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LOGICS OF ESSENCE AND ACCIDENT

Logic and sermons never convince,
The damp of the night drives deeper into my soul.

(Only what proves itself to every man and woman is so,
Only what nobody denies is so.)

—Walt Whitman, Leaves of Grass, Song of Myself,
sec.30 (1855–1881).

Abstract

We say that things happen accidentally when they do indeed happen, but only

by chance. In the opposite situation, an essential happening is inescapable, its

inevitability being the sine qua non for its very occurrence. This paper will

investigate modal logics on a language tailored to talk about essential and acci-

dental statements. Completeness of some among the weakest and the strongest

such systems is attained. The weak expressibility of the classical propositional

language enriched with the non-normal modal operators of essence and accident

is highlighted and illustrated, both with respect to the definability of the more

usual modal operators as well as with respect to the characterizability of classes of

frames. Several interesting problems and directions are left open for exploration.

Keywords: philosophy of modal logic, non-normal modalities, formal meta-
physics, essence, accident

1. The what-it-is-to-be

A necessary proposition is one whose negation is impossible; a possible
proposition is one that is true in some acceptable state-of-affairs. Neces-
sity, 2, and possibility, 3, are the modal operators upon which the usual
language of normal modal logics is built. We propose here, though, to
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study some interesting alternative modalities, namely the modalities of
essence and accident. An accidental proposition is one that is the case, but
could have been otherwise. An essential proposition is one that, whenever
it enjoys a true status, it does it per force. We will write •ϕ to say that
“ϕ is accidental”, and ◦ϕ to say that “ϕ is essential”. In formal metaphysics
there has often been some confusion between essence and necessity, and be-
tween accident and contingency. The present approach contributes to the
demarcation of these notions. A quick comparison with the literature on
non-contingency logics and some comments on alternative interpretations
of the new connectives hereby presented will be postponed to section 5.

Let P be a denumerable set of sentential letters, and let the set of
formulas of classical propositional logic, SCPL, be inductively defined by:

α ::= p | > | ⊥ | ∼ϕ | (ϕ ∧ ψ) | (ϕ ∨ ψ) | (ϕ ⊃ ψ) | (ϕ ≡ ψ),

where p ∈ P, and ϕ and ψ are formulas. The set of formulas of the
usual normal modal logics, SNML, is defined by adding 2ϕ | 3ϕ to the
inductive clauses of SCPL, and the set of formulas of the logics of essence
and accident, SLEA, is defined by adding instead ◦ϕ | •ϕ to the clauses of
SCPL.

A modal frame F = (W,R) is a structure containing a set of worlds
W 6= ∅ and an accessibility relation R ⊆ W ×W . A modal model based
on that frame is a structure M = (F , V ), where V : P −→ Pow(W ). The
definition of satisfaction in a world x ∈ W of a model M will be such that:

|=Mx p iff x ∈ V (p)

|=Mx ∼ϕ iff 6|=Mx ϕ

|=Mx ϕ ∨ ψ iff |=Mx ϕ or |=Mx ψ
. . .

|=Mx •ϕ iff |=Mx ϕ and (∃y ∈ W )(xRy & 6|=My ϕ)

|=Mx ◦ϕ iff 6|=Mx •ϕ
The other classical operators are evaluated as expected. As usual, a for-
mula ϕ will be said to be valid with respect to a class of frames C, in
symbols |=C ϕ, if |=Mx ϕ holds good in every world x of every model M
based on some frame in C. We will write simply |= for |=C whenever the
class of frames C can be read from the context. We say that a logic L
given by some set of axioms Ax is determined by a class of frames C in case
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the provable formulas of the former coincide with the valid formulas of the
latter.

Given a normal modal logic L determined by some class of frames C,
an EA-logic (of essence and accident) (L)EA is obtained by selecting all
the formulas and the inferences in the language of LEA that are valid in C.
Notice that, in general, there is no reason why two logics L1 6= L2 should
imply (L1)EA 6= (L2)EA.

Recall that K, the minimal normal modal logic in the language of NML,
determined by the class of all frames, can be axiomatized by:

All axioms and rules of CPL, plus
(0) ` ϕ ⊃ ψ ⇒ ` 2ϕ ⊃ 2ψ

(1) ` (2ϕ ∧2ψ) ⊃ 2(ϕ ∧ ψ)
(2) ` 2>
Sometimes it does not make much difference to work with SNML or

with SLEA, given that the modal connectives might turn out interdefinable.
Indeed:

Proposition 1.1. Inside extensions of the modal logic K one can:

(i) take 2 as primitive and define ◦ϕ def= ϕ ⊃ 2ϕ, •ϕ def= ϕ ∧3∼ϕ.

Inside extensions of KT , the modal logic axiomatized by K+ ` 2ϕ ⊃ ϕ
and determined by the class of all reflexive frames, one can:

(ii) take ◦ as primitive and define 2ϕ
def= ϕ ∧ ◦ϕ.

2. The minimal logic of essence and accident

This section will prove that the axiomatization of (K)EA, the minimal EA-
logic of essence and accident (that is, the EA-logic determined by the class
of all frames), can be given by the axioms AxK :

All axioms and rules of CPL, plus
(K0.1) ` ϕ ≡ ψ ⇒ ` ◦ϕ ≡ ◦ψ
(K0.2) ` ϕ ⇒ ` ◦ϕ
(K1.1) ` (◦ϕ ∧ ◦ψ) ⊃ ◦(ϕ ∧ ψ)
(K1.2) ` ((ϕ ∧ ◦ϕ) ∨ (ψ ∧ ◦ψ)) ⊃ ◦(ϕ ∨ ψ)
(K1.3) ` •ϕ ⊃ ϕ
(K1.4) ` •ϕ ≡ ∼◦ϕ
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In particular, notice that:

Proposition 2.1. Here are some consequences of the above axiomatiza-
tion:
(K2.0) Replacement holds irrestrictedly
(K2.1) ` ◦>
(K2.2) ` ϕ ⊃ (◦(ϕ ⊃ ψ) ⊃ (◦ϕ ⊃ ◦ψ))
(K2.3) ` ϕ ∨ ◦ϕ
(K2.4) ` ◦⊥

Proposition 2.2. Here are some alternatives to the previous axioms
and rules:

(EAd) •ϕ def= ∼◦ϕ can be used instead of (K1.4)
(K2.3) instead of (K1.3)

We now check that the above proposal of axiomatization for (K)EA is
indeed determined by the class of all frames. Soundness, ` ϕ ⇒ |= ϕ, can
be easily checked directly, by verifying the validity of each of the axioms
and the preservation of validity by each of the rules in AxK . It will be left
as an exercise. Next, the standard technique for checking completeness is
the construction of a canonical model M∗ = (W ∗, R∗, V ∗), where:

W ∗ is the set of all maximally non-trivial sets of LEA-formulas
x ∈ V ∗(p) iff p ∈ x
y ∈ R∗(x) iff D(x) ⊆ y

The only really difficult part here is the definition of D : W → Pow(S),
in order to settle the appropriate accessibility relation for this canonical
model. The idea of using the ‘desessentialization’ of a world, D(x) = {ϕ :
◦ϕ ∈ x}, analogously to what is done in normal modal logics for formulas of
the form 2ϕ, does not work here, once the modality ◦ of essence itself is not
normal. A clever solution adapted from [5] is to define D(x) = {ϕ : ◦ϕ ∈ x,
and ◦ψ ∈ x for every ψ such that ` ϕ ⊃ ψ}. A simpler solution that also
works, adapted from [8], is to define D(x) = {ϕ : for every ψ, ◦(ϕ∨ψ) ∈ x}.
The latter definition is the one we will adopt here. Using that one can then
prove:

Lemma 2.3. (Lindenbaum) Every non-trivial set of LEA-formulas can be
extended into a maximally non-trivial set of formulas.
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Lemma 2.4. In the canonical model:
(P1) ϕ ∈ D(x) and ψ ∈ D(x) ⇒ (ϕ ∧ ψ) ∈ D(x)
(P2) ◦ϕ ∈ x ⇔ ϕ 6∈ x or ϕ ∈ D(x)
(P3) D(x) 6= ∅
(P4) ϕ ∈ D(x) and ` ϕ ⊃ ψ ⇒ ψ ∈ D(x)
(P5) D(x) is a closed set, that is, D(x) ` α ⇒ α ∈ D(x)
(P6) ◦ϕ 6∈ x ⇒ ϕ ∈ x and (∃y ∈ W ∗)(xR∗y and ϕ 6∈ y)

Proof. For (P1), recall from CPL that ` ((ϕ∨θ)∧(ψ∨θ)) ≡ ((ϕ∧ψ)∨θ).
Thus, by rule (K0.1), we have ` ◦((ϕ∨ θ)∧ (ψ ∨ θ)) ≡ ◦((ϕ∧ψ)∨ θ). Call
that theorem α. Now, from ϕ ∈ D(x) and ψ ∈ D(x) we can conclude that
◦(ϕ ∨ θ) ∈ x and ◦(ψ ∨ θ) ∈ x, for an arbitrary θ. From axiom (K1.1), the
theorem α and the maximality of x it then follows that ◦((ϕ∧ψ)∨ θ) ∈ x.

For (P2), suppose first that both ◦ϕ ∈ x and ϕ ∈ x. Then it follows,
by CPL, the maximality of x, and axiom (K1.2), that ◦(ϕ ∨ ψ) ∈ x, for
an arbitrary ψ. For the converse, use axiom (K2.3), maximality, and the
property (P1) for the particular case in which ψ is identical to ϕ.

For (P3), we may just check that any theorem > (such as, say, ϕ ⊃ ϕ)
belongs to D(x). Indeed, by rule (K0.2) we have that ` ◦>, thus ` (>∧◦>).
The result then follows from (K1.2) and the maximality of x.

For (P4), given ϕ ∈ D(x) we know that (ϕ∨π) ∈ x for an arbitrary π,
and in particular for π = (ψ ∨ θ). But, from ` ϕ ⊃ ψ we can conclude,
using CPL, that ` (ϕ ∨ (ψ ∨ θ)) ≡ (ψ ∨ θ). The result now follows from
(K0.1) and the maximality of x.

For (P5), given D(x) ` α we can conclude from property (P3), com-
pacity and monotonicity that ∃θ1, . . . , θn ∈ D(x) such that θ1, . . . , θn ` α.
But then, from property (P1) we have that (θ1∧ . . .∧θn) ∈ D(x), and from
property (P4), using CPL and the maximality of x, we may conclude that
α ∈ D(x).

At last, for (P6), assume ◦ϕ 6∈ x and use first (K1.4), (K1.3) and the
maximality of x to conclude that ϕ ∈ x. For the second part we have to
show that such a world y exists, and as a prerequisite for the Lindenbaum
Lemma we must be able to prove that D(x) ∪ {∼ϕ} is non-trivial. To
proceed by absurdity, suppose the contrary. Then, by CPL we will have
that D(x) ` ϕ, and by property (P5) we conclude that ϕ ∈ D(x). From
property (P2) we have ◦ϕ ∈ x, contrary to what has been assumed at the
start.
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Theorem 2.5. (Canonical Model) |=M∗
x ϕ ⇔ ϕ ∈ x.

Proof. This is checked by induction on the structure of ϕ. The cases of
the classical connectives is straightforward. Now, consider the case ϕ = ◦ψ
(the case ϕ = •ψ is similar). Suppose first that ◦ψ ∈ x. Then, by property
(P2) of the previous lemma we conclude that ψ 6∈ x or ψ ∈ D(x). By the
definition of R∗, we conclude from ψ ∈ D(x) that (∀y ∈ W ∗)(xR∗y ⇒ ψ ∈
y). By the induction hypothesis, we have 6|=M∗

x ψ or (∀y ∈ W ∗)(xR∗y ⇒
|=M∗

y ψ), which means, by the definition of satisfaction (Section 1), that
|=M∗

x ◦ψ. Conversely, suppose now that ◦ψ 6∈ x. By property (P6) we
conclude that ψ ∈ x and (∃y ∈ W ∗)(xR∗y and ψ 6∈ y). Again, the result
follows from the induction hypotheses and the definition of satisfaction.

Corollary 2.6. (Completeness) Γ 6` ϕ ⇒ Γ 6|= ϕ.

3. Extensions of (K)EA, and definability of 2s
and 3s

In Proposition 1.1 we learned that ◦ and 2 are interdefinable in exten-
sions of KT . In general, let ;: SLEA → SNML be such that p; = p,
(◦ϕ); = ϕ; ⊃ 2ϕ;, (•ϕ); = ϕ; ∧ 3∼ϕ;, and (?(ϕ1, . . . , ϕn)); =
?(ϕ;

1 , . . . , ϕ;
n ) for any other n-ary connective ? common to both languages.

We can say that 2 is definable in terms of the language of ◦’s and •’s of
the logic (L)EA in case there is some schema ¯(p) ∈ SLEA such that the
following is a thesis of L (i.e. is provable / valid in L): 2ψ ≡ (¯(ψ));. As
a particular consequence of that, the following can now be proven:

Proposition 3.1. The definition 2ϕ
def= ϕ ∧ ◦ϕ is only possible in exten-

sions of KT .

Proof. To check that, one might just observe that in the minimal normal
modal logic K the formula 2ψ ⊃ ψ can be inferred from 2ψ ⊃ (ψ ∧ (ψ ⊃
2ψ)).

Recall that we have proved in the last section the completeness of
(K)EA, but the following still remains as an open problem:

Open 3.2. Provide a natural axiomatization for the logic (KT )EA.

Given a frame (W,R), call a world x ∈ W autistic (also known as
dead end) in case there is no world accessible to it according to R, i.e.
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there is no y ∈ W such that xRy. Call x narcissistic in case it can only
access itself. Consider the axioms (V) ` 2⊥ and (Tc) ` ϕ ⊃ 2ϕ. The
maximal normal modal logic V er = K + (V) is determined by the class
of all autistic frames (i.e., frames whose worlds are all autistic), and the
maximal normal modal logic Triv = K + (T) + (Tc) is determined by the
class of all narcissistic frames. Exactly midway in between V er and Triv
lies the logic TV = K + (Tc), determined by the class the class of frames
whose worlds are all either autistic or narcissistic. It is easy to check that:

Proposition 3.3. (i) In (V er)EA, 2ϕ can be defined as >. (ii) In
(Triv)EA, 2ϕ can be defined as ϕ. (iii) The logic (TV )EA can be axioma-
tized by (K)EA + ` ◦ϕ.

Which other logics can be axiomatized and which logics can define 2

in the language of LEA? A few related results, questions and conjectures
will close this section.

Conjecture 3.4. (K4)EA = (K)EA + ` ϕ ⊃ ◦◦ϕ, where K4 is the logic
determined by the class of transitive frames.

Open 3.5. Find an example of a normal modal logic L distinct from TV
and not extending the logic KT such that 2 is definable in (L)EA.

As in [3], the usual technique for non-definability results consists in
showing that the geometry of the canonical model of (L)EA does not allow
for the definition of 2 in terms of the language of SLEA.

Theorem 3.6. Let L be some normal modal logic. Then, 2 is not de-
finable in (L)EA if the canonical model of this logic contains at least one
autistic world and one non-autistic world.

Proof. Observe first that the formula 2⊥ is satisfied by every autistic
world, but it cannot be satisfied by any non-autistic world. On the other
hand, we can check by induction on the construction of ¯(⊥) in the lan-
guage of SLEA that such formula must have the same value in all worlds
of the canonical model. Indeed, both the atomic case and the case of the
classical connectives are straightforward. Moreover, if the values of the for-
mulas θ1, . . . , θn are the same in all worlds, so are the values of ◦θ1, . . . , ◦θn

(as they are all true). Thus, 2 cannot in such circumstances be defined in
terms of ¯.
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Notice that any logic that satisfies the conditions from the previous
theorem is a fragment of V er and also a fragment of KD, the modal logic
axiomatized by K+ ` 3> and determined by the class of all serial frames.
That result was but a shy start. We are still left with the tough brain-
teaser:

Open 3.7. Provide a full description of the class of all EA-logics in
which 2 is definable.

4. Characterizability of classes of frames

Another good test for the expressibility of a modal language consists in
checking whether it can individualize many different classes of frames. A
class C of frames will be said to be LEA-characterized in case there is some
Γ ⊆ SLEA such that F ∈ C iff |=F γ, for every γ ∈ Γ. Obviously, the class
of all frames is LEA-characterizable (just take Γ = {>}).

Say that a frame Fm = (W,Rm) is a mirror reduction of a frame
F = (W,R) in case Fm is obtainable from F simply by erasing some or all
reflexive arrows that appear in the latter, that is, in case R \ {(x, x) : x ∈
W} ⊆ Rm ⊆ R. Two frames are said to be mirror-related in case they are
mirror reductions of some common frame.

Example 4.1. Here are some examples of mirror reduction:

(E1) ⇒

(E2) ⇒

(E3) ⇒

µ´
¶³® ©

?

µ´
¶³

µ´
¶³® ©

?

µ´
¶³

 ª6
µ´
¶³

µ´
¶³

 ª6

-
¾

-
¾

µ´
¶³

µ´
¶³

 ª6
µ´
¶³

µ´
¶³- -
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One can now immediately prove the following Reduction Lemma:

Lemma 4.2.

(RL1) If Fm = (W,Rm) is a mirror reduction of F = (W,R),
then |=Fm

ϕ ⇔ |=F ϕ.

(RL2) If two frames are mirror-related then they
validate the same formulas.

Proof. Part (RL1) can in fact be strengthened. Where x ∈ W,Mm is a
model of Fm and M a model of F , then an easy induction can prove that
|=Mm

x ϕ ⇔ |=Mx ϕ. An interesting case is that of ϕ = ◦ψ (or similarly, that
of ϕ = •ψ). First, note that |=Mm

x ◦ψ iff 6|=Mm

x ψ or (∀y ∈ W )(xRmy ⇒
|=Mm

y ψ). Using the induction hypotheses, this reduces to 6|=Mx ψ or (∀y ∈
W )(xRmy ⇒ |=My ψ). In case |=Mx ψ and xRx we obviously obtain (∀y ∈
W )(xRy ⇒ |=My ψ). The converse is straightforward.

Part (RL2) follows from (RL1).

As a consequence of the previous lemma, any LEA-characterizable
class of frames must be closed under mirror-relatedness. In particular,
note that:

Corollary 4.3. The following classes of frames are not LEA-charac-
terizable:

(i) reflexive frames
(ii) serial frames
(iii) transitive frames
(iv) euclidean frames
(v) convergent frames

Proof. Recall Example 4.1. The frame at the left-hand side of (E1) is
both reflexive and serial, the frame at the l.h.s. of (E2) is transitive, and
at the l.h.s. of (E3) we find a frame that is both euclidean and convergent.
None of those properties is satisfied after mirror-reduction, as we can see
at the right-hand sides of each example.

Compare the above with the more well-known situation of NML-char-
acterizability (check for instance ch. 3 of [1]). The class of serial frames,
for example, is NML-characterized by taking Γ = {3>}.
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Finally, here is a problem whose solution is highly non-trivial already
in the analogous case of the language of NML:

Open 4.4. Provide a full description of the class of LEA-characterizable
classes of frames.

5. On essence, and beyond

How much of our intuitions about essence and accident are captured by
the new connectives ◦ and • studied above? And how do these notions
differ from other usual modal notions such as those of contingency and
non-contingency?

Suppose we extend the classical language by adding the unary con-
nectives ∇ for contingency and ∆ for non-contingency. The usual way of
interpreting these notions is by extending the notion of satisfaction such
that:

|=Mx ∇ϕ iff (∃y ∈ W )(xRy & |=My ϕ) and (∃z ∈ W )(xRz & 6|=Mz ϕ)

|=Mx ∆ϕ iff 6|=Mx ∇ϕ

The modal base for (non-)contingency was studied sporadically in the lit-
erature since the mid-60s (cf. [10]), for several classes of frames, and an
axiomatization for the minimal logic of non-contingency was finally offered
in [5], and immediately simplified in [8]. In the language of NML one could
obviously define∇ϕ as 3ϕ∨3∼ϕ and ∆ϕ as 3ϕ ⊃ 2ϕ. One could now also
easily consider the languages with both contingency and accidental state-
ments and their duals, and then note for instance that |=K (◦ϕ∧◦∼ϕ) ⊃ ∆ϕ
and |=KT ∆ϕ ⊃ (◦ϕ ∧ ◦∼ϕ).

In the philosophy of modal logic, every modality has at least two
central readings, a metaphysical reading that takes it as qualifying the truth
of some statement, and an ontological reading that takes it as qualifying
the properties of some object. Necessity, possibility, contingency and non-
contingency were all used in the literature either in the metaphysical or in
the ontological reading. Traditionally, the philosophical literature has often
talked about essential and accidental properties of objects. A somewhat
sophisticated way of internalizing that talk at the object-language level was
devised by Kit Fine (cf. [4]), with the help of a sort of multimodal language
in which there are operators intended to represent truth by reason of the
nature of the involved objects, and a further binary predicate intended to
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represent ontological dependence. The present paper investigated instead
a particular rendering of those notions in their naive metaphysical reading,
simply by turning essence and accident into new propositional connectives.

Is the above reading solid from a philosophical standpoint? The ques-
tion is not trivial to resolve. One has to concede that there is complete bed-
lam in the philosophical literature as potentially different kinds of modality
often get conflated without much care. Sometimes one finds an identifica-
tion between the notion of contingency and the notion of accident, some-
times necessity is opposed to contingency and the corresponding square of
oppositions is turned into a triangle (maybe the Reverend has stolen a dia-
mond, as in Stevenson’s story?), sometimes the analytic× synthetic distinc-
tion is reformulated in terms of essential × accidental modes of judgement
(somehow perverting Kant’s proposal to understand essence as expressing
an a priori synthetic truth). To be sure, the same terms can indeed receive
several (hopefully related) uses in different areas of philosophy. But con-
siderable prudence should be exercised so that the corresponding notions
do not confound, and so that they do not get too circumscribed nor too
stretched in their meanings.

The grammar of modalities in formal languages can often be mirrored
in the grammar of adverbs in natural language (or was it the other way
around?). Let’s explore this analogy a bit. Adverbs are parts of speech
comprised of words that modify a verb, an adjective, or another adverb.
The first two cases are of interest here. In case the adverbs modify a verb,
they derivatively modify a sentence of which this verb is the main verb. The
assertoric status of the sentence is then subjected to the mood expressed
by the adverb. In case they modify an adjective, they derivatively modify
a noun. The attributes of the object to be denoted by that noun are then
subjected to the revaluation set by the adverb. Most adverbs will allow
for assertoric and attributive uses, at different circumstances, and a similar
thing happens with modalities.

It appears that the notions of essence and accident have been more
widely used attributively, at least in recent years. They have been often
applied to predications, qualities, and properties. But in formal meta-
physics one can also find those notions in their assertoric use. In [11], for
instance, Gödel’s modal reconstruction of the Ontological Argument is pre-
sented with an understanding of ‘accidental truth’ that is identical to the
one that is adopted here. But, despite the relative infrequency of its em-
ployment in our times, the assertoric use of essence and accident is also not
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new. Indeed, in [6], a reasonably influential logic textbook from the XIX
Century, John Neville Keynes (the father of John Maynard) already talked
freely about essential and accidental propositions, as opposed to essential
and accidental predications. Suspending for a while the final judgement
about the soundness of the attributive use of such adverbs of essence and
accident, this paper has tackled the investigation the technicalities involved
in the choice of a modal language obtained simply by adding connectives
for essence and for accident to the language of classical logic.

A few more technical objections could still be raised against the above
modal renderings of essence and accident. One of them runs as follows.
According to the present interpretation of ‘essence’, a formula is said to
have an essentially true status in case it is simply false, and, indeed, in the
Proposition 2.1, (K2.4) showed ◦⊥ to be a theorem of (K)EA. What is
that supposed to mean? Recall from the modal definition of satisfaction,
in section 1, that a statement was defined to be ‘accidentally true’ in case
it is true, but could have been false, had the world been different. An
antilogical statement obviously cannot be accidentally true, thus it must
be essentially so. A similar phenomenon happens in the logics of non-
contingency, in which ∆⊥ is always provable: a statement that is false in all
worlds cannot be contingently true, thus it must be non-contingently so. If,
notwithstanding the above explanation, the circumstance of an antilogical
statement having an essential (that is, a non-accidental) status still upsets
one’s modal intuitions, a way of modifying the definition of essence in
order to avoid this would be by exchanging the material conditional in
the definition of ◦ϕ as ϕ ⊃ 2ϕ for some stronger connective conveying
the sense of strict implication (defining ◦ϕ as ϕ ≺ 2ϕ or more simply
2(ϕ ⊃ 2ϕ)). A related intuitive objection points to the fact that in the
present formalization the notion of essence is still too local: a statement
could be essentially true in a world, but fail to be essentially true in another
world that can access or be accessed from the former world. Again, one way
of fixing that might be by way of the use of some sort of strict implication
in the definition of essence, but a more direct solution might be just to
make use of some heredity condition on the models, in order to guarantee
that statements that are essentially true in a world have the same essential
status in all other worlds that belong to its accessibility class. All such
alternative formalizations of the notion of essence seem worth exploring.

Finally, for some more positive remarks on the present notion of
essence and its possible uses, one might notice for instance that the re-
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ceived modal semantics of intuitionistic logic by way of a translation into
the modal logic S4 already assumes (through the heredity condition) that
all atomic sentences are essentially true in all worlds, so that any even-
tual truth is preserved into the future (monotonic proofs do not become
false as more things get proven). The traditional ontological argument, as
proposed by Anselm, discussed by Leibniz, or formalized by Gödel, also
involves an appeal to propositions about essence: The sentence positing
God’s existence would be shown to express a non-accidental truth. An-
other immediate use for the present notion of essence is in formalizing Saul
Kripke’s notion of ‘rigid designation’, and understanding how some truths
could be simultaneously necessary and a posteriori (cf. [7]): From a phys-
icalist a priori true statement according to which “Water is essentially
H2O” (based on the presupposition that any chemical component of water
is an essential component of it) and from an empirical verification of the
statement that “Water is H2O” it would arguably follow that “Water is
necessarily H2O” is an a posteriori truth. Yet another promising use of the
notion of essence is in expressing the consistency of a formula in situations
in which negation is non-explosive, allowing for paraconsistent phenomena
to appear. With that idea in mind, any non-degenerate normal modal logic
could be easily recast as a logic of formal inconsistency (cf. [2]), a paracon-
sistent logic that is rich enough as to be able internalize the very notion
of consistency. From that point of view, an inconsistency is interpreted
simply as an accident. This idea is explored in detail in another paper
(cf. [9]).

Acknowledgements This study was partially supported by FCT (Por-
tugal) and by FEDER (European Union), namely, via the Project FibLog
POCTI / MAT / 37239 / 2001 of the Center for Logic and Computation
(IST, Portugal) and the FCT grant SFRH / BD / 8825 / 2002. Comments
by Claudio Pizzi, Carlos Caleiro, Walter Carnielli, and Marcelo Coniglio,
and two anonymous referees have greatly helped in improving its contents,
and for them I am much obliged.

References

[1] Patrick Blackburn, Maarten de Rijke, and Yde Venema, Modal
Logic, volume 53 of Cambridge Tracts in Theoretical Computer Sci-
ence, Cambridge University Press, Cambridge / MA, 2001.



56 João Marcos

[2] Walter A. Carnielli and João Marcos, A taxonomy of C-systems,
[in:] W. A. Carnielli, M. E. Coniglio, and I. M. L. D’Ottaviano, editors,
Paraconsistency: The Logical Way to the Inconsistent, Proceed-
ings of the II World Congress on Paraconsistency, held in Juquehy, BR,
May 8–12, 2000, volume 228 of Lecture Notes in Pure and Applied
Mathematics, pages 1–94. Marcel Dekker, 2002. Preprint available at:
http://www.cle.unicamp.br/e-prints/abstract 5.htm.

[3] Max J. Cresswell, Necessity and contingency, Studia Logica,
47(2) (1988), pp. 145–149.

[4] Kit Fine, The logic of essence, Journal of Philosophical Logic
3 (1995), pp. 241–273.

[5] Lloyd Humberstone, The logic of non-contingency, Notre Dame
Journal of Formal Logic 36(2) (1995), pp. 214–229.

[6] John N. Keynes, Studies and Exercises in Formal Logic –
Including a generalization of logical processes in their application
to complex inferences, MacMillan and Co, London and New York, 1887.
2nd edition, revised and enlarged.

[7] Saul A. Kripke, Naming and necessity, Harvard University
Press, 1982.

[8] Steven T. Kuhn, Minimal non-contingency logic, Notre Dame
Journal of Formal Logic 36(2) (1995), pp. 230–234.

[9] João Marcos, Nearly every normal modal logic is paranormal,
Research report, CLC, Department of Mathematics, Instituto Superior
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