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‘Contrariwise’, continued Tweedledee, ‘if it was so, it might be; and if it were so
would be; but as it isn’t, it ain’t. That’s logic.’

—Lewis Carroll, Through the Looking-Glass, and what Alice found there, 18

This is an investigation of negation from the point of view of universal logic, the
stract study of mother-structures (in the sense of Bourbaki) endowed with conseq
relations. In that, it has as important predecessors[1,9], and related papers. The gene
framework adopted here for the study of pure rules for negation—those that do not in
other logical constants but negation— is that of multiple-conclusion consequence rel
as in [31]. Section0 introduces the general framework and main related definitions
notations. Section1 presents the most usual axioms regulating the behavior of mult
conclusion consequence relations, such as overlap, (cautious) cut, (cautious) wea
compactness and structurality, and shows how several distinct notions of overcomple
can be defined. The latter notions can be used to catalogue four distinct varieties of
ity, and allow for an extension of da Costa’s ‘Principle of Tolerance’ (or rather ‘Princip
Non-Triviality’) in the last section. Although the present study is neither proof-theore
nor semantical in nature, some hints are given on the import of several abstract sch
rules hereby presented from a semantic viewpoint, and reports are often given ab
behavior of those rules in the context of some non-classical logics—such as rele
modal and (sub)intuitionistic or intermediate logics—with which the reader might b
miliar. Local, or contextual, rules can be studied in opposition to global rules—po
local schematic rules are meant to hold for any choice of contexts and formulas con
therein, positive global schematic rules are usually weaker rules meant to display re
among local rules. These kinds of rules are contrasted in papers such as[11,19,27]; in [29]
the author chooses to present global rules for the connectives as more ‘legitimate
I acknowledge instead that local rules are fairly more common, and concentrate on
The distinction between local and global rules is reminiscent of the traditional philos
ical distinction between inference rules and deduction rules—an elegant modern a
account of it can be found in ch. 3 of[13].

Section2 presents a few blocks of local sub-classical rules for negation—among
some rules that are positive (being universally respected in classical logic) and som
that are negative (being classically valid for some choices of contexts and formul
failing for others). The first bunch of rules comes in two dual sets: The first one reg
those properties of negation which are related to ‘consistency assumptions’ (the
tence of non-dadaistic models for some formulas together with their negations), the s
regulates ‘completeness assumptions’ (the satisfiability of either a formula or its ne
in each non-nihilistic model). Consistency rules includepseudo-scotus, which underlies
the Principle of Explosion, andex contradictione sequitur quodlibet, and these two rule
can be sharply distinguished in the present framework of multiple-conclusion conseq
relations; completeness rules include excluded middle, proof by cases andconsequentia
mirabilis; some of those rules will partly span both categories, as for instance the com
ness rule ofreductio ad absurdum, which might interfere withex contradictione. A second
bunch of rules deals with other forms of manipulation of negation: Double negation
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duction and elimination, contextual contraposition and contextual replacement are
those rules. The various interrelations between those sets of rules are carefully inves
here. The present study teams up and generalizes in part some other foundationa
on negation, such as[4,8,17,21,22,24]. Note that I will not insist here that a negation o
erator should haveanyof the above mentioned properties. Finally, the last bunch of r
comes again divided into two dual sets, which have the most distinguishing feature of
negative rules, dealing with some minimal properties that a reasonable negation shonot
have in order to reckon minimally interesting interpretations—I would be more relu
to abandon one of these last negative properties than any of the preceding positive

Paraconsistency, in particular, is equated to the failure of the Principle of Explosio
this reflects in the failure of the most basic form ofpseudo-scotus. Dual definitions are of
fered for paracomplete logics and their subclasses, and some Illustrations are given
fine definitions are easily introduced in this framework, as in Section3, so as to charac
terize a few interesting subclasses of paraconsistent logics. From the relations esta
among and inside the three blocks of rules mentioned above, the reader will imme
be able to trace, in particular, some causes and effects of paraconsistency from the
view of universal logic. For an account of the effects of the above systematization f
praxis of the non-classical designer, Section3 also illustrates some of the necessary a
sufficient conditions for paranormality—either paraconsistency or paracompletene
logic.

The first part of Section4 argues that, while individual classes of logics or classe
negations might well be characterized by positive rules, thevery notionsof logic and of
negation, or at least the interesting realizations of those notions, are often best chara
negatively, by saying which properties they should not enjoy. Definitions ofminimally de-
centclasses of logics and classes of negations are then put forward. The section co
by surveying some of the most remarkable attempts to answer the bold question of
is negation?’[10,20–22,24], calling attention to some of the merits of each approach
some of their flaws or deficiencies, while at the same time coherently situating them
the framework set in the present paper for easier comparison.

The last section ends up by listing some of the main novelties and contributions
present paper (you can go there and read them at any time), and hints at some gen
tions and extensions of the basic notions hereby assumed and at directions in wh
research should be furthered.

A warning:The intended generality in the exposition of the pure rules for negation
low, might make them hard to read, here and there. It is always easier though to s
looking at the basic cases of each family of rules. The reader should also try not
psychologically deterred by the formulation of the Facts relating those rules. Some
have the impression that I am trying to draw a map of the empire at a scale 1:1. T
surelynot the intention. The goal is indeed to be precise about our roads and connec
but, curiously, the full details of the map itself are often not that important here—be
the map is really easy to draw, once you get an idea of what’s going on. Much of wh
lows is in fact part of many logicians’ folklore, now updated into a uniform setting, w
reveals relationships already known, and makes it easy to check some new unsu
relationships. . . and to introduce some new concepts altogether. The idea, then, a
disorder, is that you get the spirit, anddon’t lose the feeling (let it out somehow).
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0. Background

Logic,n. The art of thinking and reasoning in strict accordance with limitations a
incapacities of the human misunderstanding.

—Ambrose Bierce, The Devil’s Dictionary, 1881–190

After a century of historical reinvention in the field of logic, it rests still rather
controversial to admit that there is no general agreement about what a logic or a
constantis. Nonetheless, one might feel quite safe here, yet free, with the forthco
non-dogmatic definitions.3 Following a good deal of the recent literature, this short
vestigation will assume that logics are concerned with the formal study of (pattern
reasoning, or argumentation, that is, they are concerned with deduction, with ‘wha
lows from what’. Accordingly, let’s take alogic L as a structure of the form〈SL,�L〉,
whereSL is a set of (well-formed)formulasand�L ⊆ ℘(SL) × ℘(SL) is a (multiple-
conclusion) consequence relation, or entailment, defined over sets of formulas (also call
theories) of L. Using occasionally decorated capital Greek letters as variables for the
and doing a similar thing with lowercase Greek for formulas, then putting the conseq
relation in infix format, I shall often write something asΓ,α,Γ ′ �L ∆′, β,∆ to say that
〈Γ ∪ {α} ∪ Γ ′,∆′ ∪ {β} ∪ ∆〉 falls into the relation�L. Such clauses will be calledinfer-
ences, and their intended reading is that some formula or another among thealternatives
in the right-hand side of�L should follow from the whole set ofpremisesin its left-hand
side. The theoriesΓ,Γ ′,∆′,∆ will be calledcontextsof the inference. A similar move i
made by thecanonical model-theoretic accountof a consequence relation: At least one
the alternatives should be true when all the premises are true. Keeping in mind tha
such inference should always be relativized to some previously given logic, I shal
subindices whenever I see no risk of confusion among the plethora of diverse conse
relations and logics which will be allowed to appear below.

The following paragraphs are mostly notational and somewhat boring, so I gue
reader can thread them very quickly and return only when and if they feel the need
Note that expressions like ‘¬A’, ‘ A/B ’ and ‘A//B ’ will be used as abbreviations for th
metalogical statements ‘A is not the case’, ‘ifA thenB ’ and ‘A if and only if B ’, and
expressions like ‘A ⇒ B {NN}’ and ‘A ⇔ B {NN}’ will abbreviate the metalinguistic ‘A
impliesB, in the presence ofNN’, and ‘A is equivalent toB, in the presence ofNN’. Let
[Ab]b�C denote somesequenceof the form ‘Ab1, . . . ,Abz ’, whose members are exact
the members of the family{Ab}b�C;4 whenever the sequence is composed of infere
clauses, commas will be read as metalinguistic conjunctions; whenever C= 0, one is sim-
ply dealing with an empty sequence. Note that at the metalinguistic level we shall be
using the mathematical reasoning from classical logic.

3 By this ‘non-dogmatic’ I mean that the following definitions and formulations should be taken and
tigated as what they are:proposals, rather thanprescriptions. So, I will (try) not (to) be committing myself to
any particular set of assumptions, but rather be interested in investigating the effects of each particula
A gentle bias towards the concerns of the paraconsistent scenario might though be noted—that is expl
this being the area of my major expertise and experience, and the area whose open questions originated

4 In general this family will be finite, or at most denumerably finite—ultimately, though, its cardinality
always be supposed here to be limited by the cardinality of the underlying set of formulasS.
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In order to add some structure to the set of formulasS, let �i denote somelogi-
cal constantof arity ar(i) ∈ N. S will be dubbedschematic(with respect to�i ) in case
�i ([αj ]j�ar(i)) ∈ S and{βj }j�ar(i) ⊆ S imply �i ([βj ]j�ar(i)) ∈ S. This already embodie
some notion of ‘logical form’. To make it even stronger,S will be said to have analgebraic
characterin case it is the algebra freely generated over some setLC of logical constants
with the help of a convenient setat of atomic sentences, thus implying, in particular, tha
{βj }j�ar(i) ⊆ S ⇒ �i ([βj ]j�ar(i)) ∈ S. An endomorphismin L is any mapping∗ : S → S
that preserves the constants ofL, that is, such that(�i ([αj ]j�ar(i)))

∗ = �i ([α∗
j ]j�ar(i)) for

any�i ∈ LC. Given a setS of formulas with algebraic character and a set of generatorat,
a uniform substitution—another commonly required ingredient of the notion of ‘logi
form’—is the unique endomorphic extension of a mapping∗ : at → S into the whole set o
formulas. Given the aims of this study, I shall assume below that a unarynegationsymbol
∼ will always be present as a logical constant in the underlying language of our lo
andS will be assumed to contain at least one formula of the form∼ ϕ. This assumption
together with the schematism ofS which shall be postulated from here on, will allow us
quantify metalinguistically over formulas. As some further notational help, I will use
following symbols for iterated negations:∼0α := α and∼n+1α := ∼n∼α—these will be
used to inject a bit more of generality into the formulation of the rules in Section2.

Here, a(ninference) rule will be simply a relation involving one or more inference
Given some ruleA, I will sometimes be writing(∀form)A or (∃form)A in order to quan-
tify in this way over the lowercase Greek elements that appear inA; similarly, I will be
writing (∀cont)A or (∃cont)A in order to quantify accordingly over its elements in upp
case Greek. A formulaϕ will be said todepend only onits componentformulas[ϕi]i�I
wheneverϕ can be written with the sole help of the mentioned component formulas
the logical constants of the language—this shall be denoted byϕ〈[ϕi]i�I〉. In a similar
vein, to denote a theoryΦ whose formulas depend only on the formulas[ϕi]i�I , one will
write Φ〈[ϕi]i�I〉. Unless I say something to the contrary, when I state a rule below I
be referring to the universal closure of this rule, that is, I shall be writing aschematic
rule, a rule that holds for any choice of contexts and formulas explicitly displayed
In the same spirit, when I write by way ofΓ, [αi]i�I � [βj ]j�J,∆—or, what amounts
to the same,¬(Γ, [αi]i�I � [βj ]j�J,∆)—the metalogical denial of a rule, I shall me
that there issomechoice of contextsΓ and ∆ and of formulas[αi]i�I, [βj ]j�J under
which the ruleΓ, [αi]i�I � [βj ]j�J,∆ doesnot hold. The notationΓ,α �|� β,∆ shall
abbreviate the metalogical conjunction ofΓ,α � β,∆ andΓ,β � α,∆—obviously, this
is symmetric, and it results in the same to writeΓ,β �|� α,∆. To be sure, most state
ments below will have instances with the format[Ab]b�C #D, where each element o
[Ab]b�C and eachD represents an inference clause, and # represents some sort o
plication’: Positive localschematic rules such as (C1) and (C2) a few lines below wi
constituted of universally quantified schemas, in the form(∀form)(∀cont)([Ab]b�C #D);
negative localschematic rules such as¬(C1) are opposed to positive rules, having thus
form (∃form)(∃cont)¬([Ab]b�C #D); global positiveschematic rules will have the form
(∀form)([(∀cont)Ab]b�C #(∀cont)D); global negativeschematic rules will have the form
(∃form)([(∃cont)¬Ab]b�C #(∃cont)¬D). Note that each local, or contextual, rule of t
above formats can immediately be given a global version, by suitably distributing so
the metalinguistic contextual quantifiers as expected.
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1. Rules for abstract consequence relations

Ex falso nonnumquam sequitur verum, et tamen semper ab
dum.

—Jakob Bernoulli, XVII century

I now proceed to consider some rules which have often been proposed as gener
erties of ‘any’ consequence relation. Let’s start by:

(C1) Overlap, or Reflexivity:(Γ,α,Γ ′ � ∆′, α,∆)

(C2) (Full) Cut: (Γ � α,∆ andΓ ′, α � ∆′) / (Γ ′,Γ � ∆,∆′)

To facilitate reference in the following, callsimpleany logic whose consequence relati
respects the two above properties (cf.[1]). Given that it is quite usual for a formula
be assumed to follow from itself, most known logics will indeed respect overlap, t
will not explicitly consider here any weaker versions of this rule (but the reader shou
aware of the existence of, for instance, some relevance logics failing the general ver
overlap). The full formulation of cut above, however, is quite often more than one nee
that one can count on) for most practical purposes, as the reader shall see in the fol
Many a time, one of the following weaker formulations will suffice:

(C2.1.I) (I-)left cautious cut: ([Γ � αi,∆]i�I andΓ, [αi]i�I � ∆) / (Γ � ∆)
(C2.2.J) (J-)right cautious cut: (Γ � [αj ]j�J,∆ and[Γ,αj � ∆]j�J) / (Γ � ∆)

Obviously, (C2.1.1) and (C2.2.1) are identical rules; call them 1-cautious cut, and call 1-
simplethose logics respecting (C1) and (C2.k.1). In the Facts I will mention below, I
often be relying on overlap and 1-cautious cut, and sometimes I will use full cut. The
other interesting ‘contextual versions’ of cut which dwell in between its cautious ver
and the full version, but I shall not study them here.

Other very common rules characterizing general consequence relations are:

(C3) Weakening, or Monotonicity: left weakening plus right weakening
(C3.1) Left weakening:(Γ � ∆) / (Γ ′,Γ � ∆)

(C3.2) Right weakening:(Γ � ∆) / (Γ � ∆,∆′)

Useful information to bear in mind, to fill the gaps in the proofs of the assertions w
will be found below, are the easily checkable derivations:

Fact 1.1. Consider the rules:

(r1) (Γ, [αi]i�I � [βj ]j�J,∆)

(r2) [Γ � αi,∆]i�I/(Γ � [βj ]j�J,∆)

(r3) [Γ,βj � ∆]j�J/(Γ, [αi]i�I � ∆)

Then:

(i) (r1) ⇒ (r2), for I = 0 {}
(r1) ⇒ (r2), for J= 0 {(C2)}
(r1) ⇒ (r2), in all other cases {(C2) and (C3)}
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(ii) (r1) ⇒ (r3), for J= 0 {}
(r1) ⇒ (r3), for I = 0 {(C2)}
(r1) ⇒ (r3), in all other cases {(C2) and (C3)}

(iii) (r2) or (r3) ⇒ (r1) {(C1)}

Standardtarskianconsequence relations (cf.[35]) are characterized by the validity o
(C1), (C2) and (C3), but fornon-monotoniclogics this rule (C3) (and also (C2)) fails
obtain in full generality. Thus, the model-theoretic account related to non-monotonic
should be expected to be an update of the standard one, so as to take contexts into
in evaluating the truth of formulas or the satisfiability of schematic rules. Some intere
milder versions of the weakening rule are the following:

(C3.1.K) (K-)left cautious weakening:([Γ � αk]k∈K andΓ � ∆) / (Γ, [αk]k∈K � ∆)

(C3.2.L) (L-)right cautious weakening:([αl � ∆]l∈L andΓ � ∆) / (Γ � [αk]l∈L,∆)

Now, many interesting non-monotonic logics—the so-calledplausibleones (cf.[3]), of
which adaptive logics (cf.[6]) under the ‘minimal abnormality’ strategy constitute a spe
case—will still respect (C1), (C2.1.I), (C2.2.J), (C3.2) and (C3.1.K). Other exotic co
quence relations, such as the one induced byinferentially many-valuedlogics (cf. [25]),
will only respect, in general, the properties (C2.1.I), (C2.2.J) and (C3). I will call a l
cautious tarskianin case it respects overlap, cautious cut and cautious weakening.

Note that, from this point on, I will often be using italic lowercase / uppercase le
as wildcards for a string of one / finitely-many arbitrary variables. Note also that ‘fini
many’ does not exclude the empty string. Separating dots are not parsed. One c
easily check that:

Fact 1.2.

(i) (C2.k.0)and (C3.q.0) {}
(ii) (C2) ⇒ (C2.x.a) {}

(iii) (C3.x) ⇒ (C3.x.a) { }
(iv) (Cn.x.a+b) ⇒ (Cn.x.a), for n ∈ {2,3} {}
(v) (C2.x.a)and (C2.x.b) ⇒ (C2.x.a+b) {(C3.x)}

(vi) (C2.x.1) ⇒ (C2) {(C3)}

So, diverting from uninformative rules such as (i), we see that some forms of cut
others (see (ii) and (iv)), and the same holds for weakening (see (iii) and (iv)). Cautio
is in fact equivalent to full cut in the presence of weakening (see (v) and (vi)).

Some further important properties of general consequence relations are:

(C4) Compactness: left compactness plus right compactness
(C4.1) Left compactness: for anyΓ and∆ such that(Γ � ∆) there is some finiteΓ ′ ⊆ Γ

such that(Γ ′ � ∆)
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(C4.2) Right compactness: for anyΓ and∆ such that(Γ � ∆) there is some finite∆′ ⊆ ∆

such that(Γ � ∆′)
(C5) Structurality: for any endomorphism∗, (Γ � ∆) implies(Γ ∗ � ∆∗)

Compactness is usually invoked, for instance, to guarantee the finitary character of
and is often equivalent to the axiom of choice in model theory. Typical examples of
sequence relations failing compactness are those of higher-order logics. Structur
the rule that allows for uniform substitutions to preserve entailment. Still some other
such as those regulating left- and right-contractions, expansions and permutation wil
present framework come for free, given that I have chosen to express inferences usi
sets—when the repetition of formulas or their order becomes important, as in the ca
linear logics or in categorial grammar, it is convenient to upgrade the previous defin
so as to deal with multi-sets or ordered sets of contexts.

Not all the consequence relations which respect some or even all the above pro
are decent and worth of being studied. A particularly striking way of being unintere
and uninformative occurs when the nature of the formulas of the contexts involved
inference does not really matter, but only the cardinality of the contexts is determin
the validity of the inference involving them. Consider thus the following kind of prope

(C0.I.J) I.J-overcompleteness:(Γ, [α]i�I � [β]j�J,∆)

0.0-overcompleteness says that whatever set of alternatives follows from whateve
premises. This is clearly not a very attractive situation, as it ceases to draw a differen
tween inferences. Everything is permitted—one might call this ‘Dostoyevski’s God-is-
situation’. But some other instances of overcompleteness may be worth looking at.
fix a particular sequence of alternatives[βj ]j�J, you might call it an I.J-alternativeif for
some cardinal I and any contextsΓ and∆ one has that(Γ, [α]i�I � [β]j�J,∆) holds; call
it simply a J-alternativeif it is an I.J-alternative for any I. Similarly, if you fix a particula
sequence of premises[αi]i�I , you might call it I.J-trivializing if (Γ, [α]i�I � [β]j�J,∆)

holds for some cardinal J and any contextsΓ and∆; call it simply I-trivializing if it is an
I.J-alternative for any J. A particularly interesting case here is that offinitely trivializing
theories, i.e. those theories which are I-trivializing for some finite I. Of course, if at
overlap holds then the whole set of formulas is both 1-trivializing and a 1-alternative
ory. Note, for instance, that the difference between a 1.1-alternative and a 0.1-alte
is only very slight: It is the distinction, if it makes any sense to say that there is an
tween a formula being a consequence ofanythingor of whatever(in Latin, quocumque
versusqualiscumque). A similar observation can be made about 1.1- and 1.0-trivializ
theories.5 Any formula ϕ will be called atop particle, or simply athesis,6 whenever it

5 But the distinction becomes ineffable once you start using single-conclusion instead of multiple-con
consequence relations (cf.[26]).

6 The theses of a given logic are sometimes called itslogical truths, in the manner of Quine. Some autho
would prefer, though, to call logical truths the formulas which are proved under empty contexts (but not ne
ily under all other contexts, what makes a difference if your logic is non-monotonic). This terminology is
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is a 0-alternative, and will be called abottom particle, or anantithesis, whenever it is
0-trivializing.

Note that:

Fact 1.3. By definition:

(i) any formula of a0.1-overcomplete logic is a top particle;
(ii) any formula of a1.0-overcomplete logic is a bottom particle;
(iii) any logic respecting weak cut and having a formula which is both a top and a bo

particle is0.0-overcomplete;
(iv) any overcomplete logic is tarskian.

Moreover:

(v) (C0.I.J)⇔ (C0.I+ K.J+ L), for I,J> 0 {}
(vi) (C0.0.0)⇒ (C0.I.J) {}

(vii) (C0.0.1)⇒ (C0.0.0) {bottom and(C2.k.j)}
(viii) (C0.1.0)⇒ (C0.0.0) {top and(C2.k.j)}

From the above we see that all varieties of overcompleteness reduce thus to one
0.0-, 0.1-, 1.0- and 1.1-overcompleteness. From the point of view of the standard m
theoretic account, 0.1-overcomplete logics can be characterized by a unique mo
which everything is true; similarly for 1.0-overcomplete logics and models in which ev
thing is false. The empty set of valuations, with no truth-values, provide an ade
semantics for 0.0-overcomplete logics, and for 1.1-overcomplete logics you might
bine two valuation mappings: One which makes all formulas true, and another one
makes them all false. From this point on, I will be calling a logicdadaisticin case it is 0.1-
overcomplete,nihilistic in case it is 1.0-overcomplete,trivial in case it is 0.0-overcomplete
andsemitrivial in case it is I.J-overcomplete for any I,J> 0.

As we have seen, the four above kinds of overcompleteness collapse into trivia
case weak cut is respected and there are bottoms and tops around. A cheaper
producing that collapse is by assuming the following properties on consequence re
(extending the proposal in[21]):

(CG) Coherence: left coherence plus right coherence
(CG.1) Left coherence:(Γ � β,∆) ⇔ (∀α)(Γ,α � β,∆)

(CG.2) Right coherence:(Γ,α � ∆) ⇔ (∀β)(Γ,α � β,∆)

Although the above properties are clearly admissible in most usual logics, they ar
considerably esoteric, and we will not assume them at any point in this paper.

A warning: From this point on, unless otherwise stated, all the above sorts of over
pleteness shall explicitly be avoided.

issue here—I shall rather, in general, just takeinvarianceunder contexts for granted and assume these definiti
matters to be largelyconventional, in the manner of Carnap.
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2. Pure rules for negation

Sameness leaves us in peace, but it is contradiction that makes us pr
tive.
—Johann Wolfgang Von Goethe, Conversations with Eckermann,

March 28, 1827.

Let us now consider some generalpure sub-classical properties of negation—in t
sense that their statement does not involve other logical constants but negation—
often appear in the literature (some of them known since medieval or even ancient
Be aware that, even though I will be in what follows presenting positive contextual
later on, negative contextual) schematic rules for negation and then studying their i
lations in the next Facts by way of local or global schematic tautologies, lack of spac
prevent me from analyzing in this paper the (usually weaker) global versions of the
contextual rules hereby presented, in spite of their possible interest.

For each choice oflevelsm,n∈ N, consider the rules:

(1.1.m) (Γ,∼mα,∼m+1α � ∆) (2.1.n) (Γ � ∼n+1β,∼nβ,∆)

pseudo-scotus, or explosion casus judicans, or implosion, or
excluded middle

(1.1.m.n) (Γ,∼mα,∼m+1α � ∼nβ,∆) (2.1.n.m) (Γ,∼mα � ∼n+1β,∼nβ,∆)

ex contradictione sequitur quodlibet quodlibet sequitur ad casos

Rules of the form (1.1.m) postulate the existence of special kinds of 2-trivializing the
those containing both a formula and its negation; rules (2.1.n) do the same for some
2-alternatives. From the simple schematic character of the rules, it is obvious that (1.
follows from (1.1.m), and (2.1.n.m) follows from (2.1.n)—the latter are, in fact,ex∼/ ad
nihil forms of the former. The converses, however, are usually not that immediate,
can conclude fromFact 1.3(vii) and (viii). One form of the rules in the family (1.X) or an-
other have been in vogue since at least the XIV century, where they could indeed be
in the work of John of Cornwall (the ‘Pseudo-Duns Scotus’), commenting on Aristo
Prior Analytics. An emphasis on the validity of all forms ofcasus judicans, as regulating
the so-called ‘Principle of Excluded Middle’ was strongly advocated already by stoic
Chrysippus, in which they would early be opposed, with equal strength, by Epicuru
more modernly, by Brouwer. The validity of all forms of its dual rule,pseudo-scotus, reg-
ulates the so-called ‘Principle of Explosion’. Accordingly, the rules in family (1.X) will
be related to the metatheoretical notion of ‘consistency’, and those in family (2.X) will be
related to ‘(model-)completeness’, or ‘determinedness’.

From the point of view of the standard model-theoretic account, (1.1.m) will make
that no formula (of the form∼mα) can ever be true together with its negation; (1.1.m
will guarantee that any model for∼mα and its negation will be dadaistic. A dual rema
can be made about (2.1.n), (2.1.n.0), formulas being false together with their neg
and nihilistic models.
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The attentive and well-informed reader will have already suspected that generalpara-
consistencyhas to do with the basic failure of explosion, that is, the failure of rule (1.1
dually, generalparacompletenesshas to do with the failure of (2.1.0). Thus, in particul
relevance logics provide examples of paraconsistent logics, and intuitionistic logic is
ample of a paracomplete logic. In fact, duality intuitions will guide the statement of
negation rules above and below; sometimes rules from both sides of each dual pa
be well-known from the logico-mathematical praxis, in some other occasions only o
the sides will be really that common, like in the case of (1.1.m.n)—people rarely me
(2.1.n.m) at all. As a matter of fact, it seems that it is only because there is an ol
dency to work under the asymmetrical multiple-premise-single-conclusion environm
that people even care to look at (1.1.m.n), localizing the issue of (para)consistenc
there instead of over (1.1.m). A more detailed discussion of that can be found in[26].

I proceed now to state some other rules which can easily be harvested in the liter

(1.2.m.↓) (Γ � ∼mα,∆) / (2.2.n.↓) (Γ,∼nβ � ∆) /
(Γ,∼m+1α � ∆) (Γ � ∼n+1β,∆)

(1.2.m.↑) (Γ � ∼m+1α,∆) / (2.2.n.↑) (Γ,∼n+1β � ∆) /
(Γ,∼mα � ∆) (Γ � ∼nβ,∆)

dextro-levo symmetry of negation levo-dextro symmetry of negat

(1.3.m.↓) (Γ,∼m+1α � ∼mα,∆) / (2.3.n.↓) (Γ,∼nβ � ∼n+1β,∆) /
(Γ,∼m+1α � ∆) (Γ � ∼n+1β,∆)

(1.3.m.↑) (Γ,∼mα � ∼m+1α,∆) / (2.3.n.↑) (Γ,∼n+1β � ∼nβ,∆) /
(Γ,∼mα � ∆) (Γ � ∼nβ,∆)

causa mirabilis consequentia mirabilis

According to[28], forms ofconsequentia mirabiliswere first applied in modern mathema
ics by Cardano and Clavius, in the XVI century. A century later, Saccheri adopted th
some of his main tools for doing some early work on non-Euclidean geometry. At
the same period, Huygens, and to some extent also Tacquet, argued that one shoul
from merely ‘formal’ applications ofconsequentia mirabilisto mathematics, adopting in
stead the more ‘intuitive’ forms ofreductio ad absurdum(cf. [7], and below). But then
results fromFact 2.3will show that such a move is not without consequences: The l
rule is in general much stronger than the former.

Rules of symmetry, from families (1.2.X) and (2.2.X) (cf. [1]), are quite similar to
their analogues in the families (1.3.X) and (2.3.X). They are sometimes used, for instan
in presenting the very definition of negation (cf.[17]) for logics intermediate betwee
intuitionistic and classical logic.

Next, consider the rules:

(1.4.m) (Γ � ∼mα,∆ and (2.4.n) (Γ,∼nβ � ∆ and
Γ ′ � ∼m+1α,∆′) / Γ ′,∼n+1β � ∆′) /
(Γ ′,Γ � ∆,∆′) (Γ ′,Γ � ∆,∆′)
right-redundancy left-redundancy, or proof by cases

Forms of proof by cases are some of the most ancient and probably the most co
rendering of patterns of reasoning by excluded middle in mathematics and philosop



196 J. Marcos / Journal of Applied Logic 3 (2005) 185–219

of
ers—

of by
tation,
very

s that
l

which

hould
their

global
what
and to

raposi-
logics
(1.5.m.↓.n) (Γ,∼nβ � ∼mα,∆ and (2.5.n.↓.m) (Γ,∼nβ � ∼mα,∆ and
Γ ′,∼n+1β � ∼mα,∆′) / Γ ′,∼nβ � ∼m+1α,∆′) /
(Γ ′,Γ,∼m+1α � ∆,∆′) (Γ ′,Γ � ∼n+1β,∆,∆′)

(1.5.m.↑.n) (Γ,∼nβ � ∼m+1α,∆ and (2.5.n.↑.m) (Γ,∼n+1β � ∼mα,∆ and
Γ ′,∼n+1β � ∼m+1α,∆′) / Γ ′,∼n+1β � ∼m+1α,∆′) /
(Γ ′,Γ,∼mα � ∆,∆′) (Γ ′,Γ � ∼nβ,∆,∆′)
reductio ex evidentia reductio ad absurdum

One or another form ofreductio ad absurdumcan be found integrating the standard suite
mathematical tools at least since Pythagoras’s discovery / invention of irrational numb
the reduction to absurdity is indeed the gist of methods of indirect proof and of pro
refutation. Zeno of Elea also excelled the use of this rule as applied to argumen
foreshadowing a sort of dialectical approach to critical thinking which was to become
popular later on. Butreductiois altogether dispensed by consequence relations such a
of intuitionistic logic (in accordance with results fromFact 2.3), in concert with its genera
demise of excluded middle.

Continuing, a second set of pure rules for negation which can also be handy and
are often insisted upon are the following—for each choice of levels a,b,c,d,e∈ N:

(3.1.a.b.c.d) (Γ,∼aγ � ∼bδ,∆)/ (4.1.a.e) (Γ,∼aγ � ∼a+2eγ,∆)

(Γ,∼a+2cγ � ∼b+2dδ,∆) double negation introduction

(3.2.a.b.c.d) (Γ,∼a+2cγ � ∼bδ,∆) / (4.2.a.e) (Γ,∼a+2eγ � ∼aγ,∆)

(Γ,∼aγ � ∼b+2dδ,∆) double negation elimination

(3.3.a.b.c.d) (Γ,∼aγ � ∼b+2dδ,∆) /
(Γ,∼a+2cγ � ∼bδ,∆)

(3.4.a.b.c.d) (Γ,∼a+2cγ � ∼b+2dδ,∆) /
(Γ,∼aγ � ∼bδ,∆)

double negation manipulation

(5.1.a.b.c.d) (Γ,∼aγ � ∼bδ,∆) / (6.1.a.b.e) (Γ,∼aγ �|� ∼bδ,∆) /
(Γ,∼b+2d+1δ � ∼a+2c+1γ,∆) (Γ,∼a+eγ �|� ∼b+eδ,∆)

(5.2.a.b.c.d) (Γ,∼a+2c+1γ � ∼bδ,∆) / (6.2.a.b.e) (Γ,∼a+eγ �|� ∼bδ,∆) /
(Γ,∼b+2d+1δ � ∼aγ,∆) (Γ,∼aγ �|� ∼b+eδ,∆)

(5.3.a.b.c.d) (Γ,∼aγ � ∼b+2d+1δ,∆) / (6.3.a.b.e) (Γ,∼aγ �|� ∼b+eδ,∆) /
(Γ,∼bδ � ∼a+2c+1γ,∆) (Γ,∼a+eγ �|� ∼bδ,∆)

(5.4.a.b.c.d) (Γ,∼a+2c+1γ � ∼b+2d+1δ,∆) (6.4.a.b.e) (Γ,∼a+eγ �|� ∼b+eδ,∆)

/ (Γ,∼bδ � ∼aγ,∆) / (Γ,∼aγ �|� ∼bδ,∆)

contextual contraposition contextual replacement
(for negation)

The above rules regulate some fixed-point and involutive properties of negation. I s
here insist that one ought not to confuse any of the above contextual rules with
(weaker) global versions. Note indeed, by way of an example, that basic forms of
contraposition, or even better, basic forms of global replacement will provide exactly
one needs for a negation to be amenable to a Lindenbaum–Tarski algebraization,
have an adequate standard modal interpretation. But local forms of contextual cont
tion and replacement will often fail for non-classical logics such as paraconsistent
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(seeFact 2.5below), even though some of those logics will in fact be perfectly algeb
able (cf.[32] and the Section 3.12 of[16]).

Let me now invite you to have a look at some of the aftereffects and interrelations a
the rules introduced just above, to get a taste of how powerful they can be.7

Fact 2.1. Some relations that hold among the last set of rules for negation are:

(i) (t.u.a.w.x.Y ) ⇒ (t.u.a+ b.w.x.Y ), for a,b∈ N {}
(ii) (t.u.v.a.x.Y ) ⇒ (t.u.v.a+ b.x.Y ), for a,b∈ N {}

(iii) (4.u.a.w) ⇒ (4.u.a+ b.w), for a,b∈ N {}
(iv) (3.x.a.b.0.0) { }
(v) (4.x.0.0) ⇔ (C1) { }

(vi) (6.x.a.b.0) { }
(vii) (3.x.a.b.c.d) ⇒ (3.x.a.b.t × c.t × d), for t > 0 { }
(viii) (4.x.a.e) ⇒ (4.x.a.t × e), for t > 0 {(C2.k.1)}
(ix) (6.x.a.b.e) ⇒ (6.x.a.b.t × e), for t > 0 {}
(x) (x.1.a.a.f + u.f + v) ⇒ (4.y.a+ 2f + z.e), for {(C1)}

〈x,u, v, y, z〉 ∈ {〈3,0,e,1,0〉, 〈3,e,0,2,0〉,
〈5,e,0,1,1〉, 〈5,0,e,2,1〉}

(xi) (x.2.a.a+ 2c+ y.c.e) ⇒ (4.z.a.c+ e+ y), for {(C1)}
〈x, y, z〉 ∈ {〈3,0,1〉, 〈5,1,2〉}

(xii) (x.3.a+ 2c+ y.a.e.c) ⇒ (4.z.a.c+ e+ y), for {(C1)}
〈x, y, z〉 ∈ {〈3,0,2〉, 〈5,1,1〉}

(xiii) (x.4.a+ 2r.a+ 2s.c+ t.c+ u) ⇒ (4.y.a.e), for {(C1)}
〈x, r, s, t, u, y〉 ∈ {〈3,0,e,e,0,1〉, 〈3,e,0,0,e,2〉,

〈5,e,0,0,e,1〉, 〈5,0,e,e,0,2〉}
(xiv) (x.4.0.0.f + r.f + s) and (4.y.2f + z.e) ⇒ (C1), for {}

〈x, r, s, y, z〉 ∈ {〈3,0,e,1,0〉, 〈3,e,0,2,0〉,
〈5,0,e,1,1〉, 〈5,e,0,2,1〉}

(xv) (v.x.a.b.e.e) and (v.y.b.a.e.e) ⇒ (6.z.a.b.2e+ w), for {}
〈v,w〉 ∈ {〈3,0〉, 〈5,1〉} and
〈x, y, z〉 ∈ {〈1,1,1〉, 〈2,3,2〉, 〈3,2,3〉, 〈4,4,4〉}

(xvi) (3.x.a+ 2e.b.c.d) and (4.z.a.c+ e) ⇒ (3.y.a.b.e.d), {(C2)}, or
for 〈x, y, z〉 ∈ {〈1,2,1〉, 〈2,1,2〉, 〈3,4,1〉, 〈4,3,2〉} {(C2.k.j) and (C3.1)}, or

{ (4.3− z.a.c+ e) and (C2.k.j) and (C3.1.p)}
(xvii) (3.x.a.b+ 2f.c.d) and (4.z.b.d+ f) ⇒ (3.y.a.b.c.f), {(C2)}, or

for 〈x, y, z〉 ∈ {〈1,3,2〉, 〈2,4,2〉, 〈3,1,1〉, 〈4,2,1〉} {(C2.k.j) and (C3.2)}, or
{ (4.3− z.b.d+ f) and (C2.k.j) and (C3.2.q)}

(xviii) (3.x.a+ 2e.b+ 2f.c.d) and (4.w.a.c+ e) and (4.z.b.d+ f)
⇒ (3.y.a.b.e.f), for 〈x, y,w, z〉 ∈ {〈1,4,1,2〉, 〈4,1,2,1〉} {(C2)}, or

7 In the next facts, I do not claim of course to present ‘all’ the interesting results, and not even the
possible results—in the sense of working always with the weakest premises and deriving the strongest con
by way of the feeblest set of assumptions, in the most general way. But I have advanced a great deal poli
results in that direction, and the reader will see they are indeed not that bad.
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{ (4.3− w.a.c+ e) and (4.3− z.b.d+ f) and (C2.k.j) and (C3.1.p)and (C3.2.q)}
(xix) (4.x.a.c) and (4.y.b.d) ⇒ (3.z.a.b.c.d),

for 〈x, y, z〉 ∈ {〈2,1,1〉, 〈1,1,2〉, 〈2,2,3〉, 〈1,2,4〉} {(C2)}, or
{ (4.3− w.a.c) and (4.3− z.b.d) and (C2.k.j) and (C3.1.p)and (C3.2.q)}

(xx) (5.1.a.b.c.d) and (5.1.b+ 2d+ 1.a+ 2c+ 1.f.e) ⇒ {}
(3.1.a.b.c+ e+ 1.d+ f + 1)

(xxi) (5.2.a+ 2b+ 1.b.e.d) and (5.3.b+ 2d+ 1.a.f.c) ⇒ {}
(3.2.a.b.c+ e+ 1.d+ f + 1)

(xxii) (5.3.a.b+ 2d+ 1.c.f) and (5.2.b.a+ 2c+ 1.d.e) ⇒ {}
(3.3.a.b.c+ e+ 1.d+ f + 1)

(xxiii) (5.4.a+ 2c+ 1.b+ 2d+ 1.e.f) and (5.4.b.a.d.c) ⇒ {}
(3.4.a.b.c+ e+ 1.d+ f + 1)

(xxiv) (5.x.a+ 2e+ 1.b.c.d) and (4.2.a.c+ e+ 1) ⇒ (5.y.a.b.e.d), {(C2)}, or
for 〈x, y, z〉 ∈ {〈1,2,2〉, 〈2,1,1〉, 〈3,4,2〉, 〈4,3,1〉} {(C2.k.j) and (C3.z)}, or

{ (4.1.a.c+ e+ 1) and (C2.k.j) and (C3.z.p)}
(xxv) (5.x.a.b+ 2f + 1.c.d) and (4.1.b.d+ f + 1) ⇒ (5.y.a.b.c.f), {(C2)}, or

for 〈x, y, z〉 ∈ {〈1,3,1〉, 〈3,1,2〉, 〈2,4,1〉, 〈4,2,2〉} {(C2.k.j) and (C3.z)}, or
{ (4.2.b.d+ f + 1) and (C2.k.j) and (C3.z.p)}

(xxvi) (5.x.a+ 2e+ 1.b+ 2f + 1.c.d) and {(C2)}, or
(4.1.b.d+ f + 1) and (4.2.a.c+ e+ 1) and {(C2.k.j) and (C3.z.p)}
(4.2.b.d+ f + 1) and (4.1.a.c+ e+ 1) ⇒ (5.y.a.b.e.f),
for x, y ∈ {1,4}, x �= y

(xxvii) (6.x.a.b.e) ⇔ (6.x.b.a.e), for x ∈ {1,4} {}
(xxviii) (6.2.a.b.e) ⇔ (6.3.b.a.e) {}

(xxix) (6.2.a.a+ e.e) ⇒ (4.1.a.e) and (4.2.a.e) {(C1)}
(xxx) (6.x.a+ e.b.e) and (4.1.a.e)and (4.2.a.e)⇒ (6.y.a.b.e),

for x, y ∈ {1,2}, x �= y {(C2.k.j) and (C3.1.p)and (C3.2.q)}
(xxxi) (6.x.a.b+ e.e) and (4.1.b.e)and (4.2.b.e)⇒ (6.y.a.b.e),

for x, y ∈ {2,4}, x �= y {(C2.k.j) and (C3.1.p)and (C3.2.q)}
(xxxii) (6.x.a+ e.b+ e.e) and (4.1.m.e)and (4.2.m.e)⇒ (6.y.a.b.e),

for x, y ∈ {1,4}, x �= y, {(C2.k.j) and (C3.1.p)and (C3.2.q)}
andm = min(a,b)

Assuming we are talking about 1-simple logics, that is, taking overlap and 1-cautio
for granted, let me briefly comment on the above Fact: Note that, by schematism (re
ber last section), less complex rules—those dealing with fewer negations—usually
more complex ones (see (i)–(iii)); less generous rules—those introducing or elimin
fewer negations—often imply more generous ones (see (vii)–(ix)), and in the most
cases they sometimes do not tell you much (see (iv)–(vi)); each form of double ne
introduction / elimination is implied by some appropriate form of double negation ma
lation or contextual contraposition (see (x)–(xiii)) and a similar thing happens with re
to contextual replacement (see (xv)); moreover, some strong forms of the rules fo
ble negation manipulation or contraposition can only hold together with the introduc
elimination rules for double negation in case the underlying consequence relation re
overlap (see (xiv)); contextual replacement alone can also force double negation int
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tion / elimination rules to hold (see (xxix) and (xxviii)); all forms of double negation m
nipulation can in fact be deduced from appropriate forms of double negation introdu
/ elimination (see (xix)); combinations of appropriate forms of contextual contrapos
will also immediately yield some forms of double negation manipulation (see (xx)–(xx
some forms of double negation manipulation will even imply others, given conve
rules for double negation introduction / elimination (see (xvi)–(xviii)), and a similar th
will happen with contextual contraposition (see (xxiv)–(xxvi)); some forms of contex
replacement will also imply others, either in general (see (xxvii) and (xxviii)) or in the p
ence of appropriate forms of double negation introduction / elimination (see (xxx)–(xx

It is now easy to conclude from the above that there are some rules which are som
‘more fundamental’ than others. For instance:

Illustration 2.2. Here are a few possible choices of rules from which all the other r
from families(3.X), (4.X), (5.X) and(6.X) follow, inside any cautious tarskian logic:

(1) (5.4.0.0.0.1) and(5.4.0.0.1.0)

(2) (5.1.1.1.0.0) and(5.2.0.1.0.0) and(5.3.1.0.0.0)

To check that, use the last Fact. In case (1), parts (i) and (ii) give you schematism
which you can conclude (5.4.a.b.0.1) and (5.4.a.b.1.0), for any a,b∈ N. From that you have
in particular that (5.4.2.0.0.1) and (5.4.0.2.1.0), thus (4.1.0.1) and (4.2.0.1) are in
from (xiii). From (iii), (viii) and (v) you can derive all rules from family(4.X). With the
help of those rules and (xxvi) all the rules of the form(5.1.Y ) and(5.4.Y ) ensue, and usin
(xxiv) and (xxv) you can derive the rest of the family(5.X). The remaining derivations ar
left to the reader.

In case (2), (4.2.0.1) follows from (5.2.0.1.0.0) by (xi) and (4.1.0.1) follows fr
(5.3.1.0.0.0) by (xii). From that, (5.1.1.1.0.0), and schematism, (5.4.a.b.c.d) follow
ing (xxvi), and we’re back to case (1).

Another interesting set of results concerning the above rules is presented in wh
lows.

Fact 2.3. Here are some other relations which can be checked to hold among the
rules for negation:

(i) (1.X.a.Y ) ⇒ (1.X.a+ b.Y ), for a,b �= ↓,↑ {}
(ii) (1.x.a+ b.Y ) and (4.1.a.e) ⇒ (1.x.a.Y ), for e> 0 and

〈x, y, z〉 ∈ {〈1,1,1〉, 〈2,1,2〉, 〈4,2,2〉, 〈5,1,2〉} {(C2)} , or
{(C2.k.j) and (C3.y) and (C3.z)}, or

{ (4.2.a.e) and (C2.k.j) and (C3.y.p) and (C3.z.q)}
(iii) (1.x.Y.a+ b) and (4.2.a.e) ⇒ (1.x.Y.a), for e> 0 and {(C2)}, or

〈x, y, z〉 ∈ {〈1,2,2〉, 〈5,1,1〉} {(C2.k.j) and (C3.y) and (C3.z)}, or
{ (4.1.a.e) and (C2.k.j) and (C3.y.p) and (C3.z.q)}

(iv) (1.3.a+ b. ↓) and (4.1.a.e) ⇒ (1.3.a. ↓), {(4.2.a+ 1.e)and (C2)}, or
for e> 0 {(4.2.a.e)and (C2.k.j) and (C3.1.p)and (C3.2.q)}
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(v) (1.3.a+ b. ↑) and (4.2.a.e) ⇒ (1.3.a. ↑), {(4.1.a.e)and (C2)}, or
for e> 0 {(4.1.a.e)and (C2.k.j) and (C3.1.p)and (C3.2.q)}

(vi) (1.1.0.1) and (5.4.0.0.0.0)⇒ (C1) {}
(vii) (1.1.m) ⇒ (1.1.m.x) {}
(viii) (1.1.m.0) ⇒ (1.1.m) { bottom and(C2.k.j)}
(ix) (1.1.m) ⇒ (1.2.m. ↓) and (1.2.m. ↑) {(C2)} or {(C2.k.j)+(C3.1)}
(x) (1.2.m. ↓) or (1.2.m. ↑) ⇒ (1.1.m) {(C1)}

(xi) (1.2.m.x) ⇒ (1.3.m.x) {}
(xii) (1.1.m) ⇒ (1.3.m. ↓) and (1.3.m. ↑) {(C2.k.j)}
(xiii) (1.3.m. ↓) or (1.3.m. ↑) ⇒ (1.1.m) {(C1)}
(xiv) (1.1.m) ⇒ (1.4.m) {(C2)}
(xv) (1.4.m) ⇒ (1.x.m.Y ), for x ∈ {1,2,3} {(C1)}

(xvi) (1.3.m. ↑) and (2.1.m+ 1.m) ⇒ (4.1.m.1) {}
(xvii) (1.3.m+ 1. ↓) and (2.1.m.m+ 2) ⇒ (4.2.m.1) {}

(xviii) (1.5.m. ↑ .m+ 1) ⇒ (4.1.m.1) {(C1)}
(xix) (1.5.m+ 1. ↓ .m) ⇒ (4.2.m.1) {(C1)}
(xx) (1.5.m+ 1.x.n) and (4.1.m.1)⇒ (1.5.m.y.n), {(C2)} , or

〈x, y, z〉 ∈ {〈↓,↑,1〉, 〈↑,↓,2〉} {(C2.k.j) and (C3.z)}, or
{ (4.2.m.1) and (C2.k.j) (C3.z.p)}

(xxi) (1.5.m.x.n) and (4.2.m.1)⇒ (1.5.m+ 1.y.n), {(C2)}, or
〈x, y, z〉 ∈ {〈↓,↑,2〉, 〈↑,↓,1〉} {(C2.k.j) and (C3.z)}, or

{ (4.1.m.1) and (C2.k.j) (C3.z.p)}
(xxii) (1.5.m. ↓ .x) or (1.5.m. ↑ .x) ⇒ (1.1.m) {(C1)}

(xxiii) (1.5.m. ↑ .n) ⇒ (2.1.n.m) {(C1)}
(xxiv) (1.5.m. ↓ .n) ⇒ (2.1.n.m+ 1) {(C1)}
(xxv) (1.2.m.x) and (2.4.n) ⇒ (1.5.m.x.n) {}

(xxvi) (1.3.0. ↑) and (2.1.0.0) ⇒ (C1) {}
(xxvii) (1.3.m. ↑) and (2.1.n.m) ⇒ (1.5.m. ↑ .n) {(C2)}

(xxviii) (1.3.m. ↓) and (2.1.n.m+ 1) ⇒ (1.5.m. ↓ .n) {(C2)}

This much for the(1.X)-column. Dual results obtain for the(2.X)-column, if one only
uniformly substitutes, in the formulation of the above items, each: (1.X) for (2.X), and
vice-versa; (4.1.X) for (4.2.X), and vice-versa; tops for bottoms; (C3.1.X) for (C3.2.X),
and vice-versa.

To make things more concrete, if we assume we are talking about simple conse
relations then the non-obvious parts of the previous Fact boil down to something lik
Again, by schematism, less complex rules imply more complex ones (see (i)), but
in the presence of appropriate forms of double negation introduction elimination,
plex rules can on their turn be simplified (see (ii)–(v)); there are always equivalent
of pseudo-scotus, dextro-levo symmetry of negation,causa mirabilisand right-redundan
cy (see (ix)–(xv));ex contradictioneis in reality weaker thanpseudo-scotus8 (see (vii)

8 Recall for instance the semitrivial logic from the last section. That specific 1.1-overcomplete logic re
ex contradictionebut notpseudo-scotus. A more general realization of that phenomenon as applied to non-
complete logics was explored in[26].
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and (viii)); ↑-forms and↓-forms of reductio ex evidentiacan in fact imply each other i
appropriate forms of double negation introduction or elimination are available (see
and (xxi)); moreover, some double negation rules are implied byreductio(see (xviii) and
(xix)); reductio ex evidentiaalso gives youpseudo-scotus(see (xxii)) and some forms o
quodlibet sequitur ad casos(see (xxiii) and (xxiv)); in fact, you can only count on bo
‘full consistency’ and ‘semicompleteness’ then you can getreductio ex evidentiaback (see
(xxv), (xxvii) and (xxviii)); no surprise, appropriate forms ofcausa mirabilisandad ca-
soscan tell you something about double negation (see (xvi) and (xvii)). Note also
more general classes of logics, that a consequence relation cannot fail overlap onc
spects, for instance, either some basic forms ofcausa mirabilisand ad casos, or some
forms ofex contradictioneand contextual contraposition (see (xxvi) and (vi)). This m
for the ‘consistency’ column (1.X); dual readings are readily available for the column
‘determinedness’, (2.X). Consequently, in case you have a (simple) paraconsistent or
complete logic you are bound to lose some forms of symmetry of negation, some
miraculous and redundancy rules, and some forms ofreductio.

In a single-conclusion framework, rules such aspseudo-scotus, symmetry, proof by
cases andreductio ex evidentiaare not expressible in the way they were here presented
it will happen, for instance, thatpseudo-scotusandex contradictionewill be indistinguish-
able. Observe that, if your (multiple-conclusion) consequence relation respects o
then the validity ofreductio ad absurdumimplies the validity ofex contradictione; differ-
ently from the single-conclusion case, though,pseudo-scotuscan now still fail in such a
situation. The attentive reader will have noticed that not everything is completely sym
rical, however, even in the multiple-conclusion framework. For instance:

Illustration 2.4. Inside simple logics:

(1) (x.5.m.↑.n) ⇒ (x.5.m.↓.n), for n� m+ 1
(2) (x.5.m.↓.n) ⇒ (x.5.m+ 1.↑.n), for n� m

To check those assertions, use parts (i) and (xviii)–(xxi) from the last Fact. Moreove
can now easily check that all rules from families (1.X) and (2.X) become valid once bot
(1.5.0.↑.0) and (2.5.0.↑.0) are verified by a simple logic. Another option to generat
basis for all the other rules is to include a top particle together with(1.5.0.↑.0), or else to
include a bottom particle together with(2.5.0.↑.0).

Notice, at any rate, that one can easily think of a simple logic for which(x.5.m.↓.n)

holds good, for all levels m,n ∈ N, and where tops and bottoms are present, w
(x.5.0.↑.0) is still not inferable—such is the case, for instance, of intuitionistic logic.

In [8], Béziau pointed out an interesting way of correcting the above asymmetry, w
runs like this. Recall from Section0 that we have added and have been using symbol
iterated negations, defined in terms of a single negation,∼, by setting∼0α := α and∼n+1α

:= ∼n∼α, for n ∈ N. Now, take instead all such symbols∼n as primitive symbols, an
consider the ‘symmetric domain’ given by the integers, requiring only the schematic a
∼a+bα = ∼a∼bα, for every a,b ∈ Z, to be respected. Keeping the above rules exactl
they were presented, it is clear that all the Facts that we proved (or else some s
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modified versions of them) keep provable with this new definition. But now the a
pathology cannot obtain, and if (x.5.m.↓.n) holds good, for a given simple logic and a
given levels m,n∈ Z, then (x.5.m.↑.n) will also hold good, as a consequence, for all m,n∈
Z. So far, so well. The author of[8], however, after using this symmetrization on the con
of the above Illustration to suggest that, in a symmetric domain, the differences be
classical and intuitionistic negation will vanish, also proceeded to use particular ca
the derivations inFact 2.3in order to point some forms of the above rules from which
the other rules would be derived. More specifically, in the single-conclusion environ
that he works in, he points out that the validity ofreductio ad absurdumin a simple logic
will be enough to allow for the derivation of all the other rules for negation. But, as
have seen above, in case we use a multiple-conclusion environment and there is no
present in the language of the logic, one might quite well have all forms ofreductio ad
absurdumholding good whilepseudo-scotusstill fails; in case there is no top in the logi
all forms ofreductio ex evidentiamight be available and stillcasus judicansmight fail. (It
does not really help to point out that canonical sequent-style presentations of intuitio
logic are single-conclusion. Multiple-conclusioned presentations for that same logic
been known since long—check[34], for instance.) So, to be sure, contrarily to what Béz
asserts, here we see thatreductio ad absurdumalone doesnot sanction the derivation o
all the other rules for negation. One always has to be alert not to let a particular cho
framework fool oneself into deceivingly general conclusions.

Fact 2.5. Some further interesting relations among the two above sets of rules for neg
are (let opt = {〈↓,↓,1〉, 〈↑,↓,2〉, 〈↓,↑,3〉, 〈↑,↑,4〉}):

(i) (1.2.a+ r.x) and (1.2.b+ s.y) and (2.2.a+ t.x) and (2.2.b+ u.x) ⇒ {}
(3.z.a.b.c.d), for 〈x, y, z〉 ∈ opt and
〈z, r, s, t, u〉 ∈ {〈1,1,0,0,1〉, 〈2,0,0,1,1〉, 〈3,1,1,0,0〉, 〈4,0,1,1,0〉}

(ii) (w.2.a.x) and (3− w.2.a+ 1.x) ⇒ (4.y.a.e), for w ∈ {1,2} {(C1)}
(iii) (1.2.b.y) and (2.2.a.x) ⇒ (5.z.a.b.0.0), for 〈x, y, z〉 ∈ opt {}
(iv) (1.2.a+ 1.x) and (1.2.b.y) and (2.2.a.x) and (2.2.b+ 1.y) ⇒ {}

(5.z.a.b.c.d), for 〈x, y, z〉 ∈ opt
(v) (1.2.a.x) and (1.2.b.y) and (2.2.a.x) and (2.2.b.y) ⇒ {}

(6.z.a.b.w), for w > 0 and 〈x, y, z〉 ∈ opt
(vi) (1.2.a+ 1. ↑) and (4.1.a.1) ⇒ (1.1.a) {}

(vii) (1.2.a. ↓) and (4.2.a.1) ⇒ (1.1.a+ 1) {}
(viii) (1.2.a+ 2e.x) and (4.1.a.e) ⇒ (1.1.a) {(C2.k.j)}

(ix) (1.2.a.x) and (4.2.a.e) ⇒ (1.1.a+ 2e) {(C2.k.j)}
(x) (5.1.a.b.c.d) and (4.2.b.d) ⇒ (1.1.b+ 2d.a+ 2c+ 1) {}

(xi) (5.2.a.b.c.d) and (4.2.b.d) ⇒ (1.1.b+ 2d.a) {}
(xii) (5.3.a.b.c.d) and (4.1.b+ 1.d) ⇒ (1.1.b.a+ 2c+ 1) {}

(xiii) (5.4.a.b.c.d) and (4.1.b+ 1.d) ⇒ (1.1.b.a) {}
(xiv) (5.1.a.b.c.d) and (4.1.b+ 1.d) ⇒ (1.1.b.a+ 2c+ 1) {(C1) and (C2.k.j)}
(xv) (5.2.a.b.c.d) and (4.1.b+ 1.d) ⇒ (1.1.b.a) {(C1) and (C2.k.j)}

(xvi) (5.3.a.b.c.d) and (4.2.b.d) ⇒ (1.1.b+ 2d.a+ 2c+ 1) {(C1) and (C2.k.j)}
(xvii) (5.4.a.b.c.d) and (4.2.b.d) ⇒ (1.1.b+ 2d.a) {(C1) and (C2.k.j)}
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(xviii) (C0.0.1)⇒ (x.y.Z), for x ∈ {2,3,4,5,6} andx.y �= 2.4 {}
(xix) (C0.0.1)⇒ (x.y.Z), for x.y = 2.4 {(C2)}
(xx) (C0.0.0)⇒ (Z) {}

Dual results hold if one uniformly substitutes, in the above items, each: (1.X) for
(2.X), and vice-versa;(4.1.X) for (4.2.X), and vice-versa;(3.z.b.a.X) for (3.z.a.b.X);
(5.z.b.a.d.c)for (5.z.a.b.c.d); (3.2.X) for (3.3.X), and vice-versa;(5.2.X) for (5.3.X), and
vice-versa;(C0.1.0)for (C0.0.1).

So, at least as far as simple logics are concerned, one sees that appropriate f
symmetry rules from the consistency and the completeness families together are en
imply each rule from the second bunch of rules, that is, those rules involving double
tion, contraposition or contextual replacement (see (i)–(v), and recall alsoFact 2.1(xix));
furthermore, in the presence of appropriate forms of double negation introduction /
ination, one sees how symmetry rules implypseudo-scotusandcasus judicans, and how
contextual contraposition rules implyex contradictioneand ad casos(see (vi)–(ix) and
(x)–(xvii)). Finally, note that overcompleteness might give you the positive propertie
free (see (xviii)–(xx)). As a particularly interesting base for deriving all the other rules
might consider:

Illustration 2.6. Inside any logic respecting overlap (rule (C1)), all the rules from fam
(1.X)–(6.X) follow from the validity of basic rules such as(1.4.0) together with(2.4.0).

To check that all rules from families (1.X) and (2.X) follow from (1.4.0) and(2.4.0),
recall parts (xv), (vii), (xxv) and (i) ofFact 2.3. For the remaining rules, use parts (ii)–(
of Fact 2.5, together with parts (iv)–(vi) and (xx)–(xxiii) ofFact 2.1.

We might now reasonably ask ourselves: Have we not been too permissive? Is
anything in common, after all, among ‘all negations’? I have prudently not said a w
about that matter this far. More interesting for me was to note the consequences of e
of rules assumed to hold at each given moment. For instance, takingFact 2.3into consid-
eration, if you are talking about a simple paraconsistent logic, then you should first
for inconsistent models, thus you cannot expect any of the rules of the form (1.x.0.Y ) to be
valid—except perhaps forex contradictione, and this only in case there is no bottom pa
cle present in your logic. Now, ifex contradictioneis also not valid, as it is usually the cas
thenreductio ad absurdummust also fail. Moreover, takingFact 2.1into consideration, if
your logic also lacks some form of double negation introduction / elimination, then n
forms of contextual contraposition will be interderivable, and not all forms of conte
replacement will be interderivable; in fact, some forms of contextual contraposition a
contextual replacement will be simplypreventedfrom holding. Finally, takingFact 2.5into
consideration, any double negation manipulation, contextual contraposition or cont
replacement rule that might be lacking will cause a failure of symmetry, and your s
logic might end up being either paraconsistent or paracomplete, in the presence of
priate forms of double negation introduction / elimination; the failure ofpseudo-scotu
at given levels is incompatible with both symmetry and double negation rules at re
levels; the failure ofex contradictionewill condemn either some form of contextual co
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traposition or of double negation, and so forth. Dual results hold for paracomplete
and undetermined models.

All that said and done, it might come as no surprise the acknowledgment that
of the few things which are common to all negations in the literature are not ‘po
properties’, but ‘negative’ ones. In fact, it is not that theyhavesomething in common, bu
that theylack some things in unison. Consider the following set of negative rules, for
level a∈ N:

(7.1.a) (Γ,∼a+1ϕ � ∆) (8.1.a) (Γ � ∼a+1ϕ,∆)

nonbot nontop
(7.2.a) (Γ,∼a+1ϕ � ∼aϕ,∆) (8.2.a) (Γ,∼aϕ � ∼a+1ϕ,∆)

verificatio falsificatio

Of course, I continue to consider above only sub-classical properties of negation: The
tive rules stated above are rules whichcanhold in classical logic for some particular choi
of contexts and of (negated) formulas, but that shouldnot, I contend, hold in general for a
object we intend to call ‘negation’.9

From a semantic point of view, (7.1.a) makes sure that our negation is not an op
which produces only bottom particles, and (8.1.a) poses a similar restriction on ope
which produce only top particles—these could be held as some sort of very basic re
ments for a decent version of this logical constant. Now, a decent negation operator
also embody some reasonable notion of ‘opposition’: Accordingly, (7.2.a) requires th
negation of some formula can be true while that formula itself is false, and (8.2.a) req
dually, that some true sentence should have a false negation—thus, no extreme cas
allowed in which all models are dadaistic (that is, thoroughly inconsistent) or nihilistic
is, thoroughly undetermined). In particular, any of those last two rules preclude iden
an interpretation of negation. This negative axiomatic outlook seems rare, but, I s
is not really that controversial—in fact, I am unaware ofany connective which has bee
seriously proposed intending to represent some sort of ‘negation’ and that does not
all the above negative rules. Some interesting results involving the last set of rules f

Fact 2.7. Some further interesting relations among the three above sets of rules for ne
are:

(i) ¬(7.1.a) ⇒ (1.1.a) {}
(ii) ¬(7.1.a) ⇒ (4.x.a+ 1.e) {}

(iii) (7.x.a+ b) ⇒ (7.x.a) {}
(iv) (7.1.a) and (4.1.a+ 1.e) ⇒ (7.1.a+ b), for e> 0 {(C2)}, or

{(C2.k.j) and (C3.1))}, or { (4.2.a+ 1.e) and (C2.k.j) and (C3.1.p))}
(v) (7.2.a) and (3.4.a+ 1.a.e.e) ⇒ (7.2.a+ b), for e> 0 {}

9 Note that I didnotat any point require—and I will not require—that logics should have any theses / theo
/ tautologies / top particles, as much as I also did not require at any point that logics should have any an
Important logics such as Kleene’s 3-valued logic have no theses at all. In particular, I surely did not requ
logics should havenegatedtheses, that is, theses of the form∼α. An example of paraconsistent logic extendi
positive classical logic by the addition of (2.1.0) and (4.2.0.1) and which can be proven to have no negate
nor bottom particles is the logic studied under the nameCmin in [15].
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(vi) (7.1.a) and (1.3.a.↓) ⇒ (7.2.a) {}
(vii) (7.2.a) ⇒ (7.1.a) {}
(viii) (7.1.a+ 1) and (1.2.a+ 1.↓) ⇒ (8.1.a) {}
(ix) (7.1.a) and (1.2.a+ 1.↑) ⇒ (8.1.a+ 1) {}
(x) (7.2.a+ 1) ⇒ (8.1.a) {}

(xi) (7.1.a) and (1.3.a+ 1.↑) ⇒ (8.2.a+ 1) {}
(xii) (7.2.a) and (5.4.a.a+ 1.e.e) ⇒ (8.2.a+ 2e+ 1) {}
(xiii) (C0.0.1)⇒ ¬(8.x.y) {}
(xiv) (2.1.0)and¬(7.x.0) ⇒ (C0.0.1) {(C2.k.j)}

Dual results hold if one uniformly substitutes, in the above items, each:(1.X) for (2.X), and
vice-versa;(7.X) for (8.X), and vice-versa;(4.1.X) for (4.2.X), and vice-versa;(x.4.a.a+
1.e.e) for (x.4.a+ 1.a.e.e), and vice-versa;(C3.2.q)for (C3.1.p); (C0.1.0)for (C0.0.1).

So we see that: If a logic disrespects nonbot then it cannot failpseudo-scotusnor dou-
ble negation elimination (see (i) and (ii)); this time more complex negative rules i
simpler ones by schematism (see (iii)), the converses being true in some special c
an appropriate logical environment, given some appropriate form of double negati
troduction / elimination or some form of double negation manipulation (see (iv) and
nonbot impliesverificatio in the presence ofcausa mirabilis, while the converse is alway
true in virtue of schematism (see (vi), (vii) and (iii)); nonbot implies an appropriate
of nontop in the presence of an appropriate form of dextro-levo-symmetry (see (vii
(ix)); verificatio always implies nontop in virtue of schematism (see (x));falsificatio is
implied by nonbot by way of an appropriate form ofcausa mirabilis, and is implied by
verificatio in the presence of a conveniently strong form of contraposition (see (xi)
(xii)). This much if we put the family (7.X) at the side of the premises; dual readings
be effected if we now put the family (8.X) there. Notice also that, on the one hand, ba
forms of overcompleteness imply the failure of the rules from the last two families
(xiii)) and, on the other hand, a failure of any of the most basic forms of the last given
occasions overcompleteness in the appropriate positive environment (see (xiv))—or
it differently, non-overcompleteness together with determinedness might implyverificatio,
together with consistency it might implyfalsificatio.

One can conclude from this last Fact that no paraconsistent logic can disrespect
(and a similar restriction applies to logics without double negation introduction / elim
tion); on the other hand, if you fix a logic which respects weak cut, any explosive neg
in it had better respect nontop, or else it can occasion overcompleteness. Moreov
logic respectsverificatiothen it automatically respects nonbot as well, and similarly forfal-
sificatioand nontop; besides, in the presence of appropriate forms of levo-dextro-sym
of negation, nonbot implies nontop. If a logic respects some of the above negative
then we are safeguarded against the most basic forms of overcompleteness. Non-o
plete logics respecting weak cut and some of the above positive rules will also often r
some of the above negative rules, but a logic can respect all the given negative ru
yet respect none of the given positive rules (ok, I concede: This would be quite wea
‘negation’—but check the next sections). Dual results can easily be checked for par
plete logics.
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Another pure negative rule which might occur to the reader at this point is the follow

(9.a) ¬(Γ,∼aϕ �|� ∼a+1ϕ,∆)

paradoxical inequivalence

Many set-theoretical paradoxes end up by sanctioning a paradoxical inference whic
some form of (9.a), rather than directly proving a pair of contradictory formulas. Bu
failure of (9.a) means the failure of both of the corresponding rules (7.2.a) and (8.2.a
from that it follows, using the last Fact, that those failures leave us standing a very
step from some form of overcompleteness.

3. Causes and consequences for paranormal logics

It is contrary to common sense to entertain apprehensions or terrors upon
count of any opinion whatsoever, or to imagine that we run any risk hereafte
the freest use of our reason. Such a sentiment implies both an absurdity a
inconsistency.

—David Hume, Dialogues Concerning Natural Religion, 177

As I see it, a natural continuation of the last section should include an analysis
consequences of the ‘paraconsistent attitude’, that is, a brief list of properties enjo
avoided by logics for which the positive rule (1.1.0) fails, in the light of all previous Fa
Calculating this is a purely mechanical task, so this section will only provide some
trations of such calculations, instead of trying the reader’s patience with further le
enumeration of facile results.

To make things even more interesting, I will in fact start by quickly showing h
the present environment can help in the specification of some interesting specializ
of the notion of paraconsistency (see[16]). Recall that in paraconsistent logics the r
(Γ,α,∼α � ∆) does not hold in general, that is, it is not valid for some choice of c
textsΓ and∆ and some formulaα. Of course, the ruledoeshold, for instance, in cas
eitherα or ∼α are bottom particles. Now, suppose there is some formulaϕ〈[ϕi]i∈I〉 of a
special format such that neitherϕ nor ∼ϕ are bottom particles for all choices of comp
nents[ϕi]i∈I , but such that the rule(Γ,ϕ,∼ϕ � ∆) always holds. In that case the log
will be said to becontrollably explosive(in contact withϕ). Explosive logics are thos
which are controllably explosive in contact with any formulaϕ to which the definition
applies, and controllably explosive logics are always non-1.0-overcomplete, by defi
Paraconsistent logics cannot be explosive, but theycanbe controllably explosive, and the
often are. Consider for instance the case of a logic in which (1.1.m) fails only for
m < a, where m,a∈ N, and suppose that (7.1.a) holds good—this logic will obviously
paraconsistent yet controllably explosive in contact with∼aα. An example of logic with
that property is given by the 3-valued maximal paraconsistent logicP 1, studied in[30].
Dual definitions can easily be offered for paracompleteness andcontrollable implosion.
Next, remember that the failure of the rule(Γ,α,∼α � β,∆) is equivalent to the failure
of the rule(Γ,α,∼α � ∆) in the presence of a bottom particle and (C2.k.j). Of cou
(Γ,α,∼α � β,∆) doeshold, for instance, in caseβ is a top particle. Suppose then th
ϕ〈[ϕi]i∈I〉 is a formula of a special format such thatϕ is not a top particle for all choice
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of components[ϕi]i∈I , but such that the rule(Γ,α,∼α � ϕ,∆) always holds. Logics with
that property are calledpartially explosive(with respect toϕ). Given a theoryΦ〈[ϕi]i∈I〉
which happens not to make a J-alternative for every choice of its components, bu
that (Γ,α,∼α � Φ,∆) always holds, one may now naturally extend the previous d
ition so as to call the underlying logicpartially explosive with respect toΦ. Explosive
logics are partially explosive with respect to any formulaϕ or theoryΦ to which the defin-
ition applies, and partially explosive logics are always non-0.1-overcomplete, by defin
Paraconsistent logics can be partially explosive with respect to some formulas, but n
respect to all sets of alternatives. Consider the case of a logic having a bottom an
that (1.1.0.n) fails only for some n< a+ 1, where n,a∈ N, and suppose that (8.1.a) hol
good—this logic will obviously be paraconsistent yet partially explosive with respe
∼a+1β. Kolmogorov–Johánsson’s minimal intuitionistic logic gives an example of a
tially explosive paraconsistent logic, since (1.1.0.0) fails in it while (1.1.0.n) holds
for every n> 0. Finally, a logic is calledboldly paraconsistentin case it is not partially
explosive; obviously, boldly paraconsistent logics are, in particular, paraconsistent
definitions can be offered for paracompleteness and both its partial and its bold va
of implosion. Note that most paraconsistent logics are in practice designed, expe
even required to be boldly paraconsistent (see[33]). Relevance logics, in particular, a
always boldly paraconsistent, in virtue of theirvariable-sharing property: Any inference
(Γ � ∆) can only hold good in caseΓ and∆ depend on some common atomic senten
It is not true though that every boldly paraconsistent logic must have the variable-s
property.

Say that a logic isfoo paranormal in case it is eitherfoo paraconsistent orfoo para-
complete, wherefoo is one of the above varieties of paraconsistency / paracomplete
Can we spell out some of the sufficient and some of the necessary conditions forfoo para-
normality? Surely. Note, for instance, that: From parts (xii) and (xxvi) ofFact 2.3, any
logic respecting weak cut and the Principle of Excluded Middle but failing overlap
forcibly be paraconsistent; from parts (x)–(xiii) and (xx)–(xxiii) ofFact 2.1and parts (x)–
(xvii) of Fact 2.5it follows that contextual contraposition and double negation rules
incompatible with each other, inside any 1-simple boldly paraconsistent logic; from
(i) and the qualification of part (ix) ofFact 2.3we see that there is no reason to suppo
given a non-monotonic logic, that the failure of dextro-levo-symmetry should be held
characterizing mark of paraconsistency. And, of course, similar things can always b
and done about the other paranormal class of logics, the paracomplete ones. In t
we have formulated, in the last section, the positive local rules for negation, from fam
(1.X)–(6.X), it turns out that no rule alone has all the others as consequences, given
convenient set of properties of the underlying consequence relation, and, in the sam
there is no single rule whose failure causes the failure of all the other rules at once.
general, neither the validity nor the failure of a given rule, or set of rules, will be wit
consequences for some of the other rules. In particular, one could conclude from
has been seen in the above Illustrations and Facts that all positive rules are infera
instance, frompseudo-scotus, (1.1.0), andcasus judicans, (2.1.0), via overlap and cut.

Here are a few other selected causes and consequences of the paraconsistent s
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Illustration 2.8. Let’s look first for some possiblecausesfor paraconsistency, that is, som
(combinations of) conditions leading to the failure of (1.1.0). The following logics
paraconsistent:

(1) Simple logics respecting all rules from families (2.1.X) to (2.4.X) but failing any
other rule from families (1.X) to (6.X).

(2) Logics respecting weak cut and some rule from family (7.X), while failing a rule at
the same level from family (8.X) (e.g., respecting (7.1.a) and failing (8.2.a)).

(3) Non-nihilistic logics respecting weak cut and failing basic forms of the rules f
family (8.X) (viz. (8.1.0) or (8.2.0)).

Here are some selectedconsequencesof paraconsistency, that is, some conditions infera
from the failure of (1.1.0):

(4) If a logic respects overlap, then the basic forms of most rules from family (1X),
namely (1.2.0.x), (1.3.0.x), (1.4.0) and (1.5.0.x.y), will fail. Moreover, some basic
forms of contextual contraposition, namely (5.2.0.0.z.0) and (5.4.0.0.z.0), will also
automatically fail.

(5) The most basic form of nonbot (viz. (7.1.0)) will always be respected.
(6) The underlying logic will not be nihilistic.

If a logic respects the rules from family (8.X) and isnot controllably explosive then:

(7) The logic is paraconsistent.
(8) All forms of nonbot are also respected.

Finally, here are a few consequences ofbold paraconsistency:

(9) Ex contradictionewill fail alongside withpseudo-scotus(and there is no need for
bottom to get that result).

(10) Several other basic forms of contextual contraposition, namely (5.1.0.0.z.0) and
(5.3.0.0.z.0), will also fail inside logics respecting overlap. If the logic also resp
weak cut, that is, if the logic is simple, then it will in general fail every rule of
form (5.x.y.0.z.0).

As usual, the whole thing is easily dualizable for the paracomplete case.

4. Oh yes, why not?...(But then again, what is negation, after all?)

There are only two means by which men can deal with one another: gun
logic. Force or persuasion. Those who know that they cannot win by mea
logic, have always resorted to guns.

—Ayn Rand, Faith and Force: Destroyers of the Modern World, 19

The results in the above sections have painfully illustrated the intricate links th
the several positive contextual sub-classical rules for negation together. You migh
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noticed that, inside the appropriate logical environment, all positive rules were deri
for instance, from (1.1.0) and (2.1.0), the most basic forms ofpseudo-scotusandcasus
judicans. Alternatively, in a similar logical environment, some rules for contextual c
traposition were also shown to be sufficient for deriving all the positive rules. Besid
non-overcompleteness was also guaranteed, then you could also derive the negat
from the above mentioned positive rules. The requisites for checking each link hav
been made clear. You might have noticed, in particular, that full monotonicity had littl
in the previous Facts. Anyway, one of the basic lessons one should draw from the
thing is that the failure of each positive rule carries forward to the failure of some, bu
necessarily all, of the other positive rules.

But there ismore. I now discuss another, perhaps even more basic lesson, tha
should learn from the above. It is easy to run into ‘triviality’, in an intuitive sense, if
does not explicitly try to regulate and avoid it. So, 0.0-overcomplete logics respe
the positive rules for negation, but at the same time respect none of the negative
Moreover, if an arbitrary logic does not respect (7.1.0) then it will automatically res
explosion, if only for silly reasons, and silliness will also guide you from the failur
(8.1.0) to the failure of implosion. Together with basiccasus judicans, the failure of either
(7.1.0) or (7.2.0) will lead you to a dadaistic logic, and together with basicpseudo-scotu
the failure of either (8.1.0) or (8.2.0) will lead you to a nihilistic logic. What seems to b
safest thing to do about that? To be sure that you havesomenegative rules about logics an
about negation around! This way you can at least avoid both the nonsensical situa
overcompleteness and the uncomfortable situation in which you have a sample of a
constant—negation— which turns out to lack any real substance.10

This connects to the difficult trouble of defining what a logic or a logical constais
(or, in this case, what itis not). Well, one might complain that this discussion does
lead us anywhere, and that it is very likely that researchers will never reach anythin
a general and final agreement about those notions (though they are very likely to k
trying, perhaps by use of force or by appeal to some argument stemming from som
formalizable consideration about aesthetics or about the ultimate goal of science). H
why should there be an agreement? This is not what we should be striving for! It s
to me that we should rather, as scientists and (meta-)logicians, be quite content in i
gating, comparing and argumenting for and against each possible ‘interesting’ defi
Then, as the Western Canon says, “by their fruits ye shall know them”. Irrespective o
gious backgrounds, one might always aspire to find a bit more of impartiality and tole
around. . .

Suppose you want to define a class of objects falling under the denominationD. If D
has some common sense meaning(s) in ordinary language, that might give you a goo

10 This approach is in fact an application of a certain metaphysical stance focused in some sort ofaccidentalism:
The really ‘essential’ properties in certain characterizations might in some cases turn out to be the ac
ones—you enumerate the properties which your class of objectsshould notpossess from among the ones wh
are actualizable, and then you have at least some necessary conditions for that class of objects to be ‘mea
defined’. It is a bit like deciding what you will be when you grow up by listing all the things you donot want to
be. There is of course no space for better defending this strategy here, from a more abstract point of view
had better be left for another occasion.
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You begin by abstracting from that meaning toward some specific direction, but it m
happen that you do not want to give neither a purely normative nor a purely desc
characterization of theD-objects. What should you do then? You might say, “Listen, I
only interested inD-objects in case they have the positive propertybunda”. The problem
about positive properties is that there will often be some smart guy to come and say,
look how interesting is the class ofD-objects whichdo nothavebunda!” What is left of
D in such a case? Some people say that you cannot negotiate all your positive pro
(and our present commitment to negative properties is at leastconsistentwith the idea that
positive properties are important). For instance, you might define the class of non-
tonic logics as the class of logics given by consequence relations which donot have such-
and-such property; but then, why should you still think that such consequence re
should still be said to define alogic? Fixed a given logic, it might be quite all right th
you define aparaconsistentnegation as the negation which lacks such-and-such prop
but then, how can you really be sure in that case that you have a paraconsistentnegation
(cf. [12])? The problem about positive properties is that they can easily mutate fr
happy finding into a heavy burden. And, depending on the way you write them dow
insist on them, your preferred set of positive properties might easily make you oblivio
other interesting classes of objects which are very much related to your original intu
aboutD, but remain excluded by your rigid dogmatic definition of it. On the other h
having positive properties can be very convenient, for you to get a good glimpse o
rests ahead. It is just so easy to work with them.

So, suppose next that we all agree that ‘decent’D-objects shouldnot have the property
favela. We might still have an argument as to whetherD-objects should havebunda or
not, asbunda and favela might be but slightly related properties, and turn out to be q
independent from each other. Now, the advantage of such a negative property is
doesgive you a necessary condition for the objects to fall into an ‘decent’ compart
of the classD. To be sure, there might be trivial examples ofD around, but now you ar
at least confident about having avoided some of them. Anyway, it seems hard to yo
me to negotiate propertyfavela. What is ‘decent’ though might not be ‘decent enoug
So now we might go on to discuss whether ‘decent’D-objects should not suffer from th
propertypipoca, in addition to (or instead of) their not having the propertyfavela. Well, I
do have my doubts as to whether we will be able to reach a complete and undisputa
of sufficient conditions for characterizingD—we might soon have a debate on the sta
of the next negative property that we consider: Is the denial of propertypipoca ‘really
innegotiable’? Does it make sense to strive endlessly towards a really ‘comprehe
definition? Anyway, no matter the answer we will give to that, now we have at least a
in avoidingfavela, right?

Which positive properties are theindisputableones, if any? I will not take a stand o
that. I do not aim to convince you here of adopting any of the above positive prop
about logics or logical constants. Just look at their consequences and make up yo
mind about them, in the face of the particular application you might be targeting.
I do hope we will agree in avoiding inanity. In that case, take my hand and follow
to a cut-and-dried territory where we will look for ‘minimally decent’ versions of ou
objects of discourse. Note that I will not maintain that what is not minimally decent
not fall under the scope of those definitions, but only that I will notcare about what is
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not minimally decent, and I can only hope to convince you that you should also no
about that. Anyway, feel free to disagree and propose and study some other sm
incomparable set of minimally decent properties, at any point!

I hope you did not get tired with the previous long abstract argumentative digre
Here is the meat. Given some set of formulas, I now proceed to define amid-consequence
relationas a binary relation over theories (subsets of the initial set of formulas) which
I.J-overcomplete, for any finite I and J. We get rid thus of trivial, semitrivial, dadaistic
nihilistic logics, besides all other logics suffering from other kinds of finite overcomp
ness. One might call this thePrinciple of Non-Triviality, (PNT): “Thou shalt not trivialize!”
Newton da Costa has proposed some sort of such principle many decades ago (ch[16,
18]): “From the syntactical-semantical standpoint, every mathematical theory is ad
ble, unless it is trivial” (notice that he does not say what ‘theory’ or ‘triviality’ mean11

Interestingly, much more recently, people like Avron, with a completely different b
ground and intentions, have been incorporating some instances of such a principle:[2,4]
this author requires consequence relations to be (simple and) non-0.0-overcomple
ple in the paraconsistent logic community working with single-conclusion consequ
relations have accordingly interpreted (PNT) as requiring only that a logic should n
0.1-overcomplete. They have thus explicitly tried to avoid both trivial and dadaistic lo
while they theoretically allowed for semitrivial and nihilistic logics to linger (a further d
cussion of this can be found in[26]). The above definition of amid-consequence relation
however, clearly extends all the preceding definitions in a natural way—of course, in
of Fact 1.3, if the logic has both a bottom and a top particles and respects weak cut
the present requirement is identical to Avron’s.12 By the way, in view of the same Fac
it is only reasonable to define amid-top as a top particle that is not also a bottom, an
mid-bottom as a bottom particle that is not also a top.

Now, for us here amid-negationwill be any unary operator satisfying the negat
properties from families (7.X) and (8.X). Note that this requirement alone safeguards
against 0.0-, 0.1- and 1.0-overcompleteness. In view of the Facts from the last sect
the one hand, even if a logic respects the above positive properties, nothing guarant
it will respect the negative ones as well, and that it will escape overcompleteness.
other hand, if some of the positive properties fail for a given logic, then this logic will o
respect some negative properties as well, but not necessarily all of them. So, the safe
to do seems to be just to strive for amid-negation from the start.

By the bye, if our negative sub-classical properties alone are so weak, as one migh
plain, how is it that one can arrive from them to a full characterization of classical nega
One possibility is to guarantee, from a semantic perspective, that (7.2.0) and (8.2.0

11 Da Costa dubbed this methodological principle the ‘Principle of Tolerance in Mathematics’, by anal
Carnap’s homonymous principle in syntax (check p. 52 of[14]).

12 One should notice, though, that the present requirement on non-triviality, which sets all 0.0-, 0.1-, 1.
overcomplete consequence relations into a class of their own, is exactly the same requirement to be found
in Avron and Lev’s[5]. The only methodological difference is that in the last paper the structures correspo
to such relations are somehow “excluded from our [theirs] definition of alogic”; in the present paper, instea
they are just said to constitute not ‘minimally decent’ such relations, but are allowed to stay as ‘trivial
is, ‘degenerate’) examples of logics. Do notice also that the entailment relation usually associated to re
logics, with its characterizing variable-sharing property, automatically respects the present formulation of
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together with truth-functionality and two-valuedness. The margins of this paper are
ever too narrow to contain the truly marvelous demonstration of that proposition.

Ways of nay-saying. Before putting an end to this, let me now make a brief compar
among the present necessary properties of a (mid-)negation, and other characterizatio
which have been recently proposed in the literature (all the following proposals app
in single-conclusion form, so here I will work with their straightforward reformulati
into the multiple-conclusion environment).

In [21], Gabbay proposes a few increasingly complex ‘definitions of negation’, bas
a couple of necessary and sufficient sets of properties. The idea behind his most s
cated definition was the following. Suppose you are working with structural tarskian lo
Let Θ = {[θk]k�K} be a non-empty set of ‘undesirable results’ of ‘unwanted sentence
a logicL1= 〈SL1,�L1〉, subject to the restriction thatΘ should not be a K-trivializing se
Let L2 = 〈SL2,�L2〉 be called aconservative extensionof L1 if Γ �L2 ∆ ⇔ Γ �L1 ∆,
wheneverΓ ∪ ∆ ⊆ SL1. Consider next a binary connective� such that:

(G1) (α � β � α) and(α � β � β)

(G2) (α,β � α � β)

(G3) (γ � � �|� γ ) and(� � γ �|� γ ), for any top particle�
(G4) (α � β) / (α � γ � β � γ ) and(α � β) / (γ � α � γ � β)

Notice that a connective having properties (G1)–(G4) will behave just like a classica
junction. Now, a connective∼ of L1 is said to be anegationif, for some conservative
extensionL2 of L1 having a connective� with properties (G1), (G3) and (G4):

(GB) (γ �L1 ∼α) ⇔ (γ � α �L2 θ), for someθ ∈ Θ

For an intuition about that sort of negation, you might understand (GB) as conveyin
idea thatγ andα are ‘in conflict’ in the presence of the undesirable sentenceθ .

How can one capture the set of unwanted sentences, when it exists? Easy: Just c
the set of all negated 1-alternatives, that is,Θ = {θ : (∀γ,Γ,∆)(Γ, γ �L1 ∼θ,∆)}. In case
L1 has some top particle, thenΘ turns to be more simply the set of all formulas who
negations are theses of this logic. You might recall though fromFootnote 9that this already
goes much beyond our present general requirements on logics. Let me note in p
a few particular features of the above definition. Suppose that this connective� of L2
also respects property (G2), that is, suppose that it behaves like a classical conju
Then, by overlap we have that∼α �L1 ∼α and so, by (GB),∼α � α �L2 θ , for some
θ ∈ Θ . From (G2) and cut, together with the fact thatL2 is a conservative extension
L1, one can conclude thatα,∼α �L1 θ . Similarly, from (G1), (G2) and (GB) again, on
also concludes thatα �L1 ∼∼α. Moreover, in this case the underlying logic will be
least partially explosive:α,∼α �L1 ∼β, for everyα,β ∈ SL1. Obviously,Θ should not
contain a top particle, under pain of causingL1 to fail (8.2.0), thus producing a negatio
that is notmid. For similar reasons,L1 should not be 0.1-overcomplete, and we know t
it is not 1.0-overcomplete from the very postulated existence of a non-trivializing sΘ .
In caseL1 counts on some top particle�, and the connective� of L2 not only respects
properties (G1)–(G4) but it is already expressible inL1, then�L1 ∼(α � ∼α) (use (G3)
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to check that). The interested reader will find in[23] an extension of the above definitio
of negation so as to cover also a class of non-monotonic logics.

In [22], the authors propose a ‘simplified version’ of (GB). Starting from full class
propositional logic, for each formulaα they explicitly introduce the connective∼α for
‘graded negation’, together with another set of connectives for ‘graded tolerance’, in o
to axiomatize what they claim to be a conservative extension of classical logic. Nex
require graded negation to respect the following property:

(GH) (Γ � ∼αβ) ⇔ (Γ � α) and(α ∧ β �)

The idea, again, is that the inference ofα from Γ is ‘in contention with’β. As the authors
claim that “it is becoming more widely acknowledged that we need to develop mor
phisticated means for handling inconsistent information”, one might be led to think
graded negations are non-explosive. This is surely not the case. Indeed, given over
any unary connective�, it is easy to check that both(∼ϕ�ϕ � ϕ) and(ϕ ∧ �ϕ �) should
hold good in their logic. The last inference seems quite puzzling, given that it hold
any definable unary connective� (thus also for identity, and for any negation origina
intended to be non-explosive), and∧ is classical conjunction. Thus, we finally conclud
in particular, that(ϕ �). This renders the present ‘extension of classical logic’ both n
conservative and nihilistic, thus non-paraconsistent—and so the paper seems no
to delivers what it promises. (To go back to single-conclusion consequence relatio
write (α ∧ β � γ ) instead of(α ∧ β �) at the right-hand side of (GH) does not help at
The resulting logic will not bemid, being at least semitrivial.) The proposal is glaring
unsound.

Another fascinating investigation of negation was made by Lenzen, in[24]. One can
find in that paper a list of ‘necessary conditions for negation-operators’, namely (
Proposal 42):

(L1) (Γ,α � ∼α,∆)

(L2) (Γ,α � β,∆) ⇒ (Γ ′,∼β � ∼α,∆′)
(L3) (Γ � α,∆) ⇒ (Γ ′ � ∼∼α,∆′)
(L4) If the logic has a top, then∃α(Γ � ∼α,∆)

Now, (L1) is simply our own property (8.2.0). Even though the paper by Lenzen aim
give a special account of paraconsistent negations, it seems ungainly not to find in the
list of necessary properties for negation the dual of property (L1) in family (7.X). I cannot
say much here about (L2) and (L3)—they are global properties, and I have postpon
discussion of such properties to a future paper. But again, it is a bit strange not to find
versions of (L2)—global contraposition—in the above list, and also not to find the
version of (L3) there. At any rate, for the purposes of algebraization and modaliz
(L2) is surely more than one needs (as keenly pointed out in[32]), given that the following
version of global replacement is already enough:

(L2∗) (Γ,α �|� β,∆) ⇒ (Γ ′,∼α �|� ∼β,∆′)
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There are, though, an awful amount of interesting logics, algebraizable or not, with k
modal interpretations or not, which are supposed to have a ‘negation’ that respects
(L2) nor (L2∗) (check[16] for many remarkable paraconsistent samples of such log
As a final remark, in a multiple-conclusion consequence environment, it would of c
seem only natural to add and study also the dual of (L4):

(L4d) If the logic has a bottom, then∃α(Γ,∼α � ∆)

Let’s leave it as a suggestion for further development.
Here is a last case study. In[10], Béziau aims to propose “a definition of negation

depending on explicit logical laws but on a conceptual idea”. To that purpose, the a
tries to formulate a semantical constraint which would be such that the following con
(BZ) is respected: Given a set of ‘true’ (designated) truth-values and a disjoint set of
(undesignated) truth-values, it would always be possible to find modelsM1 andM2 such
that ϕ and�ϕ would not be both true inM1 nor both false inM2, for some symbol ‘�’
aimed to model ‘negation’, as opposed to ‘affirmation’ (checkFig. 1). Clearly, our rules
(7.2.0) and (8.2.0), from the end of Section2, are just what one needs for the job, unde
structural tarskian interpretation of semantics, but that’s not the path trodden by the
What he does in that paper, in fact, amounts to the following. Call any true valueT and
any false valueF , and define the natural order among them, that is, setF � F , F � T ,
andT � T . Next, call a unary operator� positivein case it is monotonic over�, that is,
in case §1(ϕ) � §2(ϕ) implies §1(�ϕ) � §2(�ϕ), for any choice of valuations §1 and §2.
Finally, call� negativein case it is not positive. Béziau proposes that negative connec
have all the right to be callednegations. Indeed, the identical operator (�1

2 in Fig. 1), for
one, is surely not negative. But then, unfortunately, the last definition is not strong e
to get rid of the other forms of affirmation. Mind you, consider the operator�2

2 in Fig. 1,
and consider valuations §1 and §2 and a formulaϕ such that §1(ϕ) = F = §2(ϕ), but
§1(�2

2ϕ) = T while §2(�2
2ϕ) = F . Those valuations would characterize�2

2 as a negative

Fig. 1. Affirmation× negation.
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operator, contrary to our expectations, and a similar example can be written with�3
2, this

time taking §1(ϕ) = T = §2(ϕ). In neither case can we say that condition (BZ) holds go
The proposal thus is not sound.

A full stop comes. I will make no further inquiries here into what negationis (or what
it is not). I just wanted to convince you that the connective that is studied in this p
has some right to becalled ‘negation’. My feeling, though, is that a really good theo
of ‘what negation is’ can only come as a byproduct of a more general and moder
comprehensive version of atheory of opposition, as we learned from good ol’ Aristotle
My interest here, however, was much more modest: This was rather a study abou
negationcould be, and what itshould not be.

5. Directions

‘Would you tell me, please, which way I ought to go from here?’
‘That depends a good deal on where you want to get to,’ said
Cat.
‘I don’t much care where. . . ’ said Alice.
‘Then it doesn’t matter which way you go,’ said the Cat.
‘. . . so long as I get somewhere,’ Aliceadded as an explanation.
‘Oh, you’re sure to do that,’ said the Cat, ’if you only walk lon
enough.’

—Lewis Carroll, Alice’s Adventures in Wonderland, 186

The present paper aimed at making several different contributions, suggestion
some forceful yet not always claimed to be original remarks, among which:

(1) An elaborate illustration is given on the general use ofmultiple-conclusionconse-
quence relations in the abstract study of deductive systems and logical conne
Most studies in abstract (universal) logic, such as those by Béziau, have conce
on single-conclusion consequence relations, and so have missed a lot of wh
can get straightforwardly by considerations ofsymmetry. Other studies of multiple
conclusion consequence relations have usually not been made in a purelyabstract
setting, but more frequently in aproof-theoreticalsetting (as in the case of some e
cellent papers by Avron) or in asemanticalsetting (as in the case of the excelle
book by Shoesmith and Smiley). The present paper should be read, then, as a
integration.

(2) Many local sub-classical rules for consequence relations and for the negation c
tive are systematically studied here in multiple-conclusion format, andnegativerules
are given so much emphasis—or even more emphasis—aspositiveones. In fact,fail-
ing those negative rules can be much more dangerous than failing the positive
as you can check at the end of Section2. Negative rules are argued to be, in a sen
more ‘essential’ than positive ones. An extensive justification for that argume
presented in the first part of Section4.

(3) Important general approaches to those same rules in the literature (Avron, B
Curry, Gabbay, Hunter, Lenzen, Wansing, etc.) are surveyed, all along the pape
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rections are made on some proposals and results by Béziau, and a proposal by
and Hunter is shown to apply only to overcomplete logics (though that flagrant
tation seems to have gone unnoticed up to this moment).

(4) A small yet comprehensive taxonomy of the most well-known classes of conseq
relations is presented in Section1.

(5) The prerequisites for proving each Fact interrelating rules for consequence re
and rules for negations are in each case clearly highlighted. This is quite use
you to know at once whether you shall make use, say, of monotonicity (weake
or of rules for double negation to prove each given relation.

(6) General rules that make consequence relations ‘trivial’ are presented, gener
many other distinguished approaches from the literature.

(7) The multiple-conclusion environment allows us to present ‘consistency’ rules asdual
to ‘completeness’ rules, in a clear and compelling way. As a consequence, rule
are duals toex contradictione, consequentia mirabilis, proof-by-cases, andreductio
ad absurdumare here introduced, apparently for the very first time.

(8) The same environment, again, allows one in fact to draw a sharp distinction be
pseudo-scotusadex contradictione sequitur quodlibet. This is certainly new, as new
as the accompanying proposal to draw the verydefinitionof paraconsistency as th
failure of the former rules instead of the latter, in direct duality to the (most) cha
terizing feature of (intuitionistic-like) paracomplete systems: the failure of exclu
middle.

(9) The definitions of paraconsistency and paracompleteness are precisely stat
clearly shown not to bear any compulsory effect, for instance, on the invalidati
rules for double negation (and vice-versa). Some definitions of important subc
of paraconsistent and paracomplete logics (partial, controllable, and bold) ar
presented and exemplified, under a new generality and always having symm
mind.

(10) Studies ofconsequentia mirabilis(e.g., Pagli and Bellissima) have at times propo
to identifymirabilis with reductio. This is a historical and a technical abuse, clarifi
in the present paper.

(11) An illustrative list of sufficient and necessary conditions for (bold) (non-controlla
paraconsistency is presented, in Section3.

(12) Other proposals of characterizations of negation are offered and analyzed i
tion 4. Proposals by other authors are summarized and criticized. Incidentally, h
already been mentioned by other authors,n-ary negations can also in this paper
seriously be taken into consideration (see below, in the present section), as they
smoothly fit the general framework.

The present study of negation was made quite general, this far, under the natural l
and restrictions of the chosen framework and our decision to concentrate on pur
sub-classical rules for negation. The picky reader might observe, though, that even
seemingly innocuous assumptions that we made may turn out disputable, or at least
from their very inception. Thus, I have assumed from the start, for example, that, i
paper, “a unarynegationsymbol ∼ will always be present as a logical constant in
underlying language of our logics”. Now, why should negation beunary? One might think
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instead that it is much more natural to think of ‘negation as conflict’, as in the secon
of Section4. With that idea in mind, consider the following rules for abinary negation
connective:

(A1.1) (Γ � ∼(α1, α2),∆) / (A2.1) (Γ,α1, α2 � ∆) /
(Γ,α1, α2 � ∆) (Γ � ∼(α1, α2),∆)

(A1.2) (Γ � α1,∆) and(Γ � α2,∆) / (A2.2) (Γ,∼(α1, α2) � ∆) /
(Γ,∼(α1, α2) � ∆) (Γ � α1,∆) and(Γ � α2,∆)

Clearly, a unary negation for a formulaα can be defined from the above binary connec
by considering∼(α,α). The rules of the preceding connective are analogous to the
of NAND, also known as Sheffer stroke, oralternative denial. One could also look at th
rules of its dual,joint denial, also known asNOR:

(J1.1) (Γ � ∼(α1, α2),∆) / (J2.1) (Γ,α1 � ∆) and(Γ,α2 � ∆) /
(Γ,α1 � ∆) and(Γ,α2 � ∆) (Γ � ∼(α1, α2),∆)

(J1.2) (Γ � α1, α2,∆) / (J2.2) (Γ,∼(α1, α2) � ∆) /
(Γ,∼(α1, α2) � ∆) (Γ � α1, α2,∆)

The above connectives obviously generalize our symmetry rules (1.2.X) and (2.2.X). Ex-
ercises for the reader: Check what should be done for generalizing the other positi
negative rules in accordance with the above binary connectives, and check what h
when othern-ary ‘negations’ are defined, including—don’t be lazy—infinitary versio
(By the way, as you have the pencil in hand: I have checked the results in the abov
tions to exhaustion, but I would not be so surprised if some errors had slipped into th
but general calculations. Have fun on the search for mistakes! I just hope the whole
has worked well as an illustration of the idea behind the systematization.)

Finally, I must acknowledge that all of this was but an initial step into the realm
negation. I had better just add a last note of intentions. The reader should not assu
I am defending the pure negative rules from the families (7.X) and (8.X), which I used in
the last section in the definition of ‘minimally decent negations’, to beTHE rules common
to all negations. By no means. Not only do I want to leave, on the one hand, also
very rules open to debate, but on the other hand I also think that those rules are n
enough if you are serious about the notion of a decent negation. In fact, in most n
modal logics, operators such as the necessity operatorare also expected to respect rul
from families (7.X) and (8.X). But we surely do not want negation to be interpreted
necessity, or necessity to be read as a kind of negation! So, a ‘minimally decent ne
is more likely to be the one that, besides being amid-negation, also respects somenon-
local negativerules such as the following ones:

(G1.1.a) ¬[(� ∼aϕ) ⇒ (� ∼a+1ϕ)] (G2.1.a) ¬[(∼aϕ �) ⇒ (∼a+1ϕ �)]
(G1.2.a) ¬[(Γ � ∼aϕ,∆) ⇒ (G2.2.a) ¬[(Γ,∼aϕ � ∆) ⇒

(∼a+1Γ � ∼a+1ϕ,∼a+1∆)] (∼a+1Γ,∼a+1ϕ � ∼a+1∆)]
where∼aΣ denotes, as you might expect,{∼aσ : σ ∈ Σ}.

A follow-up to the present investigation should include statements of rules mixing
tion and other more usual logical constants, such as conjunction, disjunction, impli
and bi-implication, always from the point of view of universal logic, and maybe a su
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of the effects of paraconsistency also in this terrain—it is well known for instance
some laws of implication might have dreadful consequences for paraconsistency, th
such as disjunctive syllogism will often fail, that De Morgan laws will not always be c
venient, that evenmodus ponensmight in some situations be problematic, that adjunc
conjunctions might be dangerous, and so on. The present results will surely be dec
the future investigation of the mixed rules. It would also be interesting and importa
some moment, to have a good look at global versions of most preceding contextua
This discussion also relates to the trouble of algebraization, which should be clarifi
detail, and the whole thing will be easily dualizable from paraconsistent to paracom
logics.

The next step should include the study of some recent contributions to the fiel
consistency connective, and its dual completeness (or determinedness) connective
can help internalizing the homonymic metatheoretical notions at the object language
recovering through them the inference rules which might be lacking in columnsX)
and (2.X). Such connectives also allow us to translate and talk about many (sub-)cla
properties inside ‘gentle’ logics which do not enjoy them.

All that and we are still talking, in a sense, about sub-classical properties of neg
By way of closure, a few notes should also be added—without any intention of ga
the full ramifications of the subject in the literature—about some rules for negation w
are ‘really non-classical’: This is the case of MacColl & McCall’s connexive nega
(depending on how you look at it), Post’s cyclic negation, Humberstone’s demi-neg
and so on and so forth. This much for the future.
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