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WALTER CARNIELLI, MARCELO E. CONIGLIO AND
JOÃO MARCOS

LOGICS OF FORMAL INCONSISTENCY

1 INTRODUCTION

1.1 Contradictoriness and inconsistency,
consistency and non-contradictoriness

In traditional logic, contradictoriness (the presence of contradictions in a
theory or in a body of knowledge) and triviality (the fact that such a the-
ory entails all possible consequences) are assumed inseparable, granted that
negation is available. This is an effect of an ordinary logical feature known as
‘explosiveness’: According to it, from a contradiction ‘α and ¬α’ everything
is derivable. Indeed, classical logic (and many other logics) equate ‘consis-
tency’ with ‘freedom from contradictions’. Such logics forcibly fail to dis-
tinguish, thus, between contradictoriness and other forms of inconsistency.
Paraconsistent logics are precisely the logics for which this assumption is
challenged, by the rejection of the classical ‘consistency presupposition’.
The Logics of Formal Inconsistency, LFIs, object of this chapter, are the
paraconsistent logics that neatly balance the equation:

contradictions + consistency = triviality

The LFIs have a remarkable way of reintroducing consistency into the non-
classical picture: They internalize the very notions of consistency and in-
consistency at the object-language level. The result of that strategy is the
design of very expressive logical systems, whose fundamental feature is the
ability to recover all consistent reasoning right on demand, while still allow-
ing for some inconsistency to linger, otherwise.

Paraconsistency is the study of contradictory yet non-trivial theories.1
The significance of paraconsistency as a philosophical program which dares
to go beyond consistency lies in the possibilities (formal, epistemological
and mathematical) to take profit from the distinctions and contrasts be-
tween asserting opposites (either in a formal or in a natural language) and
ensuring non-triviality (in a theory, formal or not). A previous entry [Priest,
2002] in this Handbook was dedicated to paraconsistent logics. Although
partaking in the same basic views on paraconsistency, our approach is ori-
ented towards investigating and exhibiting the features of an ample and
very expressive class of paraconsistent logics — the above mentioned LFIs.

1Paraconsistency has the meaning of ‘besides, beyond consistency’, just as paradox
means ‘besides, beyond opinion’ and ‘paraphrase’ means ‘to phrase in other words’.

D.M. Gabbay and F. Guenthner (eds.),
1 –

c⃝ 2007 Springer.

Handbook of Philosophical Logic,�2nd�Edition,
Volume 14,

1

93.



2 WALTER CARNIELLI, MARCELO E. CONIGLIO AND JOÃO MARCOS

Moreover, our chapter starts from clear-cut abstract definitions of the terms
involved (triviality, consistency, paraconsistency, etc.) and analyzes both
proof-theoretical and model-theoretical aspects of LFIs, insisting on their
special interest and hinting about their near ubiquity in the paraconsistent
realm.

Once inconsistency is locally allowed, the chief value of a useful logical
system (understood as a derivability formalism reflecting some given the-
oretical or pragmatical constraints) turns out to be its capability of doing
what it is supposed to do, namely, to set acceptable inferences apart from
unacceptable ones. The least one would ask for is, thus, that the system
does separate propositions (into two non-empty classes, the derivable ones
and the non-derivable) or, in other words, that it be non-trivial. Therefore,
the most fundamental guiding criterion for choosing theories and systems
worthy of investigation, as suggested by [Jaśkowski, 1948], [Nelson, 1959]
and [da Costa, 1959], and extended in [Marcos, 2005c], should indeed be
their abstract character of non-triviality, rather than the mere absence of
contradictions.

The big challenge for paraconsistentists is to avoid allowing contradic-
tory theories to explode and derive anything else (as they do in classical
logic) and still to reserve resources for designing a respectful logic. For that
purpose they must weaken their logical machinery by abandoning explosion
in order to be able to draw reasonable conclusions from those theories, and
yet come up with a legitimate logical system. A current trend in logic has
been that of internalizing metatheoretical notions and devices at the object-
language level, in order to build ever more expressive logical systems, as in
the case of labeled deductive systems, hybrid logics, or the logics of prov-
ability. The LFIs constitute exactly the class of paraconsistent logics which
can internalize the metatheoretical notions of consistency and inconsistency.
As a consequence, despite constituting fragments of consistent logics, the
LFIs can canonically be used to faithfully encode all consistent inferences.
We will in this chapter present and discuss these logics, illustrating their
uses, properties and representations.

Most of the material for the chapter is based on the article [Carnielli
and Marcos, 2002], which founds the formal distinctions between contradic-
toriness, inconsistency and triviality, which we here utilize. In some cases
we correct here the definitions and proofs presented there. Another central
reference is the book [Marcos, 2005], where most of the examples and pro-
posals hereby defended may be found, in extended form. The LFIs, central
topic of the present chapter, are carefully introduced in Subsection 3.1. All
necessary concepts and definitions showing how we approach the property
of explosion and how this reflects on the principles of logic will be found in
Section 2. Subsection 1.2 serves as vestibular to the more technical sections
that follow.

The main LFIs are presented in Sections 3 and 4. One of their primary
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subclasses, the C-systems, is introduced as containing those LFIs in which
consistency may be expressed as a single formula of the object language.
Moreover, the dC-systems are introduced as those C-systems in which this
same formula may be explicitly expressed in terms of other more usual con-
nectives (see Definition 32). In Section 3 we study in detail a fundamental
example of LFI, the logic mbC, where consistency is rendered expressible
by means of a specific new primitive connective. This logic is compared to
the stronger logic C1 (cf. [da Costa, 1963] and [da Costa, 1974]), a logic
of the early paraconsistent vintage. We provide Hilbert-style axiomatiza-
tions, as well as bivaluation semantics and adequate tableau systems for
mbC and C1. Additionally, adequate possible-translations semantics are
proposed for mbC.

LFIs are typically based on previously given consistent logics. The fun-
damental feature enjoyed by classically-based LFIs of being able to recover
classical reasoning (despite constituting themselves deductive fragments of
classical logic) is explained in Subsection 3.6.

In Section 4 we extend the logic mbC by adding further axioms which
permit us to talk about inconsistency and consistency in more symmetric
guises inside the logic. A brief study of the thereby obtained logics follows,
extending the results obtained in Section 3.

Section 5 explores additional topics on LFIs. In Subsection 5.1 some
fundamental dC-systems are studied. Particular cases of dC-systems are
da Costa’s logics Cn, 1 ≤ n < ω, Jaśkowski’s logic D2, and all usual normal
modal logics (under convenient formulations). Conveniently extending the
previously obtained LFIs it is possible to introduce a large family of such
logics by controlling the propagation of consistency (cf. Subsection 5.2).
This procedure adds flexibility to the game, allowing one to propose tailor-
suited LFIs; we illustrate the case by defining literally thousands of logics,
including an interesting class of maximal logics in Subsection 5.3. We end
this subsection by a brief note on the possibilities of algebraizing LFIs, in
general, concluding a series of similar notes and results to be found along
the paper, dedicated especially to the difficulties surrounding the so-called
replacement property, the metatheoretical result that guarantees equivalent
formulas to be logically indistinguishable.

Section 6 examines some perspectives on the research about Logics of
Formal Inconsistency. The chapter ends by a list of axioms and systems
given in Section 7.

It goes without saying that the route we will follow in this chapter cor-
responds not only to our preferences on how to deal with paraconsistency,
but it brings also a personal choice of topics we consider to be of special
philosophical and mathematical relevance.
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1.2 The import of the Logics of Formal Inconsistency

Should the presence of contradictions make it impossible to derive anything
sensible from a theory or a logic where such contradictions appear, as the
classical logician would maintain? Or are there maybe situations in which
contradictions are at least temporarily admissible, if only their wild behavior
can somehow be controlled? The theoretical and practical relevance of such
questions shows paraconsistency to be a bold programme in the foundations
of formal sciences. As time goes by, the problems and methods of formal
logic, traditionally connected to mathematics and philosophy, can more and
more be seen to affect and influence several other areas of knowledge, such
as computer science, information systems, formal philosophy, theoretical
linguistics, and so forth. In such areas, certainly more than in mathemat-
ics, contradictions are presumably unavoidable: If contradictory theories
appear only by mistake, or are due to some kind of resource-boundedness
on computers, or depend on an altered state of reality, contradictions can
hardly be prevented from at least being taken into consideration, as they
often show up as gatecrashers. The pragmatic point thus is not whether
contradictory theories exist, but how to deal with them.

Regardless of the disputable status of contradictory theories, it is hard
to deny that they are, in many cases, quite informative, it being desirable
to establish well-reasoned judgements even when contradictions are present.
Consider, for instance, the following situation (adapted from [Carnielli and
Marcos, 2001a]) in which you ask a yes-no question to two people: ‘Does
Jeca Tatu live in São Paulo?’ Exactly one of the three following distinct
scenarios is possible: They might both say ‘yes’, they might both say ‘no’, or
else one of them might say ‘yes’ while the other says ‘no’. Now, it happens
that in no situation you can be sure whether Jeca Tatu lives in São Paulo
or not (unless you trust one of the interviewees more than the other), but
only in the last scenario, where a contradiction appears, you are sure to
have received wrong information from one of your sources.

A challenge to any study on paraconsistency is to oppugn the tacit as-
sumption that contradictory theories necessarily contain false sentences.
Thus, if we can build models of structures in which some (but not all)
contradictory sentences are simultaneously true, we will have the possibility
of maintaining contradictory sentences inside a given theory and still be
able, in principle, to perform reasonable inferences from that theory. The
problem will not be that of validating falsities, but rather of extending our
notion of truth (an idea further explored, for instance, in [Bueno, 1999]).

In the first half of the last century, some authors, including #Lukasiewicz
and Vasiliev, proposed a new approach to the idea of non-contradiction,
offering interpretations to formal systems in which contradictions could
make sense. Between the 1940s and the 60s the first systems of paracon-
sistent logic appeared (cf. [Jaśkowski, 1948], [Nelson, 1959], and [da Costa,
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1963]). For historical notes on paraconsistency we suggest [Arruda, 1980],
[D’Ottaviano, 1990], [da Costa and Marconi, 1989], the references mentioned
in part 1 of [Priest et al., 1989] and in section 3 of [Priest, 2002], as well
as the book [Bobenrieth-Miserda, 1996] and the prolegomena to [Marcos,
2005].

Probably around the 40s, time was ripe for thinking about the role of
negation in different terms: The falsificationism of K. Popper (cf. [Popper,
1959]) supported the idea (and stressed its role in the philosophy of science)
that falsifying a proposition, as an epistemological step towards refuting
it, is not the same as assuming the sentence to be false. This apparently
led Popper to think about a paraconsistent-like logic dual to intuitionism
in his [Popper, 1948], later to be rejected as somehow too weak as to be
useful (cf. [Popper, 1989]). But it should be remarked that Popper never
dismissed this kind of approach as nonsensical. His disciple D. Miller in
[Miller, 2000] in fact argues that the logic for dealing with unfalsifiedness
should be paraconsistent.2 Another recent proposal by Y. Shramko also de-
fends the paraconsistent character of falsificationism (cf. [Shramko, 2005]).

When proposing his first paraconsistent logics (cf. [da Costa, 1963]) da
Costa’s intuition was that the ‘consistency’ (which he dubbed ‘good behav-
ior’) of a given formula would not only be a sufficient requisite to guarantee
its explosive character, but that it could also be represented as an ordinary
formula of the underlying language. For his initial logic, C1, he chose to rep-
resent the consistency of a formula α by the formula ¬(α∧¬α), and referred
to this last formula as a realization of the ‘Principle of Non-Contradiction’.

In the present approach, as in [Carnielli and Marcos, 2002], we introduce
consistency as a primitive notion of our logics: The Logics of Formal In-
consistency, LFIs, are paraconsistent logics that internalize the notions of
consistency and inconsistency at the object-language level. In this chapter
we will also study some significative subclasses of LFIs, the C-systems and
dC-systems based on classical logic (and da Costa’s logics Cn will be shown
to constitute but particular samples from the latter subclass).

It is worth noting that, in general, paraconsistent logics do not validate
contradictions nor, equivalently, invalidate the ‘Principle of Non-Contradic-
tion’, in our reading of it (cf. the principle (1) in Subsection 2.1). Most
paraconsistent logics, in fact, are proper fragments of (some version of)
classical logic, and thus they cannot be contradictory.

Clearly, the concept of paraconsistency is related to the properties of a
negation inside a given logic. In that respect, arguments can be found in
the literature to the effect that ‘negations’ of paraconsistent logics would
not be proper negation operators (cf. [Slater, 1995] and [Béziau, 2002a]).
Béziau’s argument amounts to a request for the definition of some mini-

2Indeed, Miller even proposes that the logic C1 of da Costa’s hierarchy could be used
as a logic of falsification.
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mal ‘positive properties’ in order to characterize paraconsistent negation
as constituting a real negation operator, instead of something else. Slater
argues for the inexistence of paraconsistent logics, given that their negation
operator is not a ‘contradictory-forming functor’, but just a ‘subcontrary-
forming one’, revisiting and extending an earlier argument from [Priest and
Routley, 1989]. A reply to the latter kind of criticism is that it is as con-
vincing as arguing that a ‘line’ in hyperbolic geometry is not a real line,
since, through a given point not on the line, the ‘parallel-forming functor’
does not define a unique line.3 In any case, this is not the only possible
counter-objection, and the development of paraconsistent logic is not de-
terred by this discussion. Investigations about the general properties of
paraconsistent negations include [Avron, 2002], [Béziau, 1994] and [Lenzen,
1998], among others. Those studies are surveyed in [Marcos, 2005c], where
also a minimal set of ‘negative properties’ for negation is advanced as a new
starting point for a unifying study of negation.

2 WHY’S AND HOW’S: CONCEPTS AND DEFINITIONS

2.1 The principles of logic revisited

Our presentation in what follows is situated at the level of a general theory
of consequence relations. Let ℘(X) denote the powerset of a set X. As
usual, given a set For of formulas, we say that ! ⊆ ℘(For) × For defines
a (single-conclusion) S-consequence relation over For (where S stands for
standard) if the following clauses hold, for any choice of formulas α and β,
and of subsets Γ and ∆ of For (formulas and commas at the left-hand side
of ! denote, as usual, sets and unions of sets of formulas):

(Con1) α ∈ Γ implies Γ ! α (reflexivity)
(Con2) (∆ ! α and ∆ ⊆ Γ) implies Γ ! α (monotonicity)
(Con3) (∆ ! α and Γ,α ! β) implies ∆, Γ ! β (cut)

So, an S-logic L will here be defined simply as a structure of the form
⟨For,!⟩, containing a set of formulas For and an S-consequence relation !
defined over this set. An additional useful property of a logic is compact-
ness, defined as:

(Con4) Γ ! α implies Γfin ! α, for some finite Γfin ⊆ Γ (compactness)

We will assume that the language of every logic L is defined over a proposi-
tional signature Σ = {Σn}n∈ω, where Σn is the set of connectives of arity n.
We will also assume that P = {pn : n ∈ ω} is the set of propositional

3In hyperbolic geometry the following property, known as the Hyperbolic Postulate,
holds good: For every line l and point p not on l, there exist at least two distinct lines
parallel to l that pass through p.
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variables (or atomic formulas) from which we freely generate the algebra
For of formulas using Σ. Along most of the present paper, the least we
will suppose on a logic is that its consequence relation satisfies the clauses
defining an S-consequence.

Another usual property of a logic is structurality. Let ε be an endomor-
phism in For, that is, ε is the unique homomorphic extension of a mapping
from P into For. A logic is structural if its consequence relation preserves
endomorphisms:

(Con5) Γ ! α implies ε(Γ) ! ε(α) (structurality)

In syntactical terms, structurality corresponds to the rule of uniform sub-
stitution or, alternatively, to the use of schematic axioms and rules.

Any set Γ ⊆ For is here called a theory of L. A theory Γ is said to be
proper if Γ ̸= For, and a theory Γ is said to be closed if it contains all of
its consequences, that is, for a closed theory Γ we have Γ ! α iff α ∈ Γ, for
every formula α. If Γ ! α for all Γ, we will say that α is a thesis (of L).

Unless explicitly stated to the contrary, we will from now on be working
with some fixed arbitrary logic L = ⟨For,!⟩ where For is written in a
signature containing a unary ‘negation’ connective ¬ and ! satisfies (Con1)–
(Con3) and (Con5).

Let Γ be a theory of L. We say that Γ is contradictory with respect to ¬,
or simply contradictory, if it satisfies:

∃α(Γ ! α and Γ ! ¬α)

(The formal framework to deal with this kind of metaproperties can be
found in [Coniglio and Carnielli, 2002].) For any such formula α we may
also say that Γ is α-contradictory.

A theory Γ is said to be trivial if it satisfies:

∀α(Γ ! α)

Of course the theory For is trivial, given (Con1). We can immediately
conclude that contradictoriness is a necessary (but, in general, not a suffi-
cient) condition for triviality in a given theory, since a trivial theory derives
everything.

A theory Γ is said to be explosive if:

∀α∀β(Γ,α,¬α ! β)

Thus, a theory is called explosive if it trivializes when exposed to a pair of
contradictory formulas. Evidently, if a theory is trivial, then it is explosive
by (Con2). Also, if a theory is contradictory and explosive, then it is trivial
by (Con3).
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The above definitions may be immediately upgraded from theories to log-
ics. We will say that L is contradictory if all of its theories are contradictory,
that is:

∀Γ∃α(Γ ! α and Γ ! ¬α)

In the same spirit, we will say that L is trivial if all of its theories are trivial,
and L is explosive if all of its theories are explosive.

Because of the monotonicity property (Con2), it is clear that an S-logic
L is contradictory / trivial / explosive if, and only if, its empty theory is
contradictory / trivial / explosive.

We are now in position to give a formal definition for some logical prin-
ciples as applied to a generic logic L:

Principle of Non-Contradiction (L is non-contradictory)

∃Γ∀α(Γ ! α or Γ ! ¬α) (1)

Principle of Non-Triviality (L is non-trivial)

∃Γ∃α(Γ ! α) (2)

Principle of Explosion (L is explosive)

∀Γ∀α∀β(Γ,α,¬α ! β) (3)

The last principle is also often referred to as Pseudo-Scotus or Principle of
Ex Contradictione Sequitur Quodlibet.4

It is clear that the three principles are interrelated:
THEOREM 1.
(i) A trivial logic is both contradictory and explosive.
(ii) An explosive logic fails the Principle of Non-Triviality if, and only if, it
fails the Principle of Non-Contradiction. "

The logics disrespecting (1) are sometimes called dialectical. However,
the immense majority of the paraconsistent logics in the literature (includ-
ing the ones studied here) are not dialectical. Indeed, they usually have
non-contradictory empty theories, and thus their axioms are non-contra-
dictory, and their inference rules do not generate contradictions from these
axioms. All paraconsistent logics which we will present here are in some
sense more careful than classical logic, once they extract less consequences
than classical logic extracts from the same given theory, or at most the

4In fact, single-conclusion logics as those we work with here cannot see the differ-
ence between Pseudo-Scotus and Ex Contradictione, but those principles can be sharply
distinguished in a multiple-conclusion environment. Moreover, in such an environment,
several forms of triviality, or overcompleteness, may be very naturally set apart (cf. [Mar-
cos, 2005c] and [Marcos, 2007a]).
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same set of consequences, but never more. The paraconsistent logics stud-
ied in the present chapter (as most paraconsistent logics in the literature)
do not validate any bizarre form of reasoning, and do not beget contradic-
tory consequences if such consequences were already not derived in classical
logic.

2.2 Paraconsistency: Between inconsistency and triviality

As mentioned before, some decades ago, Stanis#law Jaśkowski ([Jaśkowski,
1948]), David Nelson ([Nelson, 1959]), and Newton da Costa ([da Costa,
1963]), the founders of paraconsistent logic, proposed, independently, the
study of logics which could accommodate contradictory yet non-trivial the-
ories. For da Costa, a logic is paraconsistent5 with respect to ¬ if it can
serve as a basis for ¬-contradictory yet non-trivial theories, that is:

∃Γ∃α∃β(Γ ! α and Γ ! ¬α and Γ ! β) (4)

Notice that, in our present framework, the notion of a paraconsistent logic
has, in principle, nothing to do with the rejection of the Principle of Non-
Contradiction, as it is commonly held. On the other hand, it is intimately
connected to the rejection of the Principle of Explosion. Indeed, Jaśkowski
defined a ¬-paraconsistent logic as a logic in which (3) fails, that is:

∃Γ∃α∃β(Γ,α,¬α ! β) (5)

Using (Con1) and (Con3) it is easy to prove that (4) and (5) are equiva-
lent ways of defining a paraconsistent logic. Whenever it is clear from the
context, we will omit the ¬ symbol and refer simply to paraconsistent logics.

It is very important to observe that a logic where all contradictions are
equivalent cannot be paraconsistent. To understand that point it is con-
venient first to make precise the concept of equivalence between sets of
formulas: Γ and ∆ are said to be equivalent if

∀α ∈ ∆(Γ ! α) and ∀α ∈ Γ(∆ ! α)

In particular, we say that two formulas α and β are equivalent if the sets
{α} and {β} are equivalent, that is:

(α ! β) and (β ! α)

We denote these facts by writing, respectively, Γ ⊣! ∆, and α ⊣! β. The
equivalence between formulas is clearly an equivalence relation, because
of (Con1) and (Con3). However, the equivalence between sets is not, in

5As a matter of fact, this appellation would be coined only in the 70s by the Peruvian
philosopher Francisco Miró Quesada.
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general, an equivalence relation, unless the following property holds in L:

(Con6) [∀β ∈ ∆(Γ ! β) and ∆ ! α] implies Γ ! α (cut for sets)
Logics based on consequence relations that respect clauses (Con1), (Con2)
and (Con6) will here be called (single-conclusion) T -logics (where T stands
for Tarskian).
REMARK 2. (i) In logics defined by way of a collection of finite-valued
truth-tables or by way of Hilbert calculi with schematic axioms and fini-
tary rules, (Con1)–(Con6) all hold good. This is the case of most logics
mentioned in the present paper.
(ii) (Con1) and (Con6) guarantee that ⊣! defines an equivalence relation
over sets of formulas.
(iii) Condition (Con3) follows from {(Con1), (Con2), (Con6)}. Indeed, sup-
pose that (a) ∆ ! α and (b) Γ,α ! β. By (Con1) we can further assume
that (c) ∆, Γ ! γ, for every γ ∈ Γ. But if we apply (Con2) to hypothesis
(a) it follows that (d) ∆, Γ ! α. Using (Con6) on (c), (d) and (b) it follows
that ∆, Γ ! β.
(iv) Condition (Con2) follows from {(Con1), (Con6)}. Indeed, suppose that
(a) ∆ ! α and (b) ∆ ⊆ Γ. From (b) and (Con1), we conclude that (c) Γ ! δ,
for all δ ∈ ∆. Then, using (Con6) on (c) and (a) it follows that Γ ! α.
(v) Condition (Con3) follows from {(Con1), (Con6)}. To check that, com-
pose (iii) and (iv).
(vi) Condition (Con6) does not follow from {(Con1), (Con2), (Con3)}. In-
deed, consider for instance the logic LR = ⟨R,!⟩ such that R is the set of
real numbers, and ! is defined as follows:

Γ ! x iff x ∈ Γ, or x = 1
n for some n ∈ N, n ≥ 1, or

there is a sequence (xn)n∈N contained in Γ such that
(xn)n∈N converges to x.

It is easy to see that LR satisfies (Con1), (Con2) and (Con3). But (Con6)
is not valid in LR. Indeed, take Γ = ∅, ∆ = { 1

n : n ∈ N, n ≥ 1} and α = 0.
Then the antecedent of (Con6) is true: Every element of ∆ is a thesis,
and ∆ contains the sequence ( 1

n )n∈N, which converges to 0. However, the
consequent of (Con6) is false: 0 is not a thesis of LR.
Observe, by the way, that in LR the relation ⊣! between sets of formulas
is not transitive: Take ∆ as above, and consider ∆0 = {0} and ∆1 = {1}.
Then ∆0 ⊣! ∆ and ∆ ⊣! ∆1, but it is not the case that ∆0 ⊣! ∆1, because
∆1 ̸! 0.

Do remark that, as a particular consequence of the above items, T -logics
may be seen as specializations of S-logics. "

Most logics we will study in the present paper are natural examples of
T -logics. For many proofs that will be presented below, however, the as-
sumption of an S-logic will suffice.
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THEOREM 3. Let L be a T -logic. Then, in case all contradictions are
equivalent in L, it follows that L is not paraconsistent.
Proof. Take an arbitrary set Γ in L. Suppose that all contradictions are
equivalent, that is, for arbitrary α and β, {α,¬α} ⊣! {β,¬β}. Then, using
(Con2), Γ∪ {α,¬α} is β-contradictory for an arbitrary β, and in particular
Γ,α,¬α ! β. "

By contrapositive reasoning, the above theorem may be rephrased as
stating the following: If a T -logic L is paraconsistent, then there exist pairs
of non-equivalent contradictions in L.
DEFINITION 4. The logic L is called consistent if it is both explosive and
non-trivial, that is, if L respects both (3) and (2). L is called inconsistent,
otherwise. "

Paraconsistent logics are inconsistent, in that they control explosiveness,
but they can do so in a variety of ways. Trivial logics are also inconsistent,
by the above definition. What distinguishes a paraconsistent logic from a
trivial logic is that a trivial logic does not disallow any inference: It accepts
everything. As a consequence of the above definition of consistency, a third
equivalent approach to the notion of paraconsistency may be proposed, par-
allel to those from definitions (4) and (5):

A logic is paraconsistent if it is inconsistent yet non-trivial. (6)

The compatibility of paraconsistency with the existence of some suitable
explosive or trivial proper theories makes some paraconsistent logics able to
recover classical reasoning, as we will see in Section 3.6. We will from now
on introduce some specializations on the above definitions and principles.

A logic L is said to be finitely trivializable when it has finite trivial
theories. Evidently, if a logic is explosive, then it is finitely trivializable.
Non-explosive logics might be finitely trivializable or not.

A formula ξ in L is a bottom particle if it can, by itself, trivialize the
logic, that is:

∀Γ∀β(Γ, ξ ! β)

A bottom particle, when it exists, will here be denoted by ⊥. This notation
is unambiguous in the following sense: Any two bottom particles are equiv-
alent. If in a given logic a bottom particle is also a thesis, then the logic
is trivial — in which case, of course, all formulas turn out to be bottom
particles.

The existence of bottom particles inside a given logic L is regulated by
the following principle:

Principle of Ex Falso Sequitur Quodlibet

∃ξ∀Γ∀β(Γ, ξ ! β)(L has a bottom particle) (7)
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As it will be seen, the existence of logics that do not respect (3) while still
respecting (7) (as all LFIs of the present chapter) shows that ex contra-
dictione does not need to be identified with ex falso, contrary to what is
commonly held in the literature.

The dual concept of a bottom particle is that of a top particle, that is, a
formula ζ which follows from every theory:

∀Γ(Γ ! ζ)

We will denote any fixed such particle, when it exists, by ⊤ (again, this
notation is unambiguous). Evidently, given a logic, any of its theses will
constitute such a top particle (and logics with no theses, like Kleene’s 3-
valued logic, have no such particles). It is easy to see that the addition of a
top particle to a given theory is pretty innocuous, for in that case Γ,⊤ ! α
if and only if Γ ! α.

Henceforth, a formula ϕ of L constructed using all and only the variables
p0, . . . , pn will be denoted by ϕ(p0, . . . , pn). This formula will be said to de-
pend only on the variables that occur in it. The notation may be generalized
to sets, and the result is denoted by Γ(p0, . . . , pn). If γ0, . . . , γn are formulas
then ϕ(γ0, . . . , γn) will denote the (simultaneous) substitution of pi by γi in
ϕ(p0, . . . , pn) (for i = 0, . . . , n). Given a set of formulas Γ(p0, . . . , pn), we
will write Γ(γ0, . . . , γn) with an analogous meaning.

DEFINITION 5. We say that a logic L has a supplementing negation if
there is a formula ϕ(p0) such that:

(a) ϕ(α) is not a bottom particle, for some α;

(b) ∀Γ∀α∀β(Γ,α,ϕ(α) ! β) "
Observe that the same logic might have several non-equivalent supplement-
ing negations (check Remark 43).

Consider a logic having a supplementing negation, and denote it by ∼.
Parallel to the definition of contradictoriness with respect to ¬, we might
now define a theory Γ to be contradictory with respect to ∼ if it is such
that:

∃α(Γ ! α and Γ ! ∼α)

Accordingly, a logic L could be said to be contradictory with respect to ∼
if all of its theories were contradictory with respect to ∼. Obviously, by
design, no logic can be ∼-paraconsistent, or even ∼-contradictory, if ∼ is a
supplementing negation, and a logic that has a supplementing negation must
satisfy the Principle of Non-Contradiction with respect to this negation.
The main logics studied in this paper are all endowed with supplementing
negations. The availability of some specific supplementing negations makes
some paraconsistent logics able to easily emulate classical negation (see
Subsection 3.6).
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Here we may of course introduce yet another variation on (3):

Supplementing Principle of Explosion

L has a supplementing negation (8)

Supplementing negations are very common. We will show here some
sufficient conditions for their definition. The presence of a convenient im-
plication in our logics is often convenient so as to help explicitly internalizing
the definition of new connectives.
DEFINITION 6. We say that a logic L has a deductive implication if there
is a formula ψ(p0, p1) such that:

(a) ψ(α,β) is not a bottom particle, for some choice of α and β;

(b) ∀α∀β∀Γ(Γ ! ψ(α,β) implies Γ,α ! β);

(c) ψ(α,β) is not a top particle, for some choice of α and β;

(d) ∀α∀β∀Γ(Γ,α ! β implies Γ ! ψ(α,β)). "
Inside the most usual logics, condition (b) is usually guaranteed by the
validity of the rule of modus ponens, while condition (d) is guaranteed by
the so-called ‘deduction theorem’ (when this theorem holds). Obviously,
any logic having a deductive implication will be non-trivial, by condition
(a).
THEOREM 7. Let L be a non-trivial logic endowed with a bottom particle
⊥ and a deductive implication →.
(i) Let ¬ be some negation symbol, and suppose that it satisfies:

(a) Γ,¬α ! α→ ⊥;
(b) Γ,¬α→ ⊥ ! α.

Then, this ¬ is a supplementing negation.
(ii) Suppose, otherwise, that the following is the case:

(c) α→ ⊥ ̸! ⊥, for some formula α.
Then, a supplementing negation may be defined by setting ¬α def

== α→ ⊥.
Proof. Item (i). By hypothesis (a) and the properties of the bottom and
the implication, we have Γ,α,¬α ! β. Now, suppose ¬α defines a bottom
particle, for any choice of α. Then, by the deduction theorem, Γ ! ¬α→ ⊥,
for an arbitrary Γ. Thus, by (b) and (Con3), Γ ! α. But this cannot be
the case, as L is non-trivial.
Item (ii) is a straightforward consequence of the above definitions, and we
leave it as an exercise for the reader. "

One might also consider the dual of a supplementing negation:
DEFINITION 8. We say that a logic L has a complementing negation if
there is a formula ψ(p0) such that:
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(a) ψ(α) is not a top particle, for some α;

(b) ∀Γ∀α(Γ,α ! ψ(α) implies Γ ! ψ(α)).
We say that L has a classical negation if it has some (primitive or defined)
negation connective that is both supplementing and complementing. As a
particular consequence of this definition, it can be easily checked that for
any classical negation # the equivalence (##α ⊣! α) will be derivable. "

Yet some other versions of explosiveness can here be considered:

DEFINITION 9. Let L be a logic, and let σ(p0, . . . , pn) be a formula of L.
(i) We say that L is partially explosive with respect to σ, or σ-partially
explosive, if:

(a) σ(β0, . . . ,βn) is not a top particle, for some choice of β0, . . . ,βn;

(b) ∀Γ∀β0 . . . ∀βn∀α(Γ,α,¬α ! σ(β0, . . . ,βn)).

(ii) L is boldly paraconsistent if there is no σ such that L is σ-partially ex-
plosive.

(iii) L is said to be controllably explosive in contact with σ, if:

(a) σ(α0, . . . ,αn) and ¬σ(α0, . . . ,αn) are not bottom particles,
for some choice of α0, . . . ,αn;

(b) ∀Γ∀α0 . . . ∀αn∀β(Γ,σ(α0, . . . ,αn),¬σ(α0, . . . ,αn) ! β). "
EXAMPLE 10. A well-known example of a logic that is not explosive
but is partially explosive, is provided by Kolmogorov & Johánsson’s Min-
imal Intuitionistic Logic, MIL, obtained by the addition to the positive
fragment of intuitionistic logic (see Remark 29 below) of some weak forms
of reductio ad absurdum (cf. [Johánsson, 1936] and [Kolmogorov, 1967]).
In this logic, the intuitionistically valid inference (Γ,α,¬α ! β) fails, but
(Γ,α,¬α ! ¬β) holds good. This means that MIL is paraconsistent, but
not boldly paraconsistent, as all negated propositions can be inferred from
any given contradiction. A class of (obviously non-boldly) paraconsistent
logics extending MIL is studied in [Odintsov, 2005]. "

The requirement that a paraconsistent logic should be boldly paraconsis-
tent was championed by [Urbas, 1990]. The class of boldly paraconsistent
logics is surely very natural and pervasive. From now on, we will be making
an effort, as a matter of fact, to square our paraconsistent logics into this
class (check Theorems 20, 38 and 130).

Most paraconsistent logics studied in this chapter are also controllably ex-
plosive (check, in particular, Theorem 79, but a particularly strong counter-
example may be found in Example 17).

We should observe that conjunction may play a central role in relating
contradictoriness and triviality.
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DEFINITION 11. A logic L is said to be left-adjunctive if there is a
formula ψ(p0, p1) such that:

(a) ψ(α,β) is not a bottom particle, for some α and β;

(b) ∀α∀β∀Γ∀γ(Γ,α,β ! γ implies Γ,ψ(α,β) ! γ). "
The formula ψ(α,β), when it exists, will often be denoted by (α∧β), and

the sign ∧ will be called a left-adjunctive conjunction (but it will not nec-
essarily have, of course, all properties of a classical conjunction). Similarly,
we can define the following:

DEFINITION 12. A logic L is said to be left-disadjunctive if there is a
formula ϕ(p0, p1) such that:

(a) ϕ(α,β) is not a top particle, for some α and β;

(b) ∀α∀β∀Γ∀γ(Γ,ϕ(α,β) ! γ implies Γ,α,β ! γ). "
In general, whenever there is no risk of misunderstanding or of misiden-

tification of different entities, we might also denote the formula ϕ(α,β),
when it exists, by (α∧β), and we will accordingly call ∧ a left-disadjunctive
conjunction. Of course, a logic can have just one of these conjunctions, or
it can have both a left-adjunctive conjunction and a left-disadjunctive con-
junction without the two of them coinciding. In natural deduction, clause
(b) of Definition 11 corresponds to conjunction elimination, and clause (b)
of Definition 12 corresponds to conjunction introduction.

It is straightforward to prove the following:

THEOREM 13. Let L be a left-adjunctive logic. (i) If L is finitely triv-
ializable (in particular, if it has a supplementing negation), then it has a
bottom particle. (ii) If L respects ex contradictione, then it also respects ex
falso. "
EXAMPLE 14. The ‘pre-discussive’ logic J proposed in [Jaśkowski, 1948],
in the usual signature of classical logic, is such that:

Γ !J α iff ♦Γ !S5 ♦α,

where ♦Γ = {♦γ : γ ∈ Γ}, ♦ denotes the possibility operator, and !S5

denotes the consequence relation defined by the well-known modal logic S5.
It is easy to see that (α,¬α !J β) does not hold in general, though (α ∧
¬α) !J β does hold good, for any formulas α and β. This phenomenon can
only happen because J is left-adjunctive but not left-disadjunctive. Hence,
Theorem 13 still holds for J, but this logic provides a simple example of a
logic that respects the Principle of Ex Falso Sequitur Quodlibet (7) but not
the Principle of Ex Contradictione Sequitur Quodlibet (3). "

The literature on paraconsistency (cf. section 4.2 of [Priest, 2002]) tra-
ditionally calls non-adjunctive the logics failing left-disadjunctiveness. In
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the present paper, conjunctions that are both left-adjunctive and left-dis-
adjunctive will be called standard.

3 LFIS AND THEIR RELATIONSHIP TO CLASSICAL LOGIC

3.1 Introducing LFIs and C-systems

From now on, we will concentrate on logics which are paraconsistent but
nevertheless have some special explosive theories, as those discussed in the
last section. With the help of such theories some concepts can be studied
under a new light — this is the case of the notion of consistency (and its
opposite, the notion of inconsistency), as we shall see. This section will
introduce the Logics of Formal Inconsistency as the paraconsistent logics
that respect a certain Gentle Principle of Explosion, to be clarified below.
By way of motivation, we start with a few helpful definitions and concrete
examples.

Given two logics L1 = ⟨For1,!1⟩ and L2 = ⟨For2,!2⟩, we will say that
L2 is a (proper) linguistic extension of L1 if For1 is a (proper) subset of
For2, and we will say that L2 is a (proper) deductive extension of L1 if !1

is a (proper) subset of !2. Finally, if L2 is both a linguistic extension and a
deductive extension of L1, and if the restriction of L2’s consequence relation
!2 to the set For1 will make it identical to !1 (that is, if For1 ⊆ For2, and
for any Γ∪{α} ⊆ For1 we have that Γ !2 α iff Γ !1 α) then we will say that
L2 is a conservative extension of L1 (and similarly for proper conservative
extensions). In any of the above cases we can more generally say that L2
is an extension of L1, or that L1 is a fragment of L2. These concepts
will be used here to compare a number of logics that will be presented.
Most paraconsistent logics in the literature, and all of those studied here,
are proper deductive fragments of classical logic written in a convenient
signature.

REMARK 15. From here on, Σ will denote the signature containing the
binary connectives ∧, ∨, →, and the unary connective ¬, such that P =
{pn : n ∈ ω} is the set of atomic formulas. By For we will denote the set of
formulas freely generated by P over Σ.

In the same spirit, Σ◦ will denote the signature obtained by the addition
to Σ of a new unary connective ◦ to the signature Σ, and For◦ will denote
the algebra of formulas for the signature Σ◦. "
DEFINITION 16. A many-valued semantics for a set of formulas For will
here be any collection Sem of mappings vk: For !! Vk , called valuations,
where the set of truth-values in Vk is separated into designated values Dk

(denoting the set of ‘true values’) and undesignated values Uk (denoting the
set of ‘false values’), that is, Vk is such that Vk = Dk ∪ Uk and Dk ∩ Uk =
∅, for each v ∈ Sem. A (truth-preserving single-conclusion) many-valued
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entailment relation |=Sem ⊆ ℘(For) × For can then be defined by setting,
for every choice of Γ ∪ {α} ⊆ For:

Γ |=Sem α iff, for every v ∈ Sem, v(α) ∈ D whenever v(Γ) ⊆ D.

A nice general abstract result can be proven to the effect that a consequence
relation characterizes a T -logic (recall Subsection 2.2) if, and only if, it
is determined by a many-valued entailment relation (check [Marcos, 2004;
Caleiro et al., 2005a], and the references therein). A distinguished class of
many-valued semantics that will be much explored in the present paper,
starting from Subsection 3.3, is the class of semantics in which D and U
are fixed singletons (representing ‘truth’ and ‘falsity’) throughout every v ∈
Sem. Those semantics are now known as bivaluation semantics.

A very usual particular class of many-valued semantics is the class of
truth-functional semantics, which include those many-valued semantics such
that V, D and U are fixed sets of truth-values throughout every v ∈ Sem,
and such that the truth-values are organized into an algebra similar to the
algebra of formulas, that is, for every κ-ary connective in the signature Σ
that defines For there is a corresponding κ-ary operator over V, where κ
is the cardinality of V. In case κ < ω we say that we are talking about a
finite-valued truth-functional logic.

We will often present truth-functional T -logics below simply in terms of
sets of truth-tables and corresponding designated values defining the be-
havior of the connectives from the signature, and take it for granted that
the reader assumes that and understands how those tables characterize an
entailment relation |=, defined as above. Not all logics, and not all para-
consistent logics, have truth-functional semantics, though. Partially explo-
sive paraconsistent logics such as MIL (check Example 10) provide indeed
prime examples of logics that are not characterizable by truth-functional
semantics, neither finite-valued nor infinite-valued (for a discussion on that
phenomenon, check [Marcos, 2007b], and the references therein).

Some useful generalizations of truth-functional semantics include non-
deterministic semantics and possible-translations semantics based on truth-
functional many-valued logics (presented below, starting from Subsection
3.4). "
EXAMPLE 17. Consider the logic presented by way of the following truth-
tables:

∧ 1 1/2 0

1 1 1/2 0
1/2

1/2
1/2 0

0 0 0 0

∨ 1 1/2 0

1 1 1 1
1/2 1 1/2

1/2

0 1 1/2 0

→ 1 1/2 0

1 1 1/2 0
1/2 1 1/2 0
0 1 1 1

¬
1 0

1/2
1/2

0 1

where both 1 and 1
2 are designated values. Pac is the name under which this

logic appeared in [Avron, 1991] (Section 3.2.2), though it had previously
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appeared, for instance, in [Avron, 1986], under the denomination RM e⊃
3 ,

and, even before that, in [Batens, 1980], where it was called PIs. The
logic Pac conservatively extends the logic LP by the addition of a classical
implication. LP is an early example of a 3-valued paraconsistent logic with
classic-like operators for a standard conjunction and a standard disjunction,
and it was introduced in [Asenjo, 1966] and investigated in [Priest, 1979].

In Pac, for no formula α it is the case that α,¬α ⊢Pac β for all β. So,
Pac is not a controllably explosive logic. A classical negation for Pac would
be illustrated by the truth-table:

∼
1 0

1/2 0
0 1

However, it should be clear that such a negation is not definable in Pac.
Indeed, any truth-function of this logic having only 1

2 ’s as input will also
have 1

2 as output. As a consequence, Pac has no bottom particle (and
this logic also cannot express the consistency of its formulas, as we shall
see below). Being a left-adjunctive logic as well, Pac is, consequently, not
finitely trivializable. "

EXAMPLE 18. In adding to Pac either a supplementing negation as
above or a bottom particle, one obtains a well-known conservative extension
of it, obviously still paraconsistent, but this time a logic that has some
interesting explosive theories: It satisfies, in particular, principles (7) and
(8) from the previous subsection. This logic was introduced in [Schütte,
1960] for proof-theoretical reasons and independently investigated under the
appellation J3 in [D’Ottaviano and da Costa, 1970] as a ‘possible solution
to the problem of Jaśkowski’. It also reappeared quite often in the literature
after that, for instance as the logic CLuNs in [Batens and De Clercq, 2000].
In [D’Ottaviano and da Costa, 1970]’s first presentation of J3, a ‘possibility
connective’ ∇ was introduced instead of the supplementing negation ∼. In
[Epstein, 2000] this logic was reintroduced having also a sort of ‘consistency
connective’ ◦ (originally denoted by c⃝) as primitive. The truth-tables of ∇
and ◦ are as follows:

∇ ◦
1 1 1

1/2 1 0
0 0 1

The expressive and inferential power of this logic was more deeply explored
in [Avron, 1999] and in [Carnielli et al., 2000]. The latter paper also explores
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the possibility of applying this logic to the study of inconsistent databases
(for a more technical perspective check [de Amo et al., 2002]), abandoning
∼ and ∇ but still retaining ◦ as primitive. This logic (renamed LFI1 in
the signature Σ◦) has been argued to be appropriate for formalizing the
notion of consistency in a very convenient way, as discussed below. It is
worth noticing that ∼α and ∇α may be defined in LFI1 as (¬α ∧ ◦α) and
(α ∨ ¬◦α), respectively. Alternatively, ◦α def

== (¬∇α ∨ ¬∇¬α). A complete
axiomatization for LFI1 is presented in Theorem 127. "

EXAMPLE 19. Paraconsistency and many-valuedness have often been com-
panions. In [Sette, 1973] the following 3-valued logic, alias P1, was studied:

∧ 1 1/2 0

1 1 1 0
1/2 1 1 0
0 0 0 0

∨ 1 1/2 0

1 1 1 1
1/2 1 1 1
0 1 1 0

→ 1 1/2 0

1 1 1 0
1/2 1 1 0
0 1 1 1

¬
1 0

1/2 1
0 1

where 1 and 1
2 are the designated values. The truth-table of the consistency

connective ◦ as in Example 18 can now be defined via ◦αdef
==¬¬α∨¬(α∧α).

The logic P1 has the remarkable property of being controllably explosive
in contact with arbitrary non-atomic formulas, that is, the paraconsistent
behavior obtains only at the atomic level: α,¬α % β, for arbitrary non-
atomic α. Moreover, another property of this logic is that % ◦α holds
for non-atomic α. Those two properties are in fact not related by a mere
accident, but as an instance of Theorem 79. A complete axiomatization for
the logic P1 is presented in Theorem 127. "

We had committed ourselves to present paraconsistent logics that would
be boldly paraconsistent (recall Definition 9(ii)). The logics from Exam-
ples 18 and 19 can indeed be seen to enjoy this property:
THEOREM 20. LFI1 and P1 are boldly paraconsistent. And so are their
fragments.
Proof. Assume Γ ̸% σ(p0, . . . , pn) for some appropriate choice of formulas.
In particular, by (Con2), it follows that ̸% σ(p0, . . . , pn). Now, consider
a variable p not in p0, . . . , pn. Let p be assigned the value 1

2 , and ex-
tend this assignment to the variables p0, . . . , pn so as to give the value 0 to
σ(p0, . . . , pn). It is obvious that, in this situation, p,¬p ̸% σ(p0, . . . , pn). "

Paraconsistent logics are tools for reasoning under conditions which do
not presuppose consistency. If we understand consistency as what might
be lacking to a contradiction for it to become explosive, logics like LFI1
and P1 are clearly able to express the consistency (of a formula) at the
object-language level. This feature will permit consistent reasoning to be
recovered from inside an inconsistent environment.
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In formal terms, consider a (possibly empty) set ⃝(p) of formulas which
depends only on the propositional variable p, satisfying the following: There
are formulas α and β such that

(a) ⃝(α),α ! β;
(b) ⃝(α),¬α ! β.

We will call a theory Γ gently explosive (with respect to ⃝(p)) if:

∀α∀β(Γ,⃝(α),α,¬α ! β).

A theory Γ will be said to be finitely gently explosive when it is gently
explosive with respect to a finite set ⃝(p).

A logic L will be said to be (finitely) gently explosive when there is
a (finite) set ⃝(p) such that all of the theories of L are (finitely) gently
explosive (with respect to ⃝(p)). Notice that a finitely gently explosive
theory is finitely trivialized in a very distinctive way.

We may now consider the following ‘gentle’ variations on the Principle of
Explosion:

Gentle Principle of Explosion

L is gently explosive with respect to some set ⃝(p) (9)

Finite Gentle Principle of Explosion

L is gently explosive with respect to some finite set ⃝(p) (10)

For any formula α, the set ⃝(α) is intended to express, in a specific sense,
the consistency of α relative to the logic L. When this set is a singleton,
we will denote by ◦α the sole element of ⃝(α), and in this case ◦ defines a
consistency connective or consistency operator. It is worth noting, however,
that ◦ is not necessarily a primitive connective of the signature of L. In fact,
several logics that will be studied below (namely, the so-called ‘direct dC-
systems’, see Definition 32) present ◦ as a connective that is defined in terms
of other connectives of a less complex underlying signature.

The above definitions are very natural, and paraconsistent logics with a
consistency connective are in fact quite common. One way of seeing that is
through the use of a classic-like (in fact, intuitionistic-like) disjunction:
DEFINITION 21. We say that a logic L has a standard disjunction if there
is a formula ψ(p0, p1) such that:

(a) ψ(α,β) is not a bottom particle, for some α and β;

(b) ∀α∀β∀Γ∀∆∀γ(Γ,α ! γ and ∆,β ! γ implies Γ, ∆,ψ(α,β) ! γ);

(c) ψ(α,β) is not a top particle, for some α and β;

(d) ∀α∀β∀Γ∀γ(Γ,ψ(α,β) ! γ implies Γ,α ! γ and Γ,β ! γ).
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In natural deduction, clause (b) corresponds to disjunction elimination, and
clause (d) to disjunction introduction. The reader can now easily check that:
THEOREM 22. (i) Any non-trivial explosive theory / logic is finitely gen-
tly explosive, supposing that there is some formula α such that ¬α is not
a bottom particle. (ii) Any left-adjunctive finitely gently explosive logic
respects ex falso. (iii) Let L be a logic containing a bottom particle ⊥, a
standard disjunction ∨, an implication → respecting modus ponens and a
negation ¬ such that there exists some formula α satisfying:
(a) α, (¬α→ ⊥) ̸! ⊥;
(b) ¬α, (α→ ⊥) ̸! ⊥.
Then L defines a consistency operator ◦α def

== (α→ ⊥) ∨ (¬α→ ⊥). "
We now define the Logics of Formal Inconsistency as the paraconsistent

logics that can ‘talk about consistency’ in a meaningful way.
DEFINITION 23. A Logic of Formal Inconsistency (LFI) is any gently
explosive paraconsistent logic, that is, any logic in which explosion, (3),
does not hold, while gentle explosion, (9), holds good. "

In other words, a logic L is an LFI (with respect to a negation ¬) if:

(a) ∃Γ∃α∃β(Γ,α,¬α ̸! β), and

(b) there exists a set of formulas ⃝(p) depending exactly on the proposi-
tional variable p such that ∀Γ∀α∀β(Γ,⃝(α),α,¬α ! β).

Besides the 3-valued paraconsistent logics presented in the above exam-
ples, we will study in this chapter several other paraconsistent logics based
on different kinds of semantics. Many will have been originally proposed
without a primitive consistency connective, but, being sufficiently expres-
sive, they will often be shown to admit of such a connective. Examples
of that phenomenon were already presented above, for the cases of LFI1
and P1. Another interesting and maybe even surprising example of that
phenomenon is provided by Jaśkowski’s Discussive Logic D2 (cf. [Jaśkowski,
1948] and [Jaśkowski, 1949]), the first paraconsistent logic ever to be intro-
duced as such in the literature:
EXAMPLE 24. Let Σ♦ be the extension of the signature Σ obtained by the
addition of a new unary connective ♦, and let For♦ be the corresponding
algebra of formulas. Let !S5 be the consequence relation of modal logic
S5 over the language For♦. Consider a mapping ∗: For !! For♦ such
that:

1. p∗ = p for every p ∈ P;
2. (¬α)∗ = ¬α∗;
3. (α ∨ β)∗ = α∗ ∨ β∗;
4. (α ∧ β)∗ = α∗ ∧ ♦β∗;
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5. (α→ β)∗ = ♦α∗ → β∗.

Given Γ ⊆ For, let Γ∗ denote the subset {α∗ : α ∈ Γ} of For♦. For any
Γ ⊆ For♦ let ♦Γ = {♦α : α ∈ Γ}. Jaśkowski’s Discussive logic D2 is
defined over the signature Σ as follows: Γ !D2 α iff ♦(Γ∗) !S5 ♦(α∗), for
any Γ ∪ {α} ⊆ For. Equivalently, D2 may be introduced with the help
of the pre-discussive logic J (recall Example 14), by setting Γ !D2 α iff
Γ∗ !J α∗. With such definitions, D2 can easily be seen to be non-explosive
with respect to the negation ¬, that is, D2 is paraconsistent (with respect
to ¬). Consider now the following abbreviations defined on the set For
(here, α ∈ For):

⊤ def
== (α ∨ ¬α);

⊥ def
== ¬⊤ ;

"α def
== (¬α→ ⊥);

&α def
== ¬"¬α;

◦α def
== (&α→ "α).

It is an easy task to check now (say, using a Kripke semantics or tableaux
for the logic S5) that in D2 the formulas ⊤ and ⊥ denote top and bottom
particles, respectively, and ◦ behaves as a consistency operator (giving rise
to gentle explosion). "
THEOREM 25.
(i) Classical logic is not an LFI.

(ii) Pac (see Example 17) is also not an LFI.

(iii) LFI1 (see Example 18) is an LFI.

(iv) P1 (see Example 19) is an LFI.

(v) Jaśkowski’s Discussive Logic D2 (see Example 24) is an LFI.

Proof. For item (i), note that explosion, (3), holds classically.
To check item (ii), let p be an atomic formula and let ⃝(p) be the set of all
formulas of Pac that depend only on p. The valuation from the truth-table
that assigns 1

2 to p and 0 to q is a model for ⃝(p), p,¬p but it invalidates
gentle explosion (on q).
For item (iii), take consistency to be expressed in J3 by the connective ◦,
as intended, that is, take ⃝(α) = {◦α}. Obviously, ⃝(α),α,¬α % β holds.
Take now a valuation from the truth-table that assigns 1 to p and notice
that ⃝(p), p ̸% β. Finally, take a valuation that assigns 0 to p and notice
that ⃝(p),¬p ̸% β.
To check item (iv), again take consistency to be expressed in P1 by ◦ and
note that p,¬p ̸% q, for atomic and distinct p and q.
Item (v) may be verified directly from the definitions in Example 24. "
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In accordance with definition (6) from Subsection 2.2, paraconsistent
logics are the non-trivial logics whose negation fails the ‘consistency pre-
supposition’. Some inferences that depend on this presupposition, thus,
will necessarily be lost. However, one might well expect that, if a sufficient
number of ‘consistency assumptions’ are made, then those same inferences
should be recovered. In fact, the LFIs are intended to be exactly the logics
that can internalize this idea. To be more precise, and following [Marcos,
2005e]:

REMARK 26. Consider a logic L1 = ⟨For1,!1⟩ in which explosion holds
good for a negation ¬, that is, a logic that satisfies, in particular, the rule
(α,¬α !1 β). Let L2 = ⟨For2,!2⟩ now be some other logic written in
the same signature as L1 such that: (i) L2 is a proper deductive fragment
of L1 that validates inferences of L1 only if they are compatible with the
failure of explosion; (ii) L2 is expressive enough so as to be an LFI, there-
fore, in particular, there will be in L2 a set of formulas ⃝(p) such that
(⃝(α),α,¬α !2 β) holds good; (iii) L1 can in fact be recovered from L2 by
the addition of ⃝(α) as a new set of valid schemas / axioms. These con-
straints alone suggest that the reasoning of L1 might somehow be recovered
from inside L2, if only a sufficient number of ‘consistency assumptions’ are
added in each case. Thus, typically the following Derivability Adjustment
Theorem (DAT) may be proven (as in [Marcos, 2005e]):

∀Γ∀γ∃∆(Γ !1 γ iff ⃝(∆), Γ !2 γ).

The DAT shows how the weaker logic L2 can be used to ‘talk about’ the
stronger logic L1. The essential intuition behind such theorem was empha-
sized in [Batens, 1989], but an early version of that very idea can already be
found in [da Costa, 1963] and [da Costa, 1974] (check our Theorem 112). On
those grounds, LFIs are thus proposed and understood as the non-trivial
inconsistent logics that can recover consistent inferences through convenient
derivability adjustments. We will come back to this idea in Subsection 3.6
and Theorems 96, 112 and 113. "

To get a bit more concrete, and at the same time specialize from the
broad Definition 23 of LFIs, we introduce now the concept of a C-system.

DEFINITION 27. Let L1 and L2 be two logics defined over signatures
Σ1 and Σ2, respectively, such that Σ2 extends Σ1, and Σ2 contains a unary
negation connective ¬ that does not belong to Σ1. We say that L2 is a
C-system based on L1 with respect to ¬ (in short, a C-system) if:

(a) L2 is a conservative extension of L1,
(b) L2 is an LFI (with respect to ¬), such that the set ⃝(p) is a singleton
{◦p}, that is, consistency may be defined as a formula ϕ(p) in L2,6

6In particular, ϕ(p) could be of the form !(p) for ! a unary connective of Σ2.
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(c) the non-explosive negation ¬ cannot be defined in L1,
(d) L1 is non-trivial. "

All C-systems we will be studying below are examples of non-contra-
dictory ¬-paraconsistent logical systems. Furthermore, they are equipped
with supplementing negations and bottom particles, and they are based on
classical propositional logic (in a convenient signature which includes an
explicit connective for classical negation). Accordingly, they will all respect
Principles (1), (2), (7), (8) and (9), but they will obviously disrespect (3).

As it will be seen in the following, the hierarchy of logics Cn, 1 ≤ n <
ω (cf. [da Costa, 1963] or [da Costa, 1974]) provide clear illustrations of
C-systems based on classical logic, provided that each Cn is presented in
an extended signature including a connective for classical negation. The
cautious reader should bear in mind that Cω (cf. Definition 40 below), the
logic proposed as a kind of ‘limit’ for the hierarchy is not a C-system, not
even an LFI. The real deductive limit for the hierarchy, the logic CLim,
is an interesting example of a gently explosive LFI that is not finitely so,
and it was studied in [Carnielli and Marcos, 1999]. The next definition will
recall the hierarchy Cn, 1 ≤ n < ω, in an axiomatic formulation of our own:

DEFINITION 28. Recall, once more, the signature Σ from Remark 15.
For every formula α, let ◦α be an abbreviation for the formula ¬(α ∧ ¬α).
The logic C1 = ⟨For,⊢C1⟩ may be axiomatized by the following schemas of
a Hilbert calculus:

Axiom schemas:
(Ax1) α→ (β → α)

(Ax2) (α→ β) → ((α→ (β → γ)) → (α→ γ))

(Ax3) α→ (β → (α ∧ β))

(Ax4) (α ∧ β) → α

(Ax5) (α ∧ β) → β

(Ax6) α→ (α ∨ β)

(Ax7) β → (α ∨ β)

(Ax8) (α→ γ) → ((β → γ) → ((α ∨ β) → γ))

(Ax9) α ∨ (α→ β)

(Ax10) α ∨ ¬α

(Ax11) ¬¬α→ α

(bc1) ◦α→ (α→ (¬α→ β))
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(ca1) (◦α ∧ ◦β) → ◦(α ∧ β)

(ca2) (◦α ∧ ◦β) → ◦(α ∨ β)

(ca3) (◦α ∧ ◦β) → ◦(α→ β)

Inference rule:

(MP)
α, α→ β

β

In general, given a set of axioms and rules of a logic L, we write Γ ⊢L α
to say that there is proof in L of α from the premises in Γ. The subscript
will be omitted when obvious from the context. If Γ is empty we say that
α is a theorem of L.

The logic C1 is a LFI such that ⃝(p) = {◦p} = {¬(p ∧ ¬p)}. We shall
see that axioms (bc1), and (ca1)–(ca3) can be stated in a new fashion by
taking ◦ as a primitive connective instead of as an abbreviation. From
these new axioms different logics will emerge. Moreover, since it is possible
to define a classical negation ∼ in C1 (namely, ∼α = ¬α ∧ ◦α), this logic
may be rewritten in an extended signature which contains ∼ as a primitive
connective (and adding the obvious axioms identifying ∼α with ¬α ∧ ◦α),
and so it is easy to see that C1 (presented in the extended signature) is a
C-system based on classical logic (see Remark 29 below).

Let α1 abbreviate the formula ¬(α∧¬α), and αn+1 abbreviate the formula
(¬(αn ∧ ¬αn))1. Then, each logic Cn of the hierarchy {Cn}1≤ n<ω may be
obtained by assuming ⃝(p) = {p1, . . . , pn}. This is equivalent, of course, to
setting ◦α def

== α1 ∧ . . .∧αn in axioms (bc1) and (ca1)–(ca3). It is immediate
to see that every logic Cn is an LFI. Moreover, by considering the definable
classical negation ∼ as a primitive connective, each Cn (presented in the
extended signature) is a C-system based on classical logic. It is well known
that each Cn properly extends each Cn+1. "
REMARK 29. Let the signature Σ+ denote the signature Σ without the
symbol ¬, and For+ be the corresponding ¬-free fragment of For. Positive
classical logic, from now on denoted as CPL+, may be axiomatized in the
signature Σ+ by axioms (Ax1)–(Ax9), plus (MP). Classical propositional
logic, from now on denoted by CPL, is an extension of CPL+ in the signa-
ture Σ, where ¬ is governed by two dual axioms, (Ax10) and the following
‘explosion law’:

(exp) α→ (¬α→ β)

That axiomatization should come as no surprise, if you only recall the notion
of a classical negation from Definition 8. Clearly, for any logic L extending
CPL+ a (primitive or defined) unary connective # of L is a classical negation
iff the schemas (α ∨ #α) and (α→ (#α→ β)) are provable.
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CPL is also the minimal consistent extension of C1. Indeed, an alter-
native way of axiomatizing CPL is by adding ◦α to C1 as a new axiom
schema, and (exp) then follows from (bc1) and this new axiom, by (MP).
On the other hand, positive intuitionistic logic may be axiomatized from
CPL+ by dropping (Ax9).

As mentioned above, C1 may be considered as a deductive fragment of
CPL (in the signature Σ), whereas CPL may be considered as a deductive
fragment of C1 in the signature Σ∼ obtained from Σ by adding a symbol
∼ for classical negation, and where ¬ denotes the paraconsistent negation
of C1.

As it is well known (cf. [Mendelson, 1997]), any logic having (Ax1) and
(Ax2) as axioms, and modus ponens (MP) as its only primitive inference
rule has a deductive implication.7

In any logic endowed with a deductive implication, the Principle of Ex-
plosion, (3), and the explosion law, (exp), are interderivable. So, for any
such logic, if paraconsistency is to be obtained, (exp) must fail.

As usual, bi-implication ↔ will be defined here by setting (α ↔ β) def
==

((α → β) ∧ (β → α)). Note that, in the presence of a deductive implica-
tion →, ⊢ (α ↔ β) if, and only if, α ⊢ β and β ⊢ α, that is, iff α and β are
equivalent. Nevertheless, the equivalence of two formulas, in the logics we
will study here, does not necessarily guarantee that these formulas may be
freely inter-substituted for each other, as we shall see below. "

Recall that the definition of a C-system (Definition 27) mentioned LFIs
in which the set ⃝(p) could be taken as a singleton. The easiest way of
realizing this intuition is by extending the original language of our logics so
as to count from the start with a primitive connective ◦ for consistency.

REMARK 30. Recall the signature Σ◦ from Remark 15. Consider the
following (innocuous, but linguistically relevant) extension of CPL that
presupposes all formulas to be consistent, obtained by the addition of the
following new axiom:

(ext) ◦α

In practice, this will constitute of course just another version of CPL in
a different signature, where any formula of the form ◦α is assumed to be
a top particle. This logic, which we will here call extended classical logic
and denote by eCPL, will come in handy below when we start building
C-systems based on classical logic. "

Sometimes our Logics of Formal Inconsistency can dismiss the new consis-
tency connective (by replacing it by a formula built from the other connec-
tives already present in the signature). Before defining this class of logics,

7This is not always true, though, for logics extending (Ax1), (Ax2) and (MP) by the
addition of new primitive inference rules.
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it is convenient to make a little detour and present a fundamental notion
that will have a role to play in several parts of this chapter, namely, the
concept of translation between logics.
DEFINITION 31. Let L2 and L1 be logics with sets of formulas For2 and
For1, respectively. A mapping t: For2

!! For1 is said to be a transla-
tion from L2 to L1 if, for every set Γ ∪ {α} of L2-formulas,

Γ ⊢L2 α implies t(Γ) ⊢L1 t(α).

Here, t(Γ) stands for {t(γ) : γ ∈ Γ}.
If ‘implies’ is replaced by ‘iff’ in the definition above, then t is called a

conservative translation. See [da Silva et al., 1999], [Coniglio and Carnielli,
2002] and [Coniglio, 2005] for a general account of translations and conser-
vative translations. "

Now, having the notion of translations at hand, the special kind of C-
systems mentioned above is defined as follows:
DEFINITION 32. Let L2 be a C-system with respect to ¬, based on a
logic L1, and let ϕ(p) represent the formula schema with respect to which L2
is gently explosive, that is, such that ϕ(α) represents in L2 the consistency
of the formula α with respect to the non-explosive negation ¬. Where Σ2

represents the signature of the logic L2, let cnt[ϕ(p)] represent the set of
connectives involved in the formulation of ϕ(p). Let Σ′ be any signature
obtained by dropping from Σ2 all the connectives that appear in cnt[ϕ(p)],
that is, Σ′ is a restriction of the signature of L2 in which consistency can
no more be expressed in the same way as in the original logic L2. Now, in
case it is still possible to express the consistency of the formulas of L2 with
the help of the remaining connectives in Σ′ # Σ2, say, by way of a set of
formulas ϕ′(p) over Σ′, then we say that L2 is a dC-system based on L1
(or simply a dC-system). So, dC-systems are C-systems with respect to
some negation and some consistency schema ϕ(p) where it is also possible
to express consistency alternatively by way of a formula ϕ′(p) such that
ϕ(p) and ϕ′(p) have no common structure, that is, such that cnt[ϕ′(p)] ∩
cnt[ϕ′(p)] = ∅. This is typically the case when ϕ(p) has the form ◦(p),
where ◦ is a primitive unary connective of Σ2, but where, at the same
time, ◦ can be explicitly defined by way of the connectives in Σ2 \ {◦} (see
examples below). In that case we say that L2 is a direct dC-system based
on L1 (or simply a direct dC-system). As we will see below, there are
dC-systems that are not direct (they will from here on be called indirect).
In those indirect dC-systems, consistency cannot be expressed by a unary
connective ◦, primitive or defined, but only by way of a complex formula ϕ,
depending on a single variable.
DEFINITION 33. Let Σ be the signature of an indirect dC-system L, and
consider the direct dC-system L′ defined over the signature Σ′, such that:
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(a) L′ is a conservative extension of L obtained by the addition of a new
unary connective ◦, that is, such that Σ′ = Σ ∪ {◦} (so, in particular, the
consistency of a formula α can be expressed in L′ exactly as in L, namely,
by way of the formula ϕ(α));
(b) L′ is an LFI with respect to ◦ ∈ Σ′, and a C-system with respect to
some ¬ ∈ Σ (so, in particular, the consistency of α can also be expressed in
L′ by way of the formula ◦α);
(c) In L′ the connective ◦ plays the same role as the formula ϕ plays in
L, more specifically, there is a translation ⋆ : ForL′ !! ForL respecting
the following clauses:
(c.1) t(p) = p, for p a propositional variable
(c.2) t($(α1, . . . ,αn)) = $(t(α1), . . . , t(αn)), for every n-ary connective $
in Σ′ distinct from ◦, and for any choice of formulas α1, . . . ,αn from ForL′

(c.3) t(◦α) = ϕ(t(α)), for any formula α in ForL′

In a case like this we may say that the direct dC-system L′ corresponds to
the indirect dC-system L. Indirect dC-systems appear typically when we
are talking about C-systems for which the replacement property fails to such
an extent that it might turn out to be impossible to give an explicit definition
of the consistency connective in terms of other, more usual connectives.
(Examples follow below.) "

The next example and the subsequent theorem will show that dC-systems
are even more ubiquitous than one might initially imagine.
EXAMPLE 34. Let Σ♦" be the signature obtained by the addition of the
new unary connectives ♦ and ' to the signature Σ, where the connectives ∧,
∨, → and ¬ of Σ are interpreted as in classical logic and the new connectives
are interpreted as usual in normal modal logics. So, ♦α (respectively, 'α)
will be true in a given world iff α is true in some (respectively, any) world
accessible to the former. The most obvious degenerate examples of normal
modal logics are characterized by frames that are such that every world can
access only itself or no other world. As shown in [Marcos, 2005e], inside
any non-degenerate normal modal logic, a paraconsistent negation ( may
be defined by setting (α def

== ♦¬α, and a consistency connective may be
defined by setting ◦α def

== α→ 'α.
Conversely, take the signature Σ◦, and interpret the primitive negation ¬

now over Kripke structures so as to make it behave exactly like the above
connective ( , that is, an interpretation such that, for worlds x and y of a
model M with an accessibility relation R:

|=M
x ¬α iff (∃y)(xRy and ̸|=M

y α).

Moreover, let the consistency connective be interpreted in such a way that:

|=M
x ◦α iff |=M

x α implies (∀y)(if xRy then |=M
y α).
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Then, in the present case, one can still redefine the previous connectives of
Σ♦". Indeed, one can define a bottom ⊥ by setting ⊥ def

== α∧(¬α∧◦α), for an
arbitrary formula α, and then define a classical negation ∼ by setting ∼α def

==

α → ⊥. The original modal connectives can finally be defined by setting
♦α def

== ¬∼α and 'α def
== ∼¬α.

The above arguments show that any non-degenerate normal modal logic
may be naturally reformulated in the signature of an LFI. In that sense,
modal logics are typically paraconsistent, and could be recast as the study
of paraconsistent negations (instead of operators such as ' and ♦). "
THEOREM 35.
(i) LFI1 (see Example 18) is a C-system (based either on CPL+ or on
CPL), but not a dC-system.
(ii) P1 (see Example 19) is a direct dC-system.
(iii) The logics Cn, 1 ≤ n < ω, (see Definition 28) are all direct dC-systems.
(iv) Jaśkowski’s Discussive Logic D2 (see Example 24) is a direct dC-
system.
(v) The normal modal logics from Example 34 are all direct dC-systems.

Proof. For item (i), observe first that LFI1 is a C-system based on clas-
sical logic. Indeed, the binary connectives of LFI1 all behave classically:
All axioms of CPL+ are validated by the 3-valued truth-tables of LFI1,
and (MP) preserves validity. Second, as we already know, the classical
negation ∼ can be defined in LFI1. Third, the connective ◦ expresses con-
sistency in LFI1, and the latter logic is indeed a conservative extension
of Pac obtained exactly by the addition of that connective. Similarly, the
non-explosive negation ¬ of LFI1 can easily be seen not to be definable, in
LFI1, from the truth-tables of the classical connectives. Finally, recall from
Theorem 25 that Pac is not an LFI, and observe that ◦ is not definable
from the other connectives of LFI1. Items (ii)–(v) were already explained
when the corresponding logics were introduced. "

The first examples of indirect dC-systems will appear only in Theo-
rems 106 and 110, as well as Remark 111.

All LFIs studied from the next subsection on, unless explicit mention to
the contrary, are C-systems based on classical logic, and can therefore be
axiomatized starting from CPL+.

3.2 Towards mbC, a fundamental LFI

Before introducing our weakest LFI based on classical logic, we will intro-
duce a very weak non-gently explosive paraconsistent logic.

Do bear in mind, from Remark 29, that ¬ in CPL was axiomatized by
the addition to CPL+ of two dual clauses, (Ax10) and (exp).
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DEFINITION 36. The paraconsistent logic PI, investigated in [Batens,
1980], extends CPL+ in the signature Σ (see Remark 29) by the addition
of (Ax10). In other words, PI is axiomatized by (Ax1)–(Ax10) and (MP)
(recall Definition 28). "
It is worth noting that, due to (Ax8), (Ax10) and to the fact that PI has
a deductive implication (recall Definition 6), one can count on the classical
proof strategy known as proof-by-cases:
THEOREM 37. If (Γ,α ⊢PI β) and (∆,¬α ⊢PI β) then (Γ, ∆ ⊢PI β). "

Here are some other important properties of PI :
THEOREM 38. (i) PI is boldly paraconsistent.
Moreover, for any boldly paraconsistent extension L of PI :
(ii) Reductio ad absurdum is not a valid rule, i.e. rules such as:
(∆,β ⊢L α) and (Π,β ⊢L ¬α) implies (∆, Π ⊢L ¬β), and
(∆,¬β ⊢L α) and (Π,¬β ⊢L ¬α) implies (∆, Π ⊢L β)
cannot obtain.
(iii) If the implication → is still a deductive implication (recall Definition 6),
contraposition is not a valid rule, i.e. rules such as:
Γ,α→ β ⊢L ¬β → ¬α
Γ,α→ ¬β ⊢L β → ¬α
Γ,¬α→ β ⊢L ¬β → α
Γ,¬α→ ¬β ⊢L β → α
cannot obtain.
Proof. For item (i), note that PI has a deductive implication and is a
fragment of both Pac and P1. Indeed, the axioms of PI are all validated by
the truth-tables of Pac and by the truth-tables of P1, and (MP) preserves
validity. Recall that those 3-valued extensions of PI were already proven to
be boldly paraconsistent in Theorem 20.
For item (ii), let ∆ = Π = {α,¬α}. Then, by reductio, the logic would be
partially explosive.
For item (iii), using the properties of the deductive implication, we have
that γ ⊢L α → γ. Then again, by contraposition, the logic would turn out
to be partially explosive. "

As we will soon see (check Theorem 48), the upgrade of non-gently ex-
plosive logics into LFIs will help remedy the above mentioned deductive
weaknesses, so typical of paraconsistent logics in general.

Here again, using the fact that PI is a deductive fragment of Pac, it can
also be easily checked that:
THEOREM 39. The logic PI :
(i) does not have a supplementing negation, nor a bottom particle;
(ii) is not finitely trivializable;
(iii) is not an LFI. "
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Before proceeding, this seems to be a convenient place to mention some
logics that live very close to PI :
DEFINITION 40. The logic Cmin (cf. [Carnielli and Marcos, 1999]) is
obtained from PI by the addition of ¬¬α → α as a new axiom. The
logic Cω (cf. [da Costa, 1963]) is obtained from Cmin by dropping (Ax9).
Finally, the logic CAR (cf. [da Costa and Béziau, 1993]) is obtained from
PI by adding α→ (¬α→ ¬β) as a new axiom. "

Finally, here are some other important facts about PI :
THEOREM 41.
(i) PI does not prove any negated formula (that is, any formula of the
form ¬δ).
(ii) No two different negated formulas of PI are equivalent, that is, if
¬α ⊣⊢PI ¬β then α = β.
Proof. Item (i) was already proven in [Carnielli and Marcos, 1999] for
Cmin. Item (ii) was proven in [Urbas, 1989] for Cω, and the proof may be
easily adapted for PI. "

As we saw in Theorem 39(iii), PI is not an LFI. We will now make
the most obvious upgrade of PI that will turn it into an LFI, endowing it
with the most straightforward axiomatic version of the principle (10), the
so-called Finite Gentle Principle of Explosion:
DEFINITION 42. Recall the signature Σ◦ from Remark 15 and the logic
PI from Definition 36. The logic mbC is obtained from PI , over Σ◦, by the
addition of the following axiom schema:

(bc1) ◦α→ (α→ (¬α→ β))

In other words, mbC is axiomatized by (Ax1)–(Ax10) plus (MP) (recall
Definition 28), but now over the signature Σ◦, together with the extra axiom
(bc1), above. "

Notice that a particular form of axiom (bc1) had already been consid-
ered in Definition 28, but there ◦α was considered as an abbreviation for
¬(α ∧ ¬α), instead of a primitive connective. We recall that the intended
reading of ◦α is ‘α is consistent’. As we shall see, in general, ◦α is logically
independent from ¬(α ∧ ¬α).

If ⊢mbC denotes the consequence relation of mbC, then we obtain, by
(MP), the following:

◦α, α, ¬α ⊢mbC β (11)

Rule (11) may be read as saying that ‘if α is consistent and contradictory,
then it explodes’. Clearly, this rule amounts to a realization of the Finite
Gentle Principle of Explosion (10), as in our formulation of da Costa’s Cn

(Definition 28), with the difference that now ◦ is a primitive unary connec-
tive and not an abbreviation depending on conjunction and negation.
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REMARK 43. It is easy to define supplementing negations in mbC. Con-
sider first a negation ≀ set by ≀α def

== (¬α ∧ ◦α). Notice that, as a particular
instance of Theorem 13(i), ⊥β

def
== (β ∧ ≀β) defines a bottom particle, for

every β. Consider next a negation ∼β set by ∼βα
def
== α → ⊥β . Clearly,

∀α∀γ(α, ≀α ⊢mbC γ) and ∀β∀α∀γ(α,∼βα ⊢mbC γ). In Remark 70, the
semantic tools of Subsection 3.4, granting sound and complete possible-
translations interpretations for mbC, will help us showing that neither ∼βα
nor ≀α are always bottom particles. Moreover, these supplementing nega-
tions will in fact be seen to be inequivalent: though ≀α derives ∼βα, the
converse is not true. While ∼β defines a classical negation, ≀ fails to be
complementing (the latter facts will be proven in Remark 70).

From now on, we will simply write ⊥ and ∼ to refer to any of the con-
nectives ⊥β and ∼β defined above. Despite ⊥β and ⊥γ , as well as ∼βα
and ∼γα, being equivalent for every β, γ and α, they cannot be freely in-
tersubstituted (check the end of Remark 29). It will be often useful, in
this paper, to consider our C-systems to be written from the start in an
extended signature containing both the non-explosive negation ¬ and the
classical negation ∼, to be set as in the above definition. "
THEOREM 44. mbC is an LFI. In fact, it is a C-system based on CPL.
Proof. Note that mbC is indeed a fragment of LFI1 and of P1, and in
Theorem 25 the latter were shown to be LFIs. Moreover, we now know from
rule (11) that the principle (9) holds in mbC (in fact its finite form (10)
already holds). By design, we also know that mbC contains CPL+, and ¬
cannot be defined in the latter logic. Thus, mbC is a C-system based on
CPL+ such that ⃝(p) = {◦p}. To check that mbC can also be seen as a
C-system based on full CPL one might notice that mbC extends CPL in a
signature with two negations (as in the preceding remark). This extension
must be conservative, given that CPL is well-known to be maximal with
respect to the trivial logic. "

So, mbC may be considered as a deductive fragment of CPL, provided
that CPL is presented as eCPL in the signature Σ◦. On the other hand,
taking into account the signature Σ◦∼ obtained from Σ◦ by adding a symbol
∼ for the classical negation ∼α = α → ⊥ of mbC (recall Remark 43), and
where ¬ denotes the paraconsistent negation, CPL is a deductive fragment
of mbC such that mbC is a C-system based on CPL, provided that the
obvious axioms defining ∼ in terms of the other connectives of Σ◦ are added
to mbC.
REMARK 45. In spite of the term ‘Logics of Formal Inconsistency’, we
have mentioned but a consistency connective ◦ this far. But mbC can also
count on the dual inconsistency connective •. To define it, in general, one
might make use of a classical negation, such as the negation ∼ defined in
the above remark, and set •α def

== ∼◦α. "
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The logic mbC inherits the main properties of the positive fragment
of PI (such as those properties of the standard conjunction, the standard
disjunction and the deductive implication), but above we have seen that the
former logic is much richer than the latter. As another illustration of this
fact, from Theorem 44 and Remark 43 we can immediately see that none
of the claims from Theorem 39 are any longer valid in mbC. Furthermore,
the claims of Theorem 41 also do not hold good for mbC:

THEOREM 46.
(i) There are in mbC theorems of the form ¬δ, for some formula δ.
(ii) There are formulas α and β in mbC such that α ̸= β, α and β are
equivalent, and ¬α and ¬β are also equivalent.

Proof. (i) Consider any bottom particle ⊥ of mbC. Then (⊥ ⊢mbC ¬⊥)
and (¬⊥ ⊢mbC ¬⊥), thus ⊢mbC ¬⊥, by Theorem 37.
(ii) Take α and β to be any two syntactically distinct bottom particles. "

Even if, differently from PI, mbC does have negated theorems, it does
not have consistent theorems:

THEOREM 47. There are in mbC no theorems of the form ◦δ.

Proof. Use the classical truth-tables over {0, 1} for ∧,∨,→ and ¬, and
pick for ◦ a truth-table with value constant and equal to 0. "

The price to pay for paraconsistency is that we necessarily lose some the-
orems and inferences dependent on the ‘consistency presupposition’. This
has been illustrated, for instance, in Theorem 38, where PI and its ex-
tensions (satisfying certain assumptions) were shown to lack some usual
classical proof strategies such as reductio and contraposition. This loss in
inferential power can be remedied in the LFIs exactly by adding convenient
consistency assumptions at the object-language level, as advanced in Re-
mark 26. Indeed, some restricted forms of those rules may be proven in
mbC:

THEOREM 48. The following reductio rules hold good in mbC:
(i) (Γ ⊢mbC ◦α) and (∆,β ⊢mbC α) and (Λ,β ⊢mbC ¬α)

implies (Γ, ∆, Λ ⊢mbC ¬β)
(ii) (Γ ⊢mbC ◦α) and (∆,¬β ⊢mbC α) and (Λ,¬β ⊢mbC ¬α)

implies (Γ, ∆, Λ ⊢mbC β)
The following contraposition rules hold in mbC:
(iii) ◦β, (α→ β) ⊢mbC (¬β → ¬α)
(iv) ◦β, (α→ ¬β) ⊢mbC (β → ¬α)
(v) ◦β, (¬α→ β) ⊢mbC (¬β → α)
(vi) ◦β, (¬α→ ¬β) ⊢mbC (β → α) "
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The last theorem is an instance of a more general phenomenon: Any
classical rule may be recovered within our C-systems based on classical
logic (check the discussion about that at Subsection 3.6).

Intuitively, a contradiction might be seen as a sufficient condition for in-
consistency. Indeed, here are some properties that relate the new connective
of consistency to the more familiar connectives of CPL+:

THEOREM 49. In mbC the following hold good:
(i) α,¬α ⊢mbC ¬◦α
(ii) α ∧ ¬α ⊢mbC ¬◦α
(iii) ◦α ⊢mbC ¬(α ∧ ¬α)
(iv) ◦α ⊢mbC ¬(¬α ∧ α)
The converses of these rules are all failed by mbC.

Proof. Items (i)–(iv) are easy consequences of the restricted forms of re-
ductio from Theorem 48.

In order to prove the second half of the theorem, consider the truth-tables
of P1 (Example 19), but substitute the truth-table for negation, ¬, by the
3-valued truth-table for classical negation, ∼, to be found in Example 17.
Then, mbC is sound for this set of truth-tables, and so it is enough to
prove the failure of the converse rules using these same truth-tables. For
instance, the rule ¬(¬α ∧ α) ⊢ ◦α, converse to rule (iv), is failed if we put
an atom p in the place of the schema α and pick a valuation v such that
v(p) = 1

2 . Indeed, observe that the above described set of truth-tables will
make v(¬p) = 0, thus v(p ∧ ¬p) = 0 and v(¬(p ∧ ¬p)) = 1, while they
will also make v(◦p) = 0, providing a counter-model for this inference that
is nevertheless sound for mbC. (Alternative counter-models, in terms of
possible-translations semantics, will be offered in Example 69.) "

The last result hints to the fact that paraconsistent logics may easily have
certain unexpected asymmetries. That’s what happens, for instance, with
da Costa’s C1. As we shall see, the converse of (iii) holds good in C1, while
the converse of (iv) fails, so that ¬(α∧¬α) and ¬(¬α∧α) are not equivalent
formulas in C1. Other even more shocking examples of asymmetries are the
following:

THEOREM 50. In mbC:
(i) (α ∧ β) ⊣⊢mbC (β ∧ α) holds good,
but ¬(α ∧ β) ⊣⊢mbC ¬(β ∧ α) does not hold.

(ii) (α ∨ β) ⊣⊢mbC (β ∨ α) holds good,
but ¬(α ∨ β) ⊣⊢mbC ¬(β ∨ α) does not hold.

(iii) (α ∧ ¬α) ⊣⊢mbC (¬α ∧ α) holds good,
but ¬(α ∧ ¬α) ⊣⊢mbC ¬(¬α ∧ α) does not hold.
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(iv) γ ∨ ¬γ is a top particle, thus (α ∨ ¬α) ⊣⊢mbC (β ∨ ¬β) holds good.
But ¬(α ∨ ¬α) ⊣⊢mbC ¬(β ∨ ¬β) does not hold.

(v) The equivalence α ⊣⊢PI (¬α→ α) holds good,
but ¬α ⊣⊢mbC ¬(¬α→ α) does not hold.

Proof. Using PI it is easy to prove the first halves of each item.
Items (i) to (iii). In order to check that none of the other halves hold, we

can use again the truth-tables of P1 (Example 19), but redefining (1∧ 1
2 ) =

(1 ∨ 1
2 ) = 1

2 .
For item (iv), use the truth-tables of LFI1 (Example 18), and take a

valuation v such that v(p) ̸= v(q) and v(p), v(q) ∈ {1, 1
2}. For item (v), use

again the truth-tables of P1, and consider v(p) = 1
2 . "

REMARK 51. The last theorem illustrates the failure of the so-called
replacement property. This property states that, for any choice of formulas
α0, . . . ,αn, β0, . . . ,βn and of formula ϕ(p0, . . . , pn):

(RP) (α0 ⊣! β0) and . . . and (αn ⊣! βn) implies
ϕ(α0, . . . ,αn) ⊣! ϕ(β0, . . . ,βn)

For example, from α ⊣! β one would immediately derive ¬α ⊣! ¬β,
using (RP). But this does not hold for mbC. Recall, by the way, that
α ⊣⊢mbC β amounts to ⊢mbC α↔ β, given the definition of bi-implication
and the presence of a deductive implication in mbC. Logics enjoying (RP)
are called self-extensional in [Wójcicki, 1988]. Paradigmatic examples of
such logics are provided by normal modal logics. "

We will show below that various other classes of LFIs fail the replacement
property (see Theorems 52, 81 and 133).

A natural question here is whether our logics can be upgraded so as to
restore the interesting property (RP) inside the paraconsistent territory. To
ensure that (RP) is obtainable in extensions of PI in the signature Σ, it is
enough to add the rule:

(EC) ∀α∀β((α ⊣! β) implies (¬α ⊣! ¬β))

In [Urbas, 1989] paraconsistent extensions of Cω (see Definition 40) enjoy-
ing the rule (EC) are shown to exist. The argument may be easily adapted
to several extensions of PI, but it does not follow for many other such ex-
tensions, as it will be shown below. In [da Costa and Béziau, 1993], the
logic CAR (see Definition 40) was introduced as an extension of PI where
(RP) holds good. But CAR is not an LFI, and it is not boldly paracon-
sistent, being partially explosive exactly as the Minimal Intuitionistic Logic
MIL from Example 10. To obtain the replacement property in extensions
of mbC, in the signature Σ◦, a further rule is needed, namely:

(EO) ∀α∀β((α ⊣! β) implies (◦α ⊣! ◦β))
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Before ending this subsection, let us quickly survey some results on the
possible validity of (RP) in paraconsistent extensions of mbC, or in some
of its fragments:

THEOREM 52. The replacement property (RP) cannot hold in any para-
consistent extension of mbC in which:

(i) ◦##α holds, for some given classical negation #; or
(ii) ¬(α→ β) ⊢ (α ∧ ¬β) holds.

The replacement property (RP) cannot hold in any left-adjunctive paracon-
sistent extension of PI in which:

(iii) (α ∧ β) ⊣⊢ ¬(¬α ∨ ¬β) holds.
The replacement property (RP) cannot hold in any left-adjunctive paracon-
sistent logic in which:

(iv) ¬(α ∧ ¬α) holds and (α ∧ ¬α) ⊣⊢ ¬¬(α ∧ ¬α).

Proof. Assume that (i) holds good. Since # is a classical negation, α ⊣⊢ ##α
and then, by (RP), we infer that ◦α ⊣⊢ ◦##α. But ◦##α is a theorem of
the given logic, by hypothesis, then ◦α is a theorem. From (bc1), the logic
turns out to be explosive with respect to the original primitive negation ¬.
Now, assume that (ii) holds good. Consider the supplementing negation
∼α = (α → ⊥) for mbC, where ⊥ = (p0 ∧ (¬p0 ∧ ◦p0)), proposed in
Remark 43. This negation was shown to be classical. Then, ¬∼α ⊢ (α∧¬⊥),
by hypothesis, and so ¬∼α ⊢ α, using (Ax4). Since α,∼α ⊢ β for every α
and β, then ¬∼α,∼α ⊢ β for every α and β, that is, the logic is controllably
explosive in contact with ∼p. In particular, ¬∼∼α,∼∼α ⊢ β for every α
and β. But α ⊣⊢ ∼∼α for a classical negation and so, using (RP), we may
conclude that ¬α ⊣⊢ ¬∼∼α and then ¬α,α ⊢ β for every β. In other words,
the logic will be explosive, not paraconsistent (with respect to the original
negation ¬).
Assume next that (iii) holds good. Since (¬α∨¬¬α) is a theorem of PI, then
¬(¬α∨¬¬α) ⊣⊢ ¬(¬β∨¬¬β), for every α and β, by (RP). By hypothesis we
infer that (α∧¬α) ⊣⊢ (β ∧¬β). So, by the rules of a standard conjunction,
we conclude in particular that α,¬α ⊢ β.
Finally, assume that (iv) holds good. Since ¬(α ∧ ¬α) is a theorem, by
hypothesis, then ¬¬(α ∧ ¬α) ⊣⊢ ¬¬(β ∧ ¬β) for every α and β, by (RP).
Then, again by hypothesis, we have that (α ∧ ¬α) ⊣⊢ (β ∧ ¬β). The result
follows now as in item (iii). "

With the help of Theorem 52(ii) it is easy to see, for instance, that
Jaśkowski’s D2 (recall Example 24) fails the replacement property. This
feature was used in [Marcos, 2005b] to show that this logic is not ‘modal’ in
the current usual sense of the word, in spite of its very definition in terms
of a double translation into the modal logic S5.

REMARK 53. To obtain paraconsistent extensions of mbC validating both
(EC) and (EO) is a perfectly feasible task. Examples of such logics were
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already offered in Example 34: Notice indeed that axiom (bc1) and rules
(EC) and (EO) are all satisfied by the minimal normal modal logic K, thus
also by any of its normal modal extensions. "

3.3 Bivaluation semantics for mbC

At the beginning of their historical trajectory, most C-systems were intro-
duced exclusively in proof-theoretical terms (see, for a survey, [Carnielli
and Marcos, 2002]). Later on, many of them were proven not to be char-
acterizable by finite-valued truth-tables (such results are generalized here
in Theorems 121 and 125). If we add to this the frequent failure of the
replacement property and the consequent difficulty in characterizing those
same logics by way of usual Kripke-like modal semantics, it will seem clear
that semantic presentations for many of our present C-systems will have to
rely upon some alternative kinds of semantics.

There are of course many examples of paraconsistent logics with adequate
finite-valued semantics. Several 3-valued samples of such logics were already
mentioned above in Examples 17, 18 and 19), and many more will be pre-
sented below in Section 5.3. Additionally, many examples of paraconsistent
logics with a modal semantics were also mentioned above, in Example 34.
However, we have already seen that a logic such as mbC, our weakest LFI
based on classical logic, fails the replacement property. Moreover, as a
particular consequence of Theorem 121, mbC will also be seen not to be
finite-valued. What kind of semantics can we attach to such a logic, thus?

The first examples of adequate non-truth-functional bivalued semantics
were proposed in [da Costa and Alves, 1977] in order to provide interpreta-
tions for some historically distinguished C-systems, those in the hierarchy
Cn, 1 ≤ n < ω (check Definition 28). Such decidable semantics are now
known to be a particular case of a more general semantic presentation, called
‘dyadic’ (check Subsection 3.5 and [Caleiro et al., 2005a]). We will show in
the following how a simple characteristic (non-truth-functional) adequate
bivaluation semantics may be attached to the logic mbC. This example
will help in clarifying the connections with other semantic presentations,
as well as in devising relevant open problems towards obtaining a theoreti-
cal framework for further investigation in the foundations of paraconsistent
logic. In the next subsection, we will endow mbC with the much richer
semantics of possible-translations. This new semantics, as we shall see, not
only gives an interpretation to contradictory situations, but it also offers an
explanation for the existence of conflicting scenarios.

DEFINITION 54. Let 2 def
== {0, 1} be the set of truth-values, where 1 denotes

the ‘true’ value and 0 denotes the ‘false’ value. An mbC-valuation is any
function v: For◦ !! 2 subject to the following clauses:

(v1) v(α ∧ β) = 1 iff v(α) = 1 and v(β) = 1;
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(v2) v(α ∨ β) = 1 iff v(α) = 1 or v(β) = 1;
(v3) v(α→ β) = 1 iff v(α) = 0 or v(β) = 1;
(v4) v(¬α) = 0 implies v(α) = 1;
(v5) v(◦α) = 1 implies v(α) = 0 or v(¬α) = 0. "
For a collection Γ ∪ {α} of formulas of mbC, Γ %mbC α means, as usual
(recall Definition 16), that α is assigned the value 1 for every mbC-valuation
that assigns value 1 to the elements of Γ.
REMARK 55. Given clause (v5) in the above definition of a bivaluation
semantics for mbC, it is clear that this logic does not admit of a trivial
model, that is, that there is no v such that v(α) = 1 for every formula α.
In particular, given a trivial theory Γ of mbC, for every mbC-valuation v,
then there must be some γ ∈ Γ such that v(γ) = 0 (and thus v(¬γ) = 1, by
clause (v4)). This observation reveals a typical semantical feature of LFIs.
Indeed, other non-gently explosive paraconsistent logics might well allow
for such trivial models. For instance, the logic Pac (Example 17), despite
being maximal relative to classical logic (cf. [Batens, 1980]), does admit of
such a model: Consider indeed v(α) = 1

2 , and recall that 1
2 is a designated

value. "
The soundness proof for mbC with respect to mbC-valuations is imme-

diate:
THEOREM 56. [Soundness] Let Γ∪{α} be a set of formulas in For◦. Then:
Γ ⊢mbC α implies Γ %mbC α.
Proof. Just check that all axioms of mbC assume only the value 1 in any
mbC-valuation, and that (MP) preserves validity. "

In order to prove completeness it is convenient to prove first some aux-
iliary lemmas. Let ∆ ∪ {α} be a set of formulas in For◦. We say that a
theory ∆ is relatively maximal with respect to α in mbC if ∆ ̸⊢mbC α and
for any formula β in For◦ such that β ̸∈ ∆ we have ∆,β ⊢mbC α. The
usual Lindenbaum-Asser argument (cf. [Béziau, 1999]) shows that inside
any compact S-logic — such as mbC — every non-trivial theory may be
extended into a relatively maximal theory:
LEMMA 57. Let L be a compact S-logic over a signature Σ̂. Given some
set of formulas Γ and a formula α such that Γ ̸!L α, then there is a set
∆ ⊇Γ that is relatively maximal with respect to α in L.
Proof. Consider an enumeration {ϕn}n∈N of the formulas in ForL, and a
chain ∆n, n ∈ N, of theories built as follows:

∆0 = Γ

∆n+1 =

{
∆n ∪ {ϕn}, if ∆n,ϕn ̸!L α

∆n, otherwise

Let ∆ =
⋃

n∈N ∆n. We will show that ∆ is relatively maximal with respect
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to α in L. First of all, notice that, by an easy induction over the above
chain, we can conclude that ∆n ̸!L α, for every n ∈ N. Moreover, ∆ ̸!L α.
Indeed, if that was not the case, by compactness there would be some finite
∆fin ⊆ ∆ such that ∆fin !L α. But then, using cut, there would be some
∆m ⊇∆fin such that ∆m !L α, and that is impossible. Now, consider some
β ̸∈ ∆. That β must be such that β = ϕn, for some n. Thus β ̸∈ ∆n+1,
given reflexivity and ∆n+1 ⊆ ∆. So, ∆n+1 = ∆n and ∆n,β !L α, by
construction. Once ∆n ⊆ ∆, we are bound to conclude by monotonicity
that ∆,β !L α. "

We can also prove that:
LEMMA 58. Any relatively maximal set of formulas is a closed theory.
Proof. Given a set of formulas ∆ that is relatively maximal with respect
to a formula α, we have to check that ∆ ⊢mbC β iff β ∈ ∆. From right to
left is obvious by reflexivity. From left to right, given some β ̸∈ ∆ we have
that (a) ∆ ̸⊢mbC α and (b) ∆,β ⊢mbC α, since ∆ is relatively maximal
with respect to α. But then, from (a) and (b) we conclude, using cut, that
∆ ̸⊢mbC β. "

LEMMA 59. Let ∆ ∪ {α} be a set of formulas in For◦ such that ∆ is
relatively maximal with respect to α in mbC. Then:

(i) (β ∧ γ) ∈ ∆ iff β ∈ ∆ and γ ∈ ∆.

(ii) (β ∨ γ) ∈ ∆ iff β ∈ ∆ or γ ∈ ∆.

(iii) (β → γ) ∈ ∆ iff β ̸∈ ∆ or γ ∈ ∆.

(iv) β ̸∈ ∆ implies ¬β ∈ ∆.

(v) ◦β ∈ ∆ implies β ̸∈ ∆ or ¬β ̸∈ ∆.

Proof. The closure guaranteed by Lemma 58 will be used to prove each of
the above items.
Item (i) is proven from closure, axioms (Ax3), (Ax4), (Ax5) and (MP).
Item (ii) follows from closure, axioms (Ax6), (Ax7), (Ax8) and (MP).
Item (iii) from closure, (ii), axioms (Ax1), (Ax9) and (MP).
Item (iv) from closure, axiom (Ax10) and (MP).
For item (v), suppose β ∈ ∆ and ¬β ∈ ∆. Then, from closure, (bc1) and
relative maximality, we conclude that ◦β ̸∈ ∆. "

COROLLARY 60. The characteristic function of a relatively maximal set
of formulas in mbC defines an mbC-valuation.
Proof. Let ∆ be a set of formulas relatively maximal with respect to α and
define a function v: For◦ !! 2 such that, for any formula β in For◦,
v(β) = 1 iff β ∈ ∆. Using the previous lemma it is easy to see that v
satisfies clauses (v1) to (v5) of Definition 54. "
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THEOREM 61. [Completeness] Let Γ ∪ {α} be a set of formulas in For◦.
Then: Γ %mbC α implies Γ ⊢mbC α.

Proof. Given a formula α in For◦ such that Γ ̸⊢mbC α one may, by
the Lindenbaum-Asser argument, extend Γ to a set ∆ that is relatively
maximal with respect to α. As ∆ ̸⊢mbC α, then α ̸∈ ∆, because of (Con1).
By Corollary 60, the characteristic function v of ∆ is an mbC-valuation
such that, for any β ∈ ∆, v(β) = 1, while v(α) = 0. So, ∆ %mbC α, and in
particular Γ %mbC α. "

Using the bivaluation semantics for mbC, we obtain easy semantical
proofs of several remarkable features of mbC (see Theorem 64 below).
Previous to do this, we need to show how it is possible to construct an
mbC-valuation satisfying a given set of requirements.
DEFINITION 62. Let the mapping ℓ: For◦ !! N denote the complexity
measure defined over the signature Σ◦, by: ℓ(p) = 0, for p ∈ P; ℓ(ϕ#ψ) =
ℓ(ϕ) + ℓ(ψ) + 1, for # ∈ {∧,∨,→}; ℓ(¬ϕ) = ℓ(ϕ) + 1; and ℓ(◦ϕ) = ℓ(ϕ) + 2.

"
LEMMA 63. Let v0: P ∪ {¬p : p ∈ P} !! 2 be a mapping such that
v0(¬p) = 1 whenever v0(p) = 0 (for p ∈ P). Then, there exists an mbC-
valuation v: For◦ !! 2 extending v0, that is, such that v(ϕ) = v0(ϕ) for
every ϕ ∈ P ∪ {¬p : p ∈ P}.

Proof. We will define the value of v(ϕ) while doing an induction on the
complexity ℓ(ϕ) of a formula ϕ ∈ For◦. Thus, we begin by setting v(ϕ) =
v0(ϕ) for every ϕ ∈ P ∪ {¬p : p ∈ P}, and v(p#q) is defined according to
clauses (v1)–(v3) of Definition 54, for # ∈ {∧,∨,→} and p, q ∈ P. This
completes the definition of v(ϕ) for every ϕ ∈ For◦ such that ℓ(ϕ) ≤ 1.
Suppose now that v(ϕ) has been defined for every ϕ ∈ For◦ such that
ℓ(ϕ) ≤ n (for n ≥ 1) and let ϕ ∈ For◦ such that ℓ(ϕ) = n + 1. If ϕ =
(ψ1#ψ2) for # ∈ {∧,∨,→} then v(ϕ) is defined according to (v1)–(v3). If
ϕ = ¬ψ then we define v(ϕ) = 1, if v(ψ) = 0, and v(ϕ) is defined arbitrarily,
otherwise. Finally, if ϕ = ◦ψ then v(ϕ) = 0, if v(ψ) = v(¬ψ) = 1, and v(ϕ)
is defined arbitrarily otherwise. It is clear that v is an mbC-valuation that
extends the mapping v0. "

THEOREM 64. The connectives ∧,∨ and → are not interdefinable as in
the classical case. Indeed, the following rule holds good in mbC:

(i) (¬α→ β) ! (α ∨ β),

but none of the following rules hold in mbC:

(ii) (α ∨ β) ! (¬α→ β);
(iii) ¬(¬α→ β) ! ¬(α ∨ β);
(iv) ¬(α ∨ β) ! ¬(¬α→ β);
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(v) (α→ β) ! ¬(α ∧ ¬β);
(vi) ¬(α ∧ ¬β) ! (α→ β);
(vii) ¬(α→ β) ! (α ∧ ¬β);
(viii) (α ∧ ¬β) ! ¬(α→ β);
(ix) ¬(¬α ∧ ¬β) ! (α ∨ β);
(x) (α ∨ β) ! ¬(¬α ∧ ¬β);
(xi) ¬(¬α ∨ ¬β) ! (α ∧ β);
(xii) (α ∧ β) ! ¬(¬α ∨ ¬β).

Proof. (i) Let v be an mbC-valuation such that v(α ∨ β) = 0. Then
v(α) = 0 = v(β) and so v(¬α) = 1. Therefore v(¬α) = 1 and v(β) = 0,
that is, v(¬α → β) = 0. This shows that (¬α → β) %mbC (α ∨ β). The
result for ⊢mbC follows from Theorem 61.
(ii) Consider a mapping v0: P ∪ {¬p : p ∈ P} !! 2 such that v0(p0) =
1 = v0(¬p0), v0(p1) = 0 and v0(ϕ) is defined arbitrarily otherwise. Let v be
an mbC-valuation extending v0 (check the Lemma 63). Then v(p0∨p1) = 1
but v(¬p0 → p1) = 0. This shows that (p0 ∨ p1) ̸%mbC (¬p0 → p1). The
result for ⊢mbC follows from Theorem 56.
The remainder of the proof is analogous. "

EXAMPLE 65. The first LFI ever to receive an interpretation in terms of
bivaluation semantics was the logic C1 of Example 28 (cf. [da Costa and
Alves, 1977]). The original set of clauses characterizing the C1-valuations
is the following:

(vC1) v(α1 ∧ α2) = 1 iff v(α1) = 1 and v(α2) = 1;

(vC2) v(α1 ∨ α2) = 1 iff v(α1) = 1 or v(α2) = 1;
(vC3) v(α1 → α2) = 1 iff v(α1) = 0 or v(α2) = 1;
(vC4) v(¬α) = 0 implies v(α) = 1;
(vC5) v(¬¬α) = 1 implies v(α) = 1;
(vC6) v(◦β) = v(α→ β) = v(α→ ¬β) = 1 implies v(α) = 0;
(vC7) v(◦(α#β)) = 0 implies v(◦α) = 0 or v(◦β) = 0, for # ∈ {∧,∨,→},

where, as usual, ◦α abbreviates the formula ¬(α ∧ ¬α). "

3.4 Possible-translations semantics for LFIs

Notwithstanding the fact that the completeness proof by means of bival-
uations for LFIs is simple to obtain, this semantics does not do a good
job in explaining intrinsic singularities of such logics. In particular, it is
not obvious right from the definition of the bivaluation semantics for mbC
(Definition 54) that this logic is decidable. A decision procedure can be
obtained with some further effort, however, by adapting the well-known



42 WALTER CARNIELLI, MARCELO E. CONIGLIO AND JOÃO MARCOS

procedure of truth-tables, or ‘matrices’, into a procedure of ‘quasi matri-
ces’ (check for instance [da Costa and Alves, 1977] and [da Costa et al.,
1995]). At any rate, bivaluation semantics may be very useful as a techni-
cal device that helps in simplifying the completeness proof with respect to
possible-translations semantics that we present in this subsection, as well as
in defining two-signed tableaux for our logics, as it will be illustrated in the
next section. Possible-translations semantics were introduced in [Carnielli,
1990]; for a study of their scope and for formal definitions related to them
check [Marcos, 2004]. Of course, the notion of translation between a logic
L1 and a logic L2 is essential here (recall Definition 31).

Consider now the following 3-valued truth-tables, where T and t are the
designated values:

∧ T t F

T t t F

t t t F

F F F F

∨ T t F

T t t t

t t t t

F t t F

→ T t F

T t t F

t t t F

F t t t

¬1 ¬2 ◦1 ◦2

T F F t F

t F t F F

F T t t F

In order to provide interpretations to the connectives of mbC by means
of possible-translations semantics one should first understand these truth-
tables. The truth-value t may be interpreted as ‘true by default’, or ‘true
by lack of evidence to the contrary’, and T and F are, as usual, ‘true’
and ‘false’. The truth-tables for conjunction, disjunction and implication
never return the value T , so, in principle, one is never absolutely sure about
the truth-status of some compound sentences. There are two distinct in-
terpretations for negation, ¬, and for the consistency operator, ◦. The
basic intuition is the idea of multiple scenarios concerning the dynamics of
evaluation of propositions: One may think that there are two kinds of situ-
ations concerning non-true propositions with respect to successive moments
of time. In the first situation, a true-by-default proposition is treated as
a true proposition with respect to the negation ¬1. In the other situation,
one can consider the case in which the negation of any other value than
‘true’ becomes true-by-default — this is expressed by the negation ¬2. On
what concerns the consistency operator ◦, the first interpretation ◦1 only
considers as true-by-default the ‘classical’ values T and F , while ◦2 assigns
falsehood to every truth-value.

The above collection of truth-tables, which we call M0, will be used
to provide the desired semantics for mbC. Now, considering the algebra
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ForM0 of formulas generated by P over the signature of M0, let’s define
the set Tr0 of all mappings ∗: For◦ !! ForM0 subjected to the following
restrictive clauses:
(tr0) p∗ = p, if p ∈ P;

(tr1) (α#β)∗ = (α∗#β∗), for all # ∈ {∧,∨,→};

(tr2) (¬α)∗ ∈ {¬1α∗,¬2α∗};

(tr3) (◦α)∗ ∈ {◦1α∗, ◦2α∗, ◦1(¬α)∗}.
We say the pair PT0 = ⟨M0,Tr0⟩ is a possible-translations semantical
structure for mbC. If %M0 denotes the consequence relation in M0, and
Γ∪{α} is a set of formulas of mbC, the associated PT-consequence relation,
|=pt0 , is defined by setting:

Γ |=pt0 α iff Γ∗ %M0 α
∗ for all translations ∗ in Tr0.

We will call possible translation of a formula α any image of it through some
mapping in Tr0. One can immediately check the following:
THEOREM 66. [Soundness] Let Γ∪{α} be a set of formulas of mbC. Then
Γ ⊢mbC α implies Γ |=pt0 α.
Proof. It is sufficient to check that the (finite) collection of all possible
translations of each axiom produces tautologies in the truth-tables of M0

and that all possible translations of the rule (MP) preserve validity. The
verification is immediate, and we leave it as exercise to the reader. "

As a corollary of the above result, we see that each mapping in Tr0

defines in fact a translation (recall Definition 31) from mbC to the logic
defined by M0.

In order to prove completeness, now, our strategy will be to show that
each mbC-valuation v determines a translation ∗ and a 3-valued valuation
w defined in the usual way over the truth-tables of M0 such that, for every
formula α of mbC,

w(α∗) ∈ {T, t} iff v(α) = 1

and thus rely on the completeness proof for the bivaluation semantics of
mbC.

Recall the definition of complexity ℓ(α) of a formula α ∈ For◦ introduced
in Definition 62. The following result comes from [Marcos, 2005f]:
THEOREM 67. [Representability] Given an mbC-valuation v there is a
translation ∗ in Tr0 and a valuation w in M0 such that, for every formula
α in mbC:

w(α∗) = T implies v(¬α) = 0; and

w(α∗) = F iff v(α) = 0.
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Proof. For p ∈ P define the valuation w as follows:

w(p) = F if v(p) = 0;
w(p) = T if v(p) = 1 and v(¬p) = 0;
w(p) = t if v(p) = 1 and v(¬p) = 1.

Such w can be homomorphically extended to the algebra ForM0 . We define
the translation mapping ∗ as follows:

1. p∗ = p, if p ∈ P;

2. (α#β)∗ = (α∗#β∗), for # ∈ {∧,∨,→};
3. (¬α)∗ = ¬1α∗, if v(¬α) = 0 or v(α) = v(¬¬α) = 0;

4. (¬α)∗ = ¬2α∗, otherwise;

5. (◦α)∗ = ◦2α∗, if v(◦α) = 0;

6. (◦α)∗ = ◦1(¬α)∗, if v(◦α) = 1 and v(¬α) = 0;

7. (◦α)∗ = ◦1α∗, otherwise.
Note that the mapping ∗ is well-defined, given the definition of mbC (see
Definition 54). The proof is now done by induction on the complexity
measure ℓ(α) of a formula α. Details are left to the reader. "

THEOREM 68. [Completeness] Let Γ ∪ {α} be a set of formulas in mbC.
Then Γ |=pt0 α implies Γ ⊢mbC α.
Proof. Suppose that Γ |=pt0 α, and suppose that v is an mbC-valuation
such that v(Γ) ⊆ {1}. By Theorem 67, there is a translation ∗ and a 3-valued
valuation w such that, for every formula β, w(β∗) ∈ {T, t} iff v(β) = 1.
From this, w(Γ∗) ⊆ {T, t} and so w(α∗) ∈ {T, t}, because Γ |=pt0 α. Then
v(α) = 1. To wit: For every mbC-valuation v, v(Γ) ⊆ {1} implies v(α) = 1.
Using the completeness of mbC with respect to mbC-valuations we obtain
that Γ ⊢mbC α as desired. "

It is now easy to check validity for inferences in mbC, as shown in the
following example.
EXAMPLE 69. We will prove that ◦α ⊢mbC ¬(¬α ∧ α) using possible-
translations semantics. We have that, for any translation ∗ in Tr0,

(◦α)∗ ∈ {◦1(α∗), ◦2(α∗), ◦1¬1(α∗), ◦1¬2(α∗)},

(¬(¬α ∧ α))∗ ∈ {¬i(¬j(α∗) ∧ α∗) : i, j ∈ {1, 2}}.

Let ∗ be a translation in Tr0, w be a valuation in M0, and D = {T, t}.
Let x = w(α∗), y = w((◦α)∗) and z = w((¬(¬α ∧ α))∗), and suppose that
y ∈ D; this rules out the translation (◦α)∗ = ◦2(α∗) because ◦2(x) ̸∈ D. In
order to prove that z ∈ D we have the following cases:

1. (◦α)∗ = ◦1(α∗). Then ◦1(x) ∈ D, thus x ∈ {T, F}.
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(a) x = T . Then ¬j(x) = F (j ∈ {1, 2}) and so ¬i(¬j(x) ∧ x) ∈ D
for i, j ∈ {1, 2}.

(b) x = F . Then (¬j(x)∧x) = F (j ∈ {1, 2}) and so ¬i(¬j(x)∧x) ∈
D for i, j ∈ {1, 2}.

2. (◦α)∗ = ◦1¬1(α∗). Then ◦1¬1(x) ∈ D, thus ¬1(x) ∈ {T, F} and
z = ¬i(¬1(x) ∧ x).
(a) ¬1(x) = T . Then x = F and the proof is as in (1b).
(b) ¬1(x) = F . In this case the proof is as in (1a).

3. (◦α)∗ = ◦1¬2(α∗). Then, given ◦1¬2(x) ∈ D, we have ¬2(x) ∈ {T, F}
and z = ¬i(¬2(x) ∧ x). From the truth-table for ¬2 we obtain that
¬2(x) = F , and the proof is as in (1a).

This proves the desired result. On the other hand, we may prove that
the converse ¬(¬α ∧ α) ⊢mbC ◦α is not true in mbC, as announced in
Theorem 49. Using the same notation as above for a given translation ∗ in
Tr0 and a valuation w in M0, it is enough to consider α as a propositional
variable p, and choose ∗ and w such that x = F , and (◦α)∗ = ◦2(α∗). Then
z ∈ D and y = F . For yet some other counter-models to that inference, take
x = t, (¬(¬α ∧ α))∗ = ¬2(¬2(α∗) ∧ α∗) and (◦α)∗ ∈ {◦1(α)∗, ◦1(¬2α)∗}. "

Possible-translations semantics offer an immediate decision procedure for
any logic L that is complete with respect to a possible-translations seman-
tical structure PT = ⟨M,Tr⟩ where M is decidable (and this is the case
here, where M is a finite-valued logic) and Tr is recursive. Indeed, given
a formula α, if we wish to decide whether it is a theorem of L, it is suf-
ficient to consider the (in this case finitely many) possible translations of
α, and to check each translated formula using the corresponding semantics
of the target logics (in the present case, defined by sets of 3-valued truth-
tables). Questions on the complexity of such decision procedures could be
readily answered by taking into account the complexity of translations and
of the semantics of the target logics. This is a problem of independent in-
terest, since it is immediate to see that the decision procedure of mbC is
NP-complete, as one might expect: Indeed, there exists a polynomial-time
conservative translation from CPL into mbC, as illustrated in Theorem 74
below.

One can also use possible-translations semantics to help proving impor-
tant properties about the logics in question.
REMARK 70. Recall from Remark 43 the two explosive negations repre-
sented by ≀α def

== (¬α ∧ ◦α) and ∼α def
== α→ (p0 ∧ (¬p0 ∧ ◦p0)). Recall again,

also, the notion of a classical negation from Definition 8. Now, while it is
easy to check that ∼ defines a classical negation in mbC (the reader can, as
an exercise, check that both (α ∨ ∼α) and (α→ (∼α→ β)) are provable /
validated by mbC), it is also straightforward to check that ≀ is not a com-
plementing negation. Indeed, to see that α and ≀α can be simultaneously
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false, take some bottom particle ⊥ = p∧ ≀ p and notice that w(⊥∗) = F , for
any valuation w in M0 and any translation ∗ in Tr0. Consider now some
translation such that (◦p) = ◦2p. In that case, w((≀ ⊥)∗) = F , for any w.
Then, while ⊥ |=pt0 ≀ ⊥ certainly holds good, it is not the case that |=pt0 ≀ ⊥.
Notice moreover that, while ≀α |=pt0 ∼α, we have that ∼α ̸|=pt0 ≀α. "

We trust the above features to confirm the importance of possible-trans-
lations semantics as a philosophically apt and computationally useful se-
mantical tool for treating not only Logics of Formal Inconsistency but
also many other logics in the literature. An remarkable particular case
of possible-translations semantics is the so-called non-deterministic seman-
tics (cf. [Avron and Lev, 2005]), proposed as an immediate generalization
of the notion of a truth-functional semantics (for comparisons between pos-
sible-translations semantics and non-deterministic semantics see [Carnielli
and Coniglio, 2005]). A 3-valued non-deterministic semantics for the logic
mbC may be found in [Avron, 2005a] (where this logic is called B).

3.5 Tableau proof systems for LFIs

In this section we will use a very general method to obtain adequate tableau
systems for mbC and for C1. The method introduced in [Caleiro et al.,
2005b] (check also [Caleiro et al., 2005a]) permits one to obtain an adequate
tableau system for any propositional logic which has an adequate semantics
given through the so-called ‘dyadic valuations’. Such bivaluations have, as
usual, values in 2 = {0, 1} (or, equivalently, in {T, F}), and are axiomatized
by first-order clauses of a certain specific form, explained below.

Briefly, suppose that there is a set of clauses governing a class of bivalu-
ation mappings v: For !! 2 of the form

(v(ϕ1) = Q1, . . . , v(ϕn) = Qn) ) (S1| · · · |Sk)

where n ≥ 0 and k ≥ 0 and, for every 1 ≤ i ≤ k,

Si = (v(ϕi
1) = Qi

1, . . . , v(ϕi
ri

) = Qi
ri

),

with Qi, Qi
j ∈ {T, F} (1 ≤ j ≤ ri) and ri ≥ 1. If n = 0 then (v(ϕ1) =

Q1, . . . , v(ϕn) = Qn) is just ⊤ ; if k = 0 then (S1| · · · |Sk) is ⊥. Commas ‘,’
and bars ‘|’ denote conjunctions and disjunctions, respectively, and ‘)’ de-
notes implication. Examples of axioms for bivaluations that may be put in
this format are provided by the clauses that characterize mbC-valuations
(cf. Definition 54) and also by those provided by the characteristic bivalua-
tion semantics of da Costa’s C1 (cf. Example 65). For instance, clause (v5)
of Definition 54 clearly has the required form:

(v5) v(◦α) = T ) (v(α) = F | v(¬α) = F )

whereas clause (v3) may be split into three clauses of the required form:
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(v3.1) v(α→ β) = T ) (v(α) = F | v(β) = T );
(v3.2) v(α) = F ) v(α→ β) = T ;
(v3.3) v(β) = T ) v(α→ β) = T .

It will be convenient in what follows to keep the more complex formulas on
the left-hand side of the implication; we thus substitute (v3.2) and (v3.3)
by:

(v3.4) v(α→ β) = F ) (v(α) = T, v(β) = F )

The next step in the algorithm described in [Caleiro et al., 2005b] is to
‘translate’ every clause of the dyadic semantics into a tableau rule by in-
terpreting an equation ‘v(ϕ) = Q’ as a signed formula Q(ϕ) (recalling that
Q ∈ {T, F}). Thus, a clause as above is transformed in a (two-signed)
tableau rule of the form:

Q1(ϕ1), . . . , Qn(ϕn)

& . . . '

Q1
1(ϕ

1
1) Qk

1(ϕk
1)

...
...

Q1
r1

(ϕ1
r1

) Qk
rk

(ϕk
rk

)

By transforming each clause of the dyadic semantic valuation into a tableau
rule, we obtain a tableau system for the given logic. In order to ensure
completeness of the tableau system, it is necessary to consider two extra
axioms for the bivaluation semantics:

(DV1) (v(ϕ) = T, v(ϕ) = F ) ) ⊥;
(DV2) ⊤ ) (v(ϕ) = T | v(ϕ) = F ).

Axioms (DV1) and (DV2) guarantee that the mapping respecting them is
a bivaluation v: For !! 2 . The translation of axiom (DV1) gives us the
usual closure condition for a branch in a given tableau. On the other hand,
(DV2) gives us the following branching tableau rule, Rb:

T (ϕ) | F (ϕ)

As a consequence, the resulting tableau system loses the ‘analytic’ character.
Fortunately, in many important cases this branching rule can be eliminated
or at least it can have its scope of application restricted to formulas of a
certain format.
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We apply next the above technique to obtain an adequate tableau sys-
tem for the logic mbC, based on the bivaluation semantics presented in
Definition 54.

EXAMPLE 71. We define an adequate tableau system for mbC as follows:

F (¬X)
T (X)

T (◦X)
F (X) | F (¬X) T (X) | F (X)

T (X1 ∧ X2)
T (X1), T (X2)

F (X1 ∧ X2)
F (X1) | F (X2)

T (X1 ∨ X2)
T (X1) | T (X2)

F (X1 ∨ X2)
F (X1), F (X2)

T (X1 → X2)
F (X1) | T (X2)

F (X1 → X2)
T (X1), F (X2) "

Observe that, except for the branching rule Rb, all other rules are analytic
in the sense that the consequences are always less complex than the premises
(recall that, as in Definition 62, ℓ(◦α) = ℓ(α) + 2 and ℓ(¬α) = ℓ(α) + 1),
and they contain in each case only subformulas of the premise. The results
proven in [Caleiro et al., 2005b] guarantee that the tableau system defined
above is sound and complete for mbC.

Another nice application of the techniques described above is the defini-
tion of a tableau system for the historical dC-system C1 (see Definition 28).

EXAMPLE 72. Recall from Example 65 the characteristic bivaluation se-
mantics for the logic C1. Those clauses of course may be formally rewritten
as axioms of a dyadic semantics, using ‘|’, ‘)’ and ‘,’. Using the above
described method it is immediate to define a complete tableau system asso-
ciated to these axioms. Consider indeed all the rules of the tableau system
for mbC in Example 71 — except for the rule concerning ◦, since it does
not correspond to any axiom of a C1-valuation — and add the following
further rules:

T (¬¬X)
T (X)

F (◦(X1#X2))
F (◦X1) | F (◦X2)

T (◦X2), T (X1 → X2), T (X1 → ¬X2)
F (X1)

where # ∈ {∧,∨,→} and ◦X abbreviates the formula ¬(X∧¬X). Compar-
ing this tableau system with the one defined in [Carnielli and Lima-Marques,
1992], we notice that the present system does not allow for loops. Although
the looping rules proposed in the latter paper often permit one to obtain
somewhat conciser tableau proofs, what we have here is a generic method
that automatically generates a complete set of tableau rules (though not
necessarily the most convenient one). "
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It is worth reinforcing that the branching rule Rb is essential, above, in
order to obtain completeness. This rule is not strictly analytic, but it can be
bounded in certain cases so as to guarantee the termination of the decidable
tableau procedure. In particular, the variables occurring in the formula X
must be contained in the finite collection of variables in the tableau branch.
EXAMPLE 73. Consider the tableau system for C1 given in Example 72
and let γ be the formula ¬(p∧(¬p∧◦p)), where p is a propositional variable.
The formula γ is a thesis of C1. However, it is easy to see that no C1-tableau
for the set {F (γ)} can close without using the rule Rb. We show below a
closed tableau for {F (γ)} that uses Rb twice.

F (γ)
T (p ∧ ¬p ∧ ◦p)

T (p)
T (¬p)
T (◦p)

|
& '

T (p → p) F (p → p)
| T (p)

& ' F (p)
T (p → ¬p) F (p → ¬p)
F (p) T (p)

F (¬p) "

This example suggests that, in general, it is not possible to eliminate Rb

if one wishes to obtain completeness. This holds even in case the tableau
system satisfies the subformula property, as in Example 73. In certain cases
Rb can be eliminated if we have, for instance, looping rules as in [Carnielli
and Lima-Marques, 1992]. For the case of C1 the tableau system treated in
the latter paper uses the looping rule:

T (¬X)
F (X) | F (◦X)

,

while our present formulation has no rule for analyzing T (¬X).

3.6 Talking about classical logic

When attempting to compare the inferential power of two logics, one often
finds difficulties because those logics might not be ‘talking about the same
thing’. For instance, mbC is written in a richer signature than that of
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CPL, and so these two logics might seem hard to compare. However, as we
have seen in Remark 30, it is possible to linguistically extend CPL by the
addition of a consistency-like connective. The ‘classical truth-tables’ for this
connective, however, will be such that ◦(x) = 1 for every x. Clearly, despite
being gently explosive, the resulting logic eCPL does not define an LFI,
given that it is not paraconsistent. It is, indeed, a consistent logic (recall
Definition 4). Now, mbC may be characterized as a deductive fragment
of eCPL, because all axioms of mbC are validated by the truth-tables of
eCPL. Since mbC is a fragment thus of (an alternative formulation of)
classical logic, we can conclude that mbC is a non-contradictory and non-
trivial logic. On the other hand, however, we will show in this subsection
that there are several ways of encoding each inference of CPL within mbC.

First of all, recall the DATs from Remark 26, the Derivability Adjust-
ment Theorems that described how the LFIs could be used to recover con-
sistent reasoning by the addition in each case of a convenient number of
consistency assumptions. In particular, in logics such as mbC, C-systems
based on classical logic, it should be clear how classical reasoning may be
recovered. For each classical rule that is lost by paraconsistency, such as
reductio and contraposition in items (ii) and (iii) of Theorem 38, there is
an adjusted version of the same rule that is gained, as illustrated in Theo-
rem 48. Indeed, it is now easy to give a semantical proof that:

∀Γ∀γ∃∆(Γ !eCPL γ iff ◦(∆), Γ !mbC γ).

Now, besides the DATs, there might well be other more direct ways of recov-
ering consistent reasoning from inside a given LFI. We will in the following
show how this can be done through the use of a conservative translation
(recall Definition 31), without the addition of further assumptions to the
set of premises of a given inference.

Except for negation and for the consistency connective, all other connec-
tives of mbC have a classic-like behavior. The key for the next result will
be, thus, to make use of the classical negation ∼ that can be defined within
mbC (cf. Remark 70) by setting ∼α def

== α→ (p0 ∧ (¬p0 ∧ ◦p0)), in order to
recover all classical inferences.
THEOREM 74. Let For◦ be the algebra of formulas for the signature Σ◦

of mbC. There is a mapping t1: For !! For◦ that conservatively trans-
lates CPL inside of mbC, that is, for every Γ ∪ {α} ⊆ For:

Γ ⊢CPL α iff t1(Γ) ⊢mbC t1(α).

Proof. Define the mapping t1 recursively as follows:
1. t1(p) = p, for every p ∈ P;

2. t1(γ#δ) = t1(γ)#t1(δ), if # ∈ {∧,∨,→};
3. t1(¬γ) = ∼t1(γ).
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Since both CPL and mbC are compact and have a deductive implication,
and considering that t1 preserves implications, it suffices to prove that:

⊢CPL α iff ⊢mbC t1(α)

for every α ∈ For.
That ⊢CPL α implies ⊢mbC t1(α) is an easy consequence of the fact

that ∼ is a classical negation within mbC and from the definition of the
translation mapping t1. Let’s now check that ⊢mbC t1(α) implies ⊢CPL α.
Consider the classical truth-tables for the classical connectives, and define
◦(x) = 1 for all x. Then ¬α and ∼α take the same value and so t1(α) and
α take the same value in this semantics. Therefore, if t1(α) is a theorem of
mbC then t1(α) is valid for the above truth-tables and so α is valid using
classical truth-tables. Thus, α is a theorem of CPL, by the completeness
of classical logic. "

In view of the last theorem, and as it was already mentioned, it is clear
that mbC (originally defined as a deductive fragment of eCPL) can also be
seen as an extension of CPL, if we employ an appropriate signature which
contains two symbols for negation: ∼ for the classical one, and provided ¬
for the paraconsistent one, provided that the axioms defining ∼ in terms of
the other connectives are added to the new version of mbC.

In what follows, and in stronger logics than mbC, we will see yet other
ways of recovering classical inferences inside our LFIs (check Theorems 96,
112 and 113).

4 A RICHER LFI

4.1 The system mCi, and its significance

In Remark 45 we have mentioned the possibility of defining in mbC an
inconsistency connective that is dual to its native consistency connective.
This could be done by setting •α def

== ∼◦α, where ∼α def
== α→ (β ∧ (¬β ∧◦β))

(for an arbitrary β) is a classical negation. Now, how could we enrich
mbC so as to be able to define the inconsistency connective by using the
paraconsistent negation instead of the classical ∼, that is, by setting •α def

==

¬◦α? This is exactly what will be done in this subsection by extending
mbC into the logic mCi. In fact, mCi will reveal to be a logic that can be
presented in terms of either ◦ or • as primitive connectives. Moreover, •α
and ¬◦α will be inter-translatable, and the same will happen with ◦α and
¬•α, as proven in Theorem 98.

From Theorem 49(i) we know that α ∧ ¬α ⊢mbC ¬◦α. The converse
property (which does not hold in mbC) will be the first additional axiom
we will add to mbC in upgrading this logic. On the other hand, we wish
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that formulas of the form ¬◦α ‘behave classically’, and we wish to obtain
in fact a logic that is controllably explosive in contact with formulas of the
form ¬n◦α, where ¬0α

def
== α and ¬n+1α

def
== ¬¬nα. Any formula of the form

¬n◦α would thus be assumed to ‘behave classically’, and {¬n◦α,¬n+1◦α}
would be an explosive theory. This desideratum leads us into considering
the following (cf. [Marcos, 2005f]):
DEFINITION 75. The logic mCi is obtained from mbC (recall Defini-
tion 42) by the addition of the following axiom schemas:
(ci) ¬◦α→ (α ∧ ¬α)
(cc)n ◦¬n◦α (n ≥ 0)
To the above axiomatization we add the definition by abbreviation of an
inconsistency connective • by setting •α def

== ¬◦α. "
Notice that ¬◦α and (α ∧ ¬α) are equivalent in mCi. Clearly every

set {¬n◦α,¬n+1◦α} is explosive in mCi, in view of (bc1) and (cc)n. This
expresses the ‘classical behavior’ of formulas of the form ◦α (with respect to
the paraconsistent negation). In other words, a formula α in general needs
the extra assumption ◦α to ‘behave classically’, but the formula ◦α and its
iterated negations will always ‘behave classically’. In Theorem 78 below we
will see that ¬•α is equivalent to ◦α, and in Definition 97, further on, we
will introduce a new formulation of mCi that introduces • as a primitive
connective. Notice in that case how close is the bond that is established here
in between inconsistency and contradictoriness by way of the paraconsistent
negation.

We can immediately check that the equivalence in mCi between ¬◦α
and (α ∧ ¬α) is in fact logically weaker than the identification of ◦α and
¬(α ∧ ¬α) assumed in C1 (recall also Theorem 49(iii)–(iv)) since the latter
formula implies the former, in mCi, but the converse is not true.
THEOREM 76. This rule holds good in mCi:

(i) ¬◦α ⊢mCi (α ∧ ¬α),
but the following rules do not hold:

(ii) ¬(α ∧ ¬α) ⊢mCi ◦α;
(iii) ¬(¬α ∧ α) ⊢mCi ◦α.

Proof. Item (i) is obvious. In order to prove that (ii) and (iii) do not
hold in mCi, observe that mCi is sound for the truth-tables of LFI1 (see
Examples 17 and 18), where 0 is the only non-designated value. Then it
is enough to check that (ii) and (iii) have counter-models in such a truth-
functional semantics. "

It should be clear that, even though in mCi there is a formula in the
classical language For (namely, the formula (α∧¬α)) that is equivalent to
a formula that expresses inconsistency (the formula •α), there is no formula
in the classical language that can express consistency in mCi. We also have
the following:
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THEOREM 77. (i) ¬(α∧¬α) and ¬(¬α∧α) are not top particles in mCi.
(ii) ◦α and ¬◦α are not bottom particles.
(iii) The schemas (α→ ¬¬α) and (¬¬α→ α) are not provable in mCi.

Proof. Items (i), (ii) and the first part of item (iii) can be checked using
again the truth-tables of P1, enriched with the (definable) truth-table for ◦
(Example 19), and using the fact that mCi is sound for such a semantics.
For the second part of item (iii) one could use for instance the bivaluation
semantics of mCi (see Example 90). "

It is straightforward to check the following properties of mCi:

THEOREM 78. The following rules hold good in mCi:
(i) ¬¬◦α ⊢mCi ◦α;
(ii) ◦α ⊢mCi ¬¬◦α;
(iii) ◦α,¬◦α ⊢mCi β;
(iv) (Γ,β ⊢mCi ◦α) and (∆,β ⊢mCi ¬◦α) implies (Γ, ∆ ⊢mCi ¬β).

Proof. For item (i), from ¬¬◦α and ◦α we obviously prove ◦α in mCi.
On the other hand, from ¬¬◦α and ¬◦α we also prove ◦α in mCi, because
◦¬◦α and (bc1) are axioms of mCi. Using proof-by-cases we conclude that
¬¬◦α ⊢mCi ◦α. The other items are proven similarly. Notice in particular
how items (i) and (ii) together show that ¬•α ⊣⊢mCi ◦α holds good. "

Item (ii) of Theorem 77 and item (iii) of Theorem 78 guarantee that mCi
is controllably explosive in contact with ◦p0 (recall Definition 9(iii)). In fact,
the following relation between consistency and controllable explosion can be
checked:

THEOREM 79. Let L be a non-trivial extension of mCi such that the
implication (involving the axioms of mCi) is deductive (recall Definition 6).
A schema σ(p0, . . . , pn) is provably consistent in L if, and only if, L is
controllably explosive in contact with σ(p0, . . . , pn).

Proof. If ⊢L ◦σ(α0, . . . ,αn) then, by axiom (bc1),

Γ,σ(α0, . . . ,αn),¬σ(α0, . . . ,αn) ⊢L β

for any choice of Γ and β.
Conversely, assume that Γ,σ(α0, . . . ,αn),¬σ(α0, . . . ,αn) ⊢L β for any Γ

and β. Since, from (ci), we have that ¬◦σ(α0, . . . ,αn) ⊢L (σ(α0, . . . ,αn) ∧
¬σ(α0, . . . ,αn)), then it follows that ¬◦σ(α0, . . . ,αn) is a bottom particle.
As in the proof of Theorem 46(i) (using here the fact that the original
implication of mCi is still deductive in L), we get ⊢L ¬¬◦σ(α0, . . . ,αn).
By Theorem 78(i), we conclude that ⊢L ◦σ(α0, . . . ,αn). "

Complementing the versions of contraposition mentioned in Theorem 48,
we have:
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THEOREM 80. Here are some restricted forms of contraposition introduced
by mCi:

(i) (α→ ◦β) ⊢mCi (¬◦β → ¬α);
(ii) (α→ ¬◦β) ⊢mCi (◦β → ¬α);
(iii) (¬α→ ◦β) ⊢mCi (¬◦β → α);
(iv) (¬α→ ¬◦β) ⊢mCi (◦β → α).

Proof. Item (i). By axiom (cc)0, ◦◦β is a theorem of mCi. The result now
follows from Theorem 48(iii). The other items are proven similarly. "

On the other hand, properties such as (◦α→ β) ⊢mCi (¬β → ¬◦α) do not
hold; this can easily be checked after Corollary 93, to be established below.
Notice how the above theorem opens yet another way for the internalization
of classical inferences, as discussed in Subsection 3.6.

Recall now the replacement property (RP) discussed in Remark 51. We
had already proven in Theorem 52 that (RP) cannot hold in certain para-
consistent extensions of mbC. On what concerns its possible validity in
paraconsistent extensions of mCi, we can now prove that:
THEOREM 81.

(i) The replacement property (RP) is not enjoyed by mCi.
The replacement property (RP) cannot hold in any paraconsistent extension
of mCi in which:

(ii) ¬(¬α ∧ ¬β) ⊢mbC (α ∨ β) holds; or
(iii) (¬α ∨ ¬β) ⊢mbC ¬(α ∧ β) holds.

Proof. (i) Consider again the first set of truth-tables (with the same set of
designated values) used in the proof of Theorem 50.
(ii) Consider the supplementing negation ≀α = (¬α∧◦α) for mCi proposed
in Remark 43. By Theorem 78 this last formula is equivalent to (¬α∧¬¬◦α).
In Theorem 94, this negation will be shown to behave classically inside this
logic. But then, ¬ ≀α ⊢ α∨¬◦α, by hypothesis, and so ¬ ≀α ⊢ α, using axiom
(ci), proof-by-cases and conjunction elimination. The rest of the proof now
follows exactly like in Theorem 52(ii).
Finally, for item (iii), recall that, from (Ax10), (¬α ∨ ¬¬α) is a theorem of
mCi. But then, by hypothesis, ¬(α ∧ ¬α) would also be a theorem. From
Theorem 49(ii) and replacement it follows that ¬¬◦α is provable, and by
Theorem 78(i) this results in ◦α being provable. Thus, the resulting logic
would be explosive. "

In the case of the logic mbC, we have called the reader’s attention to the
fact that the validity of (RP) required the validity of rules (EC) and (EO)
(see the end of Subsection 3.2). Interestingly, now in mCi we can check
that (EC) is enough:
THEOREM 82. In extensions of mCi the validity of:

(EC) ∀α∀β((α ⊣! β) implies (¬α ⊣! ¬β))



LOGICS OF FORMAL INCONSISTENCY 55

guarantees the validity of:

(EO) ∀α∀β((α ⊣! β) implies (◦α ⊣! ◦β)).

Proof. Suppose (α ⊣⊢ β). By (EC) we have that (¬α ⊣⊢ ¬β), and from
these two equivalences we conclude that (α ∧ ¬α) ⊣⊢ (β ∧ ¬β). But from
Theorems 49(ii) and 76(i) we have that ¬◦γ ⊣⊢mCi (γ ∧ ¬γ), so we have
that ¬◦α ⊣⊢ ¬◦β. By Theorem 80(iv) we conclude then that ◦α ⊣⊢ ◦β. "

Suppose now we considered the addition to mCi of a stronger rule than
(EC), in order to ensure replacement:

THEOREM 83. Consider the following rule:

(RC) ∀α∀β((α ! β) implies (¬β ! ¬α)).

Then, the least extension L of mCi that satisfies (RC) and proof-by-cases
collapses into classical logic.

Proof. From the axioms of mCi we first obtain ¬◦α ⊢L α, and ¬◦α ⊢L ¬α.
By (RC) and Theorem 78(i) we then get ¬α ⊢L ◦α and ¬¬α ⊢L ◦α. But
then, using proof-by-cases, we conclude that ⊢L ◦α, that is, all formulas are
consistent. The result now follows, as usual, from Remark 29. "

Notice that our paraconsistent formulations of the normal modal logics
from Example 34 do not extend the logic mCi (contrast this with Remark 53
about mbC). As we said at the beginning of this subsection, an inconsis-
tency connective • can often be defined from a consistency connective ◦ by
taking ∼◦, where ∼ is a classical negation. The definition of an inconsis-
tency connective by taking ¬◦ is an innovation of mCi over mbC, and it is
typical in fact of most LFIs from the literature, as the ones we will be study-
ing in the rest of this chapter. The reader should not think though that the
latter class of C-systems has any intrinsic advantage over the former. This
far, it only seems to have more often met the intuitions of the working para-
consistentists, for some reason or another — or maybe by pure coincidence.
At any rate, the distinction between the two classes is only made clear in a
framework such as the one set in the present study, where consistency and
inconsistency are taken as (primitive or defined) connectives in their own
right.

4.2 Other features of mCi

In this subsection we will extend to mCi the results obtained for mbC in
Subsections 3.3, 3.4, 3.5 and 3.6, that is, we will introduce a bivaluation
semantics, a possible-translations semantics and a tableau system for mCi.
Finally, we will exhibit some novel conservative translations from classical
logic into mCi.
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We begin by a brief description of a bivaluation semantics for mCi, in the
same manner as it was done in Subsection 3.3 with mbC. The plan of action
is similar to that of mbC, and we just outline the main points of departure.
First of all, we should remark that, as a consequence of Theorem 121, to
be proven at Subsection 5.2, the logic mCi cannot be characterized by any
finite-valued set of truth-tables, and that gives an extra motivation for the
semantics presented in the following.

DEFINITION 84. An mCi-valuation is an mbC-valuation v: For◦ !! 2
(see Definition 54) respecting, additionally, the following clauses:

(v6) v(¬◦α) = 1 implies v(α) = 1 and v(¬α) = 1;
(v7.n) v(◦¬n◦α) = 1 (for n ≥ 0). "

The semantic consequence relation obtained from mCi-valuations will be
denoted by %mCi. It is easy to prove soundness for mCi with respect to
mCi-valuations.

THEOREM 85. [Soundness] Let Γ∪{α} be a set of formulas in For◦. Then:
Γ ⊢mCi α implies Γ %mCi α. "

The completeness proof is similar to that of mbC, but obviously substi-
tuting ⊢mCi for ⊢mbC. Analogously, given a set of formulas ∆∪{α} in For◦

we say that ∆ is relatively maximal with respect to α in mCi if ∆ ̸⊢mCi α
and for any formula β in For◦ such that β ̸∈ ∆ we have ∆,β ⊢mCi α.
As in Lemma 58, relatively maximal theories are closed. An analogue to
Lemma 59 can immediately be checked:

LEMMA 86. Let ∆∪ {α} be a set of formulas in For◦ such that ∆ is rela-
tively maximal with respect to α in mCi. Then ∆ satisfies properties (i)–(v)
of Lemma 59, plus the following:

(vi) ¬◦β ∈ ∆ implies β ∈ ∆ and ¬β ∈ ∆.

(vii) ◦¬n◦β ∈ ∆. "
COROLLARY 87. The characteristic function of a relatively maximal the-
ory of mCi defines an mCi-valuation. "
THEOREM 88. [Completeness w.r.t. bivaluation semantics] Let Γ∪{α} be
a set of formulas in For◦. Then Γ %mCi α implies Γ ⊢mCi α. "

We can obtain a version of Lemma 63 for mCi, that is, it is always
possible to define an mCi-valuation from a given specification of the values
of the literals.

LEMMA 89. Let v0: P ∪ {¬p : p ∈ P} !! 2 be a mapping such that
v0(¬p) = 1 whenever v0(p) = 0 (for p ∈ P). Then, there exists an mCi-
valuation v: For◦ !! 2 extending v0, that is, such that v(ϕ) = v0(ϕ) for
every ϕ ∈ P ∪ {¬p : p ∈ P}.
Proof. The proof is analogous to that of Lemma 63. Thus, we will define
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the value of v(ϕ) while doing an induction on the complexity ℓ(ϕ) of ϕ ∈
For◦. Let v(ϕ) = v0(ϕ) for every ϕ ∈ P ∪ {¬p : p ∈ P}, and define
v(p#q) according to clauses (v1)–(v3) of Definition 54, for # ∈ {∧,∨,→}
and p, q ∈ P. So, v(ϕ) is defined for every ϕ ∈ For◦ such that ℓ(ϕ) ≤ 1.
Assume that v(ϕ) was defined for every ϕ ∈ For◦ such that ℓ(ϕ) ≤ n (for
n ≥ 1) and let ϕ ∈ For◦ such that ℓ(ϕ) = n + 1. If ϕ = (ψ1#ψ2) for
# ∈ {∧,∨,→} then v(ϕ) is defined using the corresponding clause from
(v1)–(v3). If ϕ = ¬ψ then there are two cases to analyze:
(a) ψ = ¬k◦α, for some α ∈ For◦ and k ≥ 0. Then we define v(ϕ) = 1 iff
v(ψ) = 0.
(b) ψ ̸= ¬k◦α, for every α ∈ For◦ and every k ≥ 0. Then we define
v(ϕ) = 1, if v(ψ) = 0, and v(ϕ) is defined arbitrarily, otherwise.
Finally, if ϕ = ◦ψ then we set v(ϕ) = 0 iff v(ψ) = v(¬ψ) = 1.

It is easy to see that v is an mCi-valuation that extends v0. "

EXAMPLE 90. With the help of Lemma 89, the bivaluation semantics for
mCi may be used to show, for instance, that ¬¬α → α is not a thesis of
this logic. Indeed, fix p ∈ P and consider the mapping

v0: P ∪ {¬q : q ∈ P} !! 2

such that v(q) = 0 and v(¬q) = 1 for every q ∈ P. From the proof of
Lemma 89 we know that there exists an mCi-valuation v: For◦ !! 2
extending v0 such that v(¬¬p) = 1. Then v(¬¬p → p) = 0 and so ̸%mCi

(¬¬p → p). By Theorem 85, it follows that ̸⊢mCi (¬¬p → p). "
Next, as it was done in Subsection 3.4 with the logic mbC, we can also

provide an alternative semantics for mCi in terms of possible-translations
semantics.

Consider the collection M1 of 3-valued truth-tables formed by the truth-
tables of M0, introduced in Subsection 3.4, but now considering just one
consistency operator called ◦3 instead of ◦1 and ◦2, presented by the truth-
table:

◦3

T T

t F

F T

Again, T and t are the designated values. In M1, the only truth-value that
is not consistent is t. If ForM1 denotes the algebra of formulas generated
by P over the signature of M1, let’s consider the set Tr1 of all functions
∗: For◦ !! ForM1 respecting the clauses (tr0)–(tr2) on translations in-
troduced in Subsection 3.4, plus the following clauses:
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(tr3)1 (◦α)∗ ∈ {◦3α∗, ◦3(¬α)∗};

(tr3)2 if (¬α)∗ = ¬1α∗ then (◦α)∗ = ◦3(¬α)∗;

(tr4)1 (¬n+1◦α)∗ = ¬1(¬n◦α)∗.

We say the pair PT1 = ⟨M1,Tr1⟩ is a possible-translations semantical
structure for mCi. If %M1 denotes the consequence relation in M1, and
Γ ∪ {α} is a set of formulas of mCi, the PT1-consequence relation, |=pt1 ,
is defined as:

Γ |=pt1 α iff Γ∗ %M1 α
∗ for all ∗ ∈ Tr1.

We leave to the reader the proof of the following easy result:

THEOREM 91. [Soundness] Let Γ∪{α} be a set of formulas of mCi. Then
Γ ⊢mCi α implies Γ |=pt1 α. "

The completeness proof follows the same lines than the one obtained for
mbC (cf. [Marcos, 2005f]).

THEOREM 92. [Representability] Given an mCi-valuation v there is a
translation ∗ in Tr1 and a valuation w in M1 such that, for every formula α
in mCi:

w(α∗) = T implies v(¬α) = 0; and

w(α∗) = F iff v(α) = 0.

Proof. The proof is similar to that of Theorem 67, but now defining
(◦α)∗ = ◦3(¬α)∗ if v(¬α) = 0, and (◦α)∗ = ◦3α∗ otherwise. Finally, set
(¬n+1◦α)∗ = ¬1(¬n◦α)∗. Details are left to the reader. "

COROLLARY 93. [Completeness w.r.t. possible-translations semantics]
Let Γ∪ {α} be a set of formulas in mCi. Then Γ |=pt1 α implies Γ ⊢mCi α.

In Remark 43 we have defined two supplementing negations for mbC,
≀ and ∼, and in Remark 70 we have shown that only one of them, namely ∼,
was classical in mbC. Now we can use the possible-translations semantics
of mCi to check that in this logic the two negations produce equivalent
formulas:

THEOREM 94. Given a formula α, the formulas ≀α and ∼α are equivalent
in mCi. As a result, ≀ defines a classical negation in mCi.

Proof. Notice that, using the above possible-translations semantics for
mCi, the formulas ≀ p and ∼p produce exactly the same truth-tables. "

Now, using the general techniques introduced in [Caleiro et al., 2005b]
we can easily obtain an adequate tableau system for mCi, in the same way
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that was done for mbC in Subsection 3.5. Thus, in view of the bivaluation
semantics for mCi stated in Definition 84 from the bivaluation semantics
for mbC, it is enough to define the following:

DEFINITION 95. We define a tableau system for mCi by adding to the
tableau system for mbC introduced in Example 71 the following rules:

T (¬◦X)
T (X), T (¬X) T (◦¬n◦X)

(for n ≥ 0) "

Finally, let’s talk again about classical logic. In Theorem 74 of Subsec-
tion 3.6 we have seen how CPL can be encoded inside mbC through a
conservative translation. Clearly, that same translation works for mCi. We
will now show how it is possible to encode eCPL inside mCi, in a similar
fashion.

THEOREM 96. Let For◦ be the algebra of formulas for the signature Σ◦

of mCi. Consider any mapping t2: For◦ !! For◦ such that:

1. t2(p) = p, for every p ∈ P;

2. t2(γ#δ) = t2(γ)#t2(δ), if # ∈ {∧,∨,→};

3. t2(¬γ) ∈ {∼t2(γ), ≀ t2(γ)};

4. t2(◦γ) = ◦◦t2(γ).

Then, t2 is a conservative translation from eCPL to mCi.

Proof. The proof is almost identical to that of Theorem 74. The only novel
clause is 4, but it is clear how it works (recall axiom (cc)0). "

4.3 Inconsistency operator as primitive

Up to now we have concentrated almost exclusively on the formal notion
of consistency; formal inconsistency has appeared only derivatively, defined
with the help of a classical or of a paraconsistent negation. It is equally
natural, however, to provide alternative axiomatizations for the logic mCi
or its close relatives starting from a primitive inconsistency connective. We
will now show how to do this in two different ways, one in terms of ◦ and
•, and the other in terms of • alone.

Let Σ• and Σ◦• be the extensions of the signature Σ (recall Remark 15)
obtained by the addition, respectively, of a new unary connective • and
of two unary connectives ◦ and •. Let For• and For◦• be the respective
algebras of formulas. The idea of axiomatizing mCi just in terms of •
involves the assumption that •α means ¬◦α while ¬•α means ◦α. As a
consequence, axiom schemas (bc1), (ci) and (ci)n should adopt the following
forms:



60 WALTER CARNIELLI, MARCELO E. CONIGLIO AND JOÃO MARCOS

(bc1)′ ¬•α→ (α→ (¬α→ β))

(ci)′ •α→ (α ∧ ¬α)

(cc)′n ¬•¬n•α (n ≥ 0)

This leads to the following definition:

DEFINITION 97. The logic mCi• defined over signature Σ• is defined
by the axiom schemas (Ax1)–(Ax10) (recall Definition 28) plus the axiom
schemas (bc1)′, (ci)′ and (cc)′n (for n ≥ 0) introduced above, together with
(MP). "

The next result will demonstrate to which extent mCi and mCi• are
‘the same logic’. Since these logics are written in distinct signatures, an
appropriate way of comparing them is by way of (some very strict and
specific) translations.

THEOREM 98.
(i) Let + : For◦ !! For• be a mapping defined as follows:

1. p+ = p if p ∈ P;

2. (α#β)+ = (α+#β+) where # ∈ {∧,∨,→};

3. (¬◦α)+ = •α+;

4. (¬α)+ = ¬α+ if α ̸= ◦β for every β;

5. (◦α)+ = ¬•α+.

Then, the mapping + is a translation from mCi to mCi•, that is, for every
Γ ∪ {α} ⊆ For◦:

Γ ⊢mCi α implies Γ+ ⊢mCi• α
+.

(ii) Let −: For• !! For◦ be a mapping defined as follows:

1. p− = p if p ∈ P;

2. (α#β)− = (α− #β− ) where # ∈ {∧,∨,→};

3. (¬•α)− = ◦α− ;

4. (¬α)− = ¬α− if α ̸= •β for every β;

5. (•α)− = ¬◦α− .

Then, the mapping −is a translation from mCi• to mCi, that is, for every
Γ ∪ {α} ⊆ For•:

Γ ⊢mCi• α implies Γ− ⊢mCi α
− .
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Proof. Item (i). Suppose that Γ ⊢mCi α. By induction on the length of a
derivation in mCi of α from Γ, it can be easily proven that Γ+ ⊢mCi• α

+.
There are just three cases that deserve some attention. These cases occur
when α ∈ For◦ is an instance of an axiom in mCi but α+ is not an instance
of an axiom in mCi•. These three cases are: (1) α = ◦◦γ → (◦γ → (¬◦γ →
δ)) for γ, δ ∈ For◦; (2) α = (◦γ ∨¬◦γ); and (3) α = ¬◦◦γ → (◦γ ∧¬◦γ). In
case (1), α+ = ¬•¬•γ+ → (¬•γ+ → (•γ+ → δ+)), which is not an instance
of an axiom in mCi•. However, it is immediate to see that α+ is a theorem
of mCi•, because of axioms (bc1)′, (ci)′ and by the deduction theorem.
Indeed, •γ+ ⊢mCi• (γ+ ∧ ¬γ+) and ¬•γ+, (γ+ ∧ ¬γ+) ⊢mCi• δ

+, therefore
¬•¬•γ+,¬•γ+, •γ+ ⊢mCi• δ

+. Using the deduction theorem it then follows
that ⊢mCi• α

+. In case (2), α+ = (¬•γ+ ∨ •γ+), which is not an axiom
of mCi•, yet it can be easily checked to be a theorem of mCi•. In case
(3), α+ = •¬•γ+ → (¬•γ+ ∧ •γ+). This is not an axiom, but it can be
easily proven in mCi•. Indeed, by (cc)′1, (bc1)′, the deduction theorem and
proof-by-cases it follows that ¬¬•δ ⊢mCi• •δ holds in mCi•, for every δ.
Using this, (ci)′, properties of the standard conjunction and the deduction
theorem, it follows that α+ is a theorem of mCi•.
Item (ii). The proof is entirely analogous to that of item (i). "

The fact that both logics are inter-translatable means that mCi encodes
mCi• and vice-versa. Moreover, we could take the combined logic mCi◦•
defined over Σ◦• by putting together all the axiom schemas of mCi and
mCi•, plus (MP) (technically, mCi◦• can be obtained as the fibring of
mCi and mCi•; see, for instance, the entry on fibring [Caleiro et al., 2005]
in this Handbook). It is also possible to show that the logic mCi◦• is a
conservative extension of both mCi and mCi•. The following result is easy
to check:
THEOREM 99. Let α be a formula in For◦•. Then

◦α ⊣⊢mCi◦• ¬•α and ¬◦α ⊣⊢mCi◦• •α. "
However, as yet another witness to the fact that the replacement property

(RP) (see Remark 51) is not enjoyed by these logics, it is not difficult to see
(say, by means of bivaluations) that, in general, the following is true, for
α ∈ For◦ and β ∈ For•:

α ̸⊢mCi (α+)− , (α+)− ̸⊢mCi α, α ̸⊢mCi◦• α+, α+ ̸⊢mCi◦• α

β ̸⊢mCi• (β− )+, (β− )+ ̸⊢mCi• β, β ̸⊢mCi◦• β− , β− ̸⊢mCi◦• β.

The corresponding bivaluation semantics, possible-translations semantics
and tableau procedures for the versions of mCi in the above signatures can
be easily implemented and we will not annoy the reader with details.
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4.4 Enhancing mCi in dealing with double negations

In this subsection we will see what happens when the logics mbC and mCi
are further extended with axioms dealing with doubly negated formulas,
namely:

(cf) ¬¬α→ α

(ce) α→ ¬¬α

Note that (cf) has already appeared as (Ax11) in Definition 28. From
item (iii) of Theorem 77 we know that neither (ce) nor (cf) is provable in
mCi. Adding such axioms makes the negation of this logic a bit closer
to classical negation. Moreover, we will see that adding them helps in
simplifying the axiomatic presentations of the resulting logics, and it also
has a nice consequence for the interaction of negation with the connectives
for consistency and inconsistency.
DEFINITION 100. Consider the signature Σ◦. Recall the axiomatizations
of mbC and mCi from Definitions 42 and 75. Then:

1. bC is axiomatized as mbC plus (cf).
2. Ci is axiomatized as mCi plus (cf).
3. mbCe is axiomatized as mbC plus (ce).
4. mCie is axiomatized as mCi plus (ce).
5. bCe is axiomatized as bC plus (ce).
6. Cie is axiomatized as Ci plus (ce). "

It is easy to check that:
THEOREM 101.

(i) ◦α ⊢Ci ◦¬α;
(ii) •¬α ⊢Ci •α;
(iii) ◦¬α ⊢mCie ◦α;
(iv) •α ⊢mCie •¬α. "
Using the latter result one might provide a simpler and finitary axioma-

tization for the logic Ci (thus also for Cie):
THEOREM 102. The logic Ci may be obtained from mbC by adding the
axiom schemas (ci) (see Definition 75) and (cf) (Subsection 4.4), to wit:

(ci) ¬◦α→ (α ∧ ¬α)
(cf) ¬¬α→ α

Proof. Let ! be the consequence relation of the logic obtained from mbC
by adding the axiom schemas (ci) and (cf). Of course ! ⊆ ⊢Ci. In order
to prove the converse, it is enough to prove that ! ◦¬n◦α (that is, axiom
schema (cc)n) holds good for every formula α and every natural number n.
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For n = 0 note that ◦α,α,¬α ! ◦◦α, by (bc1), and ¬◦α ! α ∧ ¬α, by (ci).
In particular ¬◦◦α ! ◦α∧¬◦α, thus ¬◦◦α ! ◦◦α. But ◦◦α ! ◦◦α and then
proof-by-cases gives us

(∗) ! ◦◦α.

Now, by (ci) again, we have that ¬◦¬α ! ¬α∧¬¬α and then ¬◦¬α ! ¬α∧α,
by (cf). Using (bc1) we obtain ◦α,α,¬α ! ◦¬α and so ◦α,¬◦¬α ! ◦¬α.
Since ◦α, ◦¬α ! ◦¬α then proof-by-cases gives us ◦α ! ◦¬α for every α, as
in Theorem 101(i). In particular,

(∗∗) ◦¬n◦α ! ◦¬n+1◦α

for every n ≥ 0 and every α. Using (∗) and (∗∗), it is now immediate to
obtain (cc)n by induction on n. "

As regards semantic presentations, in view of Theorem 121 (see Subsec-
tion 5.2), we know that the logics from Definition 100 are not characterizable
by a collection of finite-valued truth-tables. However, it is straightforward
to endow these new systems with adequate bivaluation semantics, using the
methods from previous sections. Indeed:
THEOREM 103. Axiom (cf) corresponds to the following clause on the
definition of a bivaluation semantics:
(v8) v(¬¬α) = 1 implies v(α) = 1.
Similarly, axiom (ce) corresponds to:
(v9) v(α) = 1 implies v(¬¬α) = 1. "

Accordingly, one can now prove, for instance, that Ci is sound and com-
plete for the class of bivaluations v: For◦ !! 2 satisfying clauses (v1)–
(v5) of Definition 54 plus clause (v6) of Definition 84 and clause (v8) of
Theorem 103.

The next useful result concerning the definability of bivaluations for the
systems introduced in Definition 100 can be obtained. The proof is done by
appropriately adapting the proofs of Lemmas 63 and 89.

LEMMA 104. Let v0: P ∪ {¬p : p ∈ P} !! 2 be a mapping such that
v0(¬p) = 1 whenever v0(p) = 0 (for p ∈ P). Then, there exist bivaluations
extending v0, for each one of the logics introduced in Definition 100.
Proof. We only prove the case for Ci. Thus, given v0, define v(ϕ) = v0(ϕ)
for every ϕ ∈ P ∪ {¬p : p ∈ P}, and v(p#q) is defined according to clauses
(v1)–(v3) of Definition 54, for # ∈ {∧,∨,→} and p, q ∈ P. Suppose that
v(ϕ) was defined for every ϕ ∈ For◦ such that ℓ(ϕ) ≤ n (for n ≥ 1) and let
ϕ ∈ For◦ such that ℓ(ϕ) = n + 1. If ϕ = (ψ1#ψ2) for # ∈ {∧,∨,→} then
we use clauses (v1)–(v3) to define v(ϕ). If ϕ = ◦ψ then define v(ϕ) = 0 iff
v(ψ) = v(¬ψ) = 1.
Finally, suppose that ϕ = ¬ψ. If v(ψ) = 0 then define v(ϕ) = 1. On the
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other hand, if v(ψ) = 1 then there are three cases to analyze:
(a) ψ = ◦α, for some α ∈ For◦. Then, define v(ϕ) = 0.
(b) ψ = ¬α, for some α ∈ For◦, such that v(α) = 0. Then we define
v(ϕ) = 0.
(c) In any other case, v(ϕ) is defined arbitrarily.
It is straightforward to check that v is a Ci-valuation extending v0. The
proof for the other systems is entirely analogous, and we leave the details
to the reader. "

We can also obtain adequate tableaux for these systems, as in previous
sections. Possible-translations semantics for bC, Ci, bCe and Cie may be
found in [Marcos, 2005f]. These four logics were exhaustively studied in
[Carnielli and Marcos, 2002]. Non-deterministic semantics for these logics
can be found in [Avron, 2005a].

5 ADDITIONAL TOPICS ON LFIS

5.1 The dC-systems

As we have seen in Theorem 98, the formulas •α and ¬◦α have the same
meaning (up to translations) in mCi. Moreover, we also know from Theo-
rem 49(i) and axiom (ci) that the formulas •α and (α ∧ ¬α) are equivalent
in mCi. However, as we know from Theorem 76, the formulas ¬•α and
¬(α ∧ ¬α) are not equivalent, nor are the formulas ¬¬•α and ¬¬(α ∧ ¬α),
and so on.

It seemed only natural, thus, to consider extensions of mCi in which the
meaning of statements involving • (and also ◦) may be recast in terms of the
other connectives, by means of translations or of explicit definitions. This
maneuver led us to the class of LFIs known as dC-systems, in which the
new connective of consistency may be dismissed from the beginning, and
replaced by a formula built from the other connectives already present in
the signature (recall Definition 32).8 The logic Cil, to be defined below, is
an example of this strategy.

DEFINITION 105. The logic Cil, defined over the signature Σ◦, is ob-
tained from Ci by the addition of the following axiom schema:

(cl) ¬(α ∧ ¬α) → ◦α

Other logics may be obtained in a similar fashion, such as the logic Cile,
defined by the addition of (ce) to Cil (recall Subsection 4.4). "

8The reader is invited to adapt Definition 32 to deal also with the inconsistency
operator, and to logics defined over signatures Σ• and Σ◦•.
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By the very definition of Cil, it is clear there cannot be a paraconsistent
extension of Cil in which the schema ¬(α∧¬α) is provable. There are, how-
ever, other paraconsistent extensions of Ci, such as LFI1 (see Example 18
and Theorem 127) or extensions of bC such as all non-degenerate normal
modal logics extending the system KT (recall Example 34), in which the
schema ¬(α ∧ ¬α) is indeed provable.

It can be checked that Cil is in fact an indirect a dC-system based on
classical logic:
THEOREM 106. The logic Cil may be defined over Σ by identifying ◦α
with ¬(α ∧ ¬α). More precisely: Let Cil c⃝ be the logic over Σ defined
by axiom schemas (Ax1)–(Ax11) (see Definition 28), rule (MP), plus the
following axiom schema:

(bc1)′′ ¬(α ∧ ¬α) → (α→ (¬α→ β))

Let ⋆ : For◦ !! For be a mapping defined as follows:

1. p⋆ = p if p ∈ P;

2. (α#β)⋆ = (α⋆#β⋆) where # ∈ {∧,∨,→};

3. (¬α)⋆ = ¬α⋆;

4. (◦α)⋆ = ¬(α⋆ ∧ ¬α⋆).

Then, the mapping ⋆ is a translation from Cil to Cil c⃝, that is, for every
Γ ∪ {α} ⊆ For◦:

Γ ⊢Cil α implies Γ⋆ ⊢Cil c⃝ α⋆.

On the other hand, Cil is a conservative extension of Cil c⃝, that is, for
every Γ ∪ {α} ⊆ For:

Γ ⊢Cil c⃝ α iff Γ ⊢Cil α.

As a consequence of the above, the following holds good, for every Γ∪{α} ⊆
For◦:

Γ ⊢Cil α implies Γ⋆ ⊢Cil α
⋆.

Proof. The proof follows the lines of the proof of Theorem 98, and there
is just one further critical case to analyze: Any axiom of Cil of the form
α = ¬(γ ∧ ¬γ) → ◦γ is translated as α⋆ = ¬(γ⋆ ∧ ¬γ⋆) → ¬(γ⋆ ∧ ¬γ⋆),
which is not an axiom of Cil c⃝, but it is obviously a theorem of Cil c⃝. This
shows that ⋆ is a translation from Cil to Cil c⃝.

Consider now a set Γ ∪ {α} ⊆ For. Observe that every axiom of Cil c⃝

different from (bc1)′′ is an axiom of Cil. On the other hand, it is easy to
see (using the deduction theorem) that (bc1)′′ is a theorem of Cil. Hence,
by induction on the length of a derivation in Cil c⃝ of α from Γ it follows
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that, if Γ ⊢Cil c⃝ α then Γ ⊢Cil α. Conversely, if Γ ⊢Cil α then Γ⋆ ⊢Cil c⃝ α⋆,
since ⋆ is a translation from Cil to Cil c⃝. But, if β ∈ For then β⋆ = β, so
Γ ⊢Cil c⃝ α. This shows that Cil is a conservative extension of Cil c⃝. The
rest of the proof is straightforward. "

The above theorem shows that Cil c⃝ is a direct dC-system, just as much
as Cil is an indirect one (recall Definitions 32 and 33). Observe that (bc1)′′
was already introduced in Definition 28 as axiom (bc1). Thus, the logic
Cil c⃝ is obtained from C1 by the elimination of axioms (ca1)–(ca3) (or,
equivalently, C1 is obtained from Cil c⃝ by adding axiom schemas (ca1)–
(ca3); see Definition 108 and Remark 109). The formula schema ¬(α∧¬α)
played an important role in the original construction of the logics Cn, and it
has often been identified with the so-called ‘Principle of Non-Contradiction’.
Notice, however, that such an identification is not possible with our present
definition of this principle (Principle (1) in Subsection 2.1).

There is no consensus in the literature on what concerns the status of the
schema ¬(α ∧ ¬α) inside paraconsistent logics. Its validity has been criti-
cized by some (see, for instance, [Béziau, 2002a]). A good technical reason
for expecting this schema to fail is connected to the possible consequent
failure of the replacement property, as predicted in Theorem 52(iv). On the
other hand, the proposal of paraconsistent logics in which this schema does
not hold has also been criticized, as for instance in [Routley and Meyer,
1976], where the authors claim that, for dialectical logics (i.e. for logics dis-
respecting our version of the Principle of Non-Contradiction), not only do
we usually have that ¬(α ∧ ¬α) is a theorem, but that feature does not
conflict with other logical truths of such logics. On our approach, the whole
controversy seems artificial and ill-advised. It might well be just a ster-
ile offspring of the misidentification of the Principle of Explosion and the
Principle of Non-Contradiction: In general, only the former should worry a
paraconsistent logician, the latter being a much less demanding and a very
often strictly observed principle (check the ensuing discussion in section 3.8
of [Carnielli and Marcos, 2002]).

Using (bc1) and (cl), every theorem of the form ◦(α∧¬α) can be proven.
In the presence of axiom (cf), as in Theorem 101(i), this allows one to
prove, in Cil, every theorem of the form ◦¬n(α ∧ ¬α). This feature was to
raise protests by some authors (see for instance [Sylvan, 1990]), according
to whom it makes no sense to declare contradictions (case n = 0 in the
above formula) to be provably consistent.

With respect to semantics, Theorem 125 (see Subsection 5.2) proves that
the logics Cil and Cil c⃝ are not characterizable by a collection of finite-
valued truth-tables. Of course, we can obtain a bivaluation semantics for
Cil c⃝ by considering mappings v: For !! 2 satisfying axioms (v1)–(v4)
of Definition 54, plus the following:

(v10) v(¬(α ∧ ¬α)) = 1 implies v(α) = 0 or v(¬α) = 0;
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(v11) v(¬¬α) = 1 implies v(α) = 1.

In the case of Cil, one may consider bivaluations v: For◦ !! 2 that
satisfy axioms (v1)–(v5) of Definition 54, plus (v6) (see Definition 84) and
(v11). Of course, a result analogous to Lemma 104 can be stated and proven
for the logics Cil and Cil c⃝. At this point it should be obvious to the reader
how the tableaux for these logics would look like.

If the reader has still not gotten used to the frequent failure of the re-
placement property, he might be surprised with the following asymmetry
allowed by the logic Cil. The consistency operator ◦α is equivalent in Cil
to the formula ¬(α ∧ ¬α) (cf. Definition 105) and consequently the logic
resulting from the addition of ¬(α∧¬α) to Cil is no longer paraconsistent.
On the other hand:

THEOREM 107. The logic resulting from the addition of ¬(¬α ∧ α) to
Cil is still paraconsistent, and so the operator ◦ cannot be alternatively
expressed by the formula ¬(¬α ∧ α).

Proof. The first collection of truth-tables from the proof of Theorem 50
provides a model of Cil plus ¬(¬α∧α). The same collection of truth-tables
show that there are atomic formulas p and q such that ¬(¬p∧ p), p,¬p take
designated values, while q does not: Just assign the value 1

2 to p and 0 to q.
"

The above asymmetry has been sharply pointed out in Theorem 4 of
[Urbas, 1989] for the case of the logic C1 which is, as we mentioned before,
an extension of Cil c⃝ (see also Remark 109). This asymmetry remained
hidden for a long time within the realm of the logics Cn. Indeed, the first
decision procedure offered for the logic C1 in terms of quasi matrices, in [da
Costa and Alves, 1977], was mistaken exactly in assuming ¬(α ∧ ¬α) and
¬(¬α ∧ α) to be equivalent formulas.

Some natural alternatives to (cl) can immediately be considered:

(cd) ¬(¬α ∧ α) → ◦α;

(cb) (¬(α ∧ ¬α) ∨ ¬(¬α ∧ α)) → ◦α.

(RG) β ⊣⊢ α ∧ ¬α implies ¬β ⊣⊢ ¬(α ∧ ¬α)

Clearly, the addition to Ci of the axiom (cd) instead of the axiom (cl),
would produce a logic in which the asymmetry pointed out in Theorem 107
is inverted. That inconvenient can be solved if the axiom (cb) is added
instead, as that move produces a logic in which both ¬(α∧¬α) and ¬(¬α∧α)
express consistency. However, that will not make the difficulties about the
replacement property, (RP), go away. In fact, the equivalence of similar
more complex formulas would not be guaranteed by (cb): It can be shown
for instance that formulas such as ¬(α∧ (α∧¬α)) and ¬((α∧¬α)∧α) are
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not automatically equivalent, even though (α ∧ (α ∧ ¬α)) and ((α ∧ ¬α) ∧
α) are equivalent on any C-system based on (positive) classical logic. As
pointed out in [Carnielli and Marcos, 2002], a way of solving that specific
predicament without necessarily going as far as establishing the validity of
(RP) is simply by adding the rule (RG). Of course, dC-systems with full
(RP) are clearly available, as it has been illustrated by the modal logics
proposed in Example 34, all of which extend the fundamental C-system
mbC (recall Remark 53).

It should be clear that each dC-system can in principle generate an infi-
nite number of other dC-systems, if one applies to it the same strategy as
that of the Cn logics, for 1 ≤ n < ω (cf. Definition 28), namely, if one simply
requires stronger and stronger conditions to be met in order to establish the
consistency of a formula.

5.2 Adding modularity: Letting consistency propagate

Given a class of consistent formulas, an important issue is to understand
how this consistency propagates towards simpler or more complex formu-
las. As we have seen in Theorem 101, the addition to mCi of axioms or
rules controlling the behavior of doubly negated formulas reflects directly
on the propagation of consistency through negation. As we will see in this
subsection, one can in fact produce interesting variations on the recipe that
constructs LFIs by directly controlling the way consistency propagates.
DEFINITION 108.
(i) The logic Cia is obtained by the addition of the following axiom schemas
to Ci (see Definition 100):

(ca1) (◦α ∧ ◦β) → ◦(α ∧ β);
(ca2) (◦α ∧ ◦β) → ◦(α ∨ β);
(ca3) (◦α ∧ ◦β) → ◦(α→ β).

(ii) The logic Cila is obtained by the addition of the axiom schema (cl) to
Cia or, equivalently, of the axioms (ca1)–(ca3) to Cil (see Definition 105).
Using axioms (cd) or (cb) instead of (cl) one might similarly define the logics
Cida or Ciba. Adding axiom (ce) to those systems one might define the
logics Cilae, Cidae and Cibae. "
REMARK 109. It is worth insisting that the only difference between Cila
and the original formulation of C1 (recall Definition 28) is that the connec-
tive ◦ in C1 was not taken as primitive, but ◦α, originally denoted as α◦,
was assumed from the start to be an abbreviation of the formula ¬(α∧¬α).
A transformation to that same effect is done by the translation ⋆ from The-
orem 106. However, it should be noted that there are formulas α ∈ For◦

such that α and α⋆ are not equivalent in Cila. On the other hand, C1 coin-
cides with Cila c⃝, the logic obtained from Cil c⃝ (see again Theorem 106)



LOGICS OF FORMAL INCONSISTENCY 69

by adding axioms (ca1)–(ca3). In other words, Cila is obtained from C1 by
adding the consistency operator ◦ to the signature as well as the obvious
axioms stating the equivalence between the formulas ◦α and ¬(α∧¬α). In
the terminology of Definition 33, we may say that Cila corresponds to C1.
For the other logics in the hierarchy Cn, 1 ≤ n < ω, the formula ◦α abbre-
viates more and more complex formulas, or sets of formulas, as it can be
seen in Definition 28. "

The logics Cila and C1 are not exactly coincident since they are defined
over distinct signatures. However, they are related by means of translations
in the same way as Cil and Cil c⃝ were so related (recall Theorem 106). In
other terms, Cila is an indirect dC-system, while C1 is a direct dC-system,
as the theorem below shows.
THEOREM 110. Let ⋆ : For◦ !! For be the translation mapping de-
fined as in Theorem 106. Then ⋆ is a translation from Cila to C1, that is,
for every Γ ∪ {α} ⊆ For◦,

Γ ⊢Cila α implies Γ⋆ ⊢C1 α
⋆.

On the other hand, Cila is a conservative extension of C1, that is, for every
Γ ∪ {α} ⊆ For,

Γ ⊢C1 α iff Γ ⊢Cila α.

As a consequence of this, the following holds, for every Γ ∪ {α} ⊆ For◦:

Γ ⊢Cila α implies Γ⋆ ⊢Cila α
⋆.

Proof. An easy extension of the proof of Theorem 106. In fact, taking into
account that C1 coincides with Cila c⃝ (recall Remark 109) and also the
fact that axioms (ca1)–(ca3) of Definition 108 are translated by ⋆ in terms
of the homonymous axioms of Definition 28, the proof is immediate. "

REMARK 111. Consider the logic Cl obtained from Cil by removing axiom
(ci). In other words, Cl is defined by axiom schemas (Ax1)–(Ax11) (see
Definition 28), (cl) (see Definition 105), plus (MP). Let Cil c⃝ be the logic
defined in Theorem 106. It is easy to check, though, that the results in
Theorem 106 are still valid if we uniformly substitute Cl for Cil. The logic
Cla, studied in [Avron, 2005b], may now be obtained from Cl by adding
axiom schemas (ca1)–(ca3) of Definition 108, and the proof of Theorem 110
is still valid if if we uniformly substitute Cla for Cila.9 However, according
to Definition 33, we can say that Cila corresponds to C1, but we cannot
say the same about the C-system Cla. "

Taking into account the new axioms from Definition 108, it is easy to
prove in Cia the following particular version of a Derivability Adjustment

9We thank Arnon Avron for pointing this fact to us.
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Theorem (recall Remark 26 and compare the following with what was said
at the beginning of Subsection 3.6):

THEOREM 112.
Let Π denote the set of atomic formulas occurring in Γ ∪ {α}.
Then, Γ ⊢CPL α iff there is some ∆ ⊆ Π such that ◦(∆), Γ ⊢Cia α.

Proof. Recall that CPL may be axiomatized by (Ax1)–(Ax11), (MP) and
the ‘explosion law’: (exp) α → (¬α → β). Consider some Γ ∪ {α} ⊆ For
such that Γ ⊢CPL α. By induction on the length n of a derivation in CPL
of α from Γ it will be proven that ◦(∆), Γ ⊢Cia α for some ∆ ⊆ Π. If n = 1
then either α ∈ Γ or α is an instance of an axiom of CPL. In the first case the
proof is trivial. In the second case, there is just one case in which α is not an
axiom of Cia, namely, when α is an instance δ → (¬δ → β) of (exp). Let ∆
be the set of propositional variables occurring in δ. Then, by Theorem 101(i)
and by (ca1)–(ca3), it is easy to prove (by induction on the complexity of δ)
that ◦(∆) ⊢Cia ◦δ. On the other hand, from (bc1) and (MP) it follows that
◦δ ⊢Cia α. Thus ◦(∆), Γ ⊢Cia α, where ∆ ⊆ Π. Suppose now that α follows
from β and β → α by (MP), in the last step of a given derivation in CPL of α
from Γ. By induction hypothesis, ◦(∆1), Γ ⊢Cia β and ◦(∆2), Γ ⊢Cia β → α
for some ∆1, ∆2 ⊆ Π. Thus ◦(∆1), ◦(∆2), Γ ⊢Cia α, by (MP). But of course
◦(∆1) ∪ ◦(∆2) = ◦(∆1 ∪ ∆2), so we have that ◦(∆1 ∪ ∆2), Γ ⊢Cia α, and
that concludes the first half of the proof.

Conversely, suppose now that Γ∪ {α} ⊆ For is such that ◦(∆), Γ ⊢Cia α
for some ∆ ⊆ Π. If Γ ̸⊢CPL α then there exists a classical valuation v such
that v(Γ) ⊆ {1} and v(α) = 0. Extend v to For◦ by putting v(◦β) = 1 for
every β ∈ For◦. Then v is a model for Cia such that v(◦(∆) ∪ Γ) ⊆ {1},
therefore v(α) = 1, a contradiction. Thus Γ ⊢CPL α. "

As pointed out already in [da Costa, 1963] and [da Costa, 1974], the same
result holds good for any logic Cn, assuming in each case the appropriate
definition of ◦α.

Recalling that eCPL is just the classical propositional logic CPL plus
the axiom schema ◦α, we may also propose the following alternative way of
recovering classical reasoning inside our present LFIs:

THEOREM 113. Consider the mapping t3: For◦ !! For◦ , recursively
defined as follows:

1. t3(p) = ◦p, for every p ∈ P;

2. t3(γ#δ) = (t3(γ)#t3(δ)), if # ∈ {∧,∨,→};

3. t3($γ) = $t3(γ), if $ ∈ {¬, ◦}.

Then t3 conservatively translates eCPL inside of Cia.
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Proof. Using compactness, the deduction theorem, and the definition of
t3, it is enough to prove that ⊢eCPL α iff ⊢Cia t3(α) for every α in For◦.

We first prove from left to right. Given a formula α(p1, . . . , pn) in For◦,
then t3(α) = α(◦p1, . . . , ◦pn). From this, using axioms (ca1)–(ca3), axiom
(cc)n (Definition 75) and Theorem 101(i) it is not hard to prove by induction
on the complexity ℓ(α) of α that ⊢Cia ◦t3(α) for every α ∈ For◦. Observe
that, if β is an axiom of eCPL different from (exp) (see Remark 29) then
t3(β) is a theorem of Cia. On the other hand, if β = δ → (¬δ → γ) is
an instance of (exp) then t3(β) = t3(δ) → (¬t3(δ) → t3(γ)), and the lat-
ter is provable in Cia from (bc1) and ◦t3(δ). Thus, t3(β) is a theorem of
Cia. Note also that any application of modus ponens in eCPL is trans-
formed into an application of modus ponens in Cia. Consequently, given
a derivation α1, . . . ,αn = α of α in eCPL, the finite sequence of formulas
t3(α1), . . . , t3(αn) = t3(α) may be transformed into a derivation of t3(α) in
Cia. This shows that ⊢eCPL α implies ⊢Cia t3(α).

In order to prove the converse, consider the definition of an adequate bi-
valuation semantics for Cia, adding to the clauses of a bivaluation semantics
for Ci (see Definition 84) the clause (vC7) of Example 65. Now, given an
eCPL-valuation v, consider the mapping v′: P ∪ {¬p : p ∈ P} !! 2 such
that v′(p) = 1 for every p ∈ P, and v′(¬p) = 1 iff v(p) = 0. Define now
v′(◦p) = 1 iff v′(¬p) = 0, and extend v′ homomorphically to the remaining
formulas in For◦ using the truth-tables for eCPL. That is, for formulas
other than p, ¬p and ◦p (for p ∈ P) the mapping v′ is defined as a classical
valuation and moreover satisfies v′(◦α) = 1 for every non-atomic α. It is
easy to see that this v′ is indeed a Cia-valuation. An induction on the com-
plexity ℓ(α) of α shows that v(α) = v′(t3(α)) for every α ∈ For◦. Finally,
suppose that ̸⊢eCPL α. Then, there is some eCPL-valuation v such that
v(α) = 0. But then, by the above argument, there is some Cia-valuation v′

such that v′(t3(α)) = 0 and so ̸⊢Cia t3(α). "

Straightforward adaptations of the above argument show that the same t3
acts as a conservative translation between eCPL and all logics defined in
item (ii) of Definition 108. So, in order to perform ‘classical inferences’
within such logics (and even within C1, in view of Theorem 110), it suffices
to translate every atomic formula p into ◦p.

Axioms (ca1)–(ca3) of Definition 108 describe a certain form of propa-
gation of consistency through conjunction. There are several other sensible
ways of allowing consistency or inconsistency to propagate. For instance, it
also makes sense to think of propagation of consistency through disjunction:

DEFINITION 114.
(i) The logic Cio is obtained by the addition to Ci of the axiom schemas:
(co1) (◦α ∨ ◦β) → ◦(α ∧ β);
(co2) (◦α ∨ ◦β) → ◦(α ∨ β);
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(co3) (◦α ∨ ◦β) → ◦(α→ β).

(ii) The logic Cilo is obtained by the addition to Cio of the axiom schema (cl)
or, equivalently, by the addition of axioms (co1)–(co3) to Cil (see Defini-
tion 105). "

The logic Cilo c⃝, the version of Cilo over signature Σ (using Cil c⃝ in-
stead of Cil, see Theorem 106), was introduced in [Béziau, 1990] and was
studied under the name C+

1 in [da Costa et al., 1995]. As in Definition 108,
several other logics may be defined extending Cio by tinkering with axioms
(cf), (cb) and (ce).

Obviously, C+
1 is a deductive extension of C1. Its characteristic weaker

requirement to obtain consistency of a complex formula, namely, the consis-
tency of at least one of its components, reflects in the following immediate
stronger result:

THEOREM 115.
If Γ ⊢Cio ◦β for some subformula β of α, then Γ ⊢Cio ◦α. "

An argument similar to the one presented in the proof of Theorem 113
will show again that the same t3 defines also a conservative translation
between eCPL and the logics presented in Definition 114.

On what concerns the interdefinability of the binary connectives with the
help of our primitive paraconsistent negation (compare with Theorem 64),
one can now count on the following extra rules:

THEOREM 116.
In Cia the following holds good:

(ix) ¬(¬α ∧ ¬β) ⊢Cia (α ∨ β).
In Cio the following hold good:

(vi) ¬(α ∧ ¬β) ⊢Cio (α→ β);
(vii) ¬(α→ β) ⊢Cio (α ∧ ¬β);
(xi) ¬(¬α ∨ ¬β) ⊢Cio (α ∧ β). "
From Theorem 116(vii) and Theorem 52(ii) we can conclude that the

replacement property (RP) (recall Remark 51) does not hold for any exten-
sion of Cio. However, a restricted form of this property may be recovered,
in this specific case:

REMARK 117. Say that a logic L allows for replacement with respect
to ≈when p1 ≈p2 is a formula depending on the variables p1 and p2 such
that, for every formula ϕ(p0, . . . , pn) and formulas α0, . . . ,αn, β0, . . . ,βn:

(RRP) (!L α0 ≈β0) and . . . and (!L αn ≈βn) implies
!L ϕ(α0, . . . ,αn) ≈ϕ(β0, . . . ,βn).

Any such formula, when it exists, will be called a congruence of L. Notice
that, for our present logics, full replacement holds exactly when ↔ is a
congruence. "
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In the case of C1 (and, not surprisingly, also of Cia), it has been shown in
[Mortensen, 1980] that no congruence exists distinct from the ‘trivial’ one,
namely, the identity between formulas. The situation is different though in
the case of Cio and its deductive extensions:

THEOREM 118. A congruence in Cio can be defined by setting α ≈β
def
==

(α↔ β) ∧ (◦α ∧ ◦β).

Proof. A semantic proof for Cilo was offered in Theorem 3.21 of [da Costa
et al., 1995]. A similar argument, adapted for Cio, can be found in Fact 3.81
of [Carnielli and Marcos, 2002]. "

On what concerns the semantic presentation of the above logics, the
following Theorems 121 and 125 exhibit sufficient conditions for showing
that several of the logics mentioned so far fail to be characterizable by
finite-valued truth-tables.

The first widely applicable theorem on non-characterizability by finite-
valued truth-tables proceeds as follows. Consider the signature Σ◦. Recall
from Definition 28 that α1 denotes the formula ¬(α∧¬α) and αn+1 abbre-
viates the formula ¬(αn ∧ ¬αn) for n ≥ 1. Consider, additionally, α0 def

== α

for every α in For◦. Finally, set δ(m) def
== (

∧
0≤ i<m δi) → δm for δ ∈ For◦

and m ≥ 1.

LEMMA 119. Any set M of n-valued truth-tables for which positive classi-
cal logic (CPL+) or some deductive extension thereof is sound must validate
all formulas of the form δ(m), for m > n.

Proof. The case n < 2 is obvious, for then M must be an adequate set of
truth-tables for the trivial logic. The other cases are easy consequences of
the Pigeonhole Principle of finite combinatorics and of the cyclic character
of the composition of finite functions. Indeed, if M is n-valued, for some
finite n, the truth-table determined by a formula δn must be identical to
the truth-table of at least one among the formulas δ0, . . . , δn− 1. But in that
case, using classical properties of conjunction and implication, it follows
that δ(m), and consequently δ(m), is valid according to M. "

The above lemma can be found at [Avron, 2007b]. The next result comes
from [Marcos, 2005f].

LEMMA 120. No formula of the form δ(m) is derivable in the logic Ciae.

Proof. Consider, for n ∈ N, the following sets Mn of infinitary truth-tables
that take the truth-values from the ordinal ω + 1 = ω ∪ {ω}, where ω (the
set of natural numbers) is the only undesignated truth-value:

x ∧ y =

{
0, if x = n and y = n + 1
max(x, y), otherwise
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x ∨ y = min(x, y)

x → y =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ω, if x ∈ N and y = ω

y, if x = ω and y ∈ N
0, if x = ω = y

max(x, y), otherwise

¬x =

⎧
⎪⎨

⎪⎩

ω, if x = 0
0, if x = ω

x + 1, otherwise
◦x =

{
0, if x ∈ {0,ω}
ω, otherwise

It is clear, on the one hand, that Ciae is sound for each Mn. On the other
hand, M2m+1 falsifies the formula δ(m + 1). Indeed, consider an atomic
sentence p in the place of δ and consider a valuation v such that v(p) = 1.
It follows then that v(pi) = 2i + 1, for 0 ≤ i ≤ m, yet v(pm+1) = ω. But in
that case v(δ(m + 1)) = ((2m + 1) → ω) = ω. "

THEOREM 121. No LFI lying in between CPL+ and Ciae is finite-valued.

Proof. Suppose that L is a logic defined over Σ◦ lying in between CPL+

and Ciae such that L has an adequate finite-valued truth-functional se-
mantics with, say, m truth-values. By Lemma 119 the formula δ(m + 1) is
valid with respect to this semantics and so it is a theorem of L. But then
δ(m + 1) would be a theorem of Ciae, contradicting Lemma 120. "

The previous result, albeit very general, does not cover cases of uncharac-
terizability by finite-valued truth-tables for logics satisfying the axiom (cl),
for the truth-tables presented in Lemma 120 provide counter-models to this
axiom. Here is, however, a similar argument that works fine in the latter
case.
DEFINITION 122. Let Cl− be the logic defined over the signature Σ◦ and
obtained from Cl (see Remark 111) by removing axiom schemas (Ax10)–
(Ax11). In other words, Cl− is characterized by axiom schemas (Ax1)–
(Ax9) (see Definition 28), (bc1) (see Definition 42), (cl) (see Definition 105),
and the rule (MP). "

Let δij , for i, j ̸= 0, denote the formula ¬(pi ∧ ¬pj) ∧ (pi ∧ ¬pj), and let
δ[n] denote the disjunctive formula

∨
1≤ i<j≤ n(δij → pn+1) for n ≥ 1. Then:

LEMMA 123. Any set of n-valued truth-tables that is sound for the logic
Cl− must validate all formulas of the form δ[m] for m > n.

Proof. Use the Pigeonhole Principle and the fact that

(¬(α ∧ ¬α) ∧ (α ∧ ¬α)) → β

may be derived from axioms (bc1), (cl) and the deduction theorem. "
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LEMMA 124. No formula of the form δ[n] is derivable in the logic Cilae.

Proof. Use again the truth-tables in Lemma 120, but now simplify the
table of conjunction as follows:

x ∧ y =

{
0, if y = x + 1
max(x, y), otherwise

It is routine to check that these truth-tables are sound for Cilae. Consider
next a valuation v such that v(pi) = i, for i ≤ n, and v(pn+1) = ω. Then
v(δij) = j+2 and so v(δij → pn+1) = ((j+2) → ω) = ω (for 1 ≤ i < j ≤ n).
Thus v(δ[n]) = ω. "

THEOREM 125. No LFI lying in between Cl− and Cilae is finite-valued.

Proof. Analogous to the proof of Theorem 121, but now using formulas
δ[n], Lemma 123 and Lemma 124. "

REMARK 126. A somewhat stronger version of Theorem 125 has recently
been proven in [Avron, 2005b], where all logics in between Cl− and Cilae
are shown not to be characterizable even with the use of finite-valued non-
deterministic truth-tables.

The logic Cibae (Definitions 108), an obvious extension of Cila, received
an adequate interpretation in terms of possible-translations semantics in
[Carnielli, 2000] and in [Marcos, 1999]. In the latter study, all the other
logics from Definitions 108 and 114 have also received adequate possible-
translations semantics. In [Avron, 2007a; Avron, 2005c; Avron, 2007b], even
larger families of related logics have recently been given interpretations in
terms of non-deterministic semantics, in a modular way. "

We end this subsection with an axiomatization of two important 3-valued
LFIs through the regulation of their ability to propagate inconsistency.

THEOREM 127. The logic LFI1 described in Example 18 is axiomatized
by adding to Cie (check Definition 100) the following axiom schemas:

(cj1) •(α ∧ β) ↔ ((•α ∧ β) ∨ (•β ∧ α))
(cj2) •(α ∨ β) ↔ ((•α ∧ ¬β) ∨ (•β ∧ ¬α))
(cj3) •(α→ β) ↔ (α ∧ •β)

where, as usual, •α is an abbreviation for ¬◦α. The logic P1 described
in Example 19 is axiomatized by adding to Ci (check Definition 100) the
following schema:

(cz) ◦α (for α non-atomic) "
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In the last theorem, note that (cz), in fact, consists of five axiom schemas,
one for each connective in the signature Σ◦, that is, (cz) is equivalent to
the conjunction ◦(¬α) ∧ ◦(α ∧ β) ∧ ◦(α ∨ β) ∧ ◦(α→ β) ∧ ◦(◦α). The logic
P1 describes an extreme case of propagation of consistency into complex
formulas, where no premises are needed so as to guarantee their consistency.

5.3 LFIs that are maximal fragments of CPL

The paper [da Costa, 1974] suggested a list of ‘natural’ features that a
paraconsistent logic should enjoy. One of these is that a paraconsistent
logic should contain the most part of the schemas and rules of the classical
propositional logic which do not interfere with paraconsistency. Following
[Marcos, 2005d], one way of implementing this feature would be by requir-
ing paraconsistent logics to be, in some specific sense, maximal deductive
fragments of classical logic.

The following notion of maximality among logics may be used to analyze
how close we are to having ‘most of classical logic’ inside paraconsistent
systems:

DEFINITION 128. Let L1 and L2 be two logics written in the same
signature. Then, L2 is said to be maximal relative to L1 if:
(i) L1 is an extension of L2;
(ii) if ⊢L1 α but (L2 α, then the logic obtained from L2 by adding α as a
new axiom schema coincides with L1.
When L1 is clear from the context, we simply say that a logic L2 satisfying
conditions (i) and (ii) is maximal. "

This notion of maximality is quite common in the literature.10 It is
well known, for instance, that each #Lukasiewicz’s logic #Lm, for m > 2, is
maximal relative to CPL if and only if (m −1) is a prime number. Also,
CPL is maximal relative to the trivial logic, a logic in which all formulas
are provable. On the other hand it is also well known that intuitionistic
logic is not a maximal fragment of CPL, and there exists indeed an infinite
number of intermediate logics between them. On what concerns the main C-
systems presented this far, only the logic LFI1 and the logic P1, described
in Examples 18 and 19, and Theorem 127, are maximal relative to CPL, or
relative to eCPL, the extended version of CPL introduced at the beginning
of Subsection 3.6. In particular, the logic C1 (or, equivalently, Cila c⃝ —
recall Remark 109), despite being the strongest logic introduced by da Costa
on his first hierarchy of paraconsistent logics, is properly extended by P1

10Other notions of ‘maximality’ exist, such as the idea of defining maximal subsets of
the classical entailment, considering not only valid formulas but valid inferences. That
approach fails monotonicity, though, and the consequent ‘maximal fragments’ of classical
logic do not define thus T -logics nor S-logics. We will make no development in the
present paper in that direction, and choose rather to refer to the competent sources, such
as [Batens, 1989] and [Batens, 1989].
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and fails thus to be maximal with respect to classical logic. Therefore, none
of the logics Cn presented in [da Costa, 1974] respects the requirement of
containing the most part the schemas of classical logic, a requirement that
may be found in that very same paper. Such an observation, in fact, is
true also about the stronger logic called C+

1 (or Cilo c⃝), introduced after
Definition 114.

Now we explore the intuitions underlying the 3-valued maximal C-systems
P1 and LFI1 showing how to generate a large class of related 3-valued
maximal paraconsistent logics. Looking for models for contradictory and
non-trivial theories, we start with non-trivial interpretations under which
both some formula α and its negation ¬α would be simultaneously satisfied.
A natural choice lies in the many-valued domain, more specifically in logics
presented in terms of finite-valued truth-tables. Since we want to preserve
classical theses as much as possible, the values of the connectives with clas-
sical (0 and 1) inputs will have classical outputs. Suppose we just introduce
then an intermediate third value 1

2 , besides true (1) and false (0), fixing
D = {1, 1

2} as the set of designated values. Then there are two possible
classic-like truth-tables for a negation validating α and ¬α simultaneously,
for some α, namely:

¬
1 0

1/2
1/2 or 1

0 1

With respect to the other connectives of the signature Σ (since we try to
keep them as classical as possible), we add now the following higher-level
classic-like requirements:

(C∧) (x ∧ y) ∈ D iff x ∈ D and y ∈ D;
(C∨) (x ∨ y) ∈ D iff x ∈ D or y ∈ D;
(C→) (x → y) ∈ D iff x ̸∈ D or y ∈ D.

The above constraints leave us with the following options:

∧ 1 1/2 0

1 1 1/2 or 1 0
1/2

1/2 or 1 1/2 or 1 0
0 0 0 0

∨ 1 1/2 0

1 1 1/2 or 1 1
1/2

1/2 or 1 1/2 or 1 1/2 or 1
0 1 1/2 or 1 0

→ 1 1/2 0

1 1 1/2 or 1 0
1/2

1/2 or 1 1/2 or 1 0
0 1 1/2 or 1 1
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This yields 23 options for conjunctions, 25 options for disjunctions, 24 op-
tions for implications, and, as stated above, 21 options for negations, adding
up to 213 (= 8, 192) possible logics to deal with, in the signature Σ. Of
course, not all those logics are necessarily ‘interesting’. We can upgrade
each of those logics into an LFI by considering the signature Σ◦• and adding
the following tables for consistency and inconsistency operators:

◦ •
1 1 0

1/2 0 1
0 1 0

This means that the consistent models are the ones characterized by classical
valuations, and only those. Notice that, in the above truth-tables, ◦ can be
defined by setting ◦α def

== ¬•α or, alternatively, • can be defined by setting
•α def

== ¬◦α.
DEFINITION 129. Fix Σ as any one among the signatures Σ◦, Σ• or Σ◦•.
The collection of logics over Σ defined by the above truth-tables, with des-
ignated values D = {1, 1

2}, will be called 8Kb. Each logic in this collection
makes up a choice as to which truth-table for negation, for conjunction, for
disjunction and for implication it will adopt. "

Clearly, every logic in 8Kb is a fragment of eCPL, the extended classical
propositional logic, if we consider in eCPL the usual definition of the in-
consistency connective as the negation of the consistency connective. Note
also that the logic Pac (see Example 17) does not belong to 8Kb, because
it cannot define the connectives ◦ and •. On the other hand, its conserva-
tive extension LFI1 contains those connectives, and as a matter of fact the
latter logic belongs to 8Kb. The 3-valued logic P1 also belongs to 8Kb, and
we already know that these two logics are axiomatizable by the addition of
suitable axioms to the axiomatization of Ci (see Theorem 127). As shown
in [Marcos, 2000], this same method may be extended to the whole 8Kb:
THEOREM 130. (i) Every logic in 8Kb is an axiomatic extension of Cia.
(ii) All the logics in 8Kb are distinct from each other, and they are all
maximal relative to eCPL.
(iii) All the logics in 8Kb, and their fragments, are boldly paraconsistent."

It is just a combinatorial divertissement to check the following facts:
THEOREM 131. All the 8, 192 logics in 8Kb are C-systems based on CPL
and extending Cia (cf. Definition 108). Out of these, 7, 680 are in fact
dC-systems, being able to define ◦ and • in terms of the other connectives
(all being, therefore, maximal relative to CPL, and not only to eCPL).
Of these, 4, 096 are able to define ◦α as ¬(α ∧ ¬α), and so all of them
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do extend C1 (that is, Cila c⃝). Of the 7, 680 logics which are dC-systems,
1, 680 extend Cio (cf. Definition 114), and 980 of the latter are able to define
◦α as ¬(α∧¬α), and so all these 980 logics extend C+

1 (that is, Cilo c⃝). "
REMARK 132. The reader should bear in mind that, in view of Defini-
tion 27, if we want to prove that a given logic L2 is a C-system based on
another logic L1, we might have to adjust its signature Σ2 by adding defin-
able connectives so as to guarantee that it will extend the signature Σ1 of
L1 (as it was done, for instance, in the proof of Theorem 44). In contrast
to this, in view of Definition 128, if we want to prove that L2 is maximal
relative to a logic L3, it might be necessary to adjust the signatures of both
logics so that they coincide. Such signature adjustments are tacitly assumed
in the statements of Theorems 130 and 131. So, in more practical terms,
in order to prove that a given logic L in 8Kb is a C-system based on CPL
we ought to add to its signature a new symbol for a (definable) classical
negation. On the other hand, in order to prove that L is maximal relative
to classical logic we had better assume in general that the latter logic is
presented as eCPL, using the signature Σ◦ of Remark 15. In case L is a
dC-system, then it will suffice to consider classical logic presented as CPL,
and write L in the signature Σ, letting ◦ and • be introduced, in each case,
by their circumstantial definitions. "

The replacement property (RP) had already been shown to fail for our
foremost logic samples from the 8Kb. Indeed, the proof of items (iv) and
(v) of Theorem 50 showed that both LFI1 and P1 fail (RP). This negative
feature may be generalized, as shown in [Marcos, 2000]:

THEOREM 133. (RP) cannot hold in any of the logics in 8Kb.

Proof. This is true in general for any extension of Cia, as we may conclude
from Theorem 81(ii) and Theorem 116(ix). To complete the proof, recall
Theorem 130(i).

You will also be able to check the above result, alternatively, using
the classical negation below, whose truth-table could already be found in
Example 17 (check also Theorem 134), together with the result in Theo-
rem 52(a)(i). "

As a consequence of Theorem 133 the logics in 8Kb are not suitable to
an algebraization by means of a direct Lindenbaum-Tarski-style procedure.
However, the following results guarantee that all of them are algebraizable
in the sense of Blok-Pigozzi (cf. [Blok and Pigozzi, 1989]).

THEOREM 134. Each one of the logics in 8Kb defines the following truth-
table for classical negation and at least one of the two congruences below:
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∼
1 0

1/2 0
0 1

≡ 1 1/2 0

1 1 0 0
1/2 0 1/2 or 1 0
0 0 0 1

Proof. It is possible to define ⊥ either as (α∧ (¬α∧◦α)) or as (◦α∧¬◦α),
for any formula α. Then, we can define ∼α either as (¬α ∧ ◦α) or as
(α → ⊥). One of the above congruences (α ≡β) can always be defined by
((α↔ β)∧(◦α↔ ◦β)). In case we prefer to have (1

2 ≡ 1
2 ) = 1, we can assure

that we define this specific congruence by setting (α ◃▹ β) def
== ∼∼(α ≡β).

"

The following theorem generalizes a result obtained in [Lewin et al., 1990]
for the logic P1:

THEOREM 135. All the logics in 8Kb are Blok-Pigozzi algebraizable.

Proof. Consider ∆(p0, p1) = {(p0 ≡ p1)} or ∆ = {(p0 ◃▹ p1)}, where ≡
and ◃▹ are defined as in the proof of the Theorem 134. Consider the sets

δ(p0) = {((p0 → p0) → p0)}, ε(p0) = {(p0 → p0)}

and check that the corresponding algebraizability conditions of [Blok and
Pigozzi, 1989] are satisfied. "

On what concerns the expressibility spectrum of the class 8Kb and of the
distinguished logics P1 and LFI1, the following results can be checked:

THEOREM 136.
(i) The truth-tables of P1 can be defined inside of any of the logics in 8Kb.
(ii) All the truth-tables in 8Kb can be defined inside of LFI1.

Proof. Item (i). Fix some logic L belonging to 8Kb. Let ∧,∨,→,¬, ◦ and
• be its primitive connectives, and let ∼ be the classical negation defined
inside L as in Theorem 134. Then, the P1-negation of a formula α may be
defined in L as ∼∼¬α. The P1-conjunction of some given formulas α and β
may be defined in L either as ∼∼(α ∧ β) or as (∼∼α ∧∼∼β). A definition
in the same vein applies to both disjunction and implication. Note that the
truth-tables in L for the connectives ◦ and • already coincide with those
of P1.
Item (ii). A proof of this property may be found in [Avron, 1999]. A
constructive proof may be found in [Marcos, 1999] and [Carnielli et al.,
2000]. "
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COROLLARY 137. (i) The logic P1 can be conservatively translated into
any of the logics in 8Kb. (ii) Any of the logics in 8Kb can be conservatively
translated into LFI1. "

As argued in [Avron, 1991], the logic LFI1 has several properties that
justify its role as one of the most ‘natural’ 3-valued paraconsistent logics.
Theorem 136(ii) and Corollary 137(ii) show already how linguistically and
deductively expressive this logic is.

A last note on algebraization. We had the chance in several occasions
above to witness how replacement fails for many of our LFIs. This often
makes it difficult to provide algebraic counterparts, in the usual sense, for
those logics. However, it is interesting to observe that a kind of algebraic
treatment for some wilder C-systems has been proposed and studied, for
instance, in [Carnielli and de Alcantara, 1984] and [Seoane and de Alcantara,
1991] (for a partial survey, check the section 3.12 of [Carnielli and Marcos,
2002]). Additionally, an approach for algebraizing LFIs based on an idea
similar to that of a possible-translations structure was presented in [Bueno-
Soler et al., 2004] and [Bueno-Soler and Carnielli, 2005].

6 CONCLUSIONS AND FURTHER PERSPECTIVES

In this final part of this chapter we recall some definitions and results ob-
tained and described above, and point to some interesting new problems
and research directions connected to what has been presented.

From Section 3 on, some of the possibilities for the formalization and
understanding of the relationship between the concepts of consistency, in-
consistency, contradictoriness and triviality were explored at a very general
and abstract level. Assuming that consistency could be expressed inside
some paraconsistent logics, and assuming furthermore that the consistency
of a given formula would legitimate its explosive character (that is, as-
suming (9), a so-called Gentle Principle of Explosion), we have presented
in Subsection 3.1 a general definition of a Logic of Formal Inconsistency,
LFI (Definition 23). To actualize that definition (in a finitary way), we
have started our study from the logic mbC, a very weak C-system based
on classical logic (recall Definition 42), constructing all the remaining C-
systems as extensions of mbC. Some specific extensions of mbC illustrated
a subclass of the C-systems in which the connectives ‘◦’ for consistency and
‘•’ for inconsistency are expressible by means of other connectives. The
members of this class were called dC-systems (recall Definition 32).

We briefly recall some consequences of our approach to formal (in)consis-
tency: There are consistent and inconsistent logics. The inconsistent ones
may be either paraconsistent or trivial, but not both. Let us say that a the-
ory has non-trivial models only if these models do not assign designated val-
ues to all formulas. Thus, the theories of a consistent logic have non-trivial
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models if and only if they are non-contradictory. Paraconsistent logics will
tipically have non-trivial models for some of their contradictory theories.
Paraconsistent logics may even have some trivial models among those mod-
els that satisfy contradictions. Such trivial models, however, cannot exist
if the paraconsistent logics we are talking about are gently explosive, that
is, if they constitute Logics of Formal Inconsistency. For each formula α of
a logic L, the consistency ◦α of α consists in the information that should
be added to an α-contradictory theory in order to make it explosive, and
consequently trivial. If the answer is ‘nothing needs to be added’, then α is
already consistent in L. This implies that, as expected, a logic is consistent
if all of its formulas may be asserted to be consistent.

It will be clear now to the reader that there are many more examples of
C-systems besides the logics Cn of da Costa and other logics axiomatized
in a more or less similar fashion. The general idea is to express consis-
tency and inconsistency inside a logic, at its object-language level. This
approach allows us to collect in a single class of LFIs logics as diverse as
the Cn, P1, J3 (renamed LFI1), and Jaśkowski’s ‘discussive’ paraconsis-
tent logic D2 (cf. Example 24). Even normal modal logics in a convenient
signature can be very naturally regarded as dC-systems. This bears on
the relationship between negations and modalities, which reflects upon the
possibilities of defining paraconsistent negations in modal environments, as
studied by [Vakarelov, 1989], [Došen, 1986], [Béziau, 2002b], [Marcos, 2005e]
and [Marcos, 2005b].

The fact that so many logics with diverse motivations and technical fea-
tures may be recast as a dC-systems paves the way for an interesting ques-
tion: To check whether other logics in the literature on paraconsistent logics
could be characterized as C-systems, or, in general, as LFIs. Another re-
lated question is the following: How to enrich a given paraconsistent logic
in order to turn it into an LFI? This was done by the logic LFI1 (also
known as CLuNs, or J3) with respect to the logic Pac (see Example 18).
Consider now the 3-valued closed set logic studied in [Mortensen, 1995].
This logic consists of LFI1’s truth-tables of conjunction and of disjunction,
plus the truth-table of negation of P1, where 0 is the only non-designated
value. A consistency connective ◦ can then be defined via ◦α def

== ¬¬(α∨¬α).
The addition of an appropriate truth-table for implication would enrich the
closed-set logic, and the resulting system would most certainly belong to
the collection 8Kb of 3-valued maximal paraconsistent logics (recall Defini-
tion 129). But in that case, what would be the topological or set-theoretical
significance of these new connectives?

The question of the duality between intuitionistic-like and paraconsistent
logics, not explored in this chapter, is also worth mentioning. The concept
of dual-intuitionism was already seized in the 40s by K. Popper, cf. [Pop-
per, 1948], more or less at the same time as paraconsistency was being en-
gendered. More recently, dual-intuitionism and dual-paraconsistency have
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been studied, for example, in [Sylvan, 1990], [Urbas, 1996] and [Brunner
and Carnielli, 2005]. The logics that are dual to paraconsistent are some-
times called ‘paracomplete’ (cf. [Loparić and da Costa, 1984]). Exploring
the issue of duality, a natural question that appears concerns the notions
that are dual to consistency and inconsistency, notions that one might dub
‘determinedness’ and ‘undeterminedness’. Some initial explorations in that
direction, and the related Logics of Formal Undeterminedness, may be found
in [Marcos, 2005e].

Apparently, in the 40s, defenders of dual-intuitionism and paraconsis-
tency independently realized that there should be a logic for general rea-
soning from hypotheses, accepting in certain cases some propositions and
their negations as true (in the case of paraconsistency), or retaining some
propositions and their negations as unfalsified (in the case of falsification-
ism). Indeed, there seems to be some common grounds connecting paracon-
sistency and the falsificationist program in Philosophy of Science, and that
line of research seems worth pursuing. Similarly, paracomplete logics could
have a contribution to make for the study of verificationism in science. The
logical approach to such questions has recently been vindicated by studies
such as [Shramko, 2005].

Applications of LFIs to yet other fields in philosophy seem promising. In
[Costa-Leite, 2003] some possibilities of employing the connectives of con-
sistency and inconsistency for the understanding of (and new regards on)
epistemological problems related to the paradox of knowability are investi-
gated. In [Marcos, 2005a] the use of a consistency-like modal connective for
the modelling of the metaphysical notion of essence is tackled, and in that
environment inconsistency turns out to mean a mere sort of ‘accident’.

Another important issue concerns the incompleteness results in Arith-
metic. Recall that Gödel’s incompleteness theorems are based on the iden-
tification of ‘consistency’ and ‘non-contradictoriness’. What would be the
consequences if we started instead from the general notion of consistency
hereby proposed (recall Definition 4)? Would it still be possible to repro-
duce Gödel’s arguments? Quite possibly, his arguments would be rescued at
the cost of assuming consistency (in our sense) of several formulas represent-
ing assumptions that would then become more explicit, and consequently
open to debate. In the same spirit, it should be interesting to analyze the
combination of LFIs with Modal Logics of Provability. In [Boolos, 1996],
consistency is intended as a kind of opposite to the notion of provability.
Using this idea, if the negation of a formula cannot be proven, then it is con-
sistent with whatever else might be proven; a still weaker notion, connected
to ‘logical independence’, would be to consider a formula to be consistent
when neither this formula nor its negation can be proven. The insinuated
exchange between Logics of Formal Inconsistency and Logics of Provability,
in fact, seems attractive and deserves further research.

As it has been noted in the literature, it seems that most interesting prob-
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lems related to paraconsistency appear already at the propositional level.
It is possible though to extend a given propositional paraconsistent logic
to higher orders using combination techniques such as fibring, if only we
choose the right abstraction level to express our logics. See, for instance,
[Caleiro and Marcos, 2001], where the logic C1 is given a first-order version
which coincides with the original one from [da Costa, 1963]. Another inter-
esting possibility that involves first-order versions of paraconsistent logics in
general, and especially of first-order LFIs, is the investigation of consistent
yet ω-inconsistent theories (also related to Gödel’s theorems).

Some other items for future research, already hinted at along the present
text, are the following. From Theorem 79 we know that, in extensions of
mCi, the formulas causing controllable explosion (Definition 9(ii)) coincide
with the provably consistent formulas, that is, theorems of the form ◦α.
On the other hand, mbC does not have provably consistent formulas (see
Theorem 47). So, is the logic mbC (see Definition 42) not controllably
explosive? On another trail, we have seen that there are extensions of
mbC for which the replacement property holds good (see Remark 53), and
we have seen that to find extensions of mCi with that same property all
one needs to do is to devise logics that respect a certain rule (EC) (see
Subsection 3.2 and Theorem 82). Can we circumvent negative results such
as Theorems 52 and 81 and find interesting extensions of mCi enjoying the
replacement property (RP)? At any rate, turning the attention to extensions
of mbC that do not extend mCi but that do enjoy (RP) is a feasible
enterprise (recall Remark 53), and it seems indeed to be a very attractive
one, still to be further developed. On yet another direction, what other uses
could we give to our semantical tools (valuations and possible-translations
semantics)? The results about uncharacterizability by finite-valued truth-
tables in Theorems 121 and 125 are very powerful and widely applicable,
but they cannot help us in proving that logics such as Cioe do not have
adequate finite-valued truth-tables. Can we find other flexible and wide-
ranging similar results to the same effect?11

Finally, we have started our work in this chapter from a traditional ab-
stract perspective. We have soon though shown that alternative semanti-
cal and proof-theoretical approaches were possible. In particular, we have
given a few illustrations of a general method that permits us to deal with
C-systems in terms of tableaux. The first wide-ranging method to such an
effect was sketched in [Carnielli and Marcos, 2001b]. A more general method
to obtain tableau procedures for logics endowed with a certain type of two-
valued (even non-truth-functional) semantics was introduced in [Caleiro et
al., 2005b]. These techniques have been used here in Subsections 3.5 and 4.2
so as to obtain new adequate tableau systems for the logic C1, as well as for

11It came to our notice that the problem concerning Cioe has recently been solved in
[Avron, 2007b], where in fact all logics in between Cl− and Ciboe are shown not to be
characterizable with the use of finite-valued non-deterministic truth-tables.
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mbC and mCi. The possibility of further exploring and refining this kind
of approach seems promising for applications of LFIs in database theory
(see Example 18), an area of research critically sensible to the presence of
contradictions.

7 LIST OF AXIOMS AND SYSTEMS

We list here all the main principles, axioms and systems studied throughout
the chapter, indicating the place where they were introduced in the text.

Principles
(1) Principle of Non-Contradiction : Subsection 2.1
(2) Principle of Non-Triviality : Subsection 2.1
(3) Principle of Explosion, or Pseudo-Scotus, or Ex Contradictione
Sequitur Quodlibet : Subsection 2.1
(4) Paraconsistent logic (first definition) : Subsection 2.2
(5) Paraconsistent logic (second definition) : Subsection 2.2
(6) Paraconsistent logic (third definition) : Subsection 2.2
(7) Principle of Ex Falso Sequitur Quodlibet : Subsection 2.2
(8) Supplementing Principle of Explosion : Subsection 2.2
(9) Gentle Principle of Explosion : Subsection 3.1
(10) Finite Gentle Principle of Explosion : Subsection 3.1

Axioms, Rules and Metaproperties
(Ax1)–(Ax11) : Definition 28
(bc1) : Definition 28, Definition 42
(bc1)′ : Subsection 4.3
(bc1)′′ : Theorem 106
(ca1)–(ca3) : Definition 28, Definition 108
(cb) : Subsection 5.1
(cc)n : Definition 75
(cc)′n : Subsection 4.3
(cd) : Subsection 5.1
(ce) : Subsection 4.4
(cf) (= (Ax11)) : Subsection 4.4
(ci) : Definition 75
(ci)′ : Subsection 4.3
(cj1)–(cj3) : Theorem 127
(cl) : Definition 105
(co1)–(co3): Definition 114
(Con1)–(Con6) : Subsection 2.1
(cz) : Theorem 127
(EC) : Subsection 3.2
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(EO) : Subsection 3.2
(exp) : Remark 29
(ext) : Remark 30
(MP) modus ponens : Definition 28
(RC) : Theorem 83
(RG) : Subsection 5.1
(RP) Replacement Property : Remark 51
(RRP) : Remark 117

Systems
8Kb : Definition 129
bC : Definition 100
bCe : Definition 100
C1 (= Cila c⃝) : Definition 28
C+

1 (= Cilo c⃝) : Definition 114
Cn, 1 < n < ω : Definition 28
CAR : Definition 40
Ci : Definition 100
Cia : Definition 108
Ciba : Definition 108
Cibae : Definition 108
Cida : Definition 108
Cidae : Definition 108
Cie : Definition 100
Cil : Definition 105
Cil c⃝ : Theorem 106
Cila : Definition 108
Cila c⃝ (= C1) : Remark 109
Cilae : Definition 108
Cile : Definition 105
Cilo : Definition 114
Cilo c⃝ (= C+

1 ) : Definition 114
Cio : Definition 114
Cl : Remark 111
Cl− : Definition 122
Cla : Remark 111
Cω : Definition 40
Cmin : Definition 40
CPL : Remark 29
CPL+ : Remark 29
D2 : Example 24
eCPL : Remark 30
J : Example 14
J3 : Example 18
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LFI1 : Example 18, Theorem 127
M0 : Subsection 3.4
M1 : Subsection 4.2
mbC : Definition 42
mbCe : Definition 100
mCi : Definition 75
mCi• : Definition 97
mCi◦• : Subsection 4.3
mCie : Definition 100
MIL : Example 10
P1 : Example 19, Theorem 127
Pac : Example 17
PI : Definition 36
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temów dedukcyjnych sprzecznych. Studia Societatis Scientiarun Torunesis, Sectio A,
I(8):171–172, 1949. Translated as ‘On the discussive conjunction in the propositional
calculus for inconsistent deductive systems’ in Logic and Logic Philosophy, 7:57–59,
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