y, then Cx C Cy.

We shall use in connection with closure algebras certain terms with which the
reader will be familiar from topology.

DerFINITION 1.3. By the interior of an element x, s meant the element lx =
—C-—=z.

CorOLLARY 1.4. In any closure algebra

@) Iz Cz,

@) Iz = l=.

(i) Iz Ny) = lzNly,

(iv) If z C y, then Ix C 1y.

DEFINITION 1.5. An element « is called closed, if Cx = .

DEFINITION 1.6.  An element x vs called open, if lx = x.

CoroLLARY 1.7. In any closure algebra

(i) The complement of an open element is closed, and the complement of a closed
element 1s open,

(ii) The sum of any finite number of closed elements is closed, and the sum of
any number of open elements 1s open,

(iii) The product of any number of closed elements is closed, and the product of
any finite number of open clements is open,

(iv) Cz is closed and lx is open,

(v) A and V are both open and closed,

(vi) C(CzNCy) = CzNCy.

CoRrOLLARY 1.8. If x is any open element of a closure algebra and y is an arbi-
trary element, then

¢ Proofs are to be found in Kuratowski’s Topologie of the analogues for topological
spaces of our 1.2, 1.4, 1.7, and 1.8. Since the arguments given by Kuratowski are algebraic
in character {i.e., do not involve points, but only sets of points) they can be immediately
carried over to closure algebras.
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G) zNCENy) =xzNCy,

(i) zNy = A impliesxr N Cy = A.

We shall be concerned in this paper with certain special types of closure alge-
bras which we are now going to define:

DerFINITION 1.9. A closure algebra is called connected if Cx N C—z = A
implies eitherx = Aorx =V

DEeFiNtTION 1.10. A closure algebra is called well-connected if Cx N Cy = A
implies eitherx = Aory = A.

DeriNiTiON 1.11. A closure algebra s called totally disconnected if every
non-empty open element is expressible as the sum of two mutually erclusive non-
empty open elements.

The notions of a connected and of a totally disconnected closure algebra are
essentially known from topology (where of course they are applied not to closure
algebras but to topological spaces). On the contrary that of a well-connected
algebra is a new notion, which will prove very useful in the subsequent discussion.
It can be illustrated by the following example: Let 4,, A2, and 4; be, respec-
tively, the set of points interior to a certain circle of the Euclidean plane, the set
of points exterior to the circle, and the points on the perimeter of the circle.
Let 8 be the family of sets consisting of the 8 sets, A, 4, 42, 4z, 4, U 4,,
A U 43,4, U A5, and 4, U 4, U 4; = V. Then it is easily seen that & is a
closure algebra with respect to union, intersection, complementation, and
closure. Moreover if X is any element of & except A, we notice that 4; C CX;
and hence f is well-connected.

§2. Relation between Topological Spaces and Closure Algebras

The following theorem is an immediate consequence of the definitions of
topological spaces and closure algebras.

TueoreM 2.1. If S is a topological space (in either sense), then the family §
of all subsets of S is a closure algebra with respect to the set-theoretical operations
of union, intersection, and complementation, and the topological operation of
closure. The same s true of any field of subsets of S which is closed under the
closure operation.

DerINITION 2.2. For every topological space S, the family § of Theorem 2.1 is
called the closure algebra over S; we shall also sometimes say that § is the closure
algebra determined by S.

We shall apply to closure algebras the general algebraic notion of subalgebras;
thus a subalgebra of a closure algebra K is a subclass K, which is a closure algebra
with respect to the same operations. Clearly it is sufficient that K, be closed
under all the operations involved.

As an illustration of this notion, suppose that K is a closure algebra, and let
K, be the class of those elements of K which are expressible as sums of finitely
many products of an open element by a closed element: i.e., K; consists of all
elements z such that

z2 = (Ilnyl)U"'U(xnnyu):
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where each z; is open and each y; is closed. Making use of Corollary 1.7, it is
casily shown that K is a subalgebra of K. K, is the smallest subalgebra of K
which contains all the closed elements of K.

As a second illustration, let K. consist of all elements 2 of K such that
CrN C—z = A; K. can be shown to be a subalgebra of K by making use of
Corollary 1.2(ii).

We can obviously apply to closure algebras the well-known algebraic. notions
of isomorphism and homomorphism. We are going to prove that every closure
algebra is isomorphic with a subalgebra of the closure algebra over some topo-
logical space.

LemMa 2.3. Let K be a completely additive Boolean algebra; let C, be a unary
operation defined over a certain subclass K, of K in such a way that

(l) A eK, ’ and C1A = A,

(ii) If z e Ky, then Cix ¢ K, , and z € Ciz = C,Cuz,

Gii) freK,and y e Ky, thenx Uy e K1, and Ci(z U y) = Ciz U Cuy.
Then there s a closure operation C such that

(I) K 1s a closure algebra with respect to C (and the original Boolean opera-
tions),

(I1) If x ¢ K, , then Cxz = C,X.

Proor. We shall say in this proof that an element z of K is covered by an
clement y of K, if r Sy and Ciy = y. We set Cz equal to the product of all
the elements which cover x. Since our Boolean algebra is completely additive,
this product always exists. (In case no element covers z, we have Czx = V.)
We shall show that K is a closure algebra with respect to C, and that whenever
z is in K, then Cx = Cia.

Since z is contained in every y which covers z, it is seen that + € Crz.

In particular, Cx € CCx. On the other hand, it is easily seen that every
element which covers z also covers Cz; and hence CCx € Cx. From the two
inclusions, we have Cx = CCz.

To see that C(zx U y) = Cx U Cy, let A,, A,, and A; be the sets of elements
which cover z, y, and & U y respectively. Then Aj; consists of just those ele-
ments which can be expressed as the sum of two elements y; and y. such that
yre A, and y; € A;; and hence’

CzUCy= N U N o= N [N GUwl = Ny=C@zUy),

yieAd) VaeAs Yi€A) VYgeds yeAds
as was to be shown.

Since A is covered by A, it is clear that CA = A.

To prove (II), suppose that z ¢ K, . Then z is covered by C,z, since z © Ciz
and C,Ciz = Ciz; and hence Cz € C,z. On the other hand, let y be any ele-

7 It is well known that in every Boolean algebra not only the finite but also the infinite
distributive laws hold, under the assumption that the sums and products involved exist;
and hence they hold identically in every completely additive Boolean algebra. Cf. A.
“Tarski, Grundzige des Systemenkalkils, First Part, Fundamenta Mathematicae, vol. 20
(1935), p. 510, footnote. '
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ment which covers z; then we have r € y and Ciy = y; henece Ciz € Cyy, and
therefore Ciz € y. Thus Cyr is contained in every element which covers z,
and hence C,;x < Cz. From the two inclusions we have Cx = Ct, as was to be
shown.

THEOREM 2.4. Every closure algebra is isomorphic with a subalgebra of the
closure algebra over a topological space in the wider sense.

Proor. Let K. be a closure algebra with respect to the operations U, , M-,
—,,and C;. By the well-known representation theorem for Boolean algebra,®
K, is isomorphic as a Boolean algebra with a field of sets ®;, where U,, Ny,
and —, correspond to the set-theoretical operations U, N, and — in & . We
define a unary operation C, over the members of &; as follows: if X is any mem-
ber of &, , if X coresponds to the element x of K, if Cox = y, and if y corre-
sponds to Y in &, , then we put C;X = Y. Then clearly the closure algebra K>
is isomorphic with the closure algebra & . Hence our theorem will be proved
if we can show that R, is isomorphic with a subalgebra of the closure algebra
over a topological space in the wider sense.

Suppose all the sets of the family & are subsets of a set .S, and let & be the
family consisting of all subsets of S. Then-® is a completely additive Boolean
algebra with respect to U, N, and —; and we see that the family ®: and the
operation C, satisfy the hypothesis of Lemma 2.3. Hence there is a closure
operation C such that ® is a closure algebra with respect to C; and such that
CX = C X for Xin R,. We see then that S is a topological space in the wider
sense with respect to C, and that our original algebra is isomorphic with a
subalgebra of the closure algebra over this space.

TaEOREM 2.5. If S is any topological space in the wider sense, then there is a
topological space S, (n the strict sense) such that the closure algebra over S is iso-
morphic with a subalgebra of the closure algebra over S, g

Proor. Let S be a topological space in the wider sense, with the closure
operation C. Let h be a function which is defined for every point of S, and
which assumes as values infinite sets, in such a way that if z and y are distinct
points of S then h(z) N h(y) = A. If X is any subset of S, we set

1) h(X) = UY h(x).

We set

) S1 = h(S).

We notice that

3) X UY) = h(X)UR(Y).

8 See M. H. Stone, The theory of representations for Boolean algebras, Transactions of the
American Mathematical Society, vol. 40 (1936), pp. 37-111.

9 A similar theorem to this (but weaker, since S was supposed finite) was proved in
McKinsey’s paper, A solution of the decision problem for the Lewis systems S2 and S4, with
an application to topology, Journal of Symbolic Logic, vol. 6 (1941), pp. 117-134; see The-
orem 20.
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If X is any subset of S;, then by g(X) we shall mean the set of all points y
of S such that X N A(y) contains infinitely many elements. If X and Y arc any
subsets of S; and if z is any point of S, then to say that (X U Y) N (2) is infinite,
is equivalent to saying that either X N h(z) is infinite or ¥ N A(2) is infinite;
hence

() g X UY) =gX)Ug).
We notice that if X is any finite subset of .S; then
(5) g(Xy) = A.
It is also easily seen, that if X is any subset of S, then
(6) gh(X) = X.

We now set, for any subset X of S;,
@) Ci(X) = X U rCy(X).

We are to show that S, is a topological space (in the strict sense) with respect to
C., and that the closure algebra over S is isomorphic with a subalgebra of the
closure algebra over S;.

It is clear from (7) that we have X € C,(X).

From (7), (4), and 3) we have C;(X U Y) = X UYUrCgxUY)=XU
YURC@X) U g(¥)) = XU Y URr(Cg(X)U Cg(Y)) = XUY UhrCyg(X) U
RCg(Y) = (X URCyg(X)) U (Y UhCyg(Y)) = Ci(X) U Cy(Y).

From this last result, together with (7) and (6), we have C,Ci(X)
Ci(X U rCyg(X)) = Ci(X) U CihCy(X) = Ci(X) U hCg(X) U hCghCy(X)
Ci(X) URCghCy(X) = Ci(X) URCCy(X) = Ci(X) U hCy(X) = Ci(X).

In order to complete the proof that S, is a topological space, we notice from
(5) that, if X is a finite set, then C;(X) = X UhCg(X) = XU hCA = XU A =
XUA =X

The function h establishes an isomorphism between the closure algebra over
S and a certain subalgebra of the closure algebra over S,. This is obvious
so far as concerns the Boolean operations. And on the other hand we have
Cih(X) = h(X) URCgh(X) = h(X) URC(X) = (X U C(X)) = hC(X). This
completes the proof.

THEOREM 2.6. Every closure algebra is isomorphic with a subalgebra of the
closure algebra over a topological space (in the strict sense).

ProoF. From Theorem 2.4 and Theorem 2.5.

From Theorems 2.1, 2.4, and 2.6 we see that a topological equation is true in
every closure algebra if and only if it is true in every topological space.

§3. Universal Algebras

If in a given algebra K we can construct models for all closure algebras of a
given class U, then we call K a universal algebra with respect to %. Using more
technical terminology, we say that K is a universal algebra for all algebras of the
ciass A of algebras, if every algebra of the class ¥ is isomorphic with a sub-
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algebra of K. As applied specifically to closure algebras, this general algebraic
notion can be subjected to a certain extension. In order to make this extension,
we first introduce the notion of a relativized subalgebra, which corresponds to
the familiar notion of a relativized topological space.”’

DeriniTION 3.1. If T = (K, U, N, —, C) is any closure algebra and a is any
element of K such that a % A, then by the relativized subalgebra of T with respect to

a, in symbols T, , we understand the algebra constituted by the class K, of all ele-

ments z of K such that ¢ < a, by the original operations U and N, and by the unary
operations —, and C, determined by the formulas: —at = @ N —z and Cox =
aNCxz. -

As an immediate consequence we have:

CoroLLaRY 3.2. If I' = (K, U, N, —, C) is a closure algebra, and a is any
non-empty element of K, then T, is a closure algebra. If a is open, then the
open elements of T, are at the same time open elements of T.

Proor. The proof of the first part is almost immediate. To prove the second
part, we make use of Corollary 1.8(i).

Now we define:

DeFINITION 3.3. By saying that an algebra T is a generalized universal algebra

for a class U of closure algebras, we mean that for each algebra A of the class A there
is an open element a of T such that A is tsomorphic with a subalgebra of T, .

In this section we shall be concerned primarily with universal algebras for all
finite algebras. The main result in this section will be Theorem 3.12, which
implies that the closure algebra over Euclidean space is an algebra of this sort in
the generalized sense just defined. In establishing this theorem we use only a
few rather special algebraic properties of Euclidean space, and these same
properties will be necessary for a further algebraic study of Euclidean space.
However these propertics are rather involved, and it is by no means obvious that
they apply to Euclidean space. We shall denote a closure algebra having these
properties as a dissectable algebra. e shall first show that the closure algebra
over Euclidean space is a dissectable closure algebra (though the converse does
not hold), and then that every dissectable algebra is a generalized universal
algebra for all finite algebras. If the definition of dissectable algebras which we
are now going to give seems rather strange, it should be kept in mind that this
notion is merely an instrument which facilitates the study of Euclidean space.

DEeFINITION 3.4. A closure algebra K is said to be dissectable if, for every non-

empty open element a of K, and for every pair of integers r and s, wherer Z 0 and

s > 0, there are r + s non-empty, mutually exclusive elementsa, , - - - , @, by, -,
b, of K such that
(i) The elements a,, --- , a, are all open,

(i) Cby = --- = Cb,,
(i) e U---Ua,UbU..-Ub, = a,
(iv) CaN —a C Cb; CCajfori < sandj = 1.

10 See Kuratowski, Topologie, p. 17.
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1t should be especially noticed that in the above definition we do not exclude
the case r = 0; thus any non-empty open element a of a dissectable closure alge-
bra can be represented as the sum of selements b, , --- ,b,suchthat Cb, = --- =
Cb, , and such that Ca N —a & Cb; foreachi < s.

Making use of the second part of Corollary 3.2, we see as an almost immediate
consequence of this definition that if I' is a dissectable closure algebra and a is
any non-empty open element of I' then I, is also dissectable.

In order to formulate our next theorem, it is necessary to recall a few special
notions of topology.

If = is a point of a topological space, then we say that z is a limit-point of a
subset A of the space,if x e C(A — {z}). A topological space S is called dense-in-
itself if every point of S is a limit-point of S.

A topological space is said to be normal if, for every two subsets X; and X,
of S such that CX, N CX; = A, there are two mutually exclusive open subsets
Y,and Y;of Ssuchthat CX; C Y,andCX, C Y, .

A topological space is said to have a countable basis, if there exists an infinite
sequence X, , Xz, -+, X, - - of non-empty open subsets of S, such that every
non-empty open subset X of S can be represented in the form

X=X,UX,U...UX_ U...

where ,, %, -+, 2., - -+ is a sequence of positive integers.

(The above notions could also be applied to closure algebras, but we do not
need them in that connection.)

THEOREM 3.5.  The closure algebra over every normal, dense-in-itself topological
space with a countable basis is dissectable."!

Proor. Let S be a normal, dense-in-itself topological space with a countable
basis (with the closure operation C), let A be any non-empty open subset of S,
and let r and s be two integers with » = 0and s > 0. Then we are to show that
there are r 4+ s non-empty mutually exclusive subsets 4,, --- , 4,, By, ---, B,
of A which satisfy the four conditions of Definition 3.4.

By a well-known topological theorem, the conditions imposed on S in the
hypothesis of the theorem imply that the space S is metrizable. That is to say,
there is a distance-function d(z, y), defined for all points = and y of S, assuming
non-negative real numbers as values, and satisfying the following conditions
(for all z, y, and z in S):

(i) d(z,y) =0if andonlyif z = y,

(i) d(z, y) = d(y, 2),

(ii) d(z, y) + d(y, z2) = d(z, 2),

(iv) If X € 8§, then z ¢ CX if and only if for every real number € > 0 there
exists a ¥y ¢ X such that d(z, y) < e.

11 This theorem is closely analogous to a theorem to be found in Tarski’s Der Aussagen-
kalkul und die Topologie, Fundamenta Mathematicae, vol. 31 (1938), pp. 103-134; see Satz
3.10. The present theorem is somewhat stronger, however, than the theorem given there,
the proof of which, in its most general form, was due to S. Eilenberg.
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It can also be concluded that S contains a countable subset £ = e, ,e,. -+
such that every point of S is a limit-point of E.

If z is any point of S, and if X is any non-empty subset of S, then by d(x, X)
we shall mean the greatest lower bound of the set of numbers d(x, ) where y ¢ X;
we set

diz, A) = 1.

If X and Y are non-empty subsets of S, then by d(X, Y) we shall mean the
greatest lower bound of the set of numbers d(z, y), where z ¢ X and y € I'; we set

d(X,A) = d(A, X) =d(A,A) = L

If X is any non-empty subset of S, then by m(X) we shall mean the greatest
lower bound of the set of numbers d(z, X — {x}), where z ¢ X; we set m(A) = 1.
If z is any point of S, and X is any positive real number, then by Sp(z, X)
we shall mean the set of all points y of S such that d(z, y) < \. It is clear that
Sp(z, A) is a closed set, and that z € Sp(z, \).
We shall now define, for each non-negative integer n, certain positive real

numbers €,, 8., as well as certain sets U,, V., HY, -« HY, K&, -,
K(n)

n - ——

Weput &g = 8 = 1, Vo = W T = H" = K" = ... = K{" = A,

and U, = A, where A is our given non-empty open set.

Supposing now that these numbers and sets have all been defined for n = k
(and supposing that Uy is a non-empty open set) we shall define them for n =
k + 1. Letuand v be the first two elements of the countable set £ which are in
U.. Then we denote by €41 one-third the smallest of the three numbers

1 . 04 .
k—_—i-—l 9 d(u, Lk), and d(u, v),
i.e., we set
. 1 .
€cq1 = 1/3 min [k_-i-_—l , d(u, —Uy), d(%”)]-
Let 71, - -+ , Zr4. be the first » + s elements of the sequence E which are in

1Sp(u, €xy1). Then we set
8k+l = 1/3 min [d({xl y " x'+'}; _Sp(uv S’H-l))) m({zl y "t IP-H})A]'
We put

H® = Sp(y, de4a), -+ » HPy = Sp(ar Se1),
and
K& = (Zen), -+, K = {@rsd).
Finally we set ‘
Vin = HOU---UHRQ UKD U--- UK,
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and
Uipr = Ug = Viqr.

Now, making use of the fact that Cy = A4 is by hypothesis a non-empty open
set, it is easily shown that, for every n, U, is a non-empty open set, and that all
the numbers and sets €., 6., Un, Vo, HY, -+, H?, KP, -+, K are
actually defined for each n. Then the following can easily be proved by mathe-
matical induction:

(1) IfxeVsandyeV,, thend(z, y) < 1/n,
2 VanGCU.CS A andhence V, NCAN —4 = A,

3) The sets HY, --- , HY K®, .-+, K& are mutually exclusive,
(4)  Ifn =0, then IH{” 5 A, and K™ = A.

‘We now define sets 4,, ---, A, and B, ---, B, as follows:

4) 4, =1HPU...UIH®PU...

A, =1HPU-..UHP U ...
B, =KU-.-..UK{QU...

Boy=K"U...UK¢?PU...
B, =A—- A4 U...U4,UBU...UB,).

From (3), (4), and (5) we immediately see that the sets A,, --- ,4,,By, -+,
B, are non-empty and mutually exclusive. We see by Theorem 1.10 and
Theorem 1.5 that each A;is open. It is clear from the definition of B, that

AIU"’UA7U31U°"UB.=A.

In order to complete our proof, it remains therefore only to show that conditions
(ii) and (iv) of Definition 3.4 are satisfied by the sets 4,, -+, 4,,B,, -+, B, .

By means of a familiar kind of argument involving limits of sequences of
points, it can be shown that:

(6) HPNC-H{” €CA; and H™ NC-H™ < CB;,

forevery mand n,andforl <7 <randl1 <j <s.
From (6) we derive, by a similar argument:
(7 A-4U---UA)CCA; and 4 — (4, U---UA4,) €CB;

forl=¢<rand1 £j=<s;
and moreover

8) CAN -4 C CA;

forl <71 =
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From (7) we easily see that condition (ii) of Definition 3.4 is satisfied. For
since B; C A — (A, U --- U A4,), we see by (7) that B, © CB;, and hence that
CB; € CBj, as was to be shown.

In a similar way we see from the first part of (7) that CB; € C4;. From
this, together with (8), we see that condition (iv) of Definition 3.4 is satisfied,
which completes the proof of our theorem.

Since it is well-known that Euclidean space is dense-in-itself, normal, and
possesses a countable basis, we have the following corollary:

COROLLARY 3.6. The closure algebra over Euclidean space is dissectable.

THEOREM 3.7. Every dissectable closure algebra is a universal algebra for the
class of all well-connected finite closure algebras.

Proor. It is convenient to prove the following slightly more general theorem
(from which our desired theorem results immediately by setting a = V):

Ifr = (K,U N, —, C)is a dissectable closure algebra, and a is an open
non-empty element of T, and if & = (K’, U, N/, —’, C’) is any finite well-
connected closure algebra, then there is a subalgebra A of T’y , such that

(i) A is isomorphic with &,

(ii) CaN — a € Cxz for every non-empty z of A.

We shall prove this latter theorem by an induction with respect to the number
of atoms of &. If there is just one atom, then the theorem is obvious. Hence
we shall suppose the theorem is true for every finite algebra with less than p
atoms, and that ® contains just p atoms.

Since & is well-connected, there is an atom b, of K which is contained in every
non-empty closed element of ®. Let by, ---, by be the other atoms (if any)
such that C'b; = C'b, = --- = C'b;..

It is then easily seen that C'b; = --- = Cby = by U’ --- U" b, For first it
is clear that b, U’ - - Ub, c €', U’ --- U b)) = Cb U --- U C'b =C'h, .
And moreover, if z is any atom contained in C’b; then C'zx € C'C’b; = C'b; ;
and since by hypothesis b; < z, we have also C’b; € C'z, and hence C'z = C'b, ;
thus for some ¢ we have z = b; .

Letc, -+, ¢, be the other atoms (if any) of ® besides the atoms by, - - -, bx .
Thus k + ¢ = p, and hence (since k£ # 0) we have ¢ < p.

We now choose from among the atoms ¢;, ---, cgasetdy, -+ -, d. of atoms
in the following way. Let d; be the first atom in the sequence ¢i, ---, ¢,
whose closure does not contain as proper part the closure of any atom ¢; . Let
d, be the first atom in the sequence ¢;, - - - , ¢, whose closure is different from
the closure of d; , and whose closure does not contain as proper part the closure
of any atom ¢;. And so on.

It will be seen that for every j < g thereisan¢ < nsuch thatd; S C'd; C C’c;.
Let e; be the sum of all atoms c; such that di € C’c;;i.e.,

1 e = U ¢ for ¢ =1,---,u,
d;cC'cj

Thus
2 al . ...Ue = U ... Ue,.
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Moreover we shall put

3) e=bU ...Ub;
so that
4) eoUqU ..U e, =V,

It can easily be shown that e; is open for z = 1.
Since T is a dissectable algebra, there are non-empty, mutually exclusive

elements ay, -+, a., f1, -+, fi of I which satisfy the conditions:
(5) the elements a, , - - - , a, are open,

(6) Ch=---=Ch,

) aaU..-Ug UfU... Uy, = q,

(8) CaN -a CCfi CCa; for i<k and j<n

We shall set
9 a=naU.--Ufp.

It is then easily shown that
(10) Ch=---=Cfi=Ca.

Let Ao be the subalgebra of I';, which consists of all sums formed from the
elements f;, - - -, fi (including also the null-element). Thus A, = (K,, U, N,
—o, Cy), where K is the set of all elements expressible as sums of the elements
Siy, -+, fr,and where —sx = ap N —z and Cor = a, N Cz, for all z in K, .

Moreover, we define a function % in the following way. If
z=0b, U ...Ub,
is any element of ®,, , then we set
(1) ho(z) = f, U---Uf; ;

we set h(A) = A. It can now be shown that the function h establishes an
isomorphism between ®., and A, ; that is to say, if £ and y are any elements of
&,, , then

12) ho(z U ) = ho(z) U ho(y),
(13) ho(z NV y) = ho(z) N ho(y),
(14) ho(— @) = —oho(z),
(15) ho(C.oz) = Coho(z).

The first three of these equations are clearly true from Boolean algebra. To
establish the last one, we need only observe that if z = A, then both sides are
equal to A; and if z # A, then both sides are equal to a,.
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Let i be an arbitrary one of the integers from 1 to n. We notice that the
relativized algebra ®,, is well-connected; for if z is any element of &,; except A,
we see from (1) that d; € C..z. Moreover the number of atoms in &, is at
most equal to g and so is less than p. Hence our induction hypothesis applies
to &, . Since a; is an open element of T, we therefore see that there is a sub-
algebra A; = (K;, U, N, —;, C;) of Iy, such that

(16) ®,, is ismorphic with A;
a7 Ca N—a < Cz for every non-empty z of A;.

Thus there is a function k;, which has a single-valued inverse and satisfies the
following conditions, for every z and y in &, :

(18) hi(z U’ y) = hi(z) U hiy),
(19) hi(z Y y) = hi(z) N hi(y),
(20) hi(—ez) = —hi(2),
(1) hi(Ceix) = Cihi(a).
We now define a function k as follows (where z is an arbitrary element of $):
(22) h(z) = ho(x N e) U+« - Uho(z NV en).

It is seen that h(z) is always an element of I'; . It is easily shown that if h(z) =
h(y) then z = y. Moreover, remembering that a; Na; = A for ¢ # j, and that
a; is open for i = 1, we can prove the following (making use also of equations
(12)-(15) and (18)-(21)):

(23) h(z U y) = h(z) U h(y),
(24) hz MY y) = h(z) N h(y),
(25) h(—'z) = —ah(2),
(26) h(C'z) = C.h(x).

Thus if we set A = (K”, U, N, —,, C,), where K" is the set of values assumed
by h(z), then we see that A is ismorphic with ®. Since A is isomorphic with
&, it also follows that A is a closure algebra, and hence a subalgebra of I'. Making
use of equations (8) and (17) we can also show that

27 CaN—a € Cz for every non-empty z in A.

Thus our theorem is also true for finite algebras which contain p atoms, and
hence by mathematical induction is true generally.

TareoreM 3.8. Every totally disconnected dissectable closure algebra is a uni-
versal algebra for the class of all finite closure algebras.

Proor. Let T = (K, U N, —, C) be a totally disconnected dissectable
closure algebra; we shall show that every closure algebra is isomorphic with
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a subalgebra of I'.  We shall carry out the proof by an induction on the number
of atoms in the finite algebra. If the finite algebra contains just one atom,
then it is obviously isomorphic with a subalgebra of I'. Hence we suppose that
every finite closure algebra with less than p atoms is isomorphic with a subal-
gebra of T, and we let & = (K’, U’, V", —’, C’) be a closure algebra with just p
atoms. .

If ® is well-connected, then & is isomorphic with a subalgebra of I' by Theorem
3.7. Hence we can suppose that ® is not well-connected.

Let ¢1, -+, ¢, be the atoms of ®. We choose from among these atoms, as
in the proof of Theorem 3.7, a set d;, - - -, d, such that: C’d; = C’d;for ¢ = j;
C’d; does not contain as proper part any C’c;; and for every j there exists an
t such that d; € C’c;. As in the proof of Theorem 3.7, we set

1) ee= U ¢ for i=1,..-,n.
diCC'c;j

We see that

2 al...Ue =qU...U ¢ =V.

Moreover, since ® is not well-connected, we see that, for every 2 < n, e; # V,
and hence that the number of atoms contained in e; is less than p. Thus our

induction hypothesis applies to each of the finite algebras &,, , - - -, ®.,
Since T is totally disconnected, it is easily seen that there are n non-empty

mutually exclusive open elements a;, ---, a, in T such that

3 aU...Uqg, =V.

Since a; is open, we see that T'y, is a totally disconnected closure algebra.
Hence by the induction hypothesis we see that there is a subalgebra A; of Ty,
such that A; is isomorphic with ®;,. Let h; be the function which establishes
this isomorphism, so that we have:

4) hix U y) = hi(x) U hi(y),
(5) hi(z NV y) = hi(z) N hiy),
(6) hi(—e2) = —ahi(z),
) hi(Ce.z) = Cohilx).
We now define a function & as follows (for z any element of ®):
(8) hz) = hi(x NV e) U -+ U ho(z NV e,).

As in the proof of Theorem 3.7, we can show that this function establishes an
isomorphism between ® and a subalgebra A of T.

From the above theorem we see that the closure algebra determined by any
dense-in-itself and totally disconnected subspace of Euclidean space (for exam-
ple, by Cantor’s discontinuum, or by the set of all points with rational co-
ordinates) is a universal algebra for all finite algebras. Finally we shall consider
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the problem whether every dissectable algebra is a universal algebra in the
generalized sense for all finite algebras; and we shall show that the answer to
this question is positive. To obtain this result we need some lemmas.

Lemma 3.9. Let K be a closure algebra (with respect to U, N, —, and C), and
let K* be the set of all couples {(z, y), where z is an arbitrary element of K, and y
is either A or V. Let the operations U*, N* —* and C* be defined as follows:

@ (@, ¥y U* (u,0) = (U u,yUv),

(i1) (z, y) * (u,v) = (zNu, yNv),

(i) —*@y = (-7 -y

(iv) C*(z,y) = (Cz, V), unlessz = Aandy = A,
) C*(A, A) = (A, A).

Then K* is a well-connected closure algebra with respect to U*, N*, —*, and C*.

Proor. To see that K* is a closure algebra, it is only necessary to verify
that conditions 1.11-1.16 are satisfied. It will be noticed that the null-element
of this closure algebra is (A, A), and the universe-element is (V, V).

By (iv) it is seen that the closure of every element except (A, A) contains the
element (A, V). Hence, by Definition 1.10, K* is well-connected.

LemMma 3.10. If K and K* are related as in Lemma 3.9, then K 1is isomorphic
with K* relativized to a certain open element; in fact, K is isomorphic with (K*)(v,a) -

Proor. It is clear that (V, A) is open, since (V, A) is closed. To establish
the isomorphism, let the element z of K correspond to the element (z, A) of
(K*)(v.A) -

Lemma 3.11.  If K ts a dissectable closure algebra, and if K and K* are related
as in Lemma 3.9, then K* is also dissectable.

Proor. The closed elements of K* consist of the (A, A), together with all
couples {(z, V), where z is a closed element of K. Hence the open elements
of K* consist of the couple (V, V), together with all couples (x, A), where
is an open element of K.

Hence we can see that K* is dissectable if K is dissectable, as follows. If
(a, A ) is an open element of K* then a is an open element of K. Hence for
r = 0and s > 0, there are elementsa,, -+, a,, b, -+, b, of K whose sum is a,
and which satisfy the other conditions of Definition 3.4. Then we can easily
show that the elements (a,, A), ---,(a,,A), (b1, A), -+, (bs, A) of K*
have (a, A ) for their sum, and satisfy the other conditions of Definition 3.4.
If we consider the open element ( V, V ) of K*, on the other hand, we need to
modify the construction only slightly; namely, we now consider the elements

<a1)A>) "')(ar,A>’<bl)A>)“')<bl—1)A>»<b"v>'

TueoreM 3.12. Every dissectable closure algebra is a generalized universal
algebra for the class of all finite closure algebras.
Proor. Let K be any dissectable closure algebra, and let H be any finite
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algebra; we are to show that there is an open element a of K such that H is
isomorphic with a sublagebra of K, . Let H* be the closure algebra related to H
as described in Lemma 3.9. It is clear that H* is also finite; and from Lemma 3.9
we see that H* is well-connected. Hence, by Theorem 3.7, H* is isomorphic
with a subalgebra G of K. Since the couple ( V, A ) is an open element of H*,
we see that under this isomorphism ( V, A ) must correspond to an open element
a of G. Then (H*)(v,a) is isomorphic with G, ; and hence with a subalgebra of
K,. Since, by Lemma 3.10, H is isomorphic with (H*)(v,s), we see that H is
isomorphic with a subalgebra of K, , as was to be shown.

The above lemmas also enable us to answer negatively a certain question
which arises naturally regarding universal algebras—the question wnether
Theorem 3.7 could be strengthened to assert that every dissectable closure
algebra is a universal algebra for all connected finite algebras. To see that this
is not the case, we need only observe that Theorem 3.5 and Lemmas 3.9 and 3.11
imply the existence of well-connected dissectable algebras. Now if K is a
well-connected dissectable algebra, it is seen that every finite subalgebra of K
must also be well-connected; hence K cannot be a universal algebra for all
connected finite algebras, since there exist connected finite algebras which are
not well-connected. (The question remains open, however, whether the closure
algebra over Euclidean space is a universal algebra for all connected finite
algebras.)

§4. Closure-Algebraic Functions

We shall concern ourselves in this section with functions f of n variables
(n-ary operations) which correlate with every sequence of n elementsa,, - - - , a,
of each closure algebra an element f(a,, - - - , a,) of that algebra; we shall call
these functions simply closure functions. Each such function will be conceived
as defined over all possible closure algebras, so that strictly speaking it is a
function of n + 1 variables—the first variable denoting the whole algebra, and
the n remaining ones denoting elements of this algebra. Consequently if for
instance T is a closure algebra, then the function value b of T which corresponds
to the argument values a,, - - - , a, could be symbolized by

b =f[‘(a1, "')an)~

In practice, however, the symbol “I'”” will often be omitted, and f will be referred
to as a function of n arguments. As examples we can take the n identity functions
of n variables:

P@, o ,2s) =2 for 1 2i5n.
Furthermore the functions of one variable

Jr(z) = Cr(z) and gr(z) = —r(z),

and the functions of two variables

hr(z,y) = zUry and kr(x,y) = zNry.
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In this whole context a closure algebra T is considered not merely as a set of
elements, but rather as a system consisting of this set together with the four
fundamental operations, which are denoted here by:

Cr, =r,Ur, and Nr.
Two functions f and g are of course said to be (identically) equal,
f=g9
when
Jo(@r, =00 3 ) = gr(x1, + =+, Ta)

for every algebra T' and for all elements z;,, -+, z, of I'. To express the fact
that the latter equation holds for all elements z, , - - - , z, of a given algebra T,
we shall say that f and g are (¢dentically) equal tn T, or that f and ¢ are (identi-
cally) equal in K, where K is the class of elements of the algebra T'.

Among all closure functions, we can easily single out a special category which
will be referred to as inner algebraic functions of closure algebras, or briefly as
closure-algebraic functions. With this in view, we first define certain operations
on functions corresponding to the fundamental operations of closure algebra.

DEFINITION 4.1.  Let f and g be two closure functions; then by fU g and fN g
we understand the functions b’ and h” determined by the formulas

h’l'(xly"'.)xn) =fl‘(x11"'yxn)ugl‘(xl:"')xn)
hll{(xl’ "')xn) =fl‘(xlr""xn)ngl"(xly"'yxn)

(for every closure algebra T and for all elements x,, - -+ , x. of T). Similarly by
—f and Cf we understand the functions k' and k” such that

kll‘(xla”';xn) = —f[‘(xlyu"xn)
k’lf(xl"°',xn) =Cfl‘(xly"'axn)'

From this definition we easily infer the following:

CoroLLARY 4.2. The set K of all closure functions is a closure algebra with
respect to the operations U, N, —, and C of Definition 4.1.

If K is any closure algebra, and S is any subset of K, then there exists clearly a
smallest subalgebra L of K which contains S. L is called, as usual, the sub-
algebra generated by S. In particular, if  is the set of closure functions, and if
S is the set of identity functions of n variables, then there is a smallest sub-
algebra € of & which contains &; we call the elements of this smallest subalgebra
L closure-algebraic functions.

It is clear that the closure-algebraic functions are just those closure functions
which can be obtained from identity functions by a finite number of applications
of the operations U, N, —, and C. Thus we see that closure-algebraic functions
are those for which there exist chains in the sense of the following definition:
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DerINITION 4.3. A finite sequence f1, - -+ ,f, of closure functions (all of the
same number of variables) is said to be a chain for the function f if,

i f-=1

(ii) every function f;(i = 1, -- -, r) 1s either an tdentity function, or is the sum,
product, complement, or closure of functions preceeding it in the sequence.

The number 7 is called the length of the chain. The length of a shortest chain
for f, is called the order of f.

The above construction involves nothing specific for closure algebras, and can
easily be extended to any other type of algebra. Thus we are dealing here with
notions belonging to the domain of general algebra. In Part II of the Appendix
we deal with some logical difficulties involved in the notions of closure functions
and of closure-algebraic functions.

The real importance of these notions will appear in the next section. In
order to prepare the ground for some later developments however, we shall state
here a few theorems on closure-algebraic functions of a rather isolated character.

TueorREM 4.4. If a is any open element of a closure algebra T, and 2, , -- - , z,
are arbitrary elements of T, then for any closure-algebraic function f of n variables,
and for any © £ n, we have

anf(xl,---,x,.) =anf(x1, "’yxi—l,anxi,xi-{-l,"',xn).

Proor. From the definition of closure-algebraic functions, it is seen that in
order to show all closure-algebraic functions have a certain property, it suffices
to show that : (i) the identity functions have the property; (ii) if two functions
f and g have the property, then f U g has it; (iii) if two functions f and g have the
property, then f N g has it; (iv) if a function f has the property, then —f has it;
and (v) if a function f has the property, then Cf has it. By Boolean algebra,
moreover, it is seen that (ii) is a consequence of (iii) and (iv), and that (iii) is a
consequence of (ii) and (iv); hence it suffices to show (i), (iv), (v), and either
(ii) or (iii).

It is immediately evident that the identity functions have the property
asserted in our theorem.

Suppose that f and g are any two functions satisfying the theorem, so that

1) aNf@, -,z = aNfl@, -+, zi0,a N2, Ziga, -+, Tn)
(2) ang(xl"”,xﬂ) = ang(xly"')Iﬁ-lyanxi,xi+1) "’,27,.).

Adding the corresponding sides of (1) and (2), and applying the distributive
law of multiplication with respect to addition, we see that the function fUg
also satisfies the theorem.

Suppose that f is any function satisfying (1). Taking the complements of the
two sides of (1), and multiplying the resulting equation through by a, we have

(3) ai [—"GU _f(xly °s ’xn)]

= a n [_a U _f(xly"',xi-ly a n T, xi-H.y“"xa)]
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or
@) aN—=f(@1, o+ 2a) =aN —f(&1, -+ ,zi0,aN i, Tiga, =, Tn).

From (4) we see that the function —f also has the property asserted in the

theorem.
Finally, if f is any function satisfying (1), and if we first form the closures of
the two sides of (1), and then multiply through by a we obtain

(5) aNClaNf@, -,z =aNClaNflm, -+, 21,8 Nz, Tiga, =+, Tn).

Remembering that by hypothesis a is open, and applying Corollary 1.8, we
conclude from (5) that

6 aNCf@, --,2.) =aNCfl@, - ,zin,aNxi,Tipa, "+, Tn)

From (6) we see that the function Cf also satisfies our theorem.

This theorem has various different consequences. We shall state here some
of them which seem interesting in themselves, even though they will not be used
in the future discussion.

CoROLLARY 4.5. If a is open element of a closure algebra T, and y an arbitrary
element such that a Ny = A, then for any closure-algebraic function f we have

aNfizUy) =aNf(z).
If in addition b is open and b N = = A, then
@Ub NfzUy) =[aNf)IUDBNSE).
ProoF. Applying the theorem, we have
aNfizUy) =aNflaNz)U (aNy)
=aNfl@aNz)UA]

aNf(aNz)
= aNf(z)

as was to be shown.
If in addition b is open and b Nz = A we also have

bNfzUy) =bNJQy).

Adding this equation to the one first proved, and applying the distributive law,
we have

@UbNfzUy =[aNf)UBRNSG]

COROLLARY 4.6. If z and y are elements of a closure algebra such that x NCy =
A, then

tNfz Uy = zNf).
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If in addition y N Cz = A, then

@Uy NfzUy) =Ny N1w)).
Proor. Since —Cy is open, and —Cy N y =A, we see from Corollary 4.5
that

—-CyNf@Uy) = —Cy N f(2).
Multiplying this equation through by z we have
2N -CyNfzUy) =2zN —-Cy N f(z),
or (since, from the hypothesis, z N1 —Cy = z)
zNfzUy) = zNjf),

as was to be shown.

The second of these corollaries implies directly

COROLLARY 4.7. Let T be a closure algebra, and let f be a closure-algebraic
function such that, for every z in T, f(2) G z; then for every pair of elements z and y
of T wherex N Cy = A = y N Cz, we have

f@Uy) = fz) UsfQ).

TaEOREM 4.8. If a is an open element of a closure algebra T, and z,, - - - , Zq
are elements include in a, then for every closure-algebraic function f of n variables,
we have

Fro@, oo, 2a) = aNfr(zy, -+, Za).
Proor. If fis an identity function, so that for some ¢ < n we have

Jr(@, ooy Ta) = 24,

then, since z; € a, we have

aNfr(@y, - ,2.) =aNzi =z = fr(z1, -, 2a).
If the theorem is true for functions f and g, then we have
aN Uk, - ,2a) = [ Nfe(z1, -+, 2z)]U @ Ngr(m, -+, 2a)]"

= frz1, -, z) Ugr (i, -+, 2a)
= (U@, -, z),

50 it is also true for f U g.
If the theorem is true for a function f, then we have

aN (=@, ,2s) = aN —fr(zr, -+, 2a)
=aN —[aNfr:, -+, za)]

ali —fr (@1, ceee )

—afta(T1, - -+, Ta)

= (=Nr (21, -+, za),

8o it is also true for —f.
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If the theorem, finally, is true for a function f, then we have, making use of
Theorem 1.8.

aN ChHr(r, -+ ,2) = aNCfr(zr, -+, za)
=aNClaNfr(zr, -, za)]
=aNCfr(z1, - ,Za)
= Cofr.(@1, -, Tn)
= (ChHr,(z1, *++ , 7a),

so that it is also true for the function Cf.

Hence by induction the theorem is true for all closure-algebraic functions.

The following theorem is given mainly for later reference.

THEOREM 4.9. Let a be any open element of a closure algebra T, and let z, , - - -,
Z. be any mutually exclusive elements such that a € 7, U --- U z, and a C
Cxz;U ... UCz,. Then, for any closure-algebraic function f of n variables,

aﬂfr(xl,---,x,.) = an(x.-lU "'UZE."),

where z;, U --- Uz, is a partiol sum of the elements x,, - - - , z. (in particular,
this partial sum can have no terms and hence equal A).

Proor. In case a = V, the theorem is rather obvious. We have here n
mutually exclusive elements z;, ---,z, such that: (i) they are mutually
exclusive, (ii) their sum is V, and (iii) the closure of each of them is V. In view
of (iii), every closure-algebraic function of z;, -- -, z, reduces to a Boolean-
algebraic function (i.e., to a function constructed without the closure operation);
and in view of (i) and (ii) every Boolean-algebraic functionof z; , - - - , z, equals a
partial sum of them.

From the particular case, we obtain the general case by considering instead of
the elements z, , - - - , Z. in the original closure algebra T, the elements a N z;, ,

-, a N z, of the relativized subalgebra I',, and by then applying Theorems
4.4 and 4.8.

It would of course also be easy to prove the general form of our theorem directly
by applying the method of induction used in the proofs of Theorems 4.4 and 4.8.

DEFINITION 4.10. The function f which correlates with each sequence on n
elements of every closure algebra T the zero-element A of T is called the zero-function

(of n variables), in symbols f = A. We then also say that the function f vanishes
identically. If the formula f(x,, - -+ , 2.) = A holds for all z,, - - - , z, of a given
closure algebra T, then we say that f van:shes identically in T.

COROLLARY 4.11. The function f = A s a closure-algebraic function.
In the proof of the next theorem (Theorem 4.12) we shall use one more notion
from the domain of general algebra, namely that of the direct union of two
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algebras.”” It is superfluous to formulate the definition of this notion explicitly.
It is obvious that the direct union of two or more closure algebras is again a
closure algebra. Some general remarks regarding direct unions will be found in
Part V of the Appendix. As an example of specific results regarding the tcerid
union of closure algebras, we want to quote without proof the following:

If @ and b are two open elements of a closure algebra T such that a Ub =1,
then T is isomorphic with a subalgebra of the direct union of the relativized
algebras I'; and T, ; if in addition @ N b = A, then T is isomorphic with the direct
union of T and T .

THEOREM 4.12. If f and g are closure-algebraic functions (of the same number of
variables) and if Cf N Cg vanishes identically then either f or g vanishes identically."

Proor. Suppose neither f nor g vanishes identically. Then there are ele-
ments z, , - - - , T, of a closure algebra Ty, and elements 1, - - -, ¥ of a closure
algebra I, such that

Jo(@, -o0,2a) # A,
gra(yr, <++ ,yn) # Al
Let T be the direct union of the algebras I'y and I, and let
a=(z,y) 2= (Tn,Yn)

Then from the general algebraic properties of the operation of forming the direct
union, we see that

Je(z, --+ ,2a) = A,
gr(z1, +++ ,2za) # AL
Let
fr@@, v y2) = wm
gr(zi, *-+,2s) = ua.
We now consider the algebra I'* described in Lemma 3.9, and we set
w=(z1,A), -, wa=(2a,A);
and furthermore we set
n=(Cu V) and v, = (Cus, V).

12 For notions and results in general algebra, see Garrett Birkhoff, On the combination
of subalgebras, Proceedings of the Cambridge Philosophical Society, vol. 29 (1933), pp.
441-464.

13 In view of the relationship between the C. I. Lewis sentential calculus and topology,
which was established in McKinsey’s paper referred to above, this theorem will be seen
to be equivalent to a theorem regarding the Lewis calculus which was stated without
proof by Kurt Godel in Eine Interpretation des intuitionistischen Aussagenakksils, Ergebnisse
eines mathematischen Kolloquiums, Heft 4, pp. 39—40.
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Since u; # A # up , we see from the definition of I'* that
Cfp.(w1 y T, w,.) =0 £ A
Cgp.(wl y ot ,w,.) = pp & A

Moreover
nNv,={(Cu,V)N{(Cu, V)
=(CuyyNCw,,V)
#= A.
Hence

CCjZ.(wl , vo, wa) N Cgre(wy, -+, wa) # A

Thus there is a closure algebra I'* in which Cf N Cg does not vanish identi-
cally. Our theorem follows by contraposition.
Tureorem4.13. Iffi, - - -, foare closure-algebraic functions (of the same number
of variables) such that
Cchn..-NCf,=A
then there is an 1 < p such that
fi=A.

Proor. We carry out the proof by an induction on p.
If p = 1, the theorem is obvious. Hence suppose the theorem true for p = k,
and let fy, -+, fx , fin be k + 1 closure-algebraic functions such that

CAN---NCHiNCfiyn = A.
Then by Corollary 1.7 (vi)
CICHin - NCAINCfenn = A
And hence by Theorem 4.12 either
CHhU...UCfi=A or fina=A,
and hence, by the induction hypothesis, there is an ¢ < k + 1 such that
fi = Al

Thus our theorem is also true for p = k + 1, and hence by induction is true for
all p.

Lemma 4.14. Let T = (K, U, N, —, C) be a closure algebra, and leta, , - - - , a,
be a set of elements of K. Then there exists a subset K, of K, and a closure operation
C, , which satisfy the following conditions:

@ (K:,Y, N, —, C)) s a closure algebra,

(i) a;eKyfori=1,---,r,

(iii) K contains at most 2°" elements,

(iv) If z e K, and Cz ¢ K, , then Ciz = Cau.
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Proor. Let R be the set of elements of K which can be obtained from the

elements a,, - - -, a, by applying the Boolean operations: U, N, and —. It is
immediately seen that K, is a subset of K which contains at most 2*" elements,
and that a; ¢ K, for 7 = 1, ---, r; thus we see that (ii) and (iii) are satisfied.

Moreovery since the class K, is finite, the Boolean algebra (K,, U, N, —) is
completely additive. Let K, be the set consisting of those elements r of K,
such that Cz is in K;. Then we see that K, , C and K, satisfy the hypothesis
of Lemma 2.3. Hence by Lemma 2.3 we see that there is a closure operation
C, which satisfies (i) and (iv).

TrHEOREM 4.15. If a closure-algebraic function f vanishes identically in every
Jinite closure algebra, then it vanishes identically (in every closure algebra). If in
addition f is a function of n variables and order r, it suffices to assume that f vanishes
identically in every closure algebra with at most 2" elements.

Proor. Suppose f does not vanish identically. Then there is a closure
algebra T' = (K, U, N, —, C) and a set of elements a, , - - - , a, of K such that

fe(@r, +++,a,) #= A,

Since the order of f is , we see by Definition 4.3 that there is a chain
P, «+ , f© of length 7, such that /' = f. We set

b =f§‘1) (@, "')an), cee, by =f§")(alv cee, Ga).
Then clearly
b, =f§")(a1y b 7an) =fl‘(a'ly e )aﬂ) #= A.

By Lemma 4.15 there is a finite closure algebra I = (K, U, N, —, C),
where: (i) a;, -+, @, and by, ---, b, are all in K, ; (ii) K, contains at most
2" elements; and (iii) if  and Cz are in K, then C,z = Cz. From these
conditions we see that

by =f§'11)(a1’ e ,G,,), °e )br =f§'r1)(a11 tte 7an))

and hence

g"l)(al y *°°, a”) # .’\.

Hence f does not vanish identically in the finite algebra I', . Our theorem now
follows by contraposition.

TaEOREM 4.16. If a closure-algebraic function f vanishes identically in every
finate well-connected closure algebra, then it vanishes identically (in every closure
algebra).

Proor. If f does not vanish identically, then by Theorem 4.15 there is a
finite closure algebra I' in which it does not vanish identically. It is then
easily verified that f does not vanish identically either in the well-connected
finite closure algebra I'* described in Lemma 3.9.

The above theorem can also be proved in another way; namely, by making
use of the result about direct unions which was stated before Theorem 4.14,
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we can show that any algebra with a minimum number of elements in which a
function does not vanish identically, is well-connected.

THEOREM 4.17. The class of closure-algebraic functions of n variables is count-
ably infinite.

Proor. It iseasily seen, in the first place, that there are only a finite number
of closure-algebraic functions of n variables and order k. For there are just n
functions of first order (the identity functions); and if the number of functions
of order at most k is finite, then the number of functions of order at most & + 1
is also finite. Since there are only a countable infinity of orders, we see therefore
that there are at most R, closurc-algebraic functions of n variables (of all orders).

Every function of one variable can also be considered as a function of n vari-
ables. Hence if there are infinitely many closure-algebraic functions of one
variable, then there are certainly also infinitely many closure-algebraic functions
of n variables (for each n). Thus to complete the proof of our theorem it suffices
to show there are infinitely many closure-algebraic functions of one variable.

We definite’ an infinite sequence fi, f2, -+, fi, --- of closure-algebraic
functions (of one variable) as follows:

Ni(x) =z NC(Cz N —x), J2(z) = fifi(z), Js) = fififi(x), - --

We shall complete our proof by showing that no two of these functions are
identical. To do this we find it necessary to describe a certain special topological
space.

Let S be the set of all ordinal numbers a < w®. If A is any subset of S, let
C(A) be the set A together with all upper limits (less that w”) of sequences of
elements of A. It is seen that S is a topological space with respect to C.

Each element of S is expressible in the form of a polynomial in w,

W+ "m0 F

where m is a positive integer, and n, , 2, -+ - , nu41 are positive integers or zero.
Let B be the set of those elements of S which are expressible in the form

2%
@+ oo W Ntk Where N sy = 0;

(in this expression we can have k = 0).
It is then easily shown that the sets

Hi(B), fa(B), -+, fu(B), ++-

are all different. From this it follows that the functions fy, fo, <+« , fi, <+
are all different, as was to be shown.

§6. Free Closure Algebras

Near the beginning of the last section, we explained what is meant by saying
that a subalgebra L of a closure algebra K is generated by a set S of elements.

14 This construction and proof are taken from Kuratowski’s paper referred to above.
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It is casily seen that the subalgebra L consists of all elements y of the form

y=f(~’b‘1, "'7xp)

where f is a closure-algebraic function and z,, - - -, z, are elements of S; if S is
a finite set consisting of n elements a, , - - -, a, then we can confine ourselves to
functions f of n variables and elements y of the form

y=f(al) “')an)'

It may happen, in particular, that L = K so that our algebra K is itself gen-
erated by S.

A closure algebra K is called a free algebra generated by n # 0 elements (or a
free algebra with n generators) if there is a set S of n elements with the following
properties: (i) K is generated by S, (ii) if a;, - - -, a, is any finite sequence of
distinct elements of S, and f and ¢ are two closure algebraic functions of p
variables for which

f(a’lr ""ap) =g(a17 "')ap)r

then f and ¢ are identically ecqual. This definition applies whether = is finite
or infinite.

In case n is finite, we obtain as a particular case of a result of general algehra':

TraEOREM 5.1. The class of all closure-algebraic functions of n variables is a
free closure algebra with n generators; and every other free closure algebra with n
generators is tsomorphic with this one.

By a similar construction we can establish the existence of a free closure algebra
with n generators when n is infinite. In fact, let » be the smallest ordinal
number such that the set of all ordinal numbers which are smaller than » has
the power n."* Consider functions which correlate with every closure algebra T
and with every sequence x;, ta, -+, x¢, -+, (£ < ») of elements of I' a new
element f(z;, x2, -+, 2z, ---) of I. We can define for these functions oper-
ations corresponding to all the fundamental operations of closure algebra (exactly
as in Definition 4.1). Then we can single out, from among all functions of the
type considered, the closure-algebraic functions of n variables; these are the
functions which can be obtained from the identity functions

Sy, 22, -+ ,2¢,--+) =2, forsomen < v

by applying finitely many times the fundamental operations. Finally we can
show that the class of these closure-algebraic functions of n variables is a free
closure algebra generated by n elements.

It might seem that we could modify the notion of free algebra generated by n
elements, in case of an infinite n, by allowing in condition (ii) above, not merely

% In some systems of set theory, a cardinal number = is simply identified with the small-
est ordinal number » for which the set of all ordinal numbers <» has the power n. See
for example Paul Bernays, A system of ariomatic sel theory, Journal of Symbolic Logic,
vol. 7 (1942), p. 142.
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finite, but also infinite sequences of the generating set S, and the corresponding
functions of infinitely many variables. However, in view of the finite character
of the fundamental operations of closure algebra, it can be easily scen that the
definition thus modified would be equivalent to the original one.

Several properties of free closure algebras, in addition to those formulated in
Theorem 5.1, can be obtained by a direct application of certain well-known
theorems of general algebra. Thus, for instance, every closure algebra generated
by at most n clements is a homomorphic image of a free closure algebra generated
by n clements. It is also seen that a free algebra generated by n elements con-
taing, for every number p < n, a free subalgebra generated by p elements.
Some specific properties of free closure algebras are stated in the following
theorems.

THEOREM 5.2. A free closure algebra with any number of generators is infinite.

ProoF. In casc the number of generators is infinite, the theorem is of course
obvious. If the number of generators is finite, on the other hand, the theorem
is a consequence of Theorems 5.1 and 4.17.

We can also conclude from Theorems 5.1 and 4.17 that a free closure algebra
with a finite number of generators is denumerably infinite.

THEOREM 5.3. A free closure algebra generated by any number of elements is
wcll-connected.

Proor. Let us first consider the case that the number of generators is finite.
As in the preceeding theorem, we can confine ourselves to the algebra constituted
by all closure-algebraic functions of n variables. But the fact that this algebra
is well-connected follows directly from Theorem 4.12 and Definition 1.10.

If now, the number of generators is infinite, we first extend Theorem 4.12 to
the functions of infinitely many variables introduced above. From this ex-
tended theorem our conclusion follows.

We see thus that the notion of a well-connected closure algebra, which may
have seemed rather artificial, intervenes in a natural way in the study of free
closure algebras.

A free closure algebra K generated by n elements has obviously the following
property: if two closure algebraic functions f and g of p < n variables are equal
in K—ie., if

f(xl) "'rxp) = g(xl7 "'1xp)

forallz,, - -- , r,in K—then f and g are identically equal (i.e., the above formula
holds for all elements of every closure algebra). We express this briefly by
saying that every free closure algebra with n generators is functionally free in
the order n. The converse is clearly not true. For instance if n is a finite
number, consider a free algebra generated by a non-denumerable number p of
elements. Such an algebra is functionally free in the order p, and hence also
in every order less than p, in particular n. On the other hand, this algebra
has the power p, and therefore cannot be a free algebra generated by a finite
number of elements.
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In the case just considered, a functionally free algebra in the order n turned
out not to be a free algebra generated by n elements because its power was too
large. Outside the domain of closure algebra, on the other hand, we can easily
find examples of functionally free algebras in the order n which are not free
algebras generated by n elements because their power is too small. Thus for
example it is easily seen that a Boolean algebra with at least two elements is
functionally free in every order (so that the notion of a functionally free Boolean
algebra is trivial); while such an algebra is certainly not a free algebra with n
generators if n exceeds the power of the algebra.

On the other hand, by means of a functionally free algebra in the order n
we can easily construct a free algebra with n generators, without-considering
functions defined over all closure algebras. In fact let K be a functionally free
algebra in the order n, and consider all closure-algebraic functions of n variables
defined exclusively for the elements of K; thus two such functions are equal if
they assume equal values for.all sequences z,, -+, T. of elements of K. It
can easily be shown that the class of all these functions is a free algebra gen-
erated by n elements.

The notion of a functionally free closure algebra in the order n seems inter-
esting not only ini view of its connection with the notion of a free algebra with
n generators. If K is such a functionally free algebra, and if we succeed in
proving that a topological equation with at most n variables holds in K, then
we can conclude that it holds in every other closure algebra (and hence in every
topological space).

Here we shall be concerned exclusively with functionally free closure algebras
in the order R;. In view of the finite character of the fundamental operations
of closure algebra, it can be easily shown that a functionally free closure algebra
in the order N, is also functionally free in every other infinite order, and con-
versely. It is also seen that for a closure algebra K to be functionally free in
the order N, it is sufficient (and necessary) that it be functionally free in every
finite order. In view of these considerations, we shall refer to functionally free
algebras in the order R, simply as functionally free; and we shall state the formal
definition of this notion in the following way:

DEFINITION 5.4. A closure algebra K 18 called functionally free if every two
closure algebraic functions f and g of n variables, where n i3 an arbitraty finite
integer, which are equal in K- are also identically equal (i.e., in every closure algebra).

Hereafter when speaking of closure-algebraic functions of n variables, we shall
use this term as it was originally defined in §4; i.e., we shall have in mind func-
tions of finitely many variables, even when this is not mentioned specifically.

In view of the fact that every equation in Boolean algebra (and hence also
in closure algebra) of the form

a=0>
can be transformed into an equivalent equation of the form
@nN =bpU(—aNbd) = A,

we can simplify Definition 5.4 as follows:
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COROLLARY 5.5. For a closure algebra T to be functionally free, it s necessary
and sufficient that every closure-algebraic function which vanishes identically in T
also vanishes identically in every other closure algebra.

From the remarks made above it follows that there exist functionally frece
algebras which do not have any finite number of generators. Now as the first
result regarding functionally free closure algebras, we shall give Theorem 5.6.
which considerably strengthens these remarks. This theorem also shows an
essential difference between closure algebra and Boolean algebra.

THEOREM 5.6. No functionally free closure algebra is generated by a finite
number of elements.

ProoF. Suppose, if possible, that a functionally free closure algebra K ix
generated by the m elements w,, ---, wn. Let e, -+, e pe those of the
2™products wy N -+~ Nwp, vy N -+ Nwa s N —wp, -++, = g1+ N — 2,
which are not equal to A. Since each of the elements w;, ---, w. can he ex-
pressed as a partial sum of the elements e,, - -, e,, we see that K is also gen-
erated by the ¢lementse,, --- ,e,. Moreover, we have ¢ U...Ue = V,and
esNej = Aif ¢ = j.

Let n = 2™, Let the closure-algebraic function f of n variables be defined
as follows:

(1) f(xly‘”,xn)=l[cxxn~'°an,.n(x1U---Ux,,)ﬂ
—(@mNz)U - U@Nz)U@Nz) U - U (e N o))l

We notice first that f does not vanish identically. Forlet A,, ---, A, be n
mutually exclusive subsets of the Euclidean line such that C(4,) = -+ =
C,) = Vand 4, U --- U 4, = V. Then it is easily seen that we have
f(A, ---, A) =V = A

Since by hypothesis K is a functionally free closure algebra, we therefore con-
clude that there are elements 2;, --- , x, and « of K such that

@) J@, -, za) =z # A

By an argument of an elementary nature we can now conclude from (1) and
(2) that

3) feNz, -, zNzx,) =1z,

and that

4) zNz;Nzx;= A for 7 = j.
Letz2 Nz =y, -,z N2z, = y.. Then from (3) and (4) we have

(5) S, - y8) =z = A

(6) viNy; = A for ¢ # j.
Since K is generated by e;, ---, e, we see that there are closure-algebraic

functions f;, --- , fa of r variables such that

(7) yl=fl(el’"'7er)y"'7yn=f"(el;""er)°
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If there is any 7 such that
R ﬂ —-Ce.~ = -\,

then we can suppose without loss of generality that e;, -« , e, occur in such
an order that

&) 2N —=Cey=A, - -, 2N —Ce = A,
2N —Ceyy# A, -+, 2N —Ce, #= \.
Let
a=2N—-Ce, and yyNa=2z2, -+ ,y.Na =z,.

Then by the same sort of argument used to derive (5) and (6) we can easily
show that

9) @, - ,z.) = a# A,

(10) zNzj=A if ©5j.

MMoreover, since @ € z we see from (8) that

(11) aN —Ce, = A, ---,aN —Ce, = A.
From (7) we see that

(12) z=alNuy=alNfila,  -,e)

Zo=aNys=aNfuler, -+, ).

\Moreover, a & —Ce, & —e, and hence a Ne, = .\. Hence by Theorem 4.4
we have

(13) a=alfile, -+ ,e1,N) =aNgle, -+, 1)

zn:anfﬂ(ely "'7er—171\) =aﬂgn(el, "'76"—1)1

where g,, -, gn are closure-algebraic functions of r — 1 variables.

It will be seen that by repeating the above argument sufficiently many times,
we can show the following: there exist elements u;, ---, u, and u of K, and
closure-algebraic functions hy, - - -, h, of s variables such that:

(14) J@ur, -+, us) = u #= A,
(15) wNuj=A for i3 j
(16) uN=Ce=A,:---,ull —Ce, = A,

Q) uC —Cepr, -, ug —Ce,
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Qe

(18) w=ulhle, -, e)

Un = uN ho(er, -+, e,).
From (17) we conclude that « € —e, 11, -+, u & —e,, and hence that
UG —(eaU---Ue)=¢U---Ueg,.
From (16) we see that
uGCe, -, ugCe.

From the definition of the function f in (1) it is clear that u is open. Hence
the hypothesis of Theorem 4.9 is satisfied, so we see that for each 7 we have

wi=uNhie,  ---,e) = un(e.-IU Ue"k)

where e;, U -+ - U ¢,, is a sum of some of the elements e, , ---, ¢,. Since there
are only 2° such sums, and since n = 2°7' = 2°*' > 2°, the elements u; , - - - , u,
cannot all be different. Suppose u; = w;, where ¢ # j; then by (15) we have
w; = wi Nw; = u; Nu; = A. But it is then immediately seen that

f(ulv ""un) =f(u1v "'vui—lvA7u5+lr ”'ruﬂ) = A.

Since this result contradicts (14), we see that our original assumption that there
exists a free closure algebra generated by a finite number of elements must be
rejected.

THEOREM 5.7. Every generalized universal algebra for the class of all finite
closure algebras, is functionally free.

Proor. Let I' be a generalized universal algebra for the class of all finite
closure algebras, and let f be any closure-algebraic function of n variables which
does not vanish identically. We are to show that there are elements a,, --- , a,
of T such that

Srlay, -+, a,) #= A.

Since f does not vanish identically, we see by Theorem 4.15 that there is a
finite closure algebra A which contains elements b;, - -, b, such that

Salby, <+, ba) #= AL

Since T is a generalized universal algebra for all finite algebras, we see by Defi-
nition 3.3 that there is an open element a of T such that A is isomorphic with a
subalgebra of T',. Let the elements b,, ---, b, of A correspond respectively
to elements a,, ---, a, of I, under this isomorphism. Then clearly we have

fl‘a(al y "% an) # A
By Theorem 4.8 we then have
aNfr(ar, -+, an) = fr(@1, -+, aa) # A.
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From this we conclude
f[‘(aly e 70"!) #=~ A)

as was to be shown.

In a similar way, by making use of Theorem 4.16, we can prove the following:

TueorREM 5.8. Every universal algebra (in the proper sense) for the class of all
finite connected closure algebras (or even only for the class of all finite well-con-
nected closure algebras) is functionally free.

Either by applying Theorem 5.7 together with Theorem 3.12, or Theorem 5.8
together with Theorem 3.7, we obtain directly:

TrEOREM 5.9. Every dissectable closure algebra is functionally free'".

This theorem together with Theorem 3.5 leads immediately to the main result:
of this paper.

TueoreM 5.10. The closure algebra over Euclidean space of any number of
dimensions is functionally free; or, more generally, the closure algebra over any
normal, dense-in-itself topological space with a countable basts, is functionally free.

The implications of this theorem are obvious. From the point of view of the
axiomatic foundations of topology, Theorem 5.10 shows that the system of
postulates for closure algebra (or for topological space in terms of closure) has
a certain completeness property: Every topological equation which is identically
true in Euclidean space, can be derived from these postulates. In fact Theorem
5.10 implies that, if any topological equation is proved for a given Euclidean
space, then it holds also in every other Euclidean space, and indeed in every
topological space. Hence by contraposition, we see also that if a topological
equation fails in some topological space, or even in some closure algebra (de-
fined perhaps in the most artificial way), then we can be sure of finding a counter-
example for it in any given Euclidean space, for instance on a straight line; and
if we analyze the proof of the theorems on which Theorem 5.10 depends, we see
that we are able not merely to prove the existence of the sets which do not satisfy
the equation in question, but that we can even construct them in an effective
way. Towards the end of this section we shall see that this result can be some-
what further strengthened.

It may be noticed that, in addition to the closure algebras explicitly men-
tioned in the last two theorems, we can construct many other closure algebras
which are functionally free. This is seen, for instance, from the following
simple theorem:

TueoreM 5.11. If a is an open element of a closure algebra T, and if T is
functionally free, then so is T.

Continuing our study of functionally free algebras, we shall give here two

18 This theorem is closely related to the main result of Tarski’s paper referred to above;
in our present terminology this result can be formulated as follows: the class of all open
elements of a dissectable closure algebra (and in particular, the family of all open sets of
a Euclidean space) is a functionally free Brouwerian logic. We plan to present in a separate
paper some applications of the results of the present paper to Brouwerian logic.
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results about elosure-algebraic functions in functionally free algebras, which
follow almost immediately from a theorem of the preceeding section. They
seem interesting if only for this reason, that in view of Theorem 5.10, they
apply in particular to Euclidean space.

THEOREM 5.12. If K s a functionally free closure algebra, and f,, --- , fa
any closure-algebraic functions of the same number p of variables such that

Cfln "'an,.

vanishes identically in K, then at least one of these functions must vanish identically
in K (and hence in every closure algebra).

CoroLLARY 5.13. If K is a functionally free closure algebra, and fy, --- , fa
are any closure-algebraic functions of p variables such that, for every set z, , - - - , x,
of p elements of K either fi(z1, -+, zp) = Aor fo(@, -+, 7,) = Aor --- or
Ja(zy -+, 2p) = A, then at least one of the functions f, , - - - , f. vanishes identically
in K (and hence in every closure algebra).

It may be noticed that Theorem 5.12 and Corollary 5.13 are also true of free
closure algebras generated by ¢ elements, provided the number p of variables
does not exceed g¢.

In the last theorems of this section we shall return to the question of the
relation between functionally free algebras and free algebras with n generators.
More specifically, we shall be concerned with the question under what conditions
a functionally free algebra contains a free subalgebra generated by a given finite
number of elements. We begin with a result of a negative character.

THEOREM 5.14. There exists a functionally free closure algebra, whish contains
no free subalgebra generated by any number of elements.

Proor. Let us consider any closure algebra K which is universal for all finite
algebras (the existence of such algebras can be derived, for instance, from
Theorem 3.8, or can also be proved in a direct way). We arrange all finite
subalgebras of this algebra in a transfinite sequence

Kl,Kz, "'sKE7 e

and construct the direct union L of all these subalgebras. Thus the elements
of L are infinite sequences

xl,x2, CECERY ’xE’ DEEEY

where 2, e Ky, 22 ¢ Ko, --- , 2 e K;, ---. Let M be the set of all those se-
quences belonging to L in which either all elements except a finite number equal
A or else all elements except a finite number equal V. It is easily seen that M
is a subalgebra of L, and therefore a closure algebra. Furthermore it can be
shown without difficulty that to every finite algebra N, there exists an open
element a of M such that N is isomorphic with a subalgebra of M, , and indeed
even to M, itself. In fact, since K is universal for all finite algebras, N is
isomorphic with some algebra K; ; and we can take as a the sequence

xl,xZ, ooo’xe’ LY
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where x; = V and the remaining terms are A. Hence by Definition 3.3, M is
a generalized universal algebra for all finite algebras; and hence by Theorem 5.7
it is functionally free.

Now consider any particular element b of M. b is a sequence

xl’xz’ oo ’xE’ .o
in which:
(i) All elements except for a finite number

Tey ) Teyy * 00y Tty

either equal A or equal V; while
(ii) The exceptional elements

Ty s Teyy ° "y Tty
belong to the finite algebras
K&’Kfs) e yKE

Let P be the set of all sequences belonging to M which satisfy the conditions
(i) and (ii)—the numbers £, -+, £ being the same for all these sequences.
P can easily be proved to be a finite subalgebra of M; and, since the element
b belongs to P, the subalgebra generated by b is contained in P, and is therefore
also finite. Hence by Theorem 5.2 this subalgebra cannot be a free algebra
generated by one element. Since b is quite an arbitrary element of M, it follows
that M contains no free algebra with one generator.

The remarks at the beginning of this section regarding the general properties
of free algebras imply that every free algebra with an arbitrary number of
generators contains a free subalgebra with one generator. Therefore M cannot
contain a free subalgebra with any number of generators. Thus M has all the
desired properties.

In the preceeding proof we were not interested in the power of the closure
algebra which is involved in this theorem. However from the proof it is easily
seen that it is possible to construct an algebra satisfying the conditions of the
conditions of the theorem, which is in addition denumerable. In fact it suffices
for this purpose to omit from the sequence

Kl’Kz,...,Ke’...

of all finite subalgebras of K every subalgebra which is isomorphic with one
which preceeds it in the sequence, and then to consider the direct union of the
remaining subalgebras.

Now we shall show that under certain additional conditions a functionally
free closure algebra must contain free subalgebras with any finite number of
generators. It will be seen that these additional conditions are satisfied by all
the most important examples of functionally free closure algebras.

Lemma 5.15. Every functionally free closure algebra K contains a countable
infinity of mutually exclusive (non-empty) open elements.

n *
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Proof. n being an arbitrary natural number, consider the n closure-algebraic
functions of n variables defined by means of the formulas:

fl(xlf"')xn) = l(—xxn:czn ---n.’c,.)
fz(xl’”')xn) = l(zln—'xzn ---nxn)

fal@, oo, x) = 1@ NzN - N —2z,).

It is obvious that none of these functions vanish identically; for putting, for
instance,

xl=A, h:---:x”=v
we obtain

filxy, -+ ,xa) = V = Al

Hence by Corollary 5.13, there exist elements a,, - - - , @, of K for which none
of the functions fi, -+ -, f. vanish. By putting

by =fl(al7""an)7°°"bn=fn(a19"'7an)

and applying Corollary 1.4 (iii) and Definition 1.6 we see that our algebra
contains n mutually exclusive open elements, for each n.

Hence we can conclude that K contains also a countable infinity of open
elements, by applying a reasoning which is by no means specific for closure
algebras.!” 1In fact, let L be the class of all those elements of K which are non-
empty, open, and do not contain any two non-empty mutually exclusive open
elements. If L is not empty, we pick out any element @, of L, then any element
a, of L which is disjoint with a, (if such an element exists), then any element a; of
L which is disjoint with both a, and a., and so on: clearly we apply here the
axiom of choice. It may happen that in this we succeed in obtaining infinitely
many elements @, @2, -+, @n, --- of L, in which case the conclusion of our
theorem is obviously satisfied. Otherwise we arrive at a finite sequencea; , - - -,
a of elements of L such that no element of L different from all of them is disjoint
with all of them.

In the latter case we make use of the fact which was established before, that
for every n, and in particular for n = k + 1, there are n mutually exclusive

non-empty open elements in K. Let by, -, bxy1 be such elements. It is
easily seen that each of the elements a;(¢ = 1, --- , k) can have a non-cmpty
product with at most one element b; (j = 1, - - - , k + 1), for otherwise a; could

not belong to L. Hence it clearly follows that at least one element b;is mutually
exclusive with every element a; . Consequently b; cannot contain any element a

17 See the paper by P. Erdés and A. Tarski, On families of mutually exclusive sets, these
Annals, vol. 44 (1943), p. 315-329.
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of L, for such an element would be disjoint with all elements a;, - - - , ax, which
as we know is impossible.

We have thus shown that there exists a non-empty open element b = b, of K
which contains no element of L (this is also trivially true in case the class L is
empty). Now b a fortiori is not itself such an element, and therefore it contains
two non-empty mutually exclusive open elements ¢; and d; . Again d, is not an
element of L, and hence it contains two non-empty mutually exclusive open
elements ¢ and d:. We can continue this procedure indefinitely (using the
axiom of choice) so as to obtain finally an infinite sequence ¢1, ¢z, -+ ,¢€n, -
of mutually exclusive open elements of X. Thus the proof is complete.

THEOREM 5.16. Let T be a countably additive closure algebra such that, for every
non-empty open element a of T, T, is functionally free. Then T contains a free
algebra with a countable infinity of generators (and hence also a free closure algebra
with any arbitrary finite number of generators).

Proor. It clearly suffices to show that I' contains a countably infinite
sequence S of elements

bi,ba, v, b, -

such that:
@) If f is any closure-algebraic function of any finite number p of variables
which does not vanish identically, and if

biy, ooy b

P

are any p distinct elements of S, then
fl’(bfx y " b!',) # A.

For if we let A be the subalgebra of T' generated by S, then A will be a free
algebra with a countable infinity of generators.

Moreover, the condition (i) is equivalent to the following condition:

(i") If g is any closure-algebraic function of any finite number ¢ of variables
which does not vanish identically, then

g['(blvb2""7b¢) # A.

(i) clearly impliés (i’), but it is easily seen that the implication in the opposite
direction also holds. For in fact assume (i’) to hold. Given a function f of p
variables, and a sequence

biy, -, b

of elements of S, we let g be the maximum of the numbers

p

AP
and we define the closure-algebraic function g of ¢ variables by putting
9@, -, 7)) = f@iy, -+, Tiy).

Bv applying (i’) to g, we obtain (i) for f.
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Hence in order to prove our theorem it suffices to show that I' contains a
sequence S which satisfies condition (i’).

By Theorem 4.17 we see that there are only a countable infinity of closure-
algebraic functions of a finite number of variables. Let the set of all those
closure-algebraic functions which do not vanish identically be ordered in a
sequence

N LIRS LA

For each k we shall suppose that f* is a function of p, variables.
It is evident from the hypothesis of our theorem that I is a functionally free
closure algebra. Hence by Lemma 5.15 T contains a countable infinity

al,az’...’ak,...

of mutually exclusive non-empty open elements.
By the hypothesis we then see that each of the relativized subalgebras

Tay Tayy~ov s Tapyvee
is functionally free. Hence, for each k, there are p; elements
Tk, y Th,2y °°° 5 Tkopp
of T, such that
) o @ra s o0y Tap) = A
From (1) and Theorem 4.8 we conclude that
2) a N (T, - ) Tapy) # A

Remembering that by hypothesis T is countably additive, we now set, for
each 1,

b.’ = a:l,.-Ux,,;U s ng,.'U LI
We shall show that the sequence S of elements

bl,bz,"‘,bk,"'

satisfies condition (i’).
Let f be any closure-algebraic function which does not vanish identically.
Then for some k we have

1=

Since ay is open, we see by Theorem 4.4 that
arNfEWGL, -+ by) = a NG Nag, -+, by, Naw).
From the way in which b was defined, however, we have, for each 7,

b.‘ ﬂ A = Tk, »
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Thus we conclude that
ax NG, -, bp) = @ NfE(2en, - ) Taipy).
Since the elements
Tra,y * 5 Thopy

were so chosen as to satisfy (2), we therefore conclude that

P, o0, by) # A
Thus our sequence

b, by, o bk, e

satisfies condition (i’), as was to be shown.

The question remains open whether this theorem can be strengthened to
apply either to all functionally free closure algebras which are countably additive,
or to all those algebras in which every subalgebra relativized to a non-empty
open element is functionally free. It may be noticed that the functionally free
algebra M which was constructed in the proof of Theorem 5.14 satisfies neither
of these conditions: it is not countably additive, and for no open element a = V
is the algebra M, functionally free.

By means of Theorems 5.16, 5.9, and Corollary 3.5, we obtain directly:

THEOREM 5.17. Every countably additive dissectable closure algebra contains a
free algebra with a countable infinity of generators; in particular, the closure algebra
over Euclidean space (of any number of dimensions) contains a free algebra with a
countable infinity of generators, and hence also a free algebra generated by any finite
number of elements. -

This theorem exhibits a stronger property of Euclidean space than that given
by Theorem 5.10. Consider, for instance, topological equations with one
variable; from Theorem 5.10 it follows that when such an equation is not an
identity then we can construct in Euclidean space a counter-example for it.
Theorem 5.17 implies much more; it shows that in Euclidean space there exists a
set which is, so to speak, a universal counter-example for all these equations,
and we can even construct such a set effectively.

APPENDIX

1. Derivative Algebra

Like the topological operation of closure, other topological operations can also
be treated in an algebraic way.”® This may be especially interesting in regard
to those operations which are not definable in terms of closure—i.e., which are
not closure-algebraic operations. An especially important notion is that of the

18 The results in this section are largely to be found, in a somewhat different form, in
Kuratowski’s paper referred to above. The theorem stated as an analogue of 4.15, however,
is of course new.
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derivative of a point set A, which will be denoted by D(4). For the purpose of
an algebraic investigation of this notion, we define a new class of algebras, which
we shall refer to as derivative algebras.

We say that a set K is a derivative algebra with respect to the operations
U, N, —, and D, when:

(i) K is a Boolean algebra with respect to U, N, —

(ii) If zris in K, then Dz is in K.

(iii) If z is in K, then DDz C Dz.

(iv) If z and y are in K, then D(z U y) = Dz U Dy.

(v) DA = A.

As regards the question of the relation between derivative algebra and closure
algebra, the following can be remarked. As is known, in a topological space the
closure of a set can be defined in terms of derivative by means of the formula:

C(4) = AUD®A).
If we introduce a corresponding definition into derivative algebra,
Cz = £ UDx,

we can easily show that the derivative algebra becomes a closure algebra with
respect to the Boolean operations U, N, —, and the operation C just defined.
On the other hand, it can easily be shown that there is no unary closure-algebraic
operation O such that

D(4) = 0(4)

holds for every set A of Euclidean space.

The methods of proof used to establish some of our results regarding closure
algebras can be applied almost without change to prove analogous theorems about
derivative algebras. For example, if we define derivative-algebraic functions in a
way analogous to that used to define closure-algebraic functions, then we can
easily prove the following analogue of Theorem 4.15:

If a derivative-algebraic function f vanishes in every finite derivative algebra,
then it vanishes identically. If in addition f is a function of n variables and order
r, then it suffices to assume that f vanishes in every derivative algebra with at
most 2"" elements.

It is also immediately seen that there are infinitelv many derivative-algebraic
functions, since, as is well known, the functions

Dz, DDz, DDDxz, - --

are all different.

As regards the central problem of determining conditions for a functionally
free derivative algebra, we shall here consider only the question whether the
derivative algebra over Euclidean space is functionally free. The answer is
trivially negative, since the equation

DU —z) = zU —=,
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or simply
DV =YV

iz identicallv satisfied in the derivative algebra over Euclidean space, and in
general over every dense-in-itself space, but is not identically satisfied in every
derivative algebra.

In view of this fact, we include the equation

(vi) DV=V
into the postulate system of derivative algebra. We call a derivative algebra
satisfying this additional postulate a dense-in-itself derivative algebra. We
modifv in an obvious way the notion of being functionally free, so as to make it
apply to dense-in-itself derivative algebras, and now ask whether the derivative
algebra over Euclidean space is functionally free in the new sense. The answer
however is known to be negative even in this case, at least as regards Euclidean
space of 2 or more dimensions. For the equation

DicND —-2)U(—zNDr))=DzND -2z

is identically satisfied in the derivative algebra over Euclidean space of 2 or more
dimensions, but is not satisfied in the derivative algebra over the Euclidean
straight line. The problem whether the latter is a functionally free dense-in-
itself derivative algebra remains open. The same applies to the derivative
algebra over Cantor’s discontinuum, for instance, or the space of the rational
numbers. We do not know, either, whether the derivative algebra over the
Euclidean plane would become a free derivative algebra if in addition to the
density postulate we included into the postulate system also the last equation
stated above. Finally the problem remains open whether it is possible to
distinguish the derivative algebras over the various Euclidean spaces (of dimen-
sion greater than 1) by means of equations.

1I. A Modification of the Definitions of Closure-Algebraic Functions and Free
Algebras

Some of the constructions of §§4-5 may raise considerable doubts from the
point of view of the foundations of set-theory, and may seem to have an anti-
nomial character. Infact there are axiomatic systems of set-theory in which the
assumption that there exists the set of all closure algebras, or a function defined
over all closure algebras, would lead to a contradiction (the notion of a function
being here taken in its set-theoretical meaning; i.e., a function of n variables
being regarded as a set of ordered n+1-tuples). There are other systems in
which a distinction is made between proper and improper sets; improper sets,
which are also called classes, are defined to be those sets which are not elements
of other sets. In such systems it would be possible to prove the existence of the
class of all closure algebras, and of functions over all closure algebras; however
we should be unable to form classes of these functions, and we should meet with
difficulty in trying to distinguish from among all functions, those functions we
have called closure-algebraic (especially as regards functions of infinitely many
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variables). Thus even in this case most of the developments of §§4-5 would seem
to be based on rather shaky foundations.

In view of these difficulties we want to indicate here a way of modifying these
constructions, which will make them unobjectionable from the point of view of
practically all systems of set-theory, even of those logically weaker systems
which do not allow us to prove the existence of improper sets. The changes we
are going to outline imply certain complications in formulating most of our
definitions and theorems, but on the other hand they allow us to state some of
our results in a somewhat stronger and more general way. In what follows we
shall always use the word “‘class” synomously with the word “set”, taking this to
mean what we have before called a “proper set”.

The notions which we introduced at the beginning of §4 will now be relativized
to an arbitrary non-empty class & of closure algebras (which of course does not
in any way presuppose the existence of the class of all closure algebras). Thus
we consider functions f which correlate with every algebra T of & and every
n-tuple z,, - - -, z, of elements of T, a new element f(z,, -- -, z,) of I'; we shall
refer to such functions briefly as f-functions. We define for these functions, the
fundamental operations of closure algebra (as in Definition 4.1), and we dis-
tinguish among these functions the closure-algebraic R-functions. For any given
R, the class of all R-functions of » variables (whose existence is insured by any
ordinary axiom system of set-theory) clearly forms a closure algebra; the subclass
of closure-algebraic ®-functions constitutes a subalgebra of this algebra, and
will be referred to as the function algebra of n'* order over &. Definition 4.10
is to be modified in an obvious way, so as to make precise the notion of an
identically vanishing R-function.

It is interesting to observe that the notion of a function algebra is only a
special case of the notion of the direct union of algebras. In order to arrive at
the general notion of the direct unions of closure algebras, we consider an arbi-
trary set J, and we assume that a closure algebra T'; is correlated with every
element ¢ of J. The direct union of all T; (for 7 in J) is constituted by all
functions f defined over J and correlating with each 7 in J an element f(i) belong-
ing to I'; ; we must of course define in the familiar way all the fundamental
operations of closure algebra. Now suppose first that the class f consists of just
one algebra I'. If we take J to be the set of all elements of the given closure
algebra I' and if each I';, for ¢ in J, coincides with T, then our direct union goes
over into the algebra of all R-functions of one variable. If J is taken to be the
set of all n-termed sequences of elements of T, and if each T';is again T, then the
direct union goes over into the algebra of all R-functions of n variables. Con-
sidering now the general case, suppose that & consists of various algebras

r® r® ...

Let J; consist of all n-termed sequences of elements of T™, J, of all n-termed
sequences of elements of I'”, and so on; and let

J=J1UJ2U"'
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If 7 is any element of J then there is some I'” such that 7 is an n-termed sequence
of elements of T we take T'; to be T”. It is easily seen that the direct union
then again goes over into the algebra of all f-functions of n variables. The
algebra constituted by the closure-algebraic R-functions is of course a subalgebra
of this direct union.

Theorems and Corollaries 4.4—4.7, 4.9, and 4.11 undergo an obvious relativiza-
tion: an arbitrary class & of closure algebras is introduced, which contains the
closure algebra T involved, and the function f is assumed to be a closure-algebraic
Q-function. In 4.8 we have to assume that &, in addition to T, includes also T, .
The situation is somewhat more involved as regards the remaining theorems of
§4. In each of these theorems we introduce again a class & of closure algebras,
and we assume that all the algebras involved belong to & and that all the func-
tions involved are closure-algebraic ®-functions. However we have to make
séme additional assumptions regarding ®. It turns out that one common
assumption suffices for all these theorems; in fact, that for every finite closure
algebra T there corresponds an isomorphic algebra in & (but & may contain also
infinite algebras). For this assumption clearly suffices for the proof of 4.16,
as is easily seen from the proof of this theorem; and by an essential use of 4.16
relativized in this way we can easily see that this assumption suffices also for the
other theorems. It may be remarked that a direct analysis of 4.12 and 4.13
shows that these theorems hold under a different assumption regarding &;
namely, under the hypothesis that { is closed under the operation of forming
direct unions, and the operation I'* of Lemma 3.9.

In §5 the first change is in the definition of a free algebra with n generators.
We shall now say that a closure algebra is a free closure algebra with n generators
if: (i) it is an algebra generated by a set S consisting of n elements; and (ii) for
any sequence ai, - -+ , @, of distinct elements of S, for any class & of closure
algebras to which our algebra belongs, and for any closure-algebraic fR-functions
f and g, the formula

f@,, -+ ,a,) = g(ar,‘“’ap)

implies that f and g are identically equal. The first part of Theorem 5.1 assumes
the form:

If R is a class of closure algebras, which contains an algebra isomorphije with
each finite algebra, then, for every positive integer n, the function algebra over &
of order = is a free algebra with n generators.

It is easy to prove the existence of a class which satisfies the hypothesis of the
theorem just stated. For instance we can take as & the class of all closure
algebras

T'= (K7 Ur n; —’C)

where K is a finite set of natural numbers (and the operations vary). Hence
this theorem implies the existence of free closure algebras with any finite number
of generators. The extension of this construction and result to the case where n
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is infinite can be carried through in a way quite analogous to that sketched in §5.
It may be noticed that in the existence theorem for free algebras with infinitely
many generators the assumption regarding the class & remains unchanged.

The definition of a functionally free algebra (and more generally, of a func-
tionally free algebra in order n) must be modified in a similar way. In fact,
Definition 5.4 assumes now the form:

A closure algebra T is called functionally free if for any class f of algebras
which contains T, and for every positive integer n, any two closure-algebraic
f-functions of n variables which are equal in T' are also identically equal (i.e.,
in every other algebra of ).

The relations between functionally free algebras of order n and free algebras
with n generators remain unchanged. In particular, by using the newly intro-
duced notion of a function algebra we can state the theorem:

If T'is a functionally free algebra, then for every positive integer n, the function
algebra of order n over T (i.e., over the class consisting of T alone) is a free
algebra with n generators.

Theorem 5.12 and Corollary 5.13 must clearly be formulated for closure-
algebraic f-functions where & is an arbitrary class of closure algebras which
contains the functionally free closure algebra in question. The remaining
theorems of §5, such as Theorem 5.14 and Theorem 5.16, remain quite un-
changed, since they do not involve the notion of closure-algebraic functions.

It should be emphasized that the construction outlined above depends on no
special properties of closure algebra, and hence can be carried over to the domain
of general algebra; of course we have in mind here only definitions and immediate
consequences of these definitions, and not specific theorems on closure algebra.
It must be noticed however, that the existence theorem for free algebras with
n generators which was formulated above would require in general algebra a
stronger assumption regarding the class & ; in fact, the assumption that for every
denumerable (and not only finite) algebra of the kind considered, § contains an
isomorphic algebra. If we were concerned with algebras with infinite operations,
or with a non-denumerable number of operations, still stronger assumptions
would be needed.

In various discussions of this subject in the literature, one can find quite a
different definition of a free algebra with a given number of generators, and
also a different proof of the existence of such algebras. Both the definition
and the proof use certain terms of a meta-mathematical character. Thus for
instance a free algebra with n generators is sometimes defined as one in which
every equation which holds between generators is a consequence of the postulates
defining this algebra; and in order to prove the existence of such an algebra one
constructs an algebra of “functions”, which are, however, not interpreted in a
set-theoretical way, but as certain expressions for which “‘equality” is defined
in an appropriate manner. It could be shown that this procedure, if quite
rigorously described, is equivalent to that outlined here. However our con-
siderations show that the introduction of meta-mathematical notions into the
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discussion of free algebras is quite superfluous. In the case of algebras with
infinite operations, moreover, the meta-mathematical procedure could hardly be
carried through in a rigorous way.

II1. Absolutely Free Closure Algebras

We want to consider here a property of closure algebras which is stronger
than that of being functionally free (see Definition 5.4). As was mentioned
at the end of Part I1, a meta-mathematical terminology is often used in discussing
free algebras with a given number of generators; the same terminology can be
applied to functionally free algebras. For the sake of simplicity, we shall use
this terminology here in introducing the new notion we want to use, though it
would also be possible to express what we want to say in purely mathematical
terms.

A functionally free closure algebra can be characterized meta-mathematically
as one in which only those closure-algebraic equations are identically satisfied
which are identically satisfied in every closure algebra. (We use the term
closure-algebraic equations here, in the same sense in which we have previously
used the term topological equations). Let us now consider, instead of the class
of closure-algebraic equations, a wider class of sentences which we shall call
universal sentences (or more correctly, sentential functions). These are sentences
which, roughly speaking, express the fact that arbitrary elements of the algebra
have a certain property, and do not involve the existence of special elements.
All these sentences are built up from closure-algebraic equations and inequalities
(i.e., negations of equations) by means of the words “if - - - then”, “or”, “and”,
and the like. As an example, we can give the sentence:

Ifzr=A and —z A, then Czx N C—z = A.

As we know, a closure algebra is called connected if every element x of the
algebra satisfies this sentence.

Now we shall call a closure algebra absolutely free if every universal sentence
which is satisfied by all elements of this algebra is also satisfied by all elements of
every closure algebra. Obviously every absolutely free closure algebra is also
functionally free. The converse does not hold; for instance the closure algebra
over Euclidean space is, as we know, functionally free; but it is not absolutely
free since it is connected, while not all closure algebras are connected. The
problem arises whether there are any absolutely free closure algebras at all, and
whether we can find any interesting examples and formulate any general sufficient
conditions.

The answer to this question is positive. This can be shown in the following
way. Theorem 4.15 (in its first part) implies that a closure-algebraic equation
which is identically safisfied in every finite closure algebra is also identically
satisfied in every closure algebra. By analyzing the proof of this result we see
that it can easily be extended to arbitrary general sentences. Hence by the
Aefinition of universal algebras we conclude that. every closure algebra which
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is universal for all finite closure algebras, is absolutely free. Therefore, by using
Theorem 3.8, we obtain the following result:

Every totally disconnected dissectable closure algebra is absolutely free.

This applies in particular to the closure algebra over Cantor’s discontinuum,
or any dense-in-itself and denumerable topological space.

IV. Decision-Procedure in Closure Algebra

Theorem 4.15 implies a dectsion-procedure for all closure-algebraic equations;
i.e., it provides a method which enables us in any particular case to decide in a
finite number of steps whether a given closure-algebraic equation is identically
satisfied in every closure algebra, or (what amounts to the same thing in view of
Theorem 2.6) in every topological space. In fact, given an equation

A =B
we first replace it by the equivalent equation
(AN-=BU(—ANB) =A.

Furthermore we determine the number n of different variables occurring in the
left member of the latter equation, and the order r of the function represented by
this left member. Instead of the order of the function, we can take r to be any
upper bound of the order; it is easily seen that such an upper bound can be found
by counting the number of variable and constant symbols in the left member,
each symbol being counted as many times as it actually occurs. Next we
construct all closure algebras (K, U, N, —, C) where K is a subset of the set of
the first 2" positive integers. The number of these algebras is clearly finite,
and we can check whether our given equation is identically satisfied in all of
them or not. In the second case, our equation is obviously not identically
satisfied in every closure algebra. In the first case, on the other hand, it follows
from Theorem 4.15 that it is satisfied in every closure algebra; for it is seen at
once that every closure algebra with at most 2" elements is isomorphic with
one of those constructed. In this way the decision procedure is established.

In Part 111 of this appendix we have pointed out that the first part of Theorem
4.15 can be extended from equations to what we called universal sentences.
It is seen that the second part can also be so extended. For n we take now the
number of different variables occurring in the sentence. In order to compute r,
we first replace as above, all equations and inequalities occurring in this sentence
by equivalent equations and inequalities having A for their right members, and
then we take for r the number of all constant and variable symbols in the sentence
transformed in this way. It is evident that Theorem 4.15 thus extended implies
a similar extension of the decision-procedure, which can now be applied, not only
to equations, but to arbitrary universal sentences.

As was stated in Part I, Theorem 1.15 can be extended to derivative algebras.
Hence we obtain a decision-procedure for algebraic equations in derivative
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algebras, which in turn can be extended to arbitrary universal sentences in
these algebras®.

V. Direct Unions in General Algebras

In §4 we made use of the notion of direct union of closure algebras, and applied
the fact that the direct union of two closure algebras is itself a closure algebra.
We take this opportunity to make some remarks and state some elementary
results regarding this notion as applied to arbitrary algebras.

An algebra can be defined in general as a system constituted by a certain set K
and certain operations O;, O:, --- (in most cases a finite number of finite
operations), with the assumption that the operations can be performed on
arbitrary elements of K, and vield always again an element of K. Two algebras
(K, Oy, 0., ---) and (K’, O}, 05, ---) are called similar if the number of
operations is the same in both algebras and if the corresponding operations
0, and 01, O: and O:, etc., are operations with the same number of terms.

We are usually interested not in individual algebras, but in certain classes of
similar algebras, such as the class of groups, that of Boolean algebras, and the
like. From the point of view of general algebraic properties, the simplest sort
of algebra-classes are those which can be called equationally definable®. To
every such class & there corresponds a set of algebraic equations such that &
consists of just those algebras which satisfy all the given equations. A class of
algebras which is characterized in a similar way by a set of universal sentences
(in the sense of Part III), which may or may not be equations, will here, for want
of a better term, be called universally definable. Every equationally definable
class of algebras is of course universally definable, but not conversely. For
instance the class of groups (defined as systems with a binary operation a-b
and a unary operation a”') and that of closure algebras are equationally definable.
On the other hand from the ordinary definitions of the class of semi-groups (as
systems with one binary operation which is associative and satisfies the cancella-
tion laws) it is seen only that this class is universally definable; and the same can
be shown for the class of integrity domains on the basis of a suitable definition
of this class. There are of course classes of algebras which are not equationally
definable, or even universally definable.

As is well-known, the direct union of two or more algebras of an equationally

15 A decision-procedure in this domain was found by S. Jaékowski in 1939, but the result
was not published. So far as Tarski remembers, the procedure applied at any rate to
universal sentences in derivative algebras, and probably also to closure algebras. Ja$-
kowski also showed, on the other hand, that no decision-procedure can be found for the
sentences of closure algebra and derivative algebra which contain also so-called bound
variables and quantifiers.

In view of the present war conditions it has been impossible to verify this information
in detail.

2 For a more detailed study of this notion, see the paper by Garrett Birkhoff, On the
the structure of abstract algebras, Proceedings of the Cambridge Philosophical Society,
vol. 31 (1935), pp. 433-454.
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definable class is also an algebra of the same class. This is no longer true of
arbitrary universally definable classes. A more detailed investigation of the
notion shows that the following elementary theorems can be established:

An algebraic equation or conjunction of such equations holds in the direct
union of certain algebras (i.e., is satisfied by any elements of this algebra) if
and only if it holds in each of the given algebras.

An inequality holds in the direct union of certain algebras if and only if it
holds in at least one of the given algebras.

If a conditional equation (i.e., an implication whose hypothesis is a conjuntion
of equations, and whose conclusion is a single equation) holds in each of certain
algebras, then it holds also in their direct union, but not conversely.

If, on the other hand, a disjunction of equations holds in the direct union,
then it holds also in each of the given algebras, but not conversely.

Hence it is seen that not only equationally definable classes of algebras are
closed under the operation of forming the direct union, but the same is true also
for all those algebra-classes which are defined by an arbitrary set of universal
sentences having the form of equations, inequalities, and conditional equations.
For instance the class of semi-groups is of this type, so that a direct union of
semi-groups is a semi-group. Nevertheless it can be shown in another way that
the class of semi-groups is not equationally definable (since a homomorphic
image of a semi-group is not necessarily a semi-group). On the other hand it can
be easily shown that the direct union of two integrity domains is in general not
an integrity domain (in fact, the direct union is never an integrity domain if
each of the given integrity domains has at least two elements) ; hence we conclude
that the class of integrity domains, although universally definable, cannot be
characterized by a set of postulates each of which has one of the three forms
mentioned above. A fortiort, the class of integrity domains is not equationally
definable.
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