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Abstract. When integrating data coming from multiple different
sources we are faced with the possibility of inconsistency in databases.
In this paper, we use one of the paraconsistent logics introduced in [9,7]
(LFI1) as a logical framework to model possibly inconsistent database
instances obtained by integrating different sources. We propose a method
based on the sound and complete tableau proof system of LFI1 to treat
both the integration process and the evolution of the integrated database
submitted to users updates. In order to treat the integrated database
evolution, we introduce a kind of generalized database context, the evo-
lutionary databases, which are databases having the capability of storing
and manipulating inconsistent information and, at the same time, allow-
ing integrity constraints to change in time. We argue that our approach
is sufficiently general and can be applied in most circumstances where
inconsistency may arise in databases.

1 Introduction

The treatment of inconsistencies arising from the integration of multiple sources
has been a topic increasingly studied in the past years and has become an impor-
tant field of research in databases. Since some pioneer work on database updates
and belief revision in the eighties [17,20], a great deal of work on multidatabases
and inconsistency management has been done during the last decade. Two basic
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approaches have been followed in solving the inconsistency problem in knowledge
bases: belief revision ([21,22]) and paraconsistent logic ([10,12,6]). The goal of
the first approach is to make an inconsistent theory consistent, either by revising
it or by representing it by a consistent semantics. So, the main concern there is
to avoid contradictions. On the other hand, the paraconsistent approach allows
reasoning in the presence of inconsistency, and contradictory information can be
derived or introduced without trivialization. In this paper, we propose to treat
inconsistencies arising from the integration of multiple databases by introducing
a method based on the paraconsistent approach. We argue that in most situ-
ations inconsistent information can be useful, unavoidable and even desirable,
like for instance in airline booking systems.

In recent work ([9,7]), a family of paraconsistent logics called Logics of Formal
Inconsistency (LFIs) has been introduced, and sound and complete axiomatic
proof systems for this class of logics have been provided. The most important
feature of these logics consists in the internalization of the concepts of consis-
tency and inconsistency inside the object language. In this paper, we focus our
attention in one of these logics, which we call LFI1, and use it as a logical frame-
work to model integrated databases. We present the method Repair based on
the inference mechanism of the sound and complete tableau system of LFI1, in-
troduced in [8]. The method consists basically in constructing a repaired version
of the integrated database where inconsistent information may appear. LFI1
(with its 3-valued semantics) is used as the logical framework for the underly-
ing model of this repaired version, which we call paraconsistent databases. We
focus our attention on a particular class of integrity constraints and show that,
as far as this particular class of constraints is concerned, the method is sound
and complete: all paraconsistent databases returned by the method are repairs
of the integrated database, i.e. they satisfy the integrity constraints and are as
close as possible to the original (possibly) inconsistent integrated instance, and
all possible repairs can be obtained through this procedure.

Example 1.1 (Running Example). Let us consider the local databases R1 =
{R(a), Q(a), Q(b)} and R2 = {R(c), Q(b)}. The first database verifies the condi-
tion C1 = ∀x(¬R(x)∨Q(x)) and the second one verifies C2 = ∀x(¬R(x)∨¬Q(x)).
However, the integrated database {R(a), R(c), Q(a), Q(b)} violates both condi-
tions C1 and C2. So, local databases may be consistent but when they are inte-
grated, inconsistencies may appear. Even worse, the conditions may be mutually
inconsistent or be only satisfied by an empty database as in the following situa-
tion: Let us consider a third local database R3 = {R(b), Q(b)} and the condition
C3 = ∀x(¬Q(x)∨R(x)). This database satisfies C3 but the integrated database
I = {R(a), R(b), R(c), Q(a), Q(b)} violates conditions C1 and C2. The three
conditions C1, C2 and C3 are rather incompatible in the sense that they are
simultaneously satisfied only by empty databases.

The method Repair can be applied to I and produces the following database:
J = { R(a), R(b), •R(c), •Q(a), •Q(b) }

The symbol • preceding a ground atomic formula means that the information
represented by the formula is controversial. Intuitively, the condition stated by
C1 enforces that each element in R must appear in Q. This condition is violated
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in the integrated database I because c belongs to R but not to Q. However, if
the information “c ∈ R” was taken as controversial, then C1 would be verified
(at least as far as the instantiation x = c is concerned). In the same way, the
condition stated by C2 enforces that elements in R should not appear in Q. So,
this condition is violated in I because a and b belong to R and Q simultaneously.
If the two facts “a ∈ Q” and “b ∈ Q” were taken as controversial, then C2 would
be verified. The database J containing inconsistent information is called para-
consistent database and we can show that it satisfies (within LFI1) the integrity
constraints IC. Besides, it constitutes a repair of the original instance, i.e., it is
a paraconsistent database containing minimal changes w.r.t. the original inte-
grated database I and which is consistent w.r.t. IC. As we will see in section 3,
repairs are not unique, i.e., there are other paraconsistent databases satisfying
the constraints and containing minimal changes w.r.t. the original (possibly in-
consistent) database. For instance, J1 = {R(a), •R(b), R(c), •Q(a), Q(b), •Q(c)}
is another repair of I. By using a backtracking mechanism, the method Repair
can produce the set of repairs corresponding to a given database I.

Our notion of repair is more refined than the one introduced in [3], in the
sense that it is closer to the original database. This follows from the fact that,
contrarily to [3], in our approach inconsistent information are always kept inside
the repaired database.

The method Repair is suitable to treat both static and dynamic aspects of
inconsistency management in databases. The static aspect deals only with the
integration of different database instances, by constructing the repaired version.
The dynamic aspect of our approach deals with the evolution of the integrated
databases submitted to user updates. In order to treat the dynamics of paracon-
sistent database evolution, we introduce a kind of generalized database context,
the evolutionary databases, which are databases having the capability of storing
and handling inconsistent information and, at the same time, allowing integrity
constraints to change in time. The method Repair interacts with user updates
(which may be a data or an integrity constraint update) in order to build a
repaired version of the paraconsistent database produced after the user update.

We argue that our approach is sufficiently general and can be applied in most
circumstances where inconsistency may arise in databases. It could be suitable
for managing inconsistency in active and reactive databases and datawarehouses.

This paper is organized as follows: In section 2 we describe the syntax and the
three-valued semantics of our Logic of Formal Inconsistency LFI1 and present
a sound and complete proof system for this logic. In section 3, we introduce
the notion of paraconsistent databases and repairs. In section 4 we give the
method for constructing repairs for paraconsistent databases obtained by the
integration of different local consistent databases. In section 5 we generalize this
method in order to treat the dynamic aspects of paraconsistent databases as
well as more general situations where inconsistency may appear in a database
context, these situations being captured by the notion of evolutionary databases.
Finally, in section 6 we discuss our perspectives for further work and compare
our method with some other methods treating the problem of inconsistency in
multiple databases. For lack of space, the proofs are just outlined.



70 Sandra de Amo, Walter A. Carnielli, and João Marcos

2 LFI1: A Three-Valued Logic for Formal Inconsistency

In this section we describe the syntax and semantics of our Logic of Formal
Inconsistency (LFI1). A detailed presentation can be found in our former paper
[9].

Let R be a finite signature without functional symbols and Var a set of
variables symbols. We assume the formulas of our logic to be defined in the
usual way, as in the classical first-order logic, with the addition of a new symbol
• (read “it is inconsistent”). So, a formula of LFI1 is defined inductively by the
following statements (and only by them):

• If R is a predicate symbol of arity k and x1, ..., xk are constants or variables,
then R(x1, ..., xk) and x1 = x2 are atomic formulas or atoms. The former is
called a relational atom and the later an equality atom.

• If F,G are formulas and x is a variable then F ∨G, ¬F , ∀xF , ∃xF and •F
are formulas.

The notions of free and bound variables are defined as usual. If x1, . . . , xn are
free variables of a formula F and c1, . . . , cn are constants or variables, we denote
by F [c1, . . . , cn/x1, . . . , xn] the formula obtained by replacing each occurrence
of the variable xi by ci, for i = 1, . . . , n. A sentence is a formula without free
variables. In particular, an atomic ground formula or ground atom is an atomic
formula which is a sentence. We denote by G and S, the set of all ground atoms
and the set of all sentences respectively.

We next define interpretations for formulas of LFI1, using three-valued valu-
ations which are homomorphisms between sentences and the truth-values 0 (for
“false”), 1 (for “true”), 1

2 (for “partially true”). These homomorphisms are in-
duced by the connective matrices and distribution quantifiers introduced below.
It is important to notice that in a database context, one only considers Herbrand
interpretations, those for which Dom (the set of constants of the language) is
the domain of valuation of the variables and where each constant symbol is
interpretated by itself.

Definition 2.1. Let R be a finite signature. An interpretation over R is an
application δ : G → {0 (false), 1 (true), 1

2 (inconsistent)}.
An interpretation of ground atoms can be extended to the propositional sen-

tences of S in a natural way by using the connective matrices in figure 1(a).
The connective ∧ is derived from of ∨,¬ : A∧ B ≡ ¬(¬A ∨ ¬B). The derived
matrix for ∧ is given in figure 1 (b). The connective → is defined in LFI1 as
A→ B ≡ B ∨¬(A∨ •A).1 It is easy to show ([9]) that • cannot be derived from
the other propositional connectives ∨ and ¬. So, ∨,¬, •,∀ can be taken as the
primitive logical symbols of our language.

The extension of δ to the quantified sentences in S is obtained by means of
the concept of distribution quantifiers, introduced in [13]. Basically, this con-
cept translates our basic intuition that an universal quantifier should work as
1 In this paper, we omit the matrix for →, since the class of LFI1-formulas we will

be interested in (the integrity constraints) does not use this connective.
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(a) (b)
Fig. 2.1.

a kind of unbounded conjunction and an existential quantifier as an unbounded
disjunction. A valuation is an application v : Var → Dom. We extend δ to the
quantified sentences as follows:
• δ(∀xA(x)) = 1 iff for all valuations v we have δ(A[v(x)/x]) = 1,
• δ(∀xA(x)) = 0 iff there exists a valuation v such that δ(A[v(x)/x]) = 0,
• δ(∀xA(x)) = 1

2 iff for all valuations v we have δ(A[v(x)/x]) = 1 or 1
2 , and

there exists a valuation v′ such that δ(A[v′(x)/x]) = 1
2

• δ(∃xA(x)) = 1 iff there exists a valuation v such that δ(A[v(x)/x]) = 1,
• δ(∃xA(x)) = 0 iff for all valuations v we have δ(A[v(x)/x]) = 0,
• δ(∃xA(x)) = 1

2 iff for all valuations v we have δ(A[v(x)/x]) = 0 or 1
2 , and

there exists a valuation v′ such that δ(A[v′(x)/x]) = 1
2 .

It is easy to see that δ(∀xA(x)) = δ(¬∃x¬A(x)) as usual in classical first-
order logic.

Definition 2.2. Let F (x1, ..., xn) be a formula of LFI1 with free variables
x1, . . . , xn, v a valuation and δ an interpretation. We say that (δ, v) satisfies
F (x1, ..., xn) (denoted by (δ, v) |= F (x1, ..., xn)) iff δ(F [v(x1), ..., v(xn)/x1, ...,
xn]) is 1 or 1

2 .

Example 2.1. Let R be a binary predicate symbol. Let δ be the interpretation
δ(R(a, b)) = 1, δ(R(c, b)) = 1

2 and δ(R(p, q)) = 0 for all (p, q) such that p �= c
and p �= a, or q �= b. Then, (δ, v) |= (∃x • R(x, y) ∧ ¬∀xR(x, y)), where v is a
valuation such that v(y) = b.

If (δ,v) |= F for each valuation v, we say that δ is a model of F (denoted
δ |= F ). In this case, F is LFI1-satisfiable. A formula is LFI1-valid if for each
interpretation δ, δ |= F . An LFI1 sentence F is a logical consequence of a set
of LFI1 sentences Γ if all models of F are also models of all formulas in Γ (we
denote this by Γ |= F ).

The logic LFI1 is a paraconsistent logic since it does not verify the principle
of explosion, i.e., A, ¬A �|= B for all B. In fact, if we take the interpretation δ
of example 2.1, we see that δ |= R(c, b) and δ |= ¬R(c, b) but δ �|= R(b, a).

A Tableau Proof System for LFI1. Before introducing our proof system, we need
some definitions concerning the tableaux terminology:

Definition 2.3. A signed formula of LFI1 is an expression of the form T(A)
or F(A), where A is a formula of LFI1, or the special symbol ⊥. If A is atomic
(resp. ground), the signed formula is said to be atomic (resp. ground).
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Table 1. A tableau proof system for LFI1

and-rule or-rule
α α1 α2 α α1 α2

(1) T(A∧B) T(A) T(B) (5) F(A∧B) F(A) F(B)
(2) F(A∨B) F(A) F(B) (6) T(A∨B) T(A) T(B)
(3) F(¬A) T(A) F(•A) (7) T(¬A) F(A) T(•A)
(4) T(¬¬A) T(A) T(A) (8) F(¬¬A) F(A) F(A)
(9) T(•A) T(A) T(¬A)
(10) T(•• A) ⊥ ⊥ (11) F(•A) F(A) F(¬A)
(12) F(•(A∧B)) F(•A∧B) F(•B∧A) (14) T(•(A∧B)) T(•A∧B) T(•B∧A)
(13) F(•(A∨B)) F(•A∧¬B) F(•B∧¬A) (15) T(•(A∨B)) T(•A∧¬ B) T(•B∧¬A)
(16) T(∀xA(x)) T(A(t)) T(A(t)) (20) F(∀xA(x)) F(A(s)) F(A(s))
(17) T(∃xA(x)) T(A(s′)) T(A(s′)) (21) F(∃xA(x)) F(A(t)) F(A(t))
(18) T(¬∀xA)) T(∃x¬A) T(∃x¬A) (22) F(¬∀xA) F(∃x¬A) F(∃x¬A)
(19) T(¬∃xA) T(∀x¬A) T(∀x¬A) (23) F(¬∃xA) F(∀x¬A) F(∀x¬A)
(24) T(•(∀xA) T(∃x•A) T(∀xA) (26) F(•(∀xA)) F(∃x•A) F(∀xA)
(25) T(•(∃xA) T(∃x•A) T(∀x¬A) (27) F(•(∃xA)) F(∃x•A) F(∀x¬A)
(28) T (A[x]) T(A[x/y]) T(A[x/y]) (*) (29) F(A[x]) F(A[x/y]) F(A[x/y]) (*)
t, t′ are arbitrary terms; s is a new term w.r.t. ∀x A(x), i.e., it does not appear in any
branch containing ∀x A(x); and s′ is a new term w.r.t. ∃x A(x), i.e., it does not
appear in any branch containing ∃x A(x).
(*) if T(x = y) is in S.

In what follows S is a finite set of atomic signed formulas, α and αi (i ∈
{1, 2}) are signed formulas. An inference rule is an expression of one the follow-
ing forms:

S : α

S : α1, S : α2

and-rules :
from S ∪ {α} we can
infer S ∪ {α1, α2}

S : α

S : α1 S : α2

or-rules:
from S ∪ {α} we can
infer S ∪ {α1} or
S ∪ {α2}

If r is an and-rule (resp. an or-rule) then we define r(S ∪ {α}) = S ∪
{α1, α2} (resp. r(S ∪ α) = S ∪ {α1} or r(S) = S ∪ {α2}).

The inferences rules2 of our proof system are listed in table 1.
We now describe the tableaux method underlying the proof system:

Definition 2.4. A tableau for a set S of signed formulas is a (finite) tree T
whose nodes are sets of signed formulas and which is constructed as follows:

1. the root of T is the set S.
2. a node is said to be closed (open otherwise) if it contains signed formulas

of the form T(A) and F(A) for some A, or if it contains F(x = x) or if it
contains the special symbol ⊥.

2 In fact, in order to simplify the presentation and for the purposes of the restricted
class of sentences we treat in this paper, we have omitted the rules for → which are
present in the original logic LFI1 [9].
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3. a node S2 is an and-successor (resp. an or-successor) of an open node S1 if
it is obtained by applying one and-rule (resp. one or-rule) r to an arbitrary
element α of S1. (S2 = (S1 − {α}) ∪ r(S1 : α)). Closed nodes have no
successors.

A tableau is closed if all its leaves are closed. It is open if at least one leaf is
open. A proof of a formula A is a closed tableau for the singleton {F(A)}. We
say that A is provable (denoted by �A) if there is a proof of A. A derivation of
a formula A from a finite set Γ is a closed tableau for the set ΓT ∪ F(A), where
ΓT = {T(X) | X ∈ Γ}. We say that A is derived from Γ (denoted Γ � A) if
there is a derivation of A from Γ .

Example 2.2. � A ∨ ¬ A and •A � ¬A. Indeed:

F(A∨¬A)
(by (2))

F(A), F(¬A)
(by (3))

F(A),T(A),F(•A)

closed

F(¬ A), T(•A)
(by (9))

F(¬ A), T(A), T(¬ A)

closed

The following result guarantees the soundness and completeness of the proof
system with respect to the logic LFI1:

Theorem 2.1 ([8,13]). Let Γ be a set of LFI1 formulas and A be a LFI1
formula. Then, Γ � A if and only if Γ |= A.

Remark. We notice that in our paraconsistent logic LFI1, the third truth-value
1
2 should not be read as “undefined” as in Kleene’s logic, but rather as “over-
defined”. Our logic is paraconsistent, while Kleene’s system is not. The two
approaches are conceptually incomparable.

3 Paraconsistent Databases
In this section we use the logical formalism of LFI1 to generalize the notion
of database instance so as to allow the storage of inconsistent information in
our databases. We assume the reader to be familiar with traditional database
terminology [1].

Definition 3.1 (p-instance). Let R be a database schema3. A paraconsistent
instance (p-instance) over R is an interpretation I such that for each R ∈ R the
set IR = {u : I(R(u)) = 1 or I(R(u)) = 1

2} is finite. So, an instance over R can
be viewed as a finite set of relations where each relation is a finite set of tuples
(those having truth-values 1 or 1

2 ). A tuple u over R such that I(R(u)) = 1
2 is

intended to be controversial, i.e. there may be evidence in favor of R(u) and also
3 A set of relational names of a given arity.
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evidence against R(u).4 On the other hand, if I(R(u)) = 1, R(u) is intended to
be a safe information. A p-instance where all tuples have truth-value 1 is called
simply an instance. We denote by adom(I) the active domain of I, i.e. the set of
constants appearing in the relations of I. For the sake of simplification, we use
the informal notation of example 1.1 for denoting p-instances, with the obvious
translation.

Definition 3.2 (Integrity Constraints). An integrity constraint over a database
schema R is an LFI1 sentence of the form

∀x1∀x2 . . .∀xn(
p∨

i=0

Ri(ui) ∨
q∨

j=1

¬Qj(vj) ∨
s∨

l=0

ϕl)

where Ri and Qj are relational atoms, ui, vj are tuples of variables appearing in
{x1, . . . , xn} and ϕl are equality atoms or negations of equality atoms.

Several important constraints that appear in databases fit into this form. In-
deed, this class of sentences coincides with the class of full dependencies described
in [1] (including functional dependencies, set inclusion dependencies, transitiv-
ity dependencies). However, inclusion dependencies of the form ∀x(¬P (x) ∨
∃yQ(x, y)) do not belong to this class.

Example 3.1 (Running Example - Continued). Let IC = {C1, C2, C3} and I be,
respectively, the set of formulas and the integrated database instance mentioned
in example 1.1. It is clear that each Ci is an integrity constraint (accordingly to
definition 3.2). The two instances J and J1 introduced in this example are p-
instances (where the notation •R(u) means J(R(u)) = 1

2 ). A simple calculation
using the matrices in figure 1 will convince us that the p-instances J and J1
satisfy IC.

In section 4 we will present a method for repairing instances which are possi-
bly inconsistent w.r.t. a given set of integrity constraints. This method is based
on the tableau proof system for LFI1 which has been introduced in the previ-
ous section. The soundness and completeness of this proof system w.r.t. finite
structures (one reminds that a database instance is a finite structure) is essential
for proving the soundness of the method. Theorem 2.1 guarantees the complete-
ness of the tableau system but it is important to emphasize that this result is
achieved when “Γ |= A” means all unrestricted interpretations (not necessarily
finite) satisfying Γ also satisfy A. Unfortunately, due to Trakhtenbrot’s Theorem
[23], this completeness result cannot be proven for finite structures in general.
However, for the special class of integrity constraints one can prove the following
theorem which is essential in the remainder of the paper:

Theorem 3.1. Let IC be a set of integrity constraints and C be an integrity
constraint over R. Then, IC � C if and only if IC |=fin C (all finite models of
IC are also models of C).
4 These tuples must be understood as “overdefined” instead of “undefined” as in

Kleene’s logic.
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This follows from a well-known theorem for first-order logic (which can be
extended to LFI1 using the techniques of [19]), stating that the satisfiability
problem (SAT) for the Bernays-Schöenfinkel class ∃∗∀∗ is decidable and so un-
restricted and finite satisfiability are equivalent [15].

The following definition will be helpful in the remainder of the paper:
Definition 3.3. Let IC be a set of integrity constraints. A tableau is called re-
duced for F(IC) if (a) each of its leaves is either closed or is a set of signed
formulas of the form T(X), F(X) or F(•X), where X is an atomic formula, (b)
rule (11) has not been used in the derivation of the tableau nodes and (c) rules
(28) and (29) cannot be applied to any leaf.

The proof of the following result is straightforward and is omitted.
Proposition 3.1. Let IC be a a set of integrity constraints. Then:

1. There is a unique reduced tableau for F(IC), which we call the reduced
tableau for F(IC).

2. If X is an open leaf of the reduced tableau for F(IC) and T(X) ∈ X then
F(•X) ∈ X .

We denote by reduction(IC) the set {L − {F(•X) | F(•X) ∈ L} | L is an open leaf
of the reduced tableau for F(IC)} (i.e., the set of the open leaves of the reduced
tableau for F(IC) without the signed formulas of the form F(•X)).

Example 3.2 (Running Example - Continued). Let C1 be the integrity constraint
∀x(¬R(x) ∨Q(x)) of example 1.1. A simple calculation shows that the reduced
tableau for F(C1) contains only the leaf {T(R(s)), F(Q(s)), F(•R(s))} Hence,
reduction(C1)= {{T(R(s)), F(Q(s))}}.

Repair Databases. Let us suppose the situation we have described in example 1.1:
we are given (1) a database specification which is the integration of several local
databases, and (2) an instance which violates the integrity constraints. We want
to build a repaired version “as close as possible” to the given instance which will
verify the integrity constraints (w.r.t. the semantics of LFI). Our presentation
generalizes the ideas presented in [3] which we have suitably adapted to our
paraconsistent environment. The following definition aims at specifying what we
mean by as close as possible:

Definition 3.4. Let I and J be p-instances over a database schema R.
The distance between I and J (a generalization of the well-known Hamming-

distance) is given by:

d(I,J) =
∑

u∈IR∪JR,R∈R

| I(R(u))− J(R(u)) |

For p-instances J and K, we define J ≤I K if d(I,J) ≤ d(I,K).

Obviously, our definition of distance satisfies the desirable properties of a
distance in measure theory: (1) d(I,J) = 0 iff I = J, (2) d(I,J) = d(J,I) and (3)
d(I,K) ≤ d(I,J) + d(J,K).
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Definition 3.5. Let R be a database schema, IC a finite set of integrity con-
straints over R and I an instance over R (I does not necessarily satisfy the
integrity constraints in IC). A repair of I is a p-instance J satisfying IC which
is ≤I-minimal among those satisfying IC.

Example 3.3 (Running Example - Continued). Let us consider the situation de-
scribed in example 1.1. A simple calculation yields: d(J,I) = 1.5, d(J1,I) = 1.5.
Let now consider the p-instance J2 = {•R(a), •R(b), R(c), •Q(a), Q(b), •Q(c)}.
We can easily verify that J2 satisfies the integrity constraints IC and d(J2,I) =
2. So, J2 is not a repair, even though it satisfies the constraints. It can be shown
that J and J1 are repairs.

The definition of repair database we have just introduced satisfies some de-
sirable properties. Firstly, we notice that if I satisfies the constraints IC then it
does not need to be repaired (d(I,I) = 0). Moreover,

Proposition 3.2. The repair of an instance always exists and, in general, is
not unique.

Proof. As IC is LFI1-satisfiable (see Theorem 5.1) there exists a p-instance J
which satisfies IC. If J is a repair of I, we are done. If not, there exists a p-
instance J’ satisfying C such that d(I,J’) < d(I,J). We repeat the argument
for J’. Eventually, we will find a repair of I (which can be I itself if I satisfies
IC). The repair, in general, is not unique, as it is illustrated in example 3.3.
Obviously, if J1 and J2 are repairs of I then d(I,J1) = d(I,J2).

We notice that in our definition of repair we have assumed that the instance
being repaired is a (classical) instance (the integrity constraints are first-order
sentences). We did so because our first concern was the development of a logical
framework to treat inconsistencies arising from the integration of local databases.
However, this assumption can be dropped and the notion of repair can be easily
extended to p-instances.

4 A Method for Building Repair Databases

In this section we introduce a method to construct repair databases. This method
can be viewed as a static repairing process because it concerns only the process
of data integration: it takes as input a possibly inconsistent database instance
resulting from the integration of several local consistent databases and produces
a repaired version of this integrated instance. However, future updates over this
(paraconsistent) repair version have to be monitored to insure a repairing process
after each transaction. These dynamic repairing process will be treated in section
5, where we will generalize the “static” method we propose in the present section.
The most important feature of our method relies on the fact that no information
is lost in the repaired instance, but some information which was safe before may
become controversial.

The method we propose here is based on the tableau proof system for LFI1
presented in section 2. In general, the advantage of proof methods based on
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analytic tableaux is that, when a proof is not possible, in some cases counterex-
amples can be read from the derivation tree. We will explore this issue in order
to construct a repair instance for a given database instance. For the sake of
simplifying the presentation, we will consider only integrity constraints without
constant symbols. Nevertheless, the method we present in this section can be
extended to treat integrity constraints with constants.

Some Notations. Let R be a database schema and I be a p-instance over a
relation schema R ∈ R. We denote by S(I) the set of the signed formulas
obtained as follows: To each tuple v over R such that I(v) = 1 (resp. 0, 1

2 ),
we associate the signed formula T(R(v)) (resp. F(R(v)), T(•R(v)). If I is a p-
instance over R, we define S(I) =

⋃
R∈ R S(I(R)) ∪ {T(a = a) | a ∈ adom(I)}

∪ {F(a = b) | a, b ∈ adom(I) and a �= b}. For instance, in example 1.1, S(I)
= {T(R(a)),T(R(b)),T(R(c)),T(Q(a)),T(Q(b)),F(Q(c))} ∪ {T(a = a),T(b =
b),T(c = c),F(a = b),F(a = c),...}.5

Conversely, let D ⊆ Dom be a finite set of constants. To each set S of signed
ground formulas over R and D satisfying the condition:

• if A is an atomic ground formula over R and D then S contains one and only
one of the signed formulas T(A), F(A) or T(•A),

a p-instance is associated in the obvious way. We denote this p-instance by
S−1(S).

Let IC be a set of integrity constraints and I be an instance. Then reduc-
tion(IC) = {L1,. . .,Lm}6, where each Li is a set of signed atomic formulas without
constants. For each valuation of variables vj (within adom(I)), let X ij = vj(Li)
be the set of signed ground formulas instantiated accordingly to vj . So, for each
i all the X ij have the same number ki of signed atoms. Let X i1,...,X iji be the set
of instantiations of Li. In what follows, we will fix an enumeration for the set
{L1,. . .,Lm} and an enumeration for each set of ground atoms X ij .7 So, we can
assume that reduction(IC) is a list [L1,. . .,Lm] and each X ij is also a list of signed
atomic formulas.

Let Li be a leaf in reduction(IC). A function f : {1, . . . , ji} → {1, . . . , ki}
determines a choice of one signed ground atom in each instantiation X ij (j =
{1, . . . , ji}) of Li.

Example 4.1 (Running Example – Continued). Let us consider the set of in-
tegrity constraints IC = {C1, C2, C3 } and the integrated instance I introduced
in example 1.1. A simple calculation yields:
reduction(IC) = [[T(R(x1)),F(Q(x1))],[T(R(x2)),T(Q(x2))],

[T(Q(x3)),F(R(x3))]].

5 In the remainder of the paper, we will omit the signed tuples T(a = a), F(a = b) (for
a and b ∈ adom(I), a 	= b) in the description of S(I), presuming they are implicitly
contained in this set.

6 One reminds that reduction(IC) is the set of the open leaves of the reduced tableau
for F(IC) without the signed formulas F(•X).

7 It can be shown that these choices do not affect the result of the method Repair.
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Let us consider the first leaf, [T(R(x1)), F(Q(x1))]. As adom(I) = {a, b, c}, we
have three instantiations for this leaf: X 1

1 = [T(R(a)), F(Q(a))], X 1
2 = [T(R(b)),

F(Q(b))], X 1
3 = [T(R(c)), F(Q(c))]. The function f such that f(1) = 1, f(2) = 2

and f(3) = 2 determines the choice of the first element in X 1
1 (T(R(a))), the

second element in X 1
2 (F(Q(b))) and the second element in X 1

3 (F(Q(c))).

We are ready now for the description of the method:

Input: a database schema R, a finite set IC = {C1, . . . , Cn} of integrity con-
straints over R, an instance I over R.
Output: a set K of repairs of I and n = d(I,J), for all J ∈ K.

Method Repair:
(1) Leaves := reduction(IC);

% A list of lists containing signed atomic formulas T(X) or F(X)
(2) If Leaves = ∅ then return K = {I} and n = 0 % I is a valid formula
(3) else K := ∅ ; n := 0 ;
(4) For each f1, f2, . . ., fm do

% for each choice of one element in each instantiated leaf
(5) S := S(I); d := 0;
(6) For each l = 1, ...,m do % for each leaf
(7) For each k = 1, ..., jl do % for each of its instantiations
(8) If X lk ⊆ S then
(9) choose the fl(k)-th element A ∈ X lk

(A = T(X) or A = F(X), X a relational atom);
(10) S := (S − {A}) ∪ { T(•X) };
(11) d := d+ 1

2 ;
(12) If n = 0 or d = n then K := K ∪ {S−1(S)}; n:= d;
(13) elseif d < n then K := {S−1(S)}; n:= d

Example 4.2 (Running Example - Continued). Let us consider the situation of
example 4.1. We have:
Leaves = [ [T(R(x1)), F(Q(x1))], [T(R(x2)), T(Q(x2))], [T(Q(x3)), F(R(x3))] ]

X 1
1 = [T(R(a), F(Q(a))] X 1

2 = [T(R(b), F(Q(b))] X 1
3 = [T(R(c), F(Q(c))]

X 2
1 = [T(R(a), T(Q(a))] X 2

2 = [T(R(b), T(Q(b))] X 2
3 = [T(R(c), T(Q(c))]

X 3
1 = [T(Q(a), F(R(a))] X 3

2 = [T(Q(b), F(R(b))] X 3
3 = [T(Q(c), F(R(c))]

The number m of leaves is 3, k1 = k2 = k3 = 2 = number of atoms in
each leaf and j1 = j2 = j3 = 3 = number of instantiations for each leaf. Let us
consider the following choice in step (4): f1(1) = f1(2) = f1(3) = f2(1) = f2(2)
= f2(3) = f3(1) = f3(2) = f3(3) = 1. In step (5) we have: S = S(I) = {T(R(a)),
T(R(b)), T(R(c)), T(Q(a)), T(Q(b)), F(Q(c))}. Only the instantiations X 1

3, X 2
1

and X 2
2 may verify the condition in step (8). The choice (f1, f2, f3) (step (4))

implies that the first elements in each instantiation will be chosen. By repeating
steps (10) and (11) for each of these instantiations, we obtain at the end of
the iteration (7) S = S(I) = {•T(R(a)), •T(R(b)), •T(R(c)), T(Q(a)), T(Q(b)),
F(Q(c))} and d = 1.5. As n = 0, the associated instance is inserted into K and
n is instantiated with 1.5. All these calculations are repeated for each choice of
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(f1, f2, f3). If, for the next choice one obtains a value for d greater than 1.5, then
the set S will not be included in K. On the other hand, if d is smaller than 1.5,
then K is instantiated with the unary set {S}.

We notice that if IC is a LFI1-valid formula or if I satisfies IC then the repair
returned by the method coincides with I. In fact, in the first case, the algorithm
stops in step (2) and in the second case, the algorithm stops in step (8) for each
iteration: as I satisfies IC, then in each element of Leaves and for all instantiations
of its variables, we have a signed ground atomic formula T(A) (resp. F(A)) which
matches with F(A) (resp. T(A)) in S(I). So T(A) (resp. F(A)) cannot appear
in S(I). We notice also that the active domain of the repairs obtained by the
method is the same as the one of the input instance I (no new constants are
created).

Now, we will state and give sketchs of proofs of the main results of this
section. The first one tells us that our method is sound, i.e. its result is a set
of repairs of I and the second one guarantees that all repairs of I are contained
in the output of Repair. The essential part of the proof of these two results is
contained in Lemma 4.1 below. This lemma is a consequence of the fact that
the tableau system for the class ∀∗ is sound and complete w.r.t. finite structures
(Theorem 3.1). In what follows, R is a database schema, IC is a finite set of
integrity constraints and I a safe instance over R.

Theorem 4.1. All elements of the set K returned by executing the method Re-
pair is a repair of I.

The proof of this theorem follows immediately from Lemmas 4.1, 4.2 and 4.3
below.

Lemma 4.1. Let J be a p-instance over R. Then, there exists a closed tableau
for S(J) ∪ F(IC) if and only if J |= IC.

Proof. It can be shown that there exists a LFI1-sentence σJ which characterizes
J (a finite structure), i.e., for every arbitrary interpretation I, I |= σJ if and
only if I is isomorphic to J (this is due to an extension to LFI1 of a well-known
theorem for first-order logic ([18]). It can be shown that there is a closed tableau
for T(σJ) ∪ F(IC) if and only if there exists a closed tableau for S(J) ∪ F(IC).
The existence of a closed tableau for T(σJ) ∪ F(IC) is equivalent to affirming
that σJ |=fin IC, by Theorem 3.1. Let us suppose that J |= IC and let J’ be a
p-instance such that J’ |= σJ. Then, J’ and J are isomorphic and so, J’ |= IC.
This proves that σJ |=fin IC. Conversely, suppose that σJ |=fin IC. Using the
fact that J |= σJ, we can conclude that J |= IC.

Lemma 4.2. Let K be the output of the method Repair and J ∈ K. Then, there
exists a closed tableau for S(J) ∪ F(IC).

Proof. Let us suppose without loss of generality that IC = {C}. So m = number
of leaves = 1. If J = I : either Leaves = ∅ (the reduced tableau for F(IC) is
closed) or for each instantiation there exists A ∈ X such that A �∈ S(I). Let A
= T(X) (resp. F(X)). Then F(X) (resp. T(X)) is in S(I). So, in order to obtain
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a closed tableau for S(I) ∪ F(IC), we simply apply the rules of the reduced
tableau for F(IC). If J �= I: For each instantiation X (step (7)) where there is a
modification in S, we have necessarily that X ⊆ S (step (8)). A signed atomic
formula A is chosen in X (step (9)). Let A = T(X). A is replaced by T(•X) in
S (step (9)). From proposition 3.1(b), we know that F(•X) appears in the leaf
corresponding to X . So, the resulting tableau for S(J) ∪ F(IC) closes. Now, let
A = F(X) (remind that A ∈ S and A ∈ X ). A is replaced by T(•X) in S. We
consider the same rules applied in order to obtain the reduced tableau for F(IC),
and then we apply the rule (9) to T(•X), obtaining T(X) and T(¬ X). Hence,
the resulting tableau for S(J) ∪ F(IC) closes.

Lemma 4.3. Let K be the output of the method Repair and J ∈ K. For each
p-instance J’ over R such that J’ |= IC we have that d(J,I) ≤ d(J’,I).

Proof. If J’ |= IC then there exists a closed tableau for S(J’) ∪ F(IC) (Lemma
4.1). All p-instances K which are closest to I and for which there exists a closed
tableau for S(K) ∪ F(IC) are obtained by the method. So, d(J,I) ≤ d(J’,I).

We conclude this section with the following theorem which states the com-
pleteness of the method:

Theorem 4.2. Let I be an instance (safe) over R. If J is a repair of I then J
is included in the output of the method Repair.

Proof. If J is a repair of I then J |= IC. By Lemma 4.1, there exists a closed
tableau for S(J) ∪ F(IC). But all p-instances J’ which are closest to I and for
which there exists a closed tableau for S(J’) ∪ F(IC) are obtained by the method.
So J is obtained by the method.

5 Updating Paraconsistent Databases

In this section we will study a dynamic repairing process for paraconsistent
databases. This repairing process, which in fact is a simple adaptation of the
method Repair for paraconsistent databases, will be executed after each update
in order to control data inconsistencies. The method is sufficiently general and
can treat two kinds of updates which possibly produce data inconsistencies: (1)
data updates and (2) integrity constraints updates. It is important to notice that
our update operations will not allow users to insert controversial information
in the database. So, in our approach inconsistencies are viewed as an internal
phenomenon and can only arise as a consequence of information conflict.

Example 5.1 (Running Example - Continued). Let R, J and IC be respec-
tively the database schema, the integrated p-instance and the integrity con-
straints of example 1.1. Let us suppose that the user executes the operation
insR(d). After the update, the resulting p-instance violates the integrity con-
straint C1. Let us now suppose that, instead of a data update, the user executes
an integrity constraint update by inserting the new integrity constraint C4 =
∀x∀y(¬R(x) ∨ ¬R(y) ∨ x = y). The p-instance J, which satisfied the original
integrity constraints IC before the update, now violates C4.
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The idea is to use the method Repair in order to build a repair for the
updated inconsistent p-instance. So, the whole update process is composed of
two steps: (1) the user update and (2) the repair process executed over the
updated database.

Evolutionary Databases and Udpates. We introduce now the evolutionary databa-
ses which is a general database context where data and integrity constraints
updates are allowed.

Definition 5.1. Let R be a database schema. An evolutionary instance (e-
instance) is a pair (I,IC) where I is a p-instance and IC is a finite set of integrity
constraints such that I |= IC.

Definition 5.2. Let R be a database schema. An update over R is an expres-
sion of the form insR(u), delR(u), ins(ϕ) or del(ϕ), where R ∈ R, ϕ is an
integrity constraint over R, and u is a tuple over R. The first two updates are
called data updates and the other two are called constraint updates.

The semantics of an update t is given by its effect over an e-instance (I,IC).
We define (J,IC’) = t(I,IC), where J and IC’ are defined by the following table:

t J IC’
insR(u) J(R(u)) = 1 if I(R(u)) = 0

J(R(u)) = I(R(u)) otherwise
J(S(v)) = I(S(v))
for all tuples v over S if S 	= R

IC

delR(u) J(R(u)) = 0 IC
ins(ϕ) I IC ∪ {ϕ}
del(ϕ) I IC − {ϕ}

This quite natural semantics implicitly presumes the following assumptions:
(1) no inconsistent information can be inserted in the database by an user in-
sertion, (2) an inconsistent information cannot become a safe information unless
it is deleted by a user deletion and inserted as a safe information later on. We
notice that the result (J,IC’) of a user update does not necessarily produce an
e-instance, i.e., the integrity constraints IC’ may be violated by the p-instance
J. Another important point is the following:

Theorem 5.1. All sets of integrity constraints are LFI1-satisfiable.

So, the resulting set of integrity constraints IC’ is always LFI1-satisfiable.
This means that in our framework, inconsistencies can appear only at data level.

Proof of Theorem 5.1. First we find the reduced tableau for F(IC). As there is at
least a negative relational atom ¬ R(x1, . . . , xn) in each sentence of IC, then all
leaves in reduction(IC) contain a signed atomic formula of type T(R(x1, ..., xn)).
For each leaf Li, one considers one of these signed atoms Ai. Let L= {A1, ..., Ak}.
Let Var = {y1, ..., ym} be the set of variables in L. Let v : {y1, ..., ym} →
{1, ...,m}. We consider the instance built in the following way: for each Ai =
T(Ri(z1, ..., zk)), we define I(Ri)(v(z1), ..., v(zk)) = 1

2 . It is easy to see that S(I) ∪
F(IC) has a closed tableau, using the same techniques of the proof of Lemma 4.2.
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The Method Repair as a Repairing Technique for p-Instances. Theorem 5.2
below guarantees that the method Repair executed over p-instances is correct
and complete, and so, this method can be used as a repairing process after each
update in order to control possible inconsistencies.

Theorem 5.2. Let I be a p-instance and IC be a finite set of integrity con-
straints over a database schema R. Let J ∈ K, where K is the output of the
method Repair. Then J is a repair of I. Conversely, if J’ is a repair of I then
J’ is contained in K.

Proof. The completeness proof uses the same arguments of the proof of Theorem
4.2 and the soundness proof uses Lemmas 4.1, 4.2 and 4.3. Lemma 4.1 was proved
for p-instances and the proofs of Lemmas 4.2 and 4.3 can be easily extended to
p-instances. In fact, the only part of its proof which should be adapted is the
case when J = I. In this case, either Leaves = ∅ (the reduced tableau for F(IC) is
closed) either for each instantiation there exists A ∈ X such that A �∈ S(I). Let
A = T(X) (resp. F(X)). Then F(X) or T(•X) (resp. T(X) or T(•X)) is in S(I).
If it is the case that T(•X) is in S(I) and A = F(X), in order to obtain a closed
tableau for S(I) ∪ F(IC), we simply apply the rules of the reduced tableau for
F(IC) and the rule (9) to T(•X). If it is the case that T(•X) is in S(I) and A
= T(X): from proposition 3.1(b), we can affirm that F(•X) must also appear in
the leaf corresponding to X . The closure of S(I) ∪ F(IC) is then achieved. The
other cases are treated as in the proof of Lemma 4.2.

6 Conclusion and Further Work

In this paper we have introduced the method Repair for the integration of
multiple databases where inconsistencies are not eliminated from the integrated
database. The method produces a set of repair versions of the integrated database
where inconsistencies are kept under control, i.e., one knows exactly what part
of the whole information is inconsistent w.r.t. the integrity constraints specified
in the local sources. The method is complete, i.e., all possible repairs of the
integrated database can be obtained. Besides being an effective procedure for
the integration of multiple databases it can also be employed to deal with the
dynamics of the integrated database. It is sufficiently general to treat also other
situations where inconsistencies may arise in databases, such as when integrity
constraints changes during the lifetime of the database. The method can be
generalized to treat other classes C of integrity constraints for which IC |=fin

C is equivalent to IC |= C, where IC ⊆ C and C ∈ C. For classes where this
property is not satisfied, the method will not be complete and the p-instances
produced would not necessarily verify the minimal distance.

We are currently pursuing the following lines of research: First, the com-
plexity of the repair problem should be investigated and the adaptation of the
method to a logic programming environment needs to be considered, by translat-
ing our tableau proof system into a resolution method. The logic LFI1 may be
used to specify a query language in a DATALOG style to query paraconsistent
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databases. It would be interesting to compare our three-valued semantics with
the well-founded semantics of DATALOG¬ and obtain a fixpoint semantics for
our paraconsistent query language. Finally, we plan to generalize our method for
the creation and management of consistent materialized views (datawarehouses).

Some Related Work. In [10] we have proposed a paraconsistent logical frame-
work having a two-valued semantics and a method for controlling inconsistencies
in databases. Nevertheless, this method is not complete and does not guarantee
that the instance produced contains minimal changes w.r.t. the original. In [3],
a method for consistent answers to queries in relational databases (possibly vio-
lating a given set of integrity constraints) has been introduced. For this purpose,
this paper introduces a notion of repair databases based on the minimal distance
from the original database, similar to the one introduced in our approach. Con-
sistent answers are then obtained from the minimally repaired versions of the
original database. The class of integrity constraints treated there is the same
considered in our approach. Even though the main purpose of our paper is not
the problem of consistent query answer, we could point some differences between
our approach and the one in [3] concerning repairs: (1) their method does not
compute the repair databases; (2) our repairs are more refined in the sense that
they are closer to the original database than the one in [3]; and (3) our repairs
do not eliminate inconsistent information. In [4], the same authors present an-
other method to compute consistent answers in possibly inconsistent databases
where repairs are specified in a logic programming formalism. This method can
treat a larger class of integrity contraints but does not compute the repairs. In
[16,5,2], the semantics of integrating possibly inconsistent data is captured by
the maximal consistent subsets of the union of the theories specifying the local
sources. In [2] and [16], extensions of relational algebra and relational calculus,
respectively, are introduced for manipulating and querying inconsistent data and
inconsistent information is eliminated from the database. Our approach offers a
much proper treatment of the whole question mainly because we do not waste
information in the presence of contradiction.
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