
Defining and using deductive systems with Isabelle

F. Miguel Diońısio, Paula Gouveia, João Marcos

{fmd,mpg,jmarcos}@math.ist.utl.pt
Center for Logic and Computation, Department of Mathematics, IST

Lisbon, Portugal

There are several computerized tools to automatically and/or interactively prove theorems of given deduc-
tive systems. In general, such tools deal with only one specific deductive system or a small class thereof
(for example, Otter deals with classical first-order logic with equality, NUPRL deals with intuitionistic
type theory, ModLeanTAP deals with a range of propositional modal logics). The software Isabelle is
a generic theorem-proving environment that allows for the definition and use of deductive systems for
many different logics. The deduction rules may be specified in different formats: natural deduction rules,
Hilbert-style axioms and rules, sequent-style rules, tableau rules, etc. In this way, using Isabelle, it is
possible to define and experiment with different logics, since the user may implement the deduction rules
she sees fit.

Obviously, some initial training is needed for the task of using Isabelle in order to define and experiment
with new logics. However, it is our experience that only a few main concepts are, in fact, essential. The
authors have been involved in teaching a logic course for undergraduate students. The system Isabelle

was used for representation and use of natural deduction systems for propositional, first-order and modal
logics. Students learned how to define logics and how to prove theorems and check inferences in those
logics. From what they learned in one semester, most students were able to successfully deliver the final
assignment that included the definition of a (new) hybrid logic, involving quantifiers and modalities. In
this paper you will find the basic concepts needed to define and experiment with a logic in Isabelle.

1 Introduction

At the moment, there is a sizable number of models of logic software available, and seemingly
there is still a strong impulse at the logic community to go and design their own personalized
proof assistant, for their own preferred deductive systems. Some of the already existing logic
software are highly flexible, and are intended as generic environments for doing a number of
activities you would like the computer to help you with: doing interactive proofs, writing some
formally verified mathematics, writing and checking formal specifications of all sorts, and, why
not, doing some mechanized reasoning, that old dream of Leibniz.

Such highly flexible models of logic software have a strong potentiality still largely to be
unleashed in their use in computer-based learning and their integration to the standard set
of teaching strategies and resources. Used as laboratories for experimentation with abstract
entities, the right software can turn a computer into a sort of ‘bubble chamber’ where ideas can
be tested and improved —or rejected. Moreover, in the provocative words of Edward Feigenbaum
(Gleick, 1987), computers can also help us in ‘creating intuition’ about certain subjects. This
outlook converts the computer into a genuine tool for doing philosophical and mathematical
research.

We had a simple goal in mind: To use the computer to teach logic to undergraduate students.
Our main aim, however, was not (only) to teach the students about this and that deductive

1

João Marcos�
Preprint.
Presented at the E-CAP2004.�

system, but to provide them with some expertise on using an extensively customizable tool in
which they would be able to define and work with their own logics, if that be the case. After
some prospecting and experimentation with the existing proof assistants, Isabelle was chosen.
Logic is carefully built-in in the design and implementation of this software. We are talking
about a logical framework whose meta-logic is Intuitionistic Higher-Order Logic with three
main components: (i) a meta-implication that can be used in laying down the object-logic rules
(see section 2.2) of the specific object-logic being thereby represented and that takes care of the
application of those rules and the discharge of assumptions; (ii) a meta-universal quantification
that can be used in laying down a number of object-language quantifiers (see section 2.6); (iii) a
meta-equality that can be used in laying down abbreviations as rewrite rules (see section 2.3). We
are talking about a mechanizable theorem prover (see section 2.5) where: (i) object-logic formulas
are λ-terms disambiguated by way of a priority grammar (see section 2.1); (ii) rules of the object-
language are represented not as functions but as formulas of the underlying higher-order logic;
(iii) the combination and application of those rules is performed by way of a uniform method of
inference — higher-order resolution; (iv) tactics are implemented independently of the object-
logic being represented (see section 2.4). We are talking about a simply typed environment
where object-language formulas can be heavily structured (see sections 2.7 and 3), and very
precise specifications can be met with.

Finally, it should be noted that Isabelle is written over ML (Paulson, 1996), a functional
programming language that can come to help at any point where even more expressivity is
needed. ML was designed precisely to serve as an implementation language for theorem provers.

This paper is not about the logic behind Isabelle (for that you may consult the appropriate
handbooks), but about how Isabelle can be used to look ahead into a number of new user-defined
logics. We will not be worried here about proving properties about our object-logics, but about
how these very logics can be defined, changed, and used. To that intent, the following sections
will systematically illustrate the use of Isabelle in entirely pedestrian terms.

2 Defining logics in Isabelle

The system Isabelle (Nipkow, Paulson and Wenzel, 2002) has been developed by Lawrence C.
Paulson (Univ. of Cambridge, UK) and Tobias Nipkow (Technical Univ. of Munich, DE) and
is freely available on the web at http://www.cl.cam.ac.uk/Research/HVG/Isabelle/. The relevant
references about this system are also available on that site. For other mechanized reasoning
systems see http://www-formal.stanford.edu/clt/ARS/systems.html, where an extensive commented
list is available.

Isabelle is a generic theorem-proving environment that allows for the representation and
use of deductive systems for many different logics. In the following we briefly describe the
basic concepts needed to define and experiment with a logic. We begin with simple examples
concerning classical propositional logic. In particular we will refer to natural deduction, Hilbert-
and sequent-style systems for this logic (Troelstra and Schwichtenberg, 1996). More involved
examples will be presented later on.

2.1 Language

The definition of the language and deductive system of a given logic constitutes a theory of
Isabelle’s meta-logic. Each theory must be specified in one file (with extension .thy).

Connectives are internally represented using λ-calculus and, therefore, understood as func-
tions that for given argument formulas return a new formula. For example, conj(A,B) represents
the conjunction of A and B. In this way conj is a function that, given two argument formulas,

2

returns another a formula. The definition of this function is conj::[o,o]=>o, where o is the type
of formulas. The more usual notation A&B may also be used (and is internally translated to
conj(A,B)). Isabelle’s code and notation for this connective is:

conj :: [o, o] => o (" & " [36,35] 35)

The values [36,35] 35 specify (using a priority grammar) the priority of conjunction (with
respect to other connectives) and also that it is right-associative. In a priority grammar, prior-
ities are assigned to occurrences of non-terminal symbols in a production, e.g. A35 ⇒ A36 ∧A35

(that corresponds to the priorities in rule conj above). Terminal symbols are assigned priority
∞. Derivations are as usual, with the difference that the occurrence of a non-terminal symbol
can only be substituted using productions whose left-hand symbol has greater or equal priority.
For example, in A36 ∧ A35 only A35 can be substituted using A35 ⇒ A36 ∧ A35 resulting in
A36 ∧ A36 ∧A35 . This process disambiguates the grammar and, in this example, justifies that
conjunction is right-associative. Other connectives are dealt with in a similar way and the as-
signment of different priorities to different connectives sets its precedence. For example, the fact
that conjunction has precedence over disjunction is coded by disj::[o,o]=>o (" | " [31,30] 30).

2.2 Meta-logic and object propositional logics

Isabelle provides the logic Pure, a higher-order intuitionistic logic, as the framework for defining
new logics. The logic Pure is called the meta-logic. Each new logic is called an object-logic.
The deduction rules of each new logic must be coded in the meta-logic, using meta-implication.
Consider, for example, a natural deduction elimination rule for conjunction:

D
ϕ1 ∧ ϕ2

————
ϕ1

This rule is represented by the metaformula P&Q ==> P where meta-implication (==>) has
the intuitive meaning that the consequent can be proved provided that the antecedent has been
proved. On the other hand, the metaformula P==>(Q==>P&Q) means that P&Q can be proved
provided that both P and Q have been proved. It can also be written as [|P;Q|]==> P&Q and it is
a representation of the introduction rule for conjunction.

2.3 Example theories

The previous concepts are enough for defining, for example, a natural deduction system for
classical propositional logic, or a Hilbert system for the same logic. We begin by displaying the
theory PROPOSITIONAL, representing a natural deduction system for propositional logic. Note that:
(i) this theory is an extension of Pure; (ii) the type o of formulas has to be declared; (iii) Isabelle
must recognize the object-language formulas (that have type o) as atomic metaformulas (that
have type prop) and this is achieved by declaring a function (Trueprop) that assigns to each object
formula its corresponding metaformula (in fact, itself); (iv) rules must have names; (v) abbrevi-
ations may be defined as rewrite rules, using Isabelle’s built-in meta-equality rules. The function
Trueprop has a strong semantic intuition behind it: it provides a way of internalizing Tarski’s
truth-predicate, so as to allow for the talk about the truth of the object-language formulas at
the meta-logical level.

3

PROPOSITIONAL = Pure +

types

o

arities

o :: logic

consts

Trueprop :: o => prop ("()" 5)

(* Connectives *)

verum, falsum :: o

neg :: o => o ("∼ " [40] 40)

conj :: [o, o] => o (" & " [36,35] 35)

disj :: [o, o] => o (" | " [31,30] 30)

imp :: [o, o] => o (" --> " [26,25] 25)

iff :: [o, o] => o (" <-> " [26,25] 25)

rules (* Natural deduction rules *)

conjI "[| P; Q |] ==> P&Q"

conjEr "P&Q ==> P"

conjEl "P&Q ==> Q"

disjIr "P ==> P|Q"

disjIl "Q ==> P|Q"

disjE "[| P|Q; P ==> R; Q ==> R |] ==> R"

impI "(P ==> Q) ==> P-->Q"

impE "[| P-->Q; P |] ==> Q"

abs "((P --> falsum) ==> falsum) ==> P"

(* Abbreviations *)

verum def "verum == falsum-->falsum"

neg def "∼P == P-->falsum"

iff def "P<->Q == (P-->Q) & (Q-->P)"

end

The theory Hilbert.thy that codes a Hilbert system for this logic can be written in a similar way.
We omit the definition of the language (for simplicity we consider only implication and falsum
as primitive connectives) and present a set of suitable axiom schemas and the accompanying
inference rule.

Hilbert = Pure +

...

rules

ax1 "A --> (B --> A)" (* Axioms *)

ax2 "(A-->(B-->C))-->((A-->B)-->(A-->C))"

ax3 "falsum-->A"

ax4 "((A-->falsum)-->falsum)-->A"

mp "[|A-->B;A|]==>B" (* Rule *)

...

4

2.4 Using theories

In general, proofs in Isabelle are backward proofs, meaning that the user starts by stating the goal
and applies the inference rules backwards (from the conclusion to the premises). Each premise
constitutes a new subgoal to be proved. The proof ends when no further subgoals remain to
be proved. The initial goal can be either a formula (e.g. A-->(B-->A)) or a metaformula (e.g. [|

A&B; B-->C |] ==> C). In the first case the goal corresponds to a theorem and in the second to a
derived rule of the deductive system.

Syntactic equation solving is called unification. The concept of unification is fundamental
to understanding how rules can be applied to a (sub)goal. Rules are represented (internally) as
schema metaformulas. For example the rule conjI, i.e. [| P;Q |] ==> P&Q, is, in fact, represented
as [| ?P;?Q |] ==> ?P&?Q. The variables ?P and ?Q are schema variables, that is, variables that
may be instantiated by any formula. This represents the fact that this rule can be applied to
any formula of the form ?P&?Q. In order to check whether a given formula F has that form, an
equation has to be solved, namely the equation ?P&?Q=F. The equation ?P&?Q=A&(B-->C) has the
solution ?P=A and ?Q=B-->C. In this way, the mechanism underlying the application of a rule to
a goal corresponds to the unification of the conclusion of the rule with the goal. New subgoals
appear corresponding to the premises of the rule (where appropriate schema variables have been
replaced by the corresponding solution of the equation). This mechanism is called resolution.
In the following example we establish [| A; C |] ==> A & (B-->C) using the theory PROPOSITIONAL.

> Goal "[| A;C |] ==> A&(B-->C)";

Level 0 (1 subgoal)

[| A; C |] ==> A&(B-->C)

1. [| A; C |] ==> A&(B-->C)

val it = [] : Thm.thm list

> by (resolve tac [conjI] 1);

Level 1 (2 subgoals)

[| A; C |] ==> A&(B-->C)

1. [| A; C |] ==> A

2. [| A; C |] ==> B-->C

val it = () : unit

> by (assume tac 1);

Level 2 (1 subgoal)

[| A; C |] ==> A&(B-->C)

1. [| A; C |] ==> B-->C

val it = () : unit

> by (resolve tac [impI] 1);

Level 3 (1 subgoal)

[| A; C |] ==> A&(B-->C)

1. [| A; C; B |] ==> C

val it = () : unit

> by (assume tac 1);

Level 4

[| A; C |] ==> A&(B-->C)

No subgoals!

5

The command by (resolve tac [conjI] number) applies the rule conjI to the subgoal identified
by number (similarly for by (resolve tac [impI] number)). Some subgoals do not need rules to be
proved since they are premises or unifiable with premises. These are proved using by (assume tac

number). In general, (sub)goals are proved by applying a tactic. The most important tactics are
the previously referred tactics of resolution and assumption, the tactic resolve tac [rule] number

and the tactic assume tac number . Moreover, rtac abbreviates resolve tac and atac abbreviates
assume tac. Also, br rule i abbreviates by (rtac [rule] i) and ba i abbreviates by (atac i).
The variable it contains the value of the presently evaluated expression. We will omit the
corresponding output line whenever it is not relevant.

It is worth noticing that by establishing [| A; C |] ==> A&(B-->C) one has established a derived
rule of the current deductive system. This rule can be used in other proofs. For that purpose
a name has to be assigned to it using qed "newName";. Afterwards one may use by (resolve tac

[newName] number) to apply the new rule to a subgoal. The rule will only be available in the
current session. A simple way of making new rules available in all sessions is to write down their
proofs in a file with extension ML, named after the current theory, in this case PROPOSITIONAL.ML.

It is also possible to prove more complex metaformulas. For example the metaformula
[|[|P==>Q;P|]==>R; P==>Q; P|]==>R is a rule having other rules (e.g. [|P==>Q;P|]==>R) as premises.
Such rules may be taken as primitive rules in extensions of natural deduction systems like
those proposed in Schroeder-Heister (1984). Whenever the antecedent contains non-atomic
metaformulas the result of Goal is the list of metarules associated to the premises.

> Goal "[|[|P==>Q;P|]==>R; P==>Q; P|]==>R";

Level 0 (1 subgoal)

R

1. R

val it = ["[| P ==> Q; P |] ==> R" [.], "P ==> Q" [.], "P" [.]] : Thm.thm list

Note that the goal to be established is simply R and there are three metarules, each one associated
with a corresponding premise. These can also be recovered with premises(). Each metarule states
that each premise is derivable from itself and is of the form [Pr] Pr (with the conclusion to the
right). The previous output hides the metaformulas within [] (to see them use set show hyps;).
It is useful to assign a name to each metarule in the list, so that can be referred to later on.
This can be achieved using val [pr1,pr2,pr3] = premises(); that assigns to the first element of
the list the name pr1, to the second the name pr2 and to the third pr3. This can also be achieved
directly by using

> val [pr1,pr2,pr3]=Goal "[|[|P==>Q;P|]==>R; P==>Q; P|]==>R";

Level 0 (1 subgoal)

R

1. R

val pr1 = "[| P ==> Q; P |] ==> R" [.] : Thm.thm

val pr2 = "P ==> Q" [.] : Thm.thm

val pr3 = "P" [.] : Thm.thm

The proof is as expected, noting that the names of the premises are used.

> br pr1 1;

Level 1 (2 subgoals)

R

1. P ==> Q

6

2. P

> br pr2 1;

Level 2 (2 subgoals)

R

1. P ==> P

2. P

> ba 1;

Level 3 (1 subgoal)

R

1. P

> br pr3 1;

Level 4

R

No subgoals!

To establish a goal involving abbreviations, e.g. ∼∼P<->P, the abbreviated expressions must be
rewritten (using the convenient rewrite rules, in this case neg def and iff def). One way of doing
this is by using the command Goalw [def1,def2,...] metaformula that rewrites the abbreviations
in metaformula using the definitions in the argument list:

> Goalw [neg def,iff def] "∼∼P <-> P";

Level 0 (1 subgoal)

∼∼ P<->P

1. (((P-->falsum)-->falsum)-->P)&(P-->(P-->falsum)-->falsum)

The proof can now be done as usual.

2.5 Sequents and automated deduction

Sequent calculus can provide an easy decision procedure for validity (in classical propositional
logic). All one has to do is to repeatedly apply the rules to the goal sequent.

Sequents are represented in Isabelle by pairs of lists of formulas. For example,

A, B-->C |- D, E&F

denotes a sequent with antecedent A,B-->C and consequent D, E&F. Variables prefixed by $ are
list variables. The sequent

"$H, P, $G |- $E, P, $F"

represents an axiom schema and

"[| $H, $G |- $E, P; $H, Q, $G |- $E |] ==> $H, P-->Q, $G |- $E"

codes the left-introduction rule for implication. Lists and sequents are provided by the the-
ory Sequents.thy available in Isabelle’s distribution. The following theory SPROP.thy defines the
sequent calculus for classical propositional logic by providing the syntax of formulas and the
sequent rules.

SPROP = Sequents +

consts

Trueprop :: "two seqi"

"@Trueprop" :: "two seqe" ("(()/ |- ())" [6,6] 5)

7

(* Connectives *)

falsum,verum :: o

neg :: o => o ("∼ " [40] 40)

conj :: [o, o] => o (" & " [36,35] 35)

disj :: [o, o] => o (" | " [31,30] 30)

imp :: [o, o] => o (" --> " [26,25] 25)

iff :: [o, o] => o (" <-> " [26,25] 25)

rules (* Sequent Rules*)

axS "$H, P, $G |- $E, P, $F"

falsumL "$H, falsum, $G |- $E"

conjR "[| $H|- $E, P, $F; $H|- $E, Q, $F |] ==> $H|- $E, P&Q, $F"

conjL "$H, P, Q, $G |- $E ==> $H, P & Q, $G |- $E"

disjR "$H |- $E, P, Q, $F ==> $H |- $E, P|Q, $F"

disjL "[| $H, P, $G |- $E; $H, Q, $G |- $E |] ==> $H, P|Q, $G |- $E"

impR "$H, P |- $E, Q, $F ==> $H |- $E, P-->Q, $F"

impL "[| $H,$G |- $E,P; $H, Q, $G |- $E |] ==> $H, P-->Q, $G |- $E"

(* Abbreviations *)

verum def "verum == falsum-->falsum"

iff def "P<->Q == (P-->Q) & (Q-->P)"

neg def "∼P == P-->falsum"

end

ML

val parse translation = [("@Trueprop",Sequents.two seq tr "Trueprop")];

val print translation = [("Trueprop",Sequents.two seq tr’ "@Trueprop")];

The reason for the use of both Trueprop and @Trueprop is that there are, in fact, two different repre-
sentations of lists, the one referred above (and called the external representation) and a functional
representation of lists (called the internal representation). @Trueprop(A,B), also written A|-B, is a
sequent where the lists involved are written in the external representation. Trueprop(alpha,beta)

is the sequent where the lists involved are written in the internal representation. The two lines
in ML code at the end of the above theory provide functions that translate between the two
representations of sequents.

In order to use this theory (with use thy) the system must load the theory Sequents:

> isabelle Sequents

...

use thy "SPROP";

Before illustrating the use of this theory with an example, we present the notion of tactical.
Tacticals are forms of combining tactics. Useful tacticals are the iterative combinator of tac-
tics REPEAT and the alternative combinator ORELSE. The tactic REPEAT tactic corresponds to the
repeated application of the argument tactic until it fails. The tactic tactic1 ORELSE tactic2 cor-
responds to tactic1 alone when the application of tactic1 succeeds. Otherwise it corresponds
to tactic2 alone. Tacticals are useful in interactive proofs and they are the fundamental tools
in developing automatic proving techniques.

The proof of |-(A-->(B-->C))-->((A-->B)-->(A-->C)) begins with three applications of resolu-
tion with impR to the first subgoal. These three steps may be simplified by using REPEAT (rtac

impR 1).

8

> Goal "|- (A-->(B-->C))-->((A-->B)-->(A-->C))";

Level 0 (1 subgoal)

|- (A --> B --> C) --> (A --> B) --> A --> C

1. |- (A --> B --> C) --> (A --> B) --> A --> C

> by (REPEAT (rtac impR 1));

Level 1 (1 subgoal)

|- (A --> B --> C) --> (A --> B) --> A --> C

1. A --> B --> C, A --> B, A |- C

The next two steps are easy to follow.

> br impL 1;

Level 2 (2 subgoals)

|- (A --> B --> C) --> (A --> B) --> A --> C

1. A --> B, A |- C, A

2. B --> C, A --> B, A |- C

> br axS 1;

Level 3 (1 subgoal)

|- (A --> B --> C) --> (A --> B) --> A --> C

1. B --> C, A --> B, A |- C

The final steps are by resolution with either axS or impL.

> by (REPEAT ((rtac axS 1) ORELSE (rtac impE 1)));

Level 4

|- (A --> B --> C) --> (A --> B) --> A --> C

No subgoals!

It may be helpful to exhibit parentheses making formulas more readable. The command set

show brackets; sets the corresponding flag to true.

> set show brackets; Goal "|- (A-->(B-->C))-->((A-->B)-->(A-->C))";

Level 0 (1 subgoal)

(|- ((A --> (B --> C)) --> ((A --> B) --> (A --> C))))

1. (|- ((A --> (B --> C)) --> ((A --> B) --> (A --> C))))

As referred above, sequent calculus provides a decision procedure for validity (in classical propo-
sitional logic). In fact, each (backward) application of the rules decreases the complexity of the
formulas involved in the sequent. In the end, subgoals consist of axioms or sequents without
connectives that encode a counter-example for the original goal.

With this decision procedure in mind, one can easily write down a tactic that succeeds
whenever the original goal is a valid sequent and fails otherwise. First one has to define a
tactic that corresponds to the application of some rule. This tactic should try the rules in
some order until it finds one that unifies. In this deductive system, the order of application of
rules is irrelevant. It is more efficient to prefer rules that eliminate subgoals or introduce less
new subgoals over other rules. One possible choice is to try application of rules in this order:
axS,falsumL,impR,conjL,disjR,impL,conjR,disjL. The tactic

(rtac axS 1) ORELSE ... ORELSE (rtac disjL 1)

9

applies the axiom or some rule to the first subgoal and fails only if none is applicable. Repeated
application of this tactic is achieved by

REPEAT ((rtac axS 1) ORELSE ... ORELSE (rtac disjL 1)).

Given a valid sequent, the application of this tactic succeeds, since the first subgoal is repeatedly
simplified until an instance of the axiom axS is obtained and eliminated. At this point, if there
are further subgoals, the second becomes the first and this process goes on until no subgoal is
left. If the original sequent is not valid, the tactic fails in the first subgoal consisting of a sequent
without connectives that is not an axiom. In this case more subgoals can be left unworked. In
the following example the original sequent is valid. The above tactic is given the name tacSeq1.

> val tacSeq1= REPEAT ((rtac axS 1) ORELSE ... ORELSE (rtac disjL 1));

> Goal " |- (A --> B --> C) --> (A --> B) --> A --> C";

Level 0 (1 subgoal)

|- (A --> B --> C) --> (A --> B) --> A --> C

1. |- (A --> B --> C) --> (A --> B) --> A --> C

> by tacSeq1;

Level 1

|- (A --> B --> C) --> (A --> B) --> A --> C

No subgoals!

The next example corresponds to a sequent that is not valid.

> Goal "|- (A --> D --> C) --> (A --> B) --> A --> E";

Level 0 (1 subgoal)

|- (A --> D --> C) --> (A --> B) --> A --> E

1. |- (A --> D --> C) --> (A --> B) --> A --> E

> by tacSeq1;

Level 1 (2 subgoals)

|- (A --> D --> C) --> (A --> B) --> A --> E

1. B, A |- E, D

2. C, A --> B, A |- E

It is not difficult to improve the previous tactic to also work out the remaining subgoals. In
this way, for invalid sequents, the remaining subgoals will encode the counter-examples. For
that purpose one simply has to rewrite the previous tactic in such a way that it can be applied
to subgoals other than the first. The first step is to define a function that, to each subgoal
i associates the tactic (rtac axS i) ORELSE ... ORELSE (rtac disjL i). This is achieved by val

tacSeqfun = fn i => (rtac axS i) ORELSE ... ORELSE (rtac disjL i).
In the previous command the intended function (fn i => (rtac axS i) ...) is given the name

tacSeqfun. Finally, the improved tactic is given by REPEAT FIRST tacSeqfun that repeatedly applies
tacSeqfun to each subgoal (starting with the first). When no further applications of tacSeqfun

are possible, the next subgoal is worked out. For convenience, the name tacSeq is given to
REPEAT FIRST tacSeqfun. Note that the behavior of the new tactic on valid sequents is the same
as the old tactic. We illustrate the new tactic using the previous (invalid) sequent.

> Goal "|- (A --> D --> C) --> (A --> B) --> A --> E";

Level 0 (1 subgoal)

|- (A --> D --> C) --> (A --> B) --> A --> E

1. |- (A --> D --> C) --> (A --> B) --> A --> E

10

> by tacSeq;

Level 1 (2 subgoals)

|- (A --> D --> C) --> (A --> B) --> A --> E

1. B, A |- E, D

2. C, B, A |- E

2.6 Meta-universal quantification and first-order logic

Until now, different deductive systems for classical propositional logic have been presented. For
the predicative version one needs terms, predicates and quantifiers. Terms belong to a type
different from that of formulas and can be built in the usual way using variables and function
symbols. Both formulas and terms are λ-calculus terms, i.e. λ-abstraction and λ-application are
also available. Predicates are represented as functions that, to each term, associate a formula.
For example, λx.P (x) associates to each term x the formula P (x). The λ-term λx.P (x) is
written %x. P(x). Quantifiers are represented as functions that associate a formula to a λ-term.
For example, all(%x. P(x)) is a universally quantified formula. An alternative syntax (and a
priority value) can be stated by (binder "ALL " 10). This means that ALL x. P(x) will abbreviate
all(%x. P(x)).

For the purpose of defining propositional systems only meta-implication was needed. In the
predicative context the introduction and elimination rules for quantifiers need the meta-universal
quantification (of the built-in logic Pure). The metaformula !!x. P(x) means that P(t) is true for
any arbitrary term t. In particular, the generalization (introduction) rule is represented by the
metaformula (!!x. P(x))==>ALL x. P(x) and is represented internally by (!!x. ?P(x))==>ALL x. ?P(x).
The rule can be read as follows: In order to prove ALL x. P(x) one has to prove P(x) for arbitrary
x. The elimination rule for the universal quantifier is (ALL x. P(x))==>P(t) and is represented
internally by (ALL x. ?P(x))==>?P(?t). The substitution of x by t in P corresponds, in the context
of λ-calculus, to λ-application. Possible problems related to substitutions are dealt with by
application of α-reduction (variable renaming) and β-reduction (function application).

Next we present the theory representing classical first-order logic.

CLASSIC = PROPOSITIONAL +

classes

term < logic

consts (* Quantifier functions *)

all :: (’a::term => o) => o (binder "ALL " 10)

ex :: (’a::term => o) => o (binder "EX " 10)

rules (* Quantifiers *)

allI "(!!x. P(x)) ==> (ALL x. P(x))"

allE "(ALL x. P(x)) ==> P(t)"

exI "P(t) ==> (EX x. P(x))"

exE "[| EX x. P(x); !!x. (P(x) ==> R) |] ==> R"

end

The theory uses the connectives and rules of classical propositional logic and adds quantified
formulas and their rules. It is noteworthy that term is not a type but a class to which any term
type must belong. For instance, noting that ’a is a variable ranging over types, the function all

:: (’a::term=>o)=>o is a function that associates a formula to a predicate (on its turn, a function
that associates a formula to a term). Finally, in rule exE, the fact that R does not depend on
x codes the condition that x cannot occur free in R. In the next example we want to establish

11

[| ALL x. Q(f(x)); ALL x. (P(x)-->Q(x)) |] ==> ALL x. Q(f(g(x))) using the theory CLASSIC. It seems
easy, at first glance, since the conclusion follows from the first premise. We first apply rule allI

and then rule allE.

> Goal "[| ALL x. Q(f(x)); ALL x. (P(x)-->Q(x)) |] ==> ALL x. Q(f(g(x)))";

Level 0 (1 subgoal)

[|ALL x. Q(f(x)); ALL x. P(x)-->Q(x)|] ==> ALL x. Q(f(g(x)))

1. [| ALL x. Q(f(x)); ALL x. P(x)-->Q(x) |] ==> ALL x. Q(f(g(x)))

> br allI 1;

Level 1 (1 subgoal)

[| ALL x. Q(f(x)); ALL x. P(x)-->Q(x) |] ==> ALL x. Q(f(g(x)))

1. !!y. [| ALL x. Q(f(x)); ALL x. P(x)-->Q(x) |] ==> Q(f(g(y)))

> br allE 1;

Level 2 (1 subgoal)

[| ALL x. Q(f(x)); ALL x. P(x)-->Q(x) |] ==> ALL x. Q(f(g(x)))

1. !!y. [| ALL x. Q(f(x)); ALL x. P(x)-->Q(x) |] ==> ALL x. Q(x)

> ba 1;

** by: tactic failed Exception- ERROR raised

When applying allE, the unification of its conclusion %P. %t. P(t) with Q(f(g(y))) has more than
one solution. Isabelle displays first the result of β-reducing %P. %t. P(t) into %t. Q(t) and the latter
into Q(f(g(y)). In this case, however, this is not the suitable solution since ALL x. Q(x) does not
unify with the hypothesis ALL x. Q(f(x)). Isabelle’s unifying procedure is clever in producing all
possible solutions (and in first-order logic there can be an infinite number of them) by using lazy
evaluation (evaluation on demand). To demand Isabelle to consider another solution we use the
command back().

> back();

Level 2 (1 subgoal)

[| ALL x. Q(f(x)); ALL x. P(x)-->Q(x) |] ==> ALL x. Q(f(g(x)))

1. !!y. [| ALL x. Q(f(x)); ALL x. P(x)-->Q(x) |] ==> ALL x. Q(f(x))

> ba 1;

Level 3

[| ALL x. Q(f(x)); ALL x. P(x)-->Q(x) |] ==> ALL x. Q(f(g(x)))

No subgoals!

The β-reduction of %P. %t. P(t) into %t. Q(f(t)) and the latter into Q(f(g(y)) is now considered.
The rest of the proof is straightforward.

An alternative approach uses the tactic res inst tac [("v1 ","f1 "),...,"vn ","fn ")] rule number ,
that corresponds to the use of resolution with rule to the subgoal identified by number forcing
the schema variable v1 to be instantiated into f1 . . . and vn into fn . In this case we can use
res inst tac just after the application of the rule allI:

...

> by (res inst tac [("t","g(y)")] allE 1);

Level 2 (1 subgoal)

[| ALL x. Q(f(x)); ALL x. P(x)-->Q(x) |] ==> ALL x. Q(f(g(x)))

1. !!y. [| ALL x. Q(f(x)); ALL x. P(x)-->Q(x) |] ==> ALL x. Q(f(x))

The last step of the proof is as before, using ba 1.

12

2.7 Labeled modal logics

The theories previously described are closely related to similar theories provided by Isabelle’s
distribution. Although theories for modal logics (including sequent calculus) are also available in
that distribution we choose to present theories based on labeled deduction, as in Viganò (2000).
Labeled deduction internalizes semantic notions in the object-language and deductive system.
Deductive systems for normal modal logics can thus become modular in the sense that they
are obtained simply by adding suitable rules (representing the properties of the accessibility
relation) to the deductive system of modal logic K. With labeled deduction as the choice of
formalization for our modal languages we can escape the traditional difficulties that surface
when the corresponding logical systems are represented, as advanced in (Paulson, 1990).

Formulas are obtained by prefixing a term (usually a variable) to a modal formula. For
instance, x : (�♦φ → ψ) is a formula. Informally, this formula means that (�♦φ → ψ) holds
in the world denoted by x. These are called generalized modal formulas. Formulas xRel y state
that the world denoted by y is accessible from the world denoted by x and are called relational
modal formulas. More generally, they may also involve terms as in t1 Rel t2. By the present
construction, strings such as (x : φ) ∨ (y : ψ) and (∀x)(xRel x) are not formulas of K —but
they will be formulas of the hybrid logic presented in the next section.

The theory for the minimal normal modal logic K is presented below. There are three types
of syntactic entities involved in that theory: tm for terms (that prefix modal formulas), sbf for
modal (sub)formulas and o for formulas. The latter are either generalized formulas (built with
gf) or relational formulas (built with rf). The rules for � ([]) and ♦ (<>) are similar to the rules
for the universal and the existential quantifiers. For instance, the rule boxI (introduction of �)
asserts that x:[]P follows from the proof that P holds in y for arbitrary y related to x. We omit
most of the propositional fragment as straightforward.

K = Pure +

classes

term < logic

types

tm (* the type of terms for labels *)

sbf (* the type of modal subformulas *)

o (* the type of formulas *)

arities

tm :: term

sbf :: logic

o :: logic

consts (* Formula Generators *)

gf :: [tm,sbf] => o (" : " [0,0] 10)

rf :: [tm,tm] => o (" Rel " [0,0] 10)

Trueprop :: o => prop ("()" 5)

(* Modal (sub)formulas *)

and :: [sbf, sbf] => sbf (" & " [36,35] 35)

...

box :: sbf => sbf ("[] " [40] 40)

dia :: sbf => sbf ("<> " [40] 40)

rules

(* Propositional *)

conjI "[| x:P; x:Q |] ==> x:P&Q"

13

...

(* Modal Operators *)

boxI "(!!y. (x Rel y ==> y:P)) ==> x:[]P"

boxE "[| x:[]P; x Rel y|] ==> y:P"

diaI "[| x Rel y; y:P|] ==> x:<>P"

diaE "[| x:<>P; (!!y. [|x Rel y; y:P|]==> z:Q)|]==> z:Q"

(* Abbreviations *)

verum def "x:verum == x:falsum-->falsum"

neg def "x:∼P == x:P-->falsum"

iff def "x:P<->Q == x:(P-->Q) & (Q-->P)"

The theory for KT can be obtained from the theory for K by adding the axiom (a rule with
no premises) of reflexivity (x Rel x). The theory for KB adds to the theory for K the rule of
symmetry (x Rel y ==> y Rel x), and the theory for S5 adds to the theory for K both the axiom
of reflexivity and the rule of symmetry, together with the rule of transitivity ([|x Rel y; y Rel

z|] ==> x Rel z). Many other modal systems can be formalized in a similar way. To define more
complex systems such as the normal modal logic of confluence, one might make use of terms in
the labels. In this case, we add to the theory for K a Skolem function as a new constructor of
the form h :: [tm,tm,tm] => tm, and we add also the rules [|x Rel y; x Rel z|] ==> y Rel h(x,y,z)

and [|x Rel y; x Rel z|] ==> z Rel h(x,y,z).

3 A hybrid logic

The issues addressed before are part of the syllabus of a course in logic for undergraduate
students in Mathematics and in Computer Science, including the logics previously referred. The
final assignment included the definition of a theory in Isabelle representing the hybrid logic
described in the following. To learn more about hybrid languages, see Blackburn and Seligman
(1998).

The hybrid logic to be defined, using only Pure, is a labeled modal logic where quantification
over worlds is allowed. Formulas like ∀x(xRel x) → ∀x(x : �ψ → x : ψ) can be written in the
logic. In this logic the atomic formulas are generalized modal formulas and relational modal
formulas, defined as in section 2.7. However, falsum, negation, disjunction and � are the only
connectives herein considered as primitive for the construction of the atomic formulas (verum,
conjunction, implication, equivalence and ♦ are taken as abbreviations). The set of formulas
is obtained by closing the latter set of atomic formulas with negation, disjunction and the
universal quantifier (conjunction, implication, equivalence and the existential quantifier are
taken as abbreviations). In particular, strings such as (∀x)φ and �(x : φ) will not constitute
formulas of the present language. Note that the propositional connectives occur in formulas
and also within atomic formulas. For example, in the atomic formula x : (φ∨ψ), disjunction
involves two modal subformulas whereas in the (non-atomic) formula (x : φ) ∨ (x : ψ)
it involves two formulas of the hybrid logic. The intended interpretation assigns to both
formulas the same meaning (justification: (φ∨ ψ) is true at the world x if and only if either
φ is true at x or ψ is true at x) and the deductive system must be able to prove them
equivalent. Moreover, the derived rules for all symbols defined by abbreviation should be
made available by the student.

Most students were able to successfully deliver the corresponding Isabelle theory. One pos-
sible solution, using natural deduction, follows. In this solution we use polymorphism to define

14

the connectives that are common to the two different types of ‘formulas’, the modal subfor-
mulas and the formulas themselves. For example, not::(’a::logic) => ’a defines a polymorphic
operation not that takes any type of class logic and returns a value of that type. In our case
we have two possible types, namely sbf (for modal subformulas) and o (for formulas). In this
way not::(’a::logic) => ’a simultaneously defines the two functions (connectives) not::sbf =>

sbf and not::o => o. In general, one has to provide introduction and elimination rules for both
connectives. However, our solution provides rules only for not::o => o and provides further rules
to transform subformulas into formulas and vice-versa (when applicable). For example, in order
to conclude x:∼P one may first conclude ∼(x:P) and then apply the rule that transforms it into
x:∼P. The new rules for negation are negOut "x:(∼P) ==> ∼(x:P)" and negIn "∼(x:P) ==> x:(∼P)".
By using such transformation rules the introduction and elimination rules for not::sbf => sbf

can be derived in this system. Similar considerations apply to other connectives.

HYBRID = Pure +

classes

term < logic

default

term

types

tm (* the type of terms for labels *)

sbf (* the type of modal subformulas *)

o (* the type of formulas *)

arities

tm :: term

sbf :: logic

o :: logic

consts

(* Formula Generators *)

labf :: [tm,sbf] => o (" : " [0,0] 45)

relf :: [tm,tm] => o (" Rel " [0,0] 45)

Trueprop :: o => prop ("()" 5)

(* For modal subformulas only *)

verum, falsum :: sbf

box :: sbf => sbf ("[] " [50] 50)

dia :: sbf => sbf ("<> " [50] 50)

(* Quantifiers (for formulas only) *)

all :: (’a => o) => o (binder "ALL " 10)

ex :: (’a => o) => o (binder "EX " 10)

(* Connectives for both modal subformulas and formulas *)

not :: ’a::logic => ’a ("∼ " [40] 40)

and :: [’a::logic, ’a] => ’a (" & " [36,35] 35)

or :: [’a::logic, ’a] => ’a (" | " [31,30] 30)

imp :: [’a::logic, ’a] => ’a (" --> " [26,25] 25)

iff :: [’a::logic, ’a] => ’a (" <-> " [26,25] 25)

rules

(* Connectives *)

abs "(∼P ==> y:falsum) ==> P"

negE "[| ∼P; P |] ==> Q"

negI "(P ==> y:falsum) ==> ∼P"

15

negOut "x:(∼P) ==> ∼(x:P)"

negIn "∼(x:P) ==> x:(∼P)"

disjIr "P ==> P|Q"

disjIl "Q ==> P|Q"

disjE "[| P|Q; P ==> R; Q ==> R |] ==> R"

disjOut "x:(P|Q) ==> (x:P)|(x:Q)"

disjIn "(x:P)|(x:Q) ==> x:(P|Q)"

(* Modal Operators *)

boxI "(!!y. (x Rel y ==> y:P)) ==> x:[]P"

boxE "[| x:[]P; x Rel y |] ==> y:P"

(* Quantifier *)

allI "(!!y. P(y)) ==> (ALL x. P(x))"

allE "(ALL x. P(x)) ==> P(z)"

(* Abbreviations *)

verum def "verum == falsum-->falsum"

conj def "P&Q == ∼((∼P)|(∼Q))"

imp def "P-->Q == (∼P)|Q"

iff def "P<->Q == ∼(∼((∼P)|Q) | ∼(P|(∼Q)))"

dia def "<>P == ∼([]∼P)"

ex def "EX x. P(x) == ∼(ALL x.∼P(x))"

end

Note a difference between the abbreviations of the theory HYBRID and those of the theory K, in
section 2.7. In the present theory, a connective like <-> can be used to generate both atomic
formulas (as in P<->Q) and formulas of the above hybrid logic (as in x Rel y <-> z:[]P). Therefore,
the rewrite rules must now be laid down so as to apply to both situations.

We illustrate the theory with some examples. In the first one we prove the derived rule
for the elimination of disjunction of modal subformulas. Recall from section 2.4 that when the
antecedent contains non-atomic metaformulas it is convenient to associate a name to each of the
elements of the result of Goal.

> val [mt1,mt2,mt3]= Goal "[|x:(P|Q); x:P==>y:R; x:Q==>y:R|]==> y:R";

Level 0 (1 subgoal)

y:R

1. y:R

val mt1 = "x:P|Q" [.] : Thm.thm

val mt2 = "x:P ==> y:R" [.] : Thm.thm

val mt3 = "x:Q ==> y:R" [.] : Thm.thm

> br disjE 1;

Level 1 (3 subgoals)

y:R

1. ?P|?Q

2. ?P ==> y:R

3. ?Q ==> y:R

> br mt2 2; br mt3 3; ba 2; br disjOut 1; br mt1 1;

...

No subgoals!

> qed "disjmE";

val disjmE = "[| ?x:?P|?Q; ?x:?P ==> ?y:?R; ?x:?Q ==> ?y:?R |] ==> ?y:?R"

16

Other examples follow. Only the used rules are shown. In the very last example, we use the
tactic rotate tac number steps , that corresponds to a left permutation of the subgoal identified
by number by a number of steps .

Goal "(x:(A&B))<->(x:A)&(x:B)";

br eqI 1; br conjOut 1; ba 1; br conjIn 1; ba 1;

Goal "(ALL x. (x:P))-->(ALL x. (x:[][]P))";

br impI 1; br allI 1; br boxI 1; br boxI 1; br allE 1; ba 1;

Goal "ALL x. ((x Rel x) --> ((x:[]P)-->(x:<>P)))";

br allI 1; br impI 1; br impI 1; br diaI 1; ba 1; br boxE 1; ba 1; ba 1;

Goal "(ALL x y. ((x Rel y) --> (y Rel x)))-->(ALL x. ((x:P)-->(x:[]<>P)))";

br impI 1; br allI 1; br impI 1; br boxI 1; br diaI 1; br impE 1;

br allE 1; br allE 1; by (REPEAT (atac 1));

Goal "(ALL x y z. ((x Rel y) & (y Rel z) --> (x Rel z)))-->(ALL x. (x:([]P-->[][]P)))";

br impI 1; br allI 1; br impIn 1; br impI 1; br boxI 1; br boxI 1; br boxE 1;

ba 1; br impE 1; br conjI 2; by (rotate tac 2 2); by (rotate tac 3 3); ba 2; ba 2;

by (res inst tac [("z","yb")] allE 1); by (res inst tac [("z","ya")] allE 1);

by (res inst tac [("z","y")] allE 1); ba 1;

4 Concluding remarks

The system Isabelle is an appropriate tool for the definition and experimentation of new logics.
The fundamental concepts underlying the definition of new Isabelle theories and their use are
not too difficult to master. In this way, users can easily start to use the system for their
own purposes. We have presented the most important concepts, illustrated by examples that
undergraduate logic students are able to develop.

Obviously, there are other important features of Isabelle not described herein. There are many
logics and useful tactics already provided by the distribution. There is a growing open collection
of Isabelle proof libraries and examples at http://afp.sourceforge.net/. Moreover, proofs can be
developed in more user-friendly environments, including management of theories and standard
graphical notation for connectives and operators (see http://proofgeneral.inf.ed.ac.uk/ for the
ProofGeneral tool and its support for Isabelle). The language Isar provides syntactic sugar for de-
veloping proofs and is now becoming standard. Isar’s manual and other relevant documentation
are freely available on-line at http://www.cl.cam.ac.uk/Research/HVG/Isabelle/docs.html.

Acknowledgements

This work was partially supported by FCT and FEDER, namely, via the Project FibLog
POCTI/MAT/372 39/2001 of CLC (Centro de Lógica e Computação). The third author is
partially supported by FCT grant SFRH / BD / 8825 / 2002.

17

References

Blackburn, P. and Seligman, J.: 1998, What are hybrid languages?, in M. Kracht, M. de Rijke
and H. Wansing (eds), Advances in Modal Logic, Volume 1, CSLI Publications, Stanford,
California, pp. 41–62.

Gleick, J.: 1987, Chaos, Making a New Science, Penguin Books, New York, NY.

Nipkow, T., Paulson, L. C. and Wenzel, M.: 2002, Isabelle/HOL, Vol. 2283 of Lecture Notes in
Computer Science, Springer-Verlag, Berlin. A proof assistant for higher-order logic.

Paulson, L. C.: 1990, Isabelle: The next 700 theorem provers, in P. Odifreddi (ed.), Logic and
Computer Science, Academic Press, pp. 361–386.

Paulson, L. C.: 1996, ML for the Working Programmer, Cambridge Univ. Press. 2nd edition.

Schroeder-Heister, P.: 1984, A natural extension of natural deduction, The Journal of Symbolic
Logic 49(4), 1284–1300.

Troelstra, A. and Schwichtenberg, H.: 1996, Basic Proof Theory, Cambridge Univ. Press.

Viganò, L.: 2000, Labelled Non-Classical Logics, Kluwer Academic Publishers.

18

