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ABSTRACT. In many real-life applications of logic it is useful to interpret a particular sentence as
true together with its negation. If we are talking about classical logic, this situation would force
all other sentences to be equally interpreted as true. Paraconsistent logics are exactly those
logics that escape this explosive effect of the presence of inconsistencies and allow for sensi-
ble reasoning still to take effect. To provide reasonably intuitive semantics for paraconsistent
logics has traditionally proven to be a challenge. Possible-translations semantics can meet that
challenge by allowing for each interpretation to be composed of multiple scenarios. Using that
idea, a logic with a complex semantic behavior can be understood as an appropriate combina-
tion of ingredient logics with simpler semantic behaviors into which the original logic is given a
collection of translations preserving its soundness. Completeness is then achieved through the
judicious choice of the admissible translating mappings. The present note provides interpreta-
tion by way of possible-translations semantics for a group of fundamental paraconsistent logics
extending the positive fragment of classical propositional logic. The logics PI , Cmin, mbC,
bC, mCi and Ci, among others, are all initially presented through their non-truth-functional
bivaluation semantics and sequent versions and then split by way of possible-translations se-
mantics based on 3-valued ingredients.
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1. Languages, bivaluations, and sequents

Let P = {p0, p1, . . . , pm, . . .} be a denumerable set of sentential letters, and consider
the following sets of formulas:
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S0 = ⟨P , {}, {}, {∧,∨,⊃}⟩ S2 = ⟨P , {}, {∼, ◦}, {∧,∨,⊃}⟩
S1 = ⟨P , {}, {∼}, {∧,∨,⊃}⟩ S3 = ⟨P , {}, {∼, ◦, •}, {∧,∨,⊃}⟩

where∼ (‘negation’), ◦ (‘consistency’), • (‘inconsistency’) are unary connective sym-
bols, and∧ (‘conjunction’),∨ (‘disjunction’) and⊃ (‘implication’) are binary connec-
tive symbols. As usual, the connective ≡ (‘bi-implication’) is defined by considering
ϕ ≡ ψ as an abbreviation for (ϕ ⊃ ψ)∧ (ψ ⊃ ϕ). Outermost parentheses are omitted
whenever there is no risk of confusion.

A mapping b : Si −→ {0, 1} is called a bivaluation over Si. One can easily write
some possible axioms governing the set of admissible bivaluations:
(b1.1) b(ϕ ∧ ψ) = 1 ⇒ b(ϕ) = 1 and b(ψ) = 1
(b1.1c) b(ϕ ∧ ψ) = 0 ⇒ b(ϕ) = 0 or b(ψ) = 0
(b1.2) b(ϕ ∨ ψ) = 1 ⇒ b(ϕ) = 1 or b(ψ) = 1
(b1.2c) b(ϕ ∨ ψ) = 0 ⇒ b(ϕ) = 0 and b(ψ) = 0
(b1.3) b(ϕ ⊃ ψ) = 1 ⇒ if b(ϕ) = 1 then b(ψ) = 1
(b1.3c) b(ϕ ⊃ ψ) = 0 ⇒ b(ϕ) = 1 and b(ψ) = 0
(b2) b(∼ϕ) = 0 ⇒ b(ϕ) = 1
(b3) b(◦ϕ) = 1 ⇒ b(ϕ) = 0 or b(∼ϕ) = 0
(b3c) b(◦ϕ) = 0 ⇒ b(ϕ) = 1 and b(∼ϕ) = 1
(b4) b(∼◦ϕ) = 1 ⇒ b(ϕ) = 1 and b(∼ϕ) = 1

(b5.n) b(◦∼n◦ϕ) = 1, given n ∈ N

(b6) b(∼∼ϕ) = 1 ⇒ b(ϕ) = 1
(b6c) b(∼∼ϕ) = 0 ⇒ b(ϕ) = 0

where ∼0ϕ
def
== ϕ and ∼n+1ϕ

def
== ∼∼nϕ.

The converse of (b4) clearly follows from (b2) and (b3), and the latter two bivalu-
ational axioms are to be respected by most logics we will consider below. Moreover,
the reader will surely have noticed the difference between (b4) and (b3c), the converse
of (b3):

FACT 1. — In the presence of (b2), axiom (b3c) can be derived from (b4). The axiom
(b4) can be derived from (b3c) in the presence of (b3) and (b5.0). !

All the above axioms are in ‘dyadic form’ (cf. (Caleiro et al., 2005)). As shown
in (Béziau, 2001), there is a canonical method for extracting from any such bivalua-
tional axiom a corresponding sequent rule. This results in the following:
(s1.1) ϕ ∧ ψ ⊢ ϕ and ϕ ∧ ψ ⊢ ψ
(s1.1c) ϕ,ψ ⊢ ϕ ∧ ψ
(s1.2) ϕ ∨ ψ ⊢ ϕ,ψ
(s1.2c) ϕ ⊢ ϕ ∨ ψ and ψ ⊢ ϕ ∨ ψ
(s1.3) ϕ ⊃ ψ,ϕ ⊢ ψ
(s1.3c) ⊢ ϕ,ϕ ⊃ ψ and ψ ⊢ ϕ ⊃ ψ
(s2) ⊢ ϕ,∼ϕ
(s3) ◦ϕ,ϕ,∼ϕ ⊢
(s3c) ⊢ ◦ϕ,ϕ and ⊢ ◦ϕ,∼ϕ
(s4) ∼◦ϕ ⊢ ϕ and ∼◦ϕ ⊢ ∼ϕ
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PTS for some weak paraconsistent logics 9

(s5.n) ⊢ ◦∼n◦ϕ, given n ∈ N

(s6) ∼∼ϕ ⊢ ϕ
(s6c) ϕ ⊢ ∼∼ϕ

For the sake of legibility, the side contexts of the above rules were dropped. Any sub-
set of those rules, together with reflexivity, weakening, cut, and the usual structural
rules, determines a specific sequent system. We will write α ⊣⊢ β as an abbreviation
for (α ⊢ β and β ⊢ α).

The following is a straightforward byproduct of the above:

FACT 2. — Rule (s5.0) is derivable with the help of (s2), (s3) and (s4). Rules (s5.n),
for n > 0, are all derivable in the presence of (s3), (s4), (s5.0) and (s6). !

2. Some fundamental paraconsistent logics

Let CL+ denote the positive fragment of classical propositional logic, built over the
set of formulas S0, axiomatized by way of the rules (s1.X) and interpreted through
the set of all bivaluations respecting the axioms (b1.X).

The very weak paraconsistent logic PI (cf. (Batens, 1980)) is built over S1 simply
by adding (s2) to the rules of CL+ or (b2) to its bivaluational axioms. The full classi-
cal propositional logic, CL, could be obtained now from PI over S1 by adding
(b2c) b(∼ϕ) = 1 ⇒ b(ϕ) = 0

to the bivaluational axioms of PI , or, equivalently, by adding
(s2c) ϕ,∼ϕ ⊢

to PI’s sequent rules. The bivaluational axioms (b2) and (b2c) together are thus suf-
ficient for interpreting classical negation in isolation from the other connectives, and
the sequent rules (s2) and (s2c) can be seen as the pure characterizing rules of classical
negation.

A fundamental logic of formal inconsistency (cf. (Carnielli et al., 2002)) called
mbC is built next over S2 by adding (s3) to the rules of PI or, equivalently, by
adding (b3) to its bivaluational axioms. A 0-ary connective ⊥ (‘bottom’), character-
ized semantically by setting b(⊥) = 0, can be defined in mbC if one takes ⊥ def

==

◦ψ ∧ (ψ ∧∼ψ), for any fixed formula ψ. As a byproduct:

FACT 3. — A classical negation ¬ can be defined inmbC by setting ¬ϕ def
== ϕ ⊃ ⊥.

!

The logic mbC, as presented above, had only a primitive consistency connective ◦
but no primitive connective for inconsistency. The latter can nonetheless be defined in
mbC if one just sets •ϕ def

== ∼◦ϕ. This way one could in fact rebuildmbC over S3, if
that need be. (But, on that matter, be sure to check Note 7 and the references therein.)

An important extension of mbC is the logic mCi, again built over S2, but now
by adding (s4) and (s5.n), n ∈ N, to the rules ofmbC, or (b4) and (b5.n), n ∈ N, to
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its bivaluational axioms. The fundamental trait ofmCi is the classical behavior of its
consistency connective ◦ with respect to the primitive negation∼:

FACT 4. — InmCi:
(i) b(∼◦α) = b(¬◦α),
(ii) b(∼n◦α) = 1 ⇔ b(∼n+1◦α) = 0. !

As a particular consequence, the above mentioned inconsistency connective •, in
mCi, may in a sense be seen as ‘dual’ to the consistency connective ◦ from the point
of view of the paraconsistent negation∼. Indeed:

FACT 5. — InmCi, ◦α ⊣⊢ ∼•α. !

Let ψ[p] denote a formula ψ having p as one of its atomic components, and let ψ[p/γ]
denote the formula obtained from ψ by uniformly substituting all occurrences of p
by the formula γ. Given a pair of formulas α and β, we say that they are logically
indistinguishable if for every formula ϕ[p] we have that ϕ[p/α] ⊣⊢ ϕ[p/β]. Alge-
braically, this will mean that α and β will have the ‘same reference’, and belong thus
to the same congruence class. In terms of a bivaluation semantics, this will mean that
b(ϕ[p/α]) = b(ϕ[p/β]), for any formula ϕ. By the very definition of • we know that
the formulas •α and ∼◦α are logically indistinguishable. However, in spite of the
equivalence between the formulas ◦α and∼•αmentioned in the last fact, such formu-
las are not logically indistinguishable inside the logics studied in the present paper. We
will use our possible-translations tool to check this feature in Example 33, further on.

The logics PIf , bC and Ci extend, respectively, the logics PI ,mbC andmCi,
by the addition of the bivaluational axiom (b6) or, equivalently, of the sequent rule (s6).
The logic PIf appears in ch.4 of (Marcos, 1999) and then at (Carnielli et al., 1999)
under the appellation Cmin. Both bC and Ci, as well as an enormous number of
their extensions, are studied in close detail at (Carnielli et al., 2002). The logicmCi

is suggested at the final section of the latter paper, but axiomatized here for the first
time. This logic, together withmbC, constitute the most fundamental logics explored
in detail in (Carnielli et al., 2007). Inaccuracies in the axiomatization (as introduced
in (Carnielli et al., 2002)) and in the bivaluation semantics (as presented in (Carnielli
et al., 2001a; Carnielli et al., 2001b)) of the logic Ci are also fixed at (Carnielli et
al., 2007).

In a similar vein, the logics PIfe, bCe andCie can here be introduced as exten-
sions of the previous logics obtained by the further addition of the bivaluational axiom
(b6c) or, equivalently, of the sequent rule (s6c). In the light of the preceding facts and
comments, it might seem natural that mCi, Ci, and Cie would from this point on
be built instead directly over the extended set of formulas S3, where • could be intro-
duced by a definition using ∼ and ◦, as above. For the exact extent in which it does
make sense to talk about these logics as if they were pretty much the same if presented
using either S2 or S3, we advise the reader to check the section 4.3 of (Carnielli et
al., 2007).

To summarize the 9 previously mentioned paraconsistent logics:
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PTS for some weak paraconsistent logics 11

PI formulas: S1

sequent rules: (s1.X) and (s2)
axioms on bivaluations: (b1.X) and (b2)

mbC formulas: S2

sequent rules: as in PI , plus (s3)
axioms on bivaluations: as in PI , plus (b3)

mCi formulas: S3

sequent rules: as inmbC, plus (s4) and (s5.n), n ∈ N

axioms on bivaluations: as inmbC, plus (b4) and (b5.n), n ∈ N

PIf formulas: S1

sequent rules: as in PI , plus (s6)
axioms on bivaluations: as in PI , plus (b6)
(a.k.a. Cmin)

bC formulas: S2

sequent rules: as in PIf , plus (s3)
axioms on bivaluations: as in PIf , plus (b3)

Ci formulas: S3

sequent rules: as in bC, plus (s4)
axioms on bivaluations: as in bC, plus (b4)

PIfe formulas: S1

sequent rules: as in PIf , plus (s6c)
axioms on bivaluations: as in PIf , plus (b6c)

bCe formulas: S2

sequent rules: as in bC, plus (s6c)
axioms on bivaluations: as in bC, plus (b6c)

Cie formulas: S3

sequent rules: as in Ci, plus (s6c)
axioms on bivaluations: as in Ci, plus (b6c)

The simplification in the rules and axioms of Ci, as compared to those of mCi, is
sanctioned by the results in Fact 2.

For a quick scan, one can find in Figure 1 a schematic illustration displaying the re-
lationships between the 9 paraconsistent logics above. An arrow L1 −→ L2 indicates
that the logic L1 is (properly) extended by the logic L2.

3. Bivalued entailment, modalities and matrices

Fixed any of the logics presented in the above section, let biv be its set of admissible
bivaluations. Given b ∈ biv, let Γ "b ∆ hold good, for given sets of formulas Γ
and ∆, iff (∃γ ∈ Γ)b(γ) = 0 or (∃δ ∈ ∆)b(δ) = 1. The canonical entailment
relation "biv is defined as usual: Γ "biv ∆ iff Γ "b ∆ for every b ∈ biv. Moreover,
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mCi !! Ci !! Cie

mbC

""

!! bC

""

!! bCe

""

PI

""

!! PIf

""

!! PIfe

""

Figure 1. Some fundamental paraconsistent logics

given a set of sequent rules seq, let ⊢seq denote the derivability relation defined by
its canonical notion of (multiple-conclusion) proof-from-premises. Entailment and
derivability relations are examples of consequence relations. Given any consequence
relation ◃ associated to a logic L, we will write Γ ̸◃ ∆ to say that the inference
Γ ◃ ∆ fails according to L, and we will write α ▹◃ β to say that both α ◃ β and
β ◃ α hold good in L.

Can the 9 above paraconsistent logics be given semantics that are more informative
than their respective bivaluation semantics? Good question. It should be remarked for
instance that those logics cannot be endowed with usualmodal-like semantics. Indeed,
all of them fail the replacement property, a property that is typical of normal modal
systems:

THEOREM 6. — In any of the logics from Figure 1, ⊣⊢ does not constitute a congru-
ence relation over the set of formulas, that is, there are formulas α and β such that
α ⊣⊢ β, but ∼α ̸⊢ ∼β.

PROOF. — Consider the 3-valued matrices of the logic LFI1, at Table 1, where F is
the only undesignated truth-value.

Table 1. Matrices of the logic LFI1

∧ T t F

T T t F

t t t F

F F F F

∨ T t F

T T T T

t T t t

F T t F

⊃ T t F

T T t F

t T t F

F T T T

∼ ◦

T F T

t t F

F T T

It is easy to check that LFI1 (properly) extends all the above paraconsistent logics —
it constitutes in fact a maximally paraconsistent extension of those logics (cf. (Marcos,
1999; Carnielli et al., 2000)). Nevertheless, in LFI1, while tautologies such as (p ∨
∼p) and (q ∨ ∼q) are equivalent, the formulas ∼(p ∨ ∼p) and ∼(q ∨ ∼q) are not
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PTS for some weak paraconsistent logics 13

equivalent: To see that, consider any 3-valued valuation that assigns the value t to the
atomic sentence p, while q is assigned a different value. %

NOTE 7 (A SEEMING PARADOX). — The logic of formal inconsistencymbC (and
any of its non-trivial paraconsistent extensions) can be seen both as a conservative
extension and as a deductive fragment of classical logic, CL. Indeed, for the first
assertion, recall the set of formulas S0 of positive classical logic (Section 1), and
consider now the sets of formulas:

S4 = ⟨P , {}, {¬}, {∧,∨,⊃}⟩ S5 = ⟨P , {}, {¬,∼, ◦}, {∧,∨,⊃}⟩

Interpret the connectives from S4 as inCL, using the bivaluational axioms (b1.X) and
(b2.X) (let in the latter axiom ¬ take the place of∼). Interpret the new connectives in
S5 as in mbC, using the bivaluational axioms (b2) and (b3). It is clear that this last
move provides just a new way of presentingmbC. Indeed, as we have seen in Fact 3,
a classical negation¬ can be defined from the original presentation ofmbC. Consider
again the matrices of LFI1, from Table 1, a logic that deductively extendsmbC. The
classical negation ¬ in LFI1, defined as above, would be such that v(¬ϕ) = T if
v(ϕ) = F , and v(¬ϕ) = F otherwise. It is easy to see, in that case, that the matrices
of ∼ and ◦, the new connectives of S5 cannot be defined, in LFI1, from the matrices
of the connectives in S4. If you recall now that CL is a maximal logic, then you have
concluded the proof thatmbC can be seen as a (proper) conservative extension ofCL.
For the second assertion, consider CL to be written in the language of S5. Recall that
classical logic is presupposed consistent, and interpret the connective ◦ accordingly,
by taking as axiom b(◦ϕ) = 1. Based on the received idea that there is just ‘one
true classical negation’, interpret ¬ and ∼ both using axioms (b2) and (b2c). In that
case mbC is clearly characterized as a (proper) deductive fragment of CL. Notice
that this is, however, a very peculiar fragment of CL—it is a fragment into which all
classical reasoning can be internalized by way of a definitional translation. For further
details on those translations and their general significance for paraconsistent logics,
check (Carnielli et al., 2007). !

NOTE 8 (MORE ON INTERNALIZING STRONGER LOGICS). — Not only can mbC

faithfully internalize classical logic, but it can also internalize the reasoning of other
logics of formal inconsistency that are deductively stronger than itself. To see that,
consider now the following sets of formulas:

S6 = ⟨P , {⊥}, {}, {∧,∨,⊃}⟩
S7 = ⟨P , {⊥}, {∼}, {∧,∨,⊃}⟩
S8 = ⟨P , {⊥}, {∼, ◦}, {∧,∨,⊃}⟩

Interpret the 0-ary connective (‘bottom’) from S6 by taking as axiom b(⊥) = 0, and
interpret the new connectives from S7 and S8 as in mbC. Again, this provides just
another presentation formbC, as we have seen in Section 1 that⊥ is definable in this
logic. On the other hand, a new consistency connective strictly stronger than ◦ can
be defined using the connectives from S7. Indeed, as in (Carnielli et al., 2002), con-
sider a connective ◦̃ defined by setting ◦̃ϕ def

== (ϕ ⊃ ⊥) ∨ (∼ϕ ⊃ ⊥) (or, equivalently,
◦̃ϕ def

== ¬ϕ ∨ ¬∼ϕ). This connective is naturally characterizable by axiom (b3) and
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its converse (b3c), while the original consistency connective of mbC was character-
ized by axiom (b3) alone. If you recall Fact 1 you will notice that the last definition
determines a logic of formal inconsistency that lies right in betweenmbC andmCi.
As a matter of fact, this approach provides one way of presenting the logic CLuN,
the preferred logic of adaptive logicians (cf. (Batens, 2000)), often used as the lower
limit logic of their inconsistency-adaptive systems. Though the first presentations of
CLuN made this logic coincide with PI , it has been more recently presented as a
conservative extension of PI obtained by adding a bottom connective to the language
of the latter, as in S7 above. If one writes the whole thing in the language of S8,
using the above defined consistency connective, CLuN is very naturally recast thus
as a logic of formal inconsistency that lies in betweenmbC andmCi. (The full de-
tails concerning this assertion will be discussed elsewhere. It suffices to say here that
the truth of the assertion itself is guaranteed by the completeness results presented in
Section 5.) !

PROBLEM 9. — Is there a definitional translation ofmCi intombC? Can the logic
mbC faithfully internalize in some way the reasoning ofmCi? !

NOTE 10 (OTHER LOGICS EXTENDING mbC BUT NOT mCi). — BesidesCLuN,
there are many other interesting logics of formal inconsistency that extendmbC but
do not go through mCi. There is even a large class of such logics that satisfies the
full replacement property. I have shown in (Marcos, 2005b; Marcos, 2005a), in fact,
that any non-degenerate normal modal logic can be easily recast as a logic of formal
inconsistency extendingCLuN (and thus extendingmbC), but notmCi. !

Before the diversion provided by the above set of notes, we had seen in Theo-
rem 6 that the 9 paraconsistent logics from the last section cannot be endowed with
usual modal-like semantics. The reader might now be wondering whether those log-
ics would still stand some chance at least of being truth-functional, should they turn
out themselves to be characterizable by way of some convenient set of finite-valued
matrices (just like their extension LFI1). However, some widely applicable negative
results concerning that possibility can be promptly checked as follows. For the first
result, let α1 abbreviate the formula ∼(α ∧ ∼α) and αn+1 abbreviate the formula
∼(αn ∧∼αn) for n ≥ 1. Consider, additionally, α0 def

== α for every α in For◦. Finally,
set δ(m)

def
== (

∧

0≤i<m δi) → δm for m ≥ 1. Then, as shown in (Avron, 2007b), the
following holds good:

LEMMA 11. — Any collection J of n-valued truth-tables for which positive clas-
sical logic (CL+), or some deductive extension thereof, is sound must validate all
formulas of the form δ(m), form > n.

PROOF. — The case n < 2 is obvious. The other cases are easy consequences of the
Pigeonhole Principle of finite combinatorics and of the cyclic character of the compo-
sition of finite functions. Indeed, if J is n-valued, for some finite n, the truth-table
determined by a formula δn must be identical to the truth-table of at least one among
the formulas δ0, . . . , δn−1. But in that case, using classical properties of conjunction
and implication, it follows that any δ(m), form > n, is valid according to J . %
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PTS for some weak paraconsistent logics 15

Consider now the following result:

LEMMA 12. — No formula of the form δ(m) is derivable in the logic Cie.
PROOF. — Consider, for n ∈ N, the following sets Jn of infinitary truth-tables that
take the truth-values from the ordinal ω + 1 = ω ∪ {ω}, where ω (the set of natural
numbers) is the only undesignated truth-value:

x ∧ y =

{

0, if x = n and y = n + 1

max(x, y), otherwise

x ∨ y = min(x, y)

x → y =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ω, if x ∈ N and y = ω

y, if x = ω and y ∈ N

0, if x = ω = y

max(x, y), otherwise

∼x =

⎧

⎪

⎨

⎪

⎩

ω, if x = 0

0, if x = ω

x + 1, otherwise
◦x =

{

0, if x ∈ {0,ω}

ω, otherwise

It is clear, on the one hand, that all the sequent rules from Section 1 are validated
by the above matrices. On the other hand, J2m+1 falsifies the formula δ(m + 1).
Indeed, let δ be an atomic sentence p and consider a valuation v such that v(p) = 1. It
follows then that v(pi) = 2i + 1, for 0 ≤ i ≤ m, yet v(pm+1) = ω. But in that case
v(δ(m + 1)) = ((2m + 1) → ω) = ω. %

Using the previous lemmas one can now check that:

THEOREM 13 (UNCHARACTERIZABILITY BY FINITE MATRICES, version I). — No
logic that is written in the language of S3 (with • introduced by definition, as above)
and that is a fragment of Cie is finite-valued.

PROOF. — Suppose that the logic L is some fragment of Cie written over S3 such
that L has an adequate finite-valued truth-functional semantics with, say, m truth-
values. By Lemma 11 the formula δ(m+1) is valid with respect to this semantics and
so it is a theorem of L. But then δ(m + 1) would be a theorem of Cie, contradicting
Lemma 12. %

Notice that this theorem covers in particular all the logics from the first two lines
of Figure 1. Now, a second negative result can be seen to cover another part of the
same figure.

LEMMA 14. — No sequent of the form ⊢ ∼iϕ ≡ ∼jϕ is derivable, for non-negative
i ̸= j, in logics from the first two columns of Figure 1.
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PROOF. — Consider a set of infinite-valued matrices that take the natural numbers N

as truth-values, where 0 is the only undesignated truth-value. Define the matrices for
the connectives as follows:

v(ϕ ∧ ψ) =

{

1, if v(ϕ) > 0 and v(ψ) > 0

0, otherwise

v(ϕ ∨ ψ) =

{

1, if v(ϕ) > 0 or v(ψ) > 0

0, otherwise

v(ϕ ⊃ ψ) =

{

0, if v(ϕ) > 0 and v(ψ) = 0

1, otherwise

v(∼ϕ) =

{

1, if v(ϕ) = 0

v(ϕ) − 1, otherwise
v(◦ϕ) =

{

0, if v(ϕ) > 1

1, otherwise
It is easy to check that all the sequent rules from Section 1 are validated by the above
matrices, with the sole exception of (s6c). At the same time, the above matrices can
also easily be seen to invalidate all sequents of the form ⊢ ∼iϕ ≡ ∼jϕ, for non-
negative i ̸= j. %

THEOREM 15 (UNCHARACTERIZABILITY BY FINITE MATRICES, version II). —
None of the logics from the first two columns of Figure 1 (i.e., the fragments ofCi) is
finite-valued.

PROOF. — If any of these logics were characterized by matrices with only m truth-
values, then, by the Pigeonhole Principle, we would have, fixing an arbitrary i ∈ N,
that some i < j ≤ (i + mm) would be such that v(∼ip) = v(∼jp), for all v. This
would in turn validate some sequent of the form ⊢ ∼jϕ ≡ ∼iϕ, for i < j. %

The last theorem and its preceding auxiliary lemma correct and extend in fact a re-
sult suggested long ago, in (Arruda, 1975), following the lines of a proposal originally
made in (Marcos, 1999).

One logic from Figure 1, however, was not covered by the previous results. Ac-
cordingly, the following is here left open:

PROBLEM 16. — Find a proof similar to the above ones to show that PIfe is not
characterizable by finite matrices. !

The next section will show how these same logics, while not characterizable nei-
ther by way of finite matrices nor by way of standard modal semantics, as we have
seen, can as a matter of fact be all perfectly characterized by way of suitable splicing
of finite-valued scenarios.

4. Interpretations through possible translations

We will see in this section that all the paraconsistent logics in Figure 1 can still be
given adequate interpretations in terms of combinations of 3-valued logics, by way of
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PTS for some weak paraconsistent logics 17

specific possible-translations semantics (PTS). Consider the 3-valued matrices ofM,
at Table 2), where F is the only undesignated truth-value. Notice in particular that
the underlying language of M has 3 different primitive symbols for negation and 3
different symbols for the consistency connective.

Table 2. Matrices ofM

∧ T t F

T t t F

t t t F

F F F F

∨ T t F

T t t t

t t t t

F t t F

⊃ T t F

T t t F

t t t F

F t t t

∼1 ∼2 ∼3

T F F F

t F t t

F T t T

◦1 ◦2 ◦3

T T t F

t F F F

F T t F

Given a 3-valued assignment a : P −→ {T, t, F}, let w be its unique homo-
morphic extension into the whole language of M, and let Γ "w ∆ hold good, for
given sets of formulas Γ and ∆, iff (∃γ ∈ Γ)w(γ) = F or (∃δ ∈ ∆)w(δ) ∈ {T, t}.
Then, the canonical (multiple-conclusion) entailment relation "M determined by the
above 3-valued matrices is set by taking Γ "M ∆ iff Γ "w ∆ for every interpreta-
tion w ∈ M.

Consider next the following possible restrictions over the set of admissible trans-
lating mappings ∗ : Si −→ M:

(tr0) p∗ = p, for p ∈ P
(tr1) (ϕ ◃▹ ψ)∗ = (ϕ∗ ◃▹ ψ∗), for ◃▹ ∈ {∧,∨,⊃}

(tr2.1) (∼ϕ)∗ ∈ {∼1ϕ∗,∼2ϕ∗}
(tr2.2) (∼ϕ)∗ ∈ {∼1ϕ∗,∼3ϕ∗}
(tr2.3) (∼n+1◦ϕ)∗ = ∼1(∼n◦ϕ)∗

(tr3.1) (◦ϕ)∗ ∈ {◦2ϕ∗, ◦3ϕ∗, ◦2(∼ϕ)∗, ◦3(∼ϕ)∗}
(tr3.2) (◦ϕ)∗ ∈ {◦1ϕ∗, ◦1(∼ϕ)∗}
(tr3.3) if (∼ϕ)∗ = ∼1ϕ∗ then (◦ϕ)∗ = ◦1(∼ϕ)∗

(tr4) if (∼ϕ)∗ = ∼3ϕ∗ then (∼∼ϕ)∗ = ∼3(∼ϕ)∗

One can now select appropriate sets of restrictions in order to split each of the para-
consistent logics from the last section by way of PTS:
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Logic Restrictions over the translating mappings
PI (tr0), (tr1), (tr2.1)

mbC (tr0), (tr1), (tr2.1), (tr3.1)
mCi (tr0), (tr1), (tr2.1), (tr2.3), (tr3.2), (tr3.3)
PIf (tr0), (tr1), (tr2.2)
bC (tr0), (tr1), (tr2.2), (tr3.1)
Ci (tr0), (tr1), (tr2.2), (tr3.2), (tr3.3)

PIfe (tr0), (tr1), (tr2.2), (tr4)
bCe (tr0), (tr1), (tr2.2), (tr3.1), (tr4)
Cie (tr0), (tr1), (tr2.2), (tr3.2), (tr3.3), (tr4)

LetTr denote some set of translating mappings defined according to an appropriate
subset of the previously mentioned restrictions. Define a pt-model as a pair ⟨w, ∗⟩,
where ∗ ∈ Tr and w ∈ M, and let Γ &∗

w ∆ hold good, for given sets of formulas Γ
and∆, iff Γ∗ "w ∆∗. A pt-consequence relation &pt is then set by taking Γ &pt ∆ iff
Γ &∗

w ∆ for every pt-model ⟨w, ∗⟩ admitted byTr. Equivalently, in the cases presently
under consideration, Γ &pt ∆ also means, more simply, that Γ∗ "M ∆∗, for every
admissible translation ∗ ∈ Tr.

NOTE 17 (THE DEVELOPMENT OF PTS). — A logic L is said to have a possible-
translations semantics when it can be given an adequate interpretation in terms of
pt-models as above, for some appropriate set of translating mappings. Each trans-
lation can then be seen as a sort of interpretation scenario for L. This intuition is
good enough for the purposes of the present paper, but the possible-translations tool
is in fact more general than that. For a generous and clear formal definition of these
semantic structures, check (Marcos, 2004). For other more specific and carefully ex-
plained examples, check (Marcos, 1999; Carnielli et al., 1999; Carnielli, 2000). The
interested reader will notice that the PTS offered for Ci above is distinct from the
one presented in (Carnielli et al., 2001a). Possible-translations semantics were first
introduced in (Carnielli, 1990), restricted to the splitting of a logic into finite-valued
truth-functional scenarios. The embryo was then frozen for a period, and in between
1997 and 1998 it was publicized under the denomination ‘non-deterministic seman-
tics’, in (Carnielli et al., 1997), and in several talks by Carnielli and a few by myself.
Noticing that the non-deterministic element was but a particular accessory of the more
general picture, from 1999 on the semantics returned to its earlier denomination, bear-
ing the qualifier ‘possible-translations’. More recently, in chapter 9 of (Carnielli et
al., 2008), possible-translations semantics have been presented as one of the main
tools for the analysis of complex logics through ‘splitting’ them into simpler compo-
nents. !

NOTE 18 (PTS AND NON-DETERMINISTIC SEMANTICS). — PTS are related to (but
are more general than) the non-deterministic semantics (NDS) proposed by Avron &
Lev (cf. (Avron et al., 2005b)) in ways that are still to be more carefully clarified.
On what concerns the logics studied in the present paper, it should be noticed that
(Avron et al., 2005a) proposes a 2-valued NDS for PI , (Avron, 2007a) proposes a
3-valued NDS for PIf which is an alternative to the PTS presented for this logic
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PTS for some weak paraconsistent logics 19

above (and that comes from (Marcos, 1999; Carnielli et al., 1999)), and (Avron et
al., 2005b) illustrates the cases of both PI and PIf . Moreover, (Avron, 2005) offers
3-valued NDS also for the logics mbC, bC, bCe. Roughly speaking, in the light
of a classification put forward in (Avron et al., 2005a), one could say that dynamic
NDS are based on clauses having the same format of (tr0)–(tr2.2), and static NDS
additionally impose constraints having the format of (tr2.3) or (tr4) for each of the
involved connectives. There is a mechanical way, thus, to move from a given NDS
to an equivalent PTS. Further discussion of that issue shall be postponed to a future
study. !

We now have a number of quite diverse consequence relations associated to each
of the above logics. Of course we want to keep this fauna under control —in the best
of all possible worlds we want to be able to prove that all those consequence relations
deliver just the same the result, for each given logic, that is, we want to prove that:

⊢seq = "biv = &pt

That is the subject of the next, and final, section.

5. Adequacy of each of the newly proposed PTS

As mentioned in Section 1, the technology that solves the first part of our problem is
well-known, and its outcome will here be taken for granted: ⊢seq = "biv.

Now, to check soundness of each of the paraconsistent logics in section 2 with
respect to its specific PTS in section 4, one has two alternatives from the start. The
first is to prove it directly from the axiomatizations in section 1 and the appropriate
sets of translating mappings:

THEOREM 19 (SOUNDNESS). — ⊢seq ⊆ &pt.

PROOF. — Just translate each sequent axiom in all possible ways allowed by Tr and
check that these translations are validated byM. %

The second alternative is to prove that each pt-model is bisimulated by some appro-
priate bivaluation:

THEOREM 20 (CONVENIENCE). —
(∀w ∈ M)(∀∗ ∈ Tr)(∃b ∈ biv) "b α ⇔ &∗

w α.

PROOF. — Define a total bivaluation by setting the condition (♦): b(α) = 0 iff
w(α∗) = F , for any formula α (and b(α) = 1 otherwise). Then check that the
axioms in biv are all respected, in each case.

The strategy is pretty much mechanical, thus we will not delve into the details
of the ‘convenience’ results for our present logics. Just consider, by way of an il-
lustration, the case of PI and its bivaluational axiom (b2). Given b(∼ϕ) = 0, and
considering (♦), we must be talking about a situation in which w((∼ϕ)∗) = F . From
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(tr2.1), a restriction on the set of admissible translating mappings that characterize
PI , we know, however, that (∼ϕ)∗ ∈ {∼1ϕ∗,∼2ϕ∗}. Thus, from the matrices ofM
we will conclude that w(ϕ∗) ∈ {T, t}. In that case, considering again (♦) we must
be talking about a situation in which b(α) = 1, exactly in accordance with (b2). The
other bivaluational axioms are all, in each case, verified using a similar strategy. %

COROLLARY 21 (SOUNDNESS AGAIN). — "biv ⊆ &pt.

Now for completeness. Given that the evaluation of the consistency connective,
◦, in the way we have defined it, takes into account the evaluation of the negation
connective,∼, it will be helpful, when doing some of the next proofs by induction on
the complexity of the formulas, to make use of the following non-canonical measure
of complexity,mc:

(mc0) mc(p) = 0, for p ∈ P
(mc1) mc(ϕ ◃▹ ψ) = max(mc(ϕ),mc(ψ)) + 1, for ◃▹ ∈ {∧,∨,⊃}
(mc2) mc(∼ϕ) = mc(ϕ) + 1
(mc3) mc(◦ϕ) = mc(∼ϕ) + 1

With such apparatus in hands, we can start looking for a proof that each particular
bivaluation is bisimulated by some appropriate pt-model:

THEOREM 22 (REPRESENTABILITY). —
(∀b ∈ biv)(∃w ∈ M)(∃∗ ∈ Tr) &∗

w α ⇔ "b α.

From what it would easily follow that:

COROLLARY 23 (COMPLETENESS). — "biv ⊇ &pt.

With respect to the above mentioned representability result, still to be proven, the
safest strategy at this point seems to be that of checking it for each of our paraconsis-
tent logics on its own turn, refining the statements and proofs to better suit each case.
So, here we go:

THEOREM 24 (PI -REPRESENTABILITY). —
(∀b ∈ biv)(∃w ∈ M)(∃∗ ∈ Tr)
w(α∗) = t ⇔ b(α) = 1, and
w(α∗) = F ⇔ b(α) = 0.

PROOF. — To take care of w, set, for p ∈ P :
(rw) a(p) = F if b(p) = 0, and

a(p) = t otherwise
and extend a into w homomorphically, according to the strictures ofM.

On what concerns ∗, make the following choices on the translating mappings:
(rt0) p∗ = p, for p ∈ P
(rt1) (ϕ ◃▹ ψ)∗ = (ϕ∗ ◃▹ ψ∗), for ◃▹ ∈ {∧,∨,⊃}
(rt2) (∼ϕ)∗ = ∼1ϕ∗, if b(∼ϕ) = 0

(∼ϕ)∗ = ∼2ϕ∗, otherwise
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PTS for some weak paraconsistent logics 21

Notice that these choices are indeed allowed by the restrictions (tr0), (tr1) and (tr2.1)
that characterize the admissible translating mappings of PI .

The main statement above can now easily be proven by induction on the complex-
ity measuremc.

The atomic case follows immediately from (rw) and (rt0). As induction hypothe-
sis, (IH), assume that both (A) w(α∗) = t ⇔ b(α) = 1 and (B) w(α∗) = F ⇔
b(α) = 0 are indeed the case for any formula α with mc(α) ≤ k, for some given k,
and consider in turn the case of formulas immediately more complex than α, obtained
by adding a further constructor from S1. For the case of formulas containing an extra
binary connective, the result easily follows from (rt1), using the (IH). Consider now
in detail the case of a formula of the form∼α:

– Part (A)
- (⇒) Supposew((∼α)∗) = t. Then, by the matrices ofM and (rt2), we must

be talking about (∼α)∗ = ∼2α∗ and b(∼α) = 1.
- (⇐) Suppose b(∼α) = 1. By (rt2), we have (∼α)∗ = ∼2α∗. Now, suppose,

on the one hand, that b(α) = 1. By part (A) of the (IH), w(α∗) = t, and from the
matrices ofM it follows that w((∼α)∗) = t. Suppose, on the other hand, that b(α) =
0. Then, by part (B) of the (IH), w(α∗) = F . Again, this means that w((∼α)∗) = t.
– Part (B)
- (⇒) Suppose b(∼α) = 1. Then, by (rt2), (∼α)∗ = ∼2α∗. Suppose, on the

one hand, that b(α) = 1. By part (A) of the (IH), w(α∗) = t. So, w((∼α)∗) = t ̸= F .
Suppose, on the other hand, that b(α) = 0. By part (B) of the (IH), this means that
w(α∗) = F . But in that case we must have w((∼α)∗) ̸= F .

- (⇐) Suppose b(∼α) = 0. Then, by (rt2), (∼α)∗ = ∼1α∗. By the bival-
uational axiom (b2) it also follows that b(α) = 1. Thus, by part (A) of the (IH),
w(α∗) = t. So, w((∼α)∗) = F .

That completes the inductive step. %

THEOREM 25 (mbC-REPRESENTABILITY). —

(∀b ∈ biv)(∃w ∈ M)(∃∗ ∈ Tr)

w(α∗) = T ⇒ b(∼α) = 0, and
w(α∗) = F ⇔ b(α) = 0.

PROOF. — To take care of w, set, for p ∈ P :

(rw) a(p) = F if b(p) = 0,
a(p) = T if b(∼p) = 0, and
a(p) = t otherwise

and extend a into w homomorphically, according to the strictures ofM.

On what concerns ∗, set:
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(rt0) p∗ = p, for p ∈ P
(rt1) (ϕ ◃▹ ψ)∗ = (ϕ∗ ◃▹ ψ∗), for ◃▹ ∈ {∧,∨,⊃}
(rt2) (∼ϕ)∗ = ∼1ϕ∗, if b(∼ϕ) = 0 or b(ϕ) = 0 = b(∼∼ϕ)

(∼ϕ)∗ = ∼2ϕ∗, otherwise
(rt3) (◦ϕ)∗ = ◦3ϕ∗, if b(◦ϕ) = 0

(◦ϕ)∗ = ◦2(∼ϕ)∗, if b(◦ϕ) = 1 and b(∼ϕ) = 0
(◦ϕ)∗ = ◦2ϕ∗, otherwise

Once more, the above choices do not go against the restrictions (tr0), (tr1), (tr2.1) and
(tr3.1) that characterize the admissible translating mappings ofmbC.

The result is again proven by induction onmc. The atomic case is checked as be-
fore. The induction hypothesis, (IH), now assumes that (A) w(α∗) = T ⇒ b(∼α) =
0 and (B) w(α∗) = F ⇔ b(α) = 0, for any formula α with mc(α) ≤ k, for some
given k. The case of binary connectives is straightforward. We will check in detail the
cases of formulas of the forms∼α or ◦α.

Case of ∼α:

– Part (A). Suppose w((∼α)∗) = T . By (rt2) and M, we must have (∼α)∗ =
∼1α∗, and so w(α∗) = F . Then, by part (B) of the (IH), b(α) = 0. In view of the
bivaluational axiom (b2), using (rt2) again, and given that (∼α)∗ = ∼1α∗, it now
follows that b(∼∼α) = 0.
– Part (B)
- (⇒) Suppose b(∼α) = 1. On the one hand, suppose further that b(α) =

0. By part (B) of the (IH), w(α∗) = F , so, in any case allowed by (rt2), we have
w((∼α)∗) ̸= F . On the other hand, suppose now that b(α) = 1. In that case, by
(rt2), we must have (∼α)∗ = ∼2α∗. By part (B) of the (IH), b(α) = 1 implies that
w(α∗) ̸= F , and by part (A) of the (IH), b(∼α) = 1 implies that w(α∗) ̸= T . Thus,
we must have w(α∗) = t, from what it follows, given that (∼α)∗ = ∼2α∗, that
w((∼α)∗) = t, and so in fact w((∼α)∗) ̸= F .

- (⇐) Suppose b(∼α) = 0. By (rt2), (∼α)∗ = ∼1α∗. By the bivaluational
axiom (b2), b(α) = 1, and by part (B) of the (IH), it follows that w(α∗) ̸= F . This is
enough information to conclude that w((∼α)∗) = F .

Case of ◦α:

– Part (A). Immediate, for w(◦α)∗ = T is impossible, in view of (rt3) and the
matrices ofM.
– Part (B)
- (⇒) Suppose b(◦α) = 1. By the bivaluational axiom (b3), this means that

either b(α) = 0 or b(∼α) = 0 (but not both, in view of axiom (b2)). If, on the
one hand, b(α) = 0, it follows by part (B) of the (IH) that w(α∗) = F , and, by
(rt3), (◦α)∗ = ◦2α∗. But then we have w((◦α)∗) = t ̸= F . If, on the other hand,
b(∼α) = 0, one might recall the condition (mc3) on the definition of the complexity
measure mc, according to which mc(◦α) > mc(∼α), and conclude by part (B) of
the (IH) that w((∼α)∗) = F . Further, by (rt3), we must have (◦α)∗ = ◦2(∼α)∗, thus
w((◦α)∗) = w(◦2(∼α)∗) = t ̸= F .
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PTS for some weak paraconsistent logics 23

- (⇐) Suppose b(◦α) = 0. By (rt3), (◦α)∗ = ◦3α∗. But from the matrices
ofM we know that w(◦3α∗) = F .

It is interesting to notice, in particular, how the non-standard clause (mc3) of the
previously defined non-canonical measure of complexity proves to be useful at the
Part B(⇒). %

THEOREM 26 (mCi-REPRESENTABILITY). —
(∀b ∈ biv)(∃w ∈ M)(∃∗ ∈ Tr)
w(α∗) = T ⇒ b(∼α) = 0, and

w(α∗) = F ⇔ b(α) = 0.

PROOF. — Do as in parts (rt0)–(rt2) of Theorem 25, but now set:
(rt3) (◦ϕ)∗ = ◦1(∼ϕ)∗, if b(∼ϕ) = 0

(◦ϕ)∗ = ◦1ϕ∗, otherwise
(rt4) (∼n+1◦ϕ)∗ = ∼1(∼n◦ϕ)∗

Notice that such choices are indeed allowed by the restrictions (tr2.3), (tr3.2) and
(tr3.3) that govern the set of admissible translations that characterizemCi. Again, the
result is proven by complete induction onmc, and the (IH) is identical to the previous
one: assume that (A) w(α∗) = T ⇒ b(∼α) = 0 and (B) w(α∗) = F ⇔ b(α) = 0,
for any formula α withmc(α) ≤ k, for some given k. We check again in detail only
the cases of the formulas of the form∼α or ◦α.

Case of ∼α, with α of the form ∼n◦β:
Notice that, from (rt4), (∼n+1◦β)∗ = ∼1(∼n◦β)∗. Thus, from the matrices of
M, either w(∼1(∼n◦β)∗) = T or w(∼1(∼n◦β)∗) = F . Now, on the one hand,
w(∼1(∼n◦β)∗) = T iff w((∼n◦β)∗) = F , and on the other hand w(∼1(∼n◦β)∗) =
F iff w((∼n◦β)∗) ̸= F . But part (B) of the (IH) informs us that w((∼n◦β)∗) = F
iff b(∼n◦β) = 0. However, fact 4(ii), relying on (b4) and (b5.n), guarantees that
b(∼m◦β) = 0 iff b(∼m+1◦β) = 1, for any m ∈ N. Thus, we may conclude
that w((∼n+1◦β)∗) = T iff b(∼(∼n+1◦β)) = 0, and w((∼n+1◦β)∗) = F iff
b(∼n+1◦β) = 0.

The case of∼α, with α not of the form∼n◦β looks exactly the same as in the previous
theorem, and we will not repeat it here.

Case of ◦α:

– Part (A). Suppose b(∼◦α) = 1. Then, by the bivaluational axiom (b4), he can
assume that b(α) = 1 = b(∼α). By axiom (b3) it also follows that b(◦α) = 0. Note
that the new (rt3) now says that (◦α)∗ = ◦1α∗. By part (A) of the (IH), b(∼α) = 1
implies w(α∗) ̸= T , and by the part (B) of the (IH), b(α) = 1 implies w(α∗) ̸= F .
So, we are forced to conclude that w(α∗) = t, thus w((◦α)∗) = F ̸= T .
– Part (B)
- (⇒) Suppose b(◦α) = 1. By (b3) we conclude that b(α) = 0 or b(∼α) = 0.

If, on the one hand, b(α) = 0, it follows by part (B) of the (IH) that w(α∗) = F . By
(b2), we also know that b(∼α) = 1, thus, by (rt3), we have (◦α)∗ = ◦1α∗. In that
case, w((◦α)∗) = T ̸= F . If, on the other hand, b(∼α) = 0, (rt3) now says that
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(◦α)∗ = ◦1(∼α)∗. Given that mc(◦α) > mc(∼α), by the condition (mc3) on the
definition of the complexity measure mc, from b(∼α) = 0 the part (B) of the (IH)
guarantees that w((∼α)∗) = F . So, again, w((◦α)∗) = w(◦1(∼α)∗) = T ̸= F .

- (⇐) Suppose b(◦α) = 0. By (b2), b(∼◦α) = 1, and by (b4) b(α) = 1 =
b(∼α). As in Part (A), we can again conclude that w(α∗) = t. By (rt3), b(∼α) = 1
implies that (◦α)∗ = ◦1α∗. So, w((◦α)∗) = F .

That concludes the case analysis that belong to the inductive step. %

The remaining ‘representability’ results are variations and combinations of the 3
above ones, and we are sure the reader can now check by herself the details of the
proofs.

THEOREM 27 (PIf -REPRESENTABILITY). —
(∀b ∈ biv)(∃w ∈ M)(∃∗ ∈ Tr)
w(α∗) = T ⇒ b(∼α) = 0, and

w(α∗) = F ⇔ b(α) = 0.

PROOF. — Do as in Theorem 24, except that in now setting:
(rt2) (∼ϕ)∗ = ∼3ϕ∗, if b(ϕ) = 1 = b(∼ϕ)

(∼ϕ)∗ = ∼1ϕ∗, otherwise
Check the result by induction on mc. A slightly different proof of this fact —check
clause (rw)— can be found in the ch.4 of (Marcos, 1999) and in (Carnielli et al., 1999)
—bear in mind though that this logic PIf shows up there under the name Cmin.) %

THEOREM 28 (bC-REPRESENTABILITY). —
(∀b ∈ biv)(∃w ∈ M)(∃∗ ∈ Tr)
w(α∗) = T ⇒ b(∼α) = 0, and

w(α∗) = F ⇔ b(α) = 0.

PROOF. — Do as in Theorem 25, except that in now setting (rt2) as in Theorem 27.
Check the result by induction onmc. %

THEOREM 29 (Ci-REPRESENTABILITY). —
(∀b ∈ biv)(∃w ∈ M)(∃∗ ∈ Tr)
w(α∗) = T ⇒ b(∼α) = 0, and

w(α∗) = F ⇔ b(α) = 0.

PROOF. — Do as in Theorem 28, except that in now setting:
(rt3) (◦ϕ)∗ = ◦1(∼ϕ)∗, if b(◦ϕ) = 1

(◦ϕ)∗ = ◦1ϕ∗, otherwise
Check the result by induction onmc. %

On what concerns the last theorem, one might notice that the PTS offered for Ci

in the paper (Carnielli et al., 2001a) uses different interpretations for the consistency
connective and is based on a stricter set of restrictions over the set Tr. The present
semantics seems, in a sense, to be more in accordance with the classical behavior of ◦
with respect to ∼.

D
ow

nl
oa

de
d 

by
 [T

he
 A

ga
 K

ha
n 

U
ni

ve
rs

ity
] a

t 0
0:

35
 1

0 
O

ct
ob

er
 2

01
4 

João Marcos




PTS for some weak paraconsistent logics 25

THEOREM 30 (PIfe-REPRESENTABILITY). —
(∀b ∈ biv)(∃w ∈ M)(∃∗ ∈ Tr)
w(α∗) = T ⇒ b(∼α) = 0, and

w(α∗) = F ⇔ b(α) = 0.

PROOF. — Do as in Theorem 27, except that in now setting the extra requirement:
(rt4) if (∼ϕ)∗ = ∼3ϕ∗, then (∼∼ϕ)∗ = ∼3(∼ϕ)∗

Check the result by induction onmc. Be sure to consider in separate the extra case of
complex formulas preceded by at least two negation symbols. %

THEOREM 31 (bCe-REPRESENTABILITY). —
(∀b ∈ biv)(∃w ∈ M)(∃∗ ∈ Tr)
w(α∗) = T ⇒ b(∼α) = 0, and

w(α∗) = F ⇔ b(α) = 0.

PROOF. — Do as in Theorem 28, except that in now setting (rt4) as in Theorem 30.
Check the result by induction onmc. %

THEOREM 32 (Cie-REPRESENTABILITY). —
(∀b ∈ biv)(∃w ∈ M)(∃∗ ∈ Tr)
w(α∗) = T ⇒ b(∼α) = 0, and

w(α∗) = F ⇔ b(α) = 0.

PROOF. — Do as in Theorem 26, except that in now setting (rt4) as in Theorem 30.
Check the result by induction onmc. %

EXAMPLE 33. — We could now use the above defined PTS to check that, in Cie

(thus, also inCi, bC,mCi,CLuN ormbC), the formulas ◦α and∼•α are logically
distinguishable even if equivalent, as announced in Section 2. Indeed, by the definition
of •, the formula ∼•α is logically indistinguishable from the formula ∼∼◦α. Yet,
given a formula ϕ of the form ∼p and a formula ψ of the form ϕ[p/(p ∧ p)], it is
easy to see that, in spite of the equivalence between ϕ[p/◦p] and ϕ[p/∼∼◦p] in logics
as weak as mCi, formulas such as ψ[p/◦p] and ψ[p/∼∼◦p] are not equivalent even
in logics as strong as Cie. To check that, select some Cie-admissible translating
mapping such that (◦p)∗ = ◦1∼1p, (∼(◦p ∧ ◦p))∗ = ∼1(◦p ∧ ◦p)∗ and (∼(∼∼◦p ∧
∼∼◦p))∗ = ∼3(∼∼◦p ∧ ∼∼◦p)∗, and then select a 3-valued model w ∈ M for
which w(p) = t. This provides, of course, yet another example of how our present
family of paraconsistent logics may easily fail the replacement property, as illustrated
in Theorem 6. !

NOTE 34 (DUALIZING THE ABOVE CONSTRUCTIONS). — One might now start
everything all over again, back from Section 1, and easily dualize all results for para-
complete counterparts of all the above paraconsistent logics. To such an effect, one
only needs to explore the symmetry of the present multiple-conclusion environment,
exchange each bivaluational axiom (bi) and each sequent rule (si) for their converses
(bic) and (sic), and exchange the consistency connective for a completeness, or de-
terminedness, connective (as in (Marcos, 2005b)), and so on and so forth. The case
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of the dual of PIf was already studied in ch.4 of (Marcos, 1999) and in (Carnielli et
al., 1999), under the appellationDmin. !
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