
Dyadic semantics for many-valued logics

C. Caleiro1 W. Carnielli2 M. E. Coniglio2 J. Marcos1,2

1 CLC/CMA, Department of Mathematics, IST, Lisbon, Portugal
2 CLE and Department of Philosophy, State University of Campinas, Brazil

Abstract

This paper obtains an effective method which assigns two-valued seman-
tics to every finite-valued truth-functional logic (in the direction of the
so-called “Suszko’s Thesis”), provided that its truth-values can be indi-
vidualized by means of its linguistic resources. Such two-valued semantics
permit us to obtain new tableau proof systems for a wide class of finite-
valued logics, including the main many-valued paraconsistent logics.

1 Introduction

A tarskian logic is a set of formulas endowed with a reflexive, monotonic and
transitive consequence relation. For those logics two reductive results apply:
Wójcicki’s Reduction shows that every tarskian logic L is n-valued, for some n
bounded by the cardinality of L, while Suszko’s Reduction shows that every
tarskian logic can also be characterized as 2-valued.

As a somewhat surprising consequence, which resulted in a philosophical
standpoint known as Suszko’s Thesis (see the companion paper [5]), finitely-
valued logics turn out to be bivalued, apparently threatening the original moti-
vations for introducing many-valuedness.

In this paper we obtain an effective method which assigns a two-valued
semantics to every finite-valued truth-functional logic provided that its truth-
values can be individualized by means of its language.

The paper is organized as follows: Section 2 introduces the techniques of
separating truth-values, which is a cornerstone of our procedure. Section 3
obtains, in an effective way, bivalued semantics for many-valued logics, from the
separation of truth-values guaranteed by the main Theorem 3.4. Several detailed
examples are given in Section 4. The question of obtaining ‘bivalent’ tableaux
for such logics is treated in Section 5. Finally, Section 6 briefly summarizes the
obtained results.

1

2 Separating truth-values

Let ats = {p1, p2, . . .} be a denumerable set of atomic sentences, and let Σ =
{Σn}n∈N be a propositional signature, where each Σn is a set of connectives of
arity n. Let cct =

⋃
n∈N Σn be the set of connectives. The set of formulas L

is then defined as the algebra freely generated by ats over Σ. From now on,
L will stand for a propositional finite-valued logic, and L for its set of formulas.
Additionally, V is a fixed Σ-algebra defining a truth-functional semantics for L
over a finite non-empty set of truth-values V = D ∪ U . Assume that D =
{d1, . . . , di} and U = {u1, . . . , uj} are the sets of designated and undesignated
truth-values, respectively, with D ∩ U = ∅. Assume also that the valuations
composing the semantics of genuinely n-valued logics (logics having n-valued
characterizing matrices, but no m-valued such matrices, for m < n) are given
by the homomorphisms § : L → V. A uniform substitution is an endomorphism
ε : L → L. Let us denote by ϕ(p1, . . . , pn) a formula ϕ whose set of atomic
sentences appear among p1, . . . , pn. From now on, we write ϕ(p1/α1, . . . , pn/αn)
instead of ε(ϕ(p1, . . . , pn)) whenever ε(pk) = αk. Given a genuinely n-valued
logic L = 〈V, cct,D〉, we shall denote by Lc any functionally complete genuinely
n-valued (conservative) extension of it, that is, a logic Lc with the same number
of (un)designated values as L, but which can define all n-valued matrices —if
they were not already defined from the start.

Def. 2.1 A set of interpretation maps [.] : Vn → V over L, for each n ∈ N+, is
defined as follows, given ~v = (v1, . . . , vn) ∈ Vn:

(i) [pk](~v) = vk, if 1 ≤ k ≤ n;

(ii) [⊗(ϕ1, . . . , ϕm)](~v) = ⊗([ϕ1](~v), . . . , [ϕm](~v)), if ⊗ is an m-ary connective
and we identify ⊗ with the corresponding operator in the algebra V.

Remark 2.2 Given formulas ϕ(p) and α of L, and a homomorphism § : L → V,
then:

[ϕ](§(α)) = §(ϕ(p/α)). (∗)

Def. 2.3 Let v1, v2 ∈ V. We say that v1 and v2 are separated, and we write
v1]v2, if v1 ∈ D and v2 ∈ U (or vice-versa). Given some genuinely n-valued
logic L, there is always some formula ϕ(p) of Lc which separates v1 and v2, that
is, such that [ϕ](v1)][ϕ](v2) (or else one of these two values would be redundant,
and the logic would thus not be genuinely n-valued). Equivalently, one can say
that ϕ(p) separates v1 and v2 if the truth-values obtained in the truth-table
for ϕ when p takes the values v1 and v2 are separated. We say that v1 and v2
are effectively separated by a logic L in case there is some separating formula
ϕ(p) to be found among the original set of formulas of L. In that case we will
say that the values v1 and v2 of L are (effectively) separable.

Example 2.4 Clearly, if v1]v2 then p separates v1 and v2. Therefore, every
pair of separated truth-values is always (effectively) separable. As another ex-
ample, note that ϕ(p) = ¬p separates 0 and 1

2 in Lukasiewicz’s logic L3 (see

2

the formulation of its matrices at Example 2.9), given that [¬p](0) = ¬0 = 1,
[¬p](1

2) = ¬ 1
2 = 1

2 , and 1] 1
2 .

The separability of the truth-values of a logic L surely depends on the original
expressibility of this logic, i.e., the range of matrices that it can define by way of
interpretations of its formulas. Take for instance a logic whose semantics is given
by 〈{0, 1

2 , 1}, {⊗}, {1}〉, where v1 ⊗ v2 = v1 if v1 = v2, otherwise v1 ⊗ v2 = 1.
The values 0 and 1

2 of this logic are obviously not separable.

Assumption 2.5 (Separability)
From this point on we will assume that every pair 〈v1, v2〉 ∈ D2 ∪ U2 such that
v1 6= v2 is effectively separable.

It follows from the last assumption that it is possible to individualize every
truth-value in terms of membership toD (to be represented here by the ‘classical’
truth-value T) or to U (to be represented by the ‘classical’ truth-value F).

Remark 2.6 Consider the mapping t : V → {T, F} such that t(v) = T iff
v ∈ D, for some logic L. Note that:

ϕ separates v1 and v2 iff t([ϕ](v1)) 6= t([ϕ](v2)). (∗∗)

Now, suppose that ϕmn separates dm and dn (for 1 ≤ m < n ≤ i), and ψmn

separates um and un (for 1 ≤ m < n ≤ j). Given a variable x and d ∈ D,
consider the equation:

t([ϕmn](x)) = qd
mn

where qd
mn = t([ϕmn](d)). Observe that qd

mn ∈ {T, F} and qdm
mn 6= qdn

mn, using
(∗∗). Thus, if ~ϕd(x) is the sequence (t([ϕmn](x)) = qd

mn)1≤m<n≤i, the distin-
guished truth-value d can be characterized through the sequence of equations
Qd(x) : (t(x) = T, ~ϕd(x)). That is:

x = d iff t(x) = T ∧
∧

1≤m<n≤i

t([ϕmn](x)) = qd
mn

characterizes d in terms of membership to D or to U (or, equivalently, in terms
of T/F), as desired. Analogously, if ru

mn is t([ψmn](u)) for 1 ≤ m < n ≤ j and
u ∈ U , then the sequence of equations Ru(x) : (t(x) = F, ~ψu(x)) characterizes u
in terms of T/F , where ~ψu(x) = (t([ψmn](x)) = ru

mn)1≤m<n≤j . That is:

x = u iff t(x) = F ∧
∧

1≤m<n≤j

t([ψmn](x)) = ru
mn

characterizes u in terms of T/F using t.

Remark 2.7 If D = {d} then we simply write x = d iff t(x) = T . Analo-
gously, if U = {u} then we simply write x = u iff t(x) = F .

3

Remark 2.8 The composition t ◦ § gives us the famed Suszko’s 2-valued re-
duction of any given logic L, viz. a 2-valued (usually non-truth-functional)
semantical presentation of L. Given a logic which respects our Separability
Assumption 2.5, we will see in the next section how this 2-valued semantics can
be mechanically written down in terms of ‘dyadic semantics’. A later section
will show how such semantics can provide us with classic-like tableaux for those
same logics.

Example 2.9 Consider the n-valued logics of Lukasiewicz, n > 2, which can
be formulated by way of:

 Ln = 〈{0, 1
n−1 , . . . ,

n−2
n−1 , 1}, {¬,⇒,∨,∧}, {1}〉.

The above operations over the truth-values can be defined as follows:

¬v1 := 1− v1; (v1 ⇒ v2) := Min(1, 1− v1 + v2);
(v1 ∨ v2) := Max(v1, v2); (v1 ∧ v2) := Min(v1, v2).

Consider now the particular case of L5. Then we can take, for instance:

ψ0 1
4

= ψ0 2
4

= ψ0 3
4

= ¬p; ψ 1
4

2
4

= ψ 1
4

3
4

= (¬p⇒ p); ψ 2
4

3
4

= (p⇒ ¬p).

To save on notation, take M(p) = ψ 1
4

2
4

and O(p) = ψ 2
4

3
4
, and consider next the

table:

v ¬v M(v) O(v)

0 1 0 1
1
4

3
4

2
4 1

2
4

2
4 1 1

3
4

1
4 1 2

4

Note that (the reduced version of) each ~ψk(x) is as follows:

~ψ0(x) = 〈t(¬x) = T, t(M(x)) = F, t(O(x)) = T 〉,

~ψ 1
4
(x) = 〈t(¬x) = F, t(M(x)) = F, t(O(x)) = T 〉,

~ψ 2
4
(x) = 〈t(¬x) = F, t(M(x)) = T, t(O(x)) = T 〉,

~ψ 3
4
(x) = 〈t(¬x) = F, t(M(x)) = T, t(O(x)) = F 〉.

We obtain thus the following characterizations of the truth-values:

x = 0 iff t(x) = F ∧ t(¬x) = T ∧ t(M(x)) = F ∧ t(O(x)) = T,

x = 1
4 iff t(x) = F ∧ t(¬x) = F ∧ t(M(x)) = F ∧ t(O(x)) = T,

x = 2
4 iff t(x) = F ∧ t(¬x) = F ∧ t(M(x)) = T ∧ t(O(x)) = T,

x = 3
4 iff t(x) = F ∧ t(¬x) = F ∧ t(M(x)) = T ∧ t(O(x)) = F.

4

Of course, the sole distinguished truth-value 1 is characterized simply by:

x = 1 iff t(x) = T.

A similar procedure can be applied to all the remaining finite-valued logics
of Lukasiewicz, making use for instance of the well-known Rosser-Turquette
(definable) functions so as to produce the appropriate effective separations of
truth-values.

3 From finite matrices to dyadic valuations

Using the assumptions and the ideas from the last section, we will now show
how to mechanically obtain 2-valued semantical counterparts of a large bunch
of finite-valued logics. The axioms of the bivaluations produced by our method
will in fact follow a very specific format, characterizing what we shall call ‘dyadic
semantics’. To that effect, we shall be making use of an appropriate equational
language, made explicit in the following.

Def. 3.1 A gentzenian semantics for a logic L is an adequate (sound and com-
plete) set of 2-valued valuations b : L → {T, F} given by conditional clauses
(Φ → Ψ) where both Φ and Ψ are (meta)formulas of the form > (top), ⊥ (bot-
tom) or:

b(ϕ1
1) = w1

1, . . . , b(ϕ
n1
1) = wn1

1 | . . . | b(ϕ1
m) = w1

m, . . . , b(ϕ
nm
m) = wnm

m . (G)

Here, wj
i ∈ {T, F}, each ϕj

i is a formula of L, commas “,” represent conjunctions,
and bars “|” represent disjunctions. The (meta)logic governing these clauses is
fol, First-Order Classical Logic. We can alternatively write a clause of the
form (G) as

∨
1≤k≤m

∧
1≤s≤nm

b(ϕs
k) = ws

k.

Now, a dyadic semantics will be just a specialization of gentzenian semantics,
in a deliberate intent to capture the computable class of such semantics, as
follows. (A rigorous definition of dyadic semantics is given in the companion
paper [5]).

Def. 3.2 A gentzenian semantics B for a logic L is said to constitute a dyadic
semantics for L in case the consequence relation |=B (given by the valuations in
B) is recursive.

For instance, if it is possible to obtain a tableau decision procedure from a
gentzenian semantics B for a logic L then B is a dyadic semantics for L.

Now, let ⊗ be some connective of L; for the sake of simplicity, suppose
that ⊗ is binary. If an entry of the truth-table for ⊗ states that ⊗(v1, v2) = v
then we can express this situation as follows:

if x = v1 and y = v2, then ⊗ (x, y) = v.

5

Now, recall from Remark 2.6 the mapping t : V → {T, F} such that t(v) = T iff
v ∈ D. If the previous situation is expressed in terms of T/F using this mapping,
we will get, respectively, systems of equations Ev1(x), Ev2(y) and Ev(⊗(x, y)),
and consequently the following statement in terms of T/F :

if Ev1(x) and Ev2(y) then Ev(⊗(x, y)).

In the formal (meta)language of a gentzenian semantics (Def. 3.1), this state-
ment is of the form:

t([β1](x)) = w1, . . . , t([βm](x)) = wm,
t([γ1](y)) = w′1, . . . , t([γm′](y)) = w′m′

→ t([δ1](⊗(x, y))) = w′′1 , . . . , t([δm′′](⊗(x, y))) = w′′m′′ , (∗ ∗ ∗)

where wn, w
′
k′ , w′′s′′ ∈ {T, F} for 1 ≤ n ≤ m, 1 ≤ k′ ≤ m′ and 1 ≤ s′′ ≤ m′′.

Now, suppose that v is §(α) for some formula α. But then, using (∗) (check
Remark 2.2, but also 2.8) we obtain:

t([ϕ](v)) = t([ϕ](§(α))) = t(§(ϕ(p/α))) = b(ϕ(p/α))

for every formula ϕ(p). Using this in (∗ ∗ ∗) we obtain an axiom for B of the
form:

b(β1(p/α)) = w1, . . . , b(βm(p/α)) = wm,
b(γ1(p/β)) = w′1, . . . , b(γm′(p/β)) = w′m′

→ b(δ1(p/⊗(α, β))) = w′′1 , . . . , b(δm′′(p/⊗(α, β))) = w′′m′′ ,

for wn, w
′
k′ , w′′s′′ ∈ {T, F} etc. Of course we can repeat this process for each

entry of each connective ⊗ of L. For 0-ary connectives there is no imput at the
left-hand side —so, you should write conditional clauses (Φ → Ψ) where Φ is >.

Example 3.3 In L5 we have, for instance, the following entry in the truth-
table for ∧: if v1 = 2

4 and v2 = 1 then v1 ∧ v2 = 2
4 . Or, in other words: if

§(α) = 2
4 and §(β) = 1 then §(α ∧ β) = 2

4 , for any formulas α and β, and any
homomorphism §. By Example 2.9 we obtain, using t and b = t ◦ §:

b(α) = F, b(¬α) = F, b(M(α)) = T, b(O(α)) = T, b(β) = T
→ b(α ∧ β) = F, b(¬(α ∧ β)) = F, b(M(α ∧ β)) = T, b(O(α ∧ β)) = T.

So, each entry of the truth-table for each connective ⊗ of L determines
an axiom for a gentzenian valuation mapping b : L → {T, F}. We obtain
thus, through the above method, a kind of unique (partial) ‘binary print’ of the
original truth-functional logic.

Theorem 3.4 Given a logic L, let B be the set of gentzenian valuations b :
L → {T, F} satisfying the axioms obtained from the truth-tables of L using the
above method, plus the following axioms:

(C1) > → b(α) = T | b(α) = F ;

6

(C2) b(α) = T, b(α) = F → ⊥;

(C3) b(α) = T →
∨

d∈D
∧

1≤m<n≤i b(ϕmn(p/α)) = qd
mn;

(C4) b(α) = F →
∨

u∈U
∧

1≤m<n≤j b(ψmn(p/α)) = ru
mn

for every α ∈ L (here, qd
mn and ru

mn are as in Remark 2.6). Then b ∈ B iff
b = t ◦ § for some homomorphism § : L → V.

Proof: Given b ∈ B, define a homomorphism § : L → V such that:

(i) §(α) = d iff b(α) = T and b(ϕmn(p/α)) = qd
mn for every 1 ≤ m < n ≤ i;

(ii) §(α) = u iff b(α) = F and b(ψmn(p/α)) = ru
mn for every 1 ≤ m < n ≤ j,

where α ranges over the atomic sentences ats ∈ L. Note that § is well-defined
as a total functional assignment because b ∈ B satisfies conditions (C1)–(C2)
above. Since b satisfies all the axioms obtained from all the entries of the truth-
tables of L, it is straightforward to prove, by induction on the complexity of
the formula α ∈ L, that (i) and (ii) hold when α ranges over all the formulas
in L. (Indeed, note that, in the light of conditions (C3)–(C4), given b ∈ B
and b(α) = T we can conclude that there exists a unique d ∈ D such that∧

1≤m<n≤i b(ϕmn(p/α)) = qd
mn; on the other hand, given b(α) = F we can

conclude that there exists a unique u ∈ U such that
∧

1≤m<n≤j b(ψmn(p/α)) =
ru
mn.) From this we obtain that §(ϕ) ∈ D iff b(ϕ) = T , therefore b = t ◦ § as

desired.
The converse —if b = t ◦ § for some homomorphism §, then b ∈ B— is

immediate. QED

So, while the initial many-valued semantics seemed to defeat the so-called
‘principle of bivalence’, the new bivalued adequate semantics based on but two
‘logical values’ finally restored bivalence by way of its specific choice of desig-
nated / undesignated truth-values and by way of clauses (C1)–(C2).

Corollary 3.5 (i) For every bivaluation b : L → {T, F} in B there exists a
homomorphism §b : L → V such that:

§b(α) ∈ D iff b(α) = T , for any α ∈ L; (1)

(ii) for every § : L → V there exists a b§ ∈ B such that:

b§(α) = T iff §(α) ∈ D, for any α ∈ L. (2)

We now have two notions of semantic entailment for L: the first one, |=, uses
the truth-tables given by V and the corresponding homomorphic valuations §,
whereas the second one, |=B, uses the related gentzenian semantics B.

Theorem 3.6 The set B of gentzenian valuations for L is adequate, that is, for
any Γ ∪ {ϕ} ⊆ L:

Γ |= ϕ iff Γ |=B ϕ.

7

Proof: Suppose that Γ |= ϕ, and let b ∈ B be such that b(Γ) ⊆ {T}, if possible.
By Corollary 3.5(i) there exists a homomorphism §b such that §b(Γ) ⊆ D. By
hypothesis we get §b(ϕ) ∈ D, whence b(ϕ) = T by (1). This shows that Γ |=B ϕ.
The converse is proven in an analogous way, using Corollary 3.5(ii). QED

4 Some Examples

In this section we will give examples of gentzenian semantics for several gen-
uinely finite-valued paraconsistent logics, obtained through an application of the
2-valued reduction algorithm proposed in the last section. Instead of writing
extensive lists of bivaluation axioms, one for each entry of each truth-table, plus
some complementing axioms, we shall be using First-Order Classical Logic, fol,
in what follows, in order to manipulate and simplify the clauses written in our
equational (meta)language. Moreover, we will often seek to reformulate things
so as to make them more convenient for a tableaux-oriented approach, as in the
next section.

Example 4.1 The paraconsistent logic P1
3 = 〈{0, 1

2 , 1}, {¬,⇒}, { 1
2 , 1}〉, was in-

troduced by Sette in [15] (where it was called P 1), having as truth-tables:

0 1
2 1

¬ 1 1 0

⇒ 0 1
2 1

0 1 1 1
1
2 0 1 1
1 0 1 1

Note that ¬p separates 1
2 and 1. Indeed:

[¬p](1) = 0, [¬p](1
2) = 1

and 0]1. Thus:

x = 0 iff t(x) = F ;
x = 1

2 iff t(x) = T , t(¬x) = T ;
x = 1 iff t(x) = T , t(¬x) = F .

Applying our reduction algorithm to the truth-tables of ¬ and ⇒ we obtain the
following axioms for b:

(i) b(α) = F → b(¬α) = T, b(¬¬α) = F ;
(ii) b(α) = T, b(¬α) = T → b(¬α) = T, b(¬¬α) = F ;
(iii) b(α) = T, b(¬α) = F → b(¬α) = F ;
(iv) b(α) = F | b(β) = T → b(α⇒ β) = T, b(¬(α⇒ β)) = F ;
(v) b(α) = T, b(β) = F → b(α⇒ β) = F .

In this case, axiom (C3) gives b(α) = T → b(¬α) = T | b(¬α) = F , which
can be derived from (C1). Axiom (C4) gives b(α) = F → b(¬α) = T , which
is derivable from the above clause (i).

8

Using fol we can rewrite clauses (i)–(v) equivalently as:

(4.1.1) b(¬α) = F → b(α) = T ;
(4.1.2) b(¬¬α) = T → b(¬α) = F ;
(4.1.3) b(α⇒ β) = T → b(α) = F | b(β) = T ;
(4.1.4) b(α⇒ β) = F → b(α) = T, b(β) = F ;
(4.1.5) b(¬(α⇒ β)) = T → b(α) = T, b(β) = F .

Note that (4.1.3)–(4.1.5) axiomatize a sort of ‘classic-like’ implication.
Axioms (4.1.1)–(4.1.5) plus (C1)–(C2) characterize a dyadic semantics for P1

3.

Example 4.2 The paraconsistent logic P1
4 = 〈{0, 1

3 ,
2
3 , 1}, {¬,⇒}, { 1

3 ,
2
3 , 1}〉,

was introduced in [7] and [11], and studied under the name P 2 in [10]. The
truth-tables of its connectives are as follows:

0 1
3

2
3 1

¬ 1 2
3 1 0

⇒ 0 1
3

2
3 1

0 1 1 1 1
1
3 0 1 1 1
2
3 0 1 1 1
1 0 1 1 1

It is easy to see that ¬p separates 1 and 1
3 , as well as 1 and 2

3 . On the other
hand, ¬¬p separates 1

3 and 2
3 . From this we get:

x = 0 iff t(x) = F ;
x = 1

3 iff t(x) = T , t(¬x) = T , t(¬¬x) = T ;
x = 2

3 iff t(x) = T , t(¬x) = T , t(¬¬x) = F ;
x = 1 iff t(x) = T , t(¬x) = F , t(¬¬x) = T .

From the truth-table for ¬ we obtain, after applying fol:

(4.2.1) b(¬α) = F → b(α) = T ;
(4.2.2) b(¬¬α) = T → b(α) = T ;
(4.2.3) b(¬¬¬α) = T → b(¬¬α) = F .

Now, axiom (C3) is derivable from (C1), and axiom (C4) is derivable from
the clauses above.

The implication ⇒ is again ‘classic-like’, in the same sense as in the last ex-
ample. Therefore, axioms (4.2.1)–(4.2.3), (4.1.3)–(4.1.5) and (C1)–(C2) char-
acterize together a dyadic semantics for P1

4. Similar procedures can be applied
to each paraconsistent logic of the hierarchy P1

n+2(= Pn), for n ∈ N+, from [10].

Example 4.3 Having already used negation in the two above examples in order
to separate truth-values, let us now make it differently. Consider the paracon-
sistent propositional logic LFI1 = 〈{0, 1

2 , 1}, {¬, •,⇒,∧,∨}, { 1
2 , 1}〉, studied in

detail in [9], whose matrices are:

9

0 1
2 1

¬ 1 1
2 0

• 0 1 0

⇒ 0 1
2 1

0 1 1 1
1
2 0 1

2 1
1 0 1

2 1

plus conjunction ∧ and disjunction ∨ defined as in Lukasiewicz’s logics (see
Example 2.9). Clearly, •p separates 1 and 1

2 , then:

x = 0 iff t(x) = F ;
x = 1

2 iff t(x) = T , t(•x) = T ;
x = 1 iff t(x) = T , t(•x) = F .

From the truth-table for ¬, and using fol, we obtain:

(4.3.1) b(¬α) = T → b(α) = F | b(•α) = T ;
(4.3.2) b(¬α) = F → b(α) = T, b(•α) = F .

Axiom (C3) is again derivable from (C1); axiom (C4) is derivable from (4.3.2).
Now, these are the axioms for •:

(4.3.3) b(•α) = T → b(α) = T ;
(4.3.4) b(••α) = T → b(•α) = F ;
(4.3.5) b(•¬α) = T → b(•α) = T ;
(4.3.6) b(•¬α) = F → b(¬α) = F | b(α) = F .

From the truth-tables for the binary connectives, and using fol, we obtain:

(4.3.7) b(α ∧ β) = T → b(α) = T, b(β) = T ;
(4.3.8) b(α ∧ β) = F → b(α) = F | b(β) = F ;
(4.3.9) b(α ∨ β) = T → b(α) = T | b(β) = T ;
(4.3.10) b(α ∨ β) = F → b(α) = F, b(β) = F ;
(4.3.11) b(α⇒ β) = T → b(α) = F | b(β) = T ;
(4.3.12) b(α⇒ β) = F → b(α) = T, b(β) = F ;

To those we may add, furthermore:

(4.3.13) b(•(α ∧ β)) = T
→ b(α) = T, b(•β) = T | b(β) = T, b(•α) = T ;

(4.3.14) b(•(α ∧ β)) = F
→ b(α) = F | b(β) = F | b(α) = T, b(•α) = F, b(β) = T, b(•β) = F ;

(4.3.15) b(•(α ∨ β)) = T
→ b(α) = F, b(•β) = T | b(β) = F, b(•α) = T | b(•α) = T, b(•β) = T ;

(4.3.16) b(•(α ∨ β)) = F
→ b(α) = F, b(β) = F | b(α) = T, b(•α) = F | b(β) = T, b(•β) = F ;

(4.3.17) b(•(α⇒ β)) = T → b(α) = T, b(•β) = T ;
(4.3.18) b(•(α⇒ β)) = F → b(α) = F | b(•β) = F .

So, if the above axioms are taken together with (C1)–(C2), then we obtain
a natural dyadic semantics for LFI1. Also in [9] two slightly different (non-
gentzenian) bivaluation semantics for LFI1 were explored.

10

Example 4.4 Belnap’s paraconsistent and paracomplete 4-valued logic (cf. [2]),
B4 = 〈{0, 1

3 , 2
3 , 1}, {¬,∧,∨}, {

2
3 , 1}〉, can be presented by way of the following

matrices:

0 1
3

2
3 1

¬ 0 2
3

1
3 1

∧ 0 1
3

2
3 1

0 0 0 0 0
1
3 0 1

3 0 1
3

2
3 0 0 2

3
2
3

1 0 1
3

2
3 1

∨ 0 1
3

2
3 1

0 0 1
3

2
3 1

1
3

1
3

1
3 1 1

2
3

2
3 1 2

3 1
1 1 1 1 1

Clearly, ¬p separates 1 and 2
3 and also separates 1

3 and 1, so:

x = 0 iff t(x) = F , t(¬x) = F ;
x = 1

3 iff t(x) = F , t(¬x) = T ;
x = 2

3 iff t(x) = T , t(¬x) = F ;
x = 1 iff t(x) = T , t(¬x) = T .

Now, from the truth-table for ¬, and using fol, we obtain:

(4.4.1) b(¬¬α) = T → b(α) = T ;
(4.4.2) b(¬¬α) = F → b(α) = F .

Both axioms (C3) and (C4) are now derivable from (C1). From the truth-
tables of conjunction and disjunction, using fol, we obtain the positive clauses
(4.3.7)–(4.3.10) again, but also:

(4.4.3) b(¬(α ∧ β)) = T → b(α) = F, b(¬α) = T, b(β) = F, b(¬β) = T |
b(α) = F, b(¬α) = T, b(β) = T, b(¬β) = T |
b(α) = T, b(¬α) = T, b(β) = F, b(¬β) = T |
b(α) = T, b(¬α) = T b(β) = T, b(¬β) = T ;

(4.4.4) b(¬(α ∧ β)) = F → b(α) = F, b(¬α) = F | b(α) = T, b(¬α) = F |
b(β) = F, b(¬β) = F | b(β) = T, b(¬β) = F ;

(4.4.5) b(¬(α ∨ β)) = T → b(α) = F, b(¬α) = T | b(α) = T, b(¬α) = T |
b(β) = F, b(¬β) = T | b(β) = T, b(¬β) = T ;

(4.4.6) b(¬(α ∨ β)) = F → b(α) = F, b(¬α) = F, b(β) = F, b(¬β) = F |
b(α) = F, b(¬α) = F, b(β) = T, b(¬β) = F |
b(α) = T, b(¬α) = F, b(β) = F, b(¬β) = F |
b(α) = T, b(¬α) = F b(β) = T, b(¬β) = F .

A dyadic semantics for B4 is given by the above axioms, plus (C1)–(C2).

5 Application: tableaux for logics with dyadic
semantics

In the examples from the last section we found axioms for the set of bivalua-
tion mappings b —defining a gentzenian semantics for a genuinely finite-valued
logic L— expressed as conditional clauses of the form:

11

b(α) = w
→ b(α1

1) = w1
1, . . . , b(α

n1
1) = wn1

1 | . . . | b(α1
m) = w1

m, . . . , b(α
nm
m) = wnm

m ,

where w,ws
k ∈ {T, F} and αs

k has smaller complexity, under some appropriate
measure (cf. [5]), than α. Each clause as above generates a tableau rule for L
as follows: Translate b(β) = T as the signed formula T (β), and b(β) = F as the
signed formula F (β). Then, a conditional clause such as the one above induces
the following tableau-rule:

w(α)

� . . . �
w1

1(α1
1) w1

m(α1
m)

...
...

wn1
1 (αn1

1) wnm
m (αnm

m)

where w,ws
k ∈ {T, F}. In that case, it is straightforward to prove that the set

of tableau rules for L obtained from the clauses for B characterizes a sound and
complete tableau system for L. The structural similarity between the tableau
rules so obtained and the classical ones is not fortuitous. Once we have obtained
an appropriate dyadic semantics for a many-valued logic, then we can forget the
many truth- values which might have been in use as labels (as in [6]), and work
only with the ‘logical values’ T and F , just like in the classical case. While the
former many-signed tableaux have the so-called subformula property, according
to which each formula αs

k obtained from the application to α of a tableau rule as
the one above is a subformula of the initial formula α —the latter related two-
signed tableaux obtained through our method will lose this property, paralleling
the lost of truth-functionality of the many-valued homomorphisms by the two-
valued valuations. We will still have, though, a shortening property which is
as good for efficiency as the subformula property: each formula αs

k will be less
complex (under some appropriate measure, cf. [5]) than the initial formula α
being analyzed by the tableau rules.

Example 5.1 The following set of rules characterizes a tableau system for the
paraconsistent logic P1

3, according to clauses (4.1.1)–(4.1.5) of Example 4.1:

(5.1.1)
F (¬α)
T (α)

(5.1.2)
T (¬¬α)
F (¬α)

(5.1.3)
T (α⇒ β)
F (α) | T (β)

(5.1.4)
F (α⇒ β)
T (α), F (β)

(5.1.5)
T (¬(α⇒ β))
T (α), F (β)

Example 5.2 Following Example 4.2, an adequate set of tableau rules for the
paraconsistent logic P1

4 is given by (5.1.3)–(5.1.5) plus:

(5.2.1)
F (¬α)
T (α)

(5.2.2)
T (¬¬α)
T (α)

(5.2.3)
T (¬¬¬α)
F (¬¬α)

12

Example 5.3 Now we exhibit a tableau system for the paraconsistent logic
LFI1 (see Example 4.3, based on its dyadic semantics):

(5.3.1)
T (¬α)

F (α) | T (•α)
(5.3.2)

F (¬α)
T (α), F (•α)

(5.3.3)
T (•α)
T (α)

(5.3.4)
T (••α)
F (•α)

(5.3.5)
T (•¬α)
T (•α)

(5.3.6)
F (•¬α)

F (¬α) | F (α)

(5.3.7)
T (α ∧ β)
T (α), T (β)

(5.3.8)
F (α ∧ β)

F (α) | F (β)

(5.3.9)
T (α ∨ β)

T (α) | T (β)
(5.3.10)

F (α ∨ β)
F (α), F (β)

(5.3.11)
T (α⇒ β)
F (α) | T (β)

(5.3.12)
F (α⇒ β)
T (α), F (β)

(5.3.13)
T (•(α ∧ β))
T (α), | T (β),

(5.3.14)
F (•(α ∧ β))

F (α) | F (β) | T (α), T (β),
T (•β) | T (•α) | F (•α), F (•β)

(5.3.15)
T (•(α ∨ β))

F (α), | F (β), | T (•α),
(5.3.16)

F (•(α ∨ β))
F (α), | T (α), | T (β),

T (•β) | T (•α) | T (•β) F (β) | F (•α) | F (•β)

(5.3.17)
T (•(α⇒ β))
T (α), T (•β)

(5.3.18)
F (•(α⇒ β))
F (α) | F (•β)

Compare this tableau system for LFI1 with the tableau systems for this same
logic presented in [8]. The points of departure from the latter were non-gentzen-
ian semantics, and then (decidable) tableaux without the shortening property
(in fact, tableaux allowing for loops) were obtained.

Example 5.4 A tableau system for Belnap’s 4-valued logic (see Example 4.4),
B4, can be obtained by adding to (5.3.7)–(5.3.10) the following rules:

(5.4.1)
T (¬¬α)
T (α)

(5.4.2)
F (¬¬α)
F (α)

(5.4.3)
T (¬(α ∧ β))

F (α), T (¬α), | F (α), T (¬α), | T (α), T (¬α), | T (α), T (¬α),
F (β), T (¬β) | T (β), T (¬β) | F (β), T (¬β) | T (β), T (¬β)

(5.4.4)
F (¬(α ∧ β))

F (α), F (¬α) | T (α), F (¬α) | F (β), F (¬β) | T (β), F (¬β)

(5.4.5)
T (¬(α ∨ β))

F (α), T (¬α) | T (α), T (¬α) | F (β), T (¬β) | T (β), T (¬β)

(5.4.6)
F (¬(α ∨ β))

F (α), F (¬α), | F (α), F (¬α), | T (α), F (¬α), | T (α), F (¬α),
F (β), F (¬β) | T (β), F (¬β) | F (β), F (¬β) | T (β), F (¬β)

13

6 Conclusions

In this paper we have exhibited a method to transform any finite-valued truth-
functional semantics in which truth-values can be individualized in the sense of
Assumption 2.5 into 2-valued semantics. The specific form of the gentzenian
axioms we obtain permits us then to define automatically a (decidable) tableau
system for each logic subjected to the 2-valued reduction. The same meth-
ods can be applied to many other well-known logics such as Lukasiewicz’s Ln,
Kleene’s K3, Gödel’s G3 etc. The reduction method builds bulk in the results
from [13, 14] and [1]. Similar procedures and also sequent systems for the 2-
valued semantics hereby produced can be found in [3, 4] and [12].

It is an open problem to extend our 2-valued reduction procedure so as to
cover other classes of logics such as modal or infinite-valued logics.

Acknowledgements

The work of the first and the fourth authors was partially supported by FCT
(Portugal) and FEDER (European Union), namely, via the Project FibLog
POCTI / MAT / 37239 / 2001 of the Centro de Lógica e Computação (IST,
Portugal). The second and fourth authors were also partially supported by
CNPq (Brazil).

References

[1] D. Batens. A bridge between two-valued and many-valued semantic sys-
tems: n-tuple semantics. In Proceedings of the XII International Sympo-
sium on Multiple-Valued Logic, pages 318–322. IEEE Computer Science
Press, 1982.

[2] N. D. Belnap. A useful four-valued logic. In J. M. Dunn, editor, Modern
uses of multiple-valued logic, pages 8–37. D. Reidel Publishing, Boston,
1977.

[3] J.-Y. Béziau. Sequents and bivaluations. Preprint.

[4] J.-Y. Béziau. A sequent calculus for Lukasiewicz’s three-valued logic based
on Suszko’s bivalent semantics. Bulletin of the Section of Logic, 28:89–97,
1999.

[5] C. Caleiro, W. A. Carnielli, M. E. Coniglio, and J. Marcos. Suszko’s Thesis
and dyadic semantics. Preprint.

[6] W. A. Carnielli. Systematization of the finite many-valued logics through
the method of tableaux. The Journal of Symbolic Logic, 52:473–493, 1987.

14

[7] W. A. Carnielli and M. Lima-Marques. Society semantics for multiple-
valued logics. In W. A. Carnielli and I. M. L. D’Ottaviano, editors, Ad-
vances in Contemporary Logic and Computer Science, volume 235 of Con-
temporary Mathematics Series, pages 33–52. American Mathematical Soci-
ety, 1999.

[8] W. A. Carnielli and J. Marcos. Tableaux for logics of formal inconsistency.
In H. R. Arabnia, editor, Proceedings of the 2001 International Conference
on Artificial Intelligence (IC-AI’2001), held in Las Vegas, USA, June 2001,
volume II, pages 848–852. CSREA Press, Athens GA, USA, 2001.
http://logica.rug.ac.be/~joao/Publications/Congresses/tableauxLFIs.pdf.

[9] W. A. Carnielli, J. Marcos, and S. de Amo. Formal inconsistency and
evolutionary databases. Logic and Logical Philosophy, 8:115–152, 2000.

[10] V. L. Fernández and M. E. Coniglio. Combining valuations with society
semantics. Journal of Applied Non-Classical Logics, 2003.
http://www.cle.unicamp.br/e-prints/abstract 11.html.

[11] J. Marcos. Possible-Translations Semantics (in Portuguese). Master’s the-
sis, State University of Campinas (Brazil), 1999.
http://www.cle.unicamp.br/students/J.Marcos/.

[12] J. Marcos and J.-Y. Béziau. Many values, many representations. Preprint.

[13] D. Scott. Background to formalisation. In H. Leblanc, editor, Truth, Syntax
and Modality, pages 244–273. North-Holland, Amsterdam, 1973.

[14] D. Scott. Completeness and axiomatizability in many-valued logic. In
L. Henkin et. al., editor, Proceedings of Tarski Symposium, pages 411–436.
Proceedings of Symposia in Pure Mathematics, vol.25, Berkeley 1971, 1974.

[15] A. M. Sette. On the propositional calculus P 1. Mathematica Japonicae,
18:173–180, 1973.

15

