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Abstract

This is an initial systematic study of the properties of negation from the point of view of abstract
deductive systems. A unifying framework of multiple-conclusion consequence relations is adopted
so as to allow us to explore symmetry in exposing and matching a great number of positive contex-
tual sub-classical rules involving this logical constant—among others, well-known forms of proof
by casesconsequentia mirabiliandreductio ad absurduntiner definitions of paraconsistency and
the dual paracompleteness can thus be formulated, allowingséardo-scotuandex contradictione
to be differentiated and for a comprehensive version of the Principle of Non-Triviality to be pre-
sented. A final proposal is made to the effect that—pure positive rules involving negation being often
fallible—a characterization of what most negations in the literature have in common should rather
involve, in fact, a reduced set of negative rules.
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Proposal

‘Contrariwise’, continued Tweedledee, ‘if it was so, it might be; and if it were so, it
would be; but as itisn't, it ain't. That's logic!
—Lewis Carroll, Through the Looking-Glass, and what Alice found there, 1872.

This is an investigation of negation from the point of view of universal logic, the ab-
stract study of mother-structures (in the sense of Bourbaki) endowed with consequence
relations. In that, it has as important predecesgb®, and related papers. The general
framework adopted here for the study of pure rules for negation—those that do not involve
other logical constants but negation— is that of multiple-conclusion consequence relations,
as in[31]. SectionO introduces the general framework and main related definitions and
notations. Sectiod presents the most usual axioms regulating the behavior of multiple-
conclusion consequence relations, such as overlap, (cautious) cut, (cautious) weakening,
compactness and structurality, and shows how several distinct notions of overcompleteness
can be defined. The latter notions can be used to catalogue four distinct varieties of trivial-
ity, and allow for an extension of da Costa’s ‘Principle of Tolerance’ (or rather ‘Principle of
Non-Triviality’) in the last section. Although the present study is neither proof-theoretical
nor semantical in nature, some hints are given on the import of several abstract schematic
rules hereby presented from a semantic viewpoint, and reports are often given about the
behavior of those rules in the context of some non-classical logics—such as relevance,
modal and (sub)intuitionistic or intermediate logics—with which the reader might be fa-
miliar. Local, or contextual, rules can be studied in opposition to global rules—positive
local schematic rules are meant to hold for any choice of contexts and formulas contained
therein, positive global schematic rules are usually weaker rules meant to display relations
among local rules. These kinds of rules are contrasted in papers spidhE%27] in [29]
the author chooses to present global rules for the connectives as more ‘legitimate’, here
| acknowledge instead that local rules are fairly more common, and concentrate on them.
The distinction between local and global rules is reminiscent of the traditional philosoph-
ical distinction between inference rules and deduction rules—an elegant modern abstract
account of it can be found in ch. 3 f3].

Section2 presents a few blocks of local sub-classical rules for negation—among them,
some rules that are positive (being universally respected in classical logic) and some rules
that are negative (being classically valid for some choices of contexts and formulas but
failing for others). The first bunch of rules comes in two dual sets: The first one regulates
those properties of negation which are related to ‘consistency assumptions’ (the inexis-
tence of non-dadaistic models for some formulas together with their negations), the second
regulates ‘completeness assumptions’ (the satisfiability of either a formula or its negation
in each non-nihilistic model). Consistency rules inclygeudo-scotysvhich underlies
the Principle of Explosion, anex contradictione sequitur quodlihetnd these two rules
can be sharply distinguished in the present framework of multiple-conclusion consequence
relations; completeness rules include excluded middle, proof by casesoardquentia
mirabilis; some of those rules will partly span both categories, as for instance the complete-
ness rule ofeductio ad absurdupwhich might interfere withex contradictioneA second
bunch of rules deals with other forms of manipulation of negation: Double negation intro-
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duction and elimination, contextual contraposition and contextual replacement are among
those rules. The various interrelations between those sets of rules are carefully investigated
here. The present study teams up and generalizes in part some other foundational studies
on negation, such 44,8,17,21,22,24]Note that | will not insist here that a negation op-
erator should havany of the above mentioned properties. Finally, the last bunch of rules
comes again divided into two dual sets, which have the most distinguishing feature of being
negative rules, dealing with some minimal properties that a reasonable negationretould
have in order to reckon minimally interesting interpretations—I would be more reluctant

to abandon one of these last negative properties than any of the preceding positive ones.

Paraconsistency, in particular, is equated to the failure of the Principle of Explosion, and
this reflects in the failure of the most basic formpsfeudo-scotuPual definitions are of-
fered for paracomplete logics and their subclasses, and some lllustrations are given. Other
fine definitions are easily introduced in this framework, as in Se@jmo as to charac-
terize a few interesting subclasses of paraconsistent logics. From the relations established
among and inside the three blocks of rules mentioned above, the reader will immediately
be able to trace, in particular, some causes and effects of paraconsistency from the point of
view of universal logic. For an account of the effects of the above systematization for the
praxis of the non-classical designer, Sect®also illustrates some of the necessary and
sufficient conditions for paranormality—either paraconsistency or paracompleteness—in
logic.

The first part of Sectiod argues that, while individual classes of logics or classes of
negations might well be characterized by positive rules vty notionsof logic and of
negation, or at least the interesting realizations of those notions, are often best characterized
negatively by saying which properties they should not enjoy. Definitionsofimally de-
centclasses of logics and classes of negations are then put forward. The section continues
by surveying some of the most remarkable attempts to answer the bold question of ‘What
is negation?{10,20-22,24] calling attention to some of the merits of each approach and
some of their flaws or deficiencies, while at the same time coherently situating them all in
the framework set in the present paper for easier comparison.

The last section ends up by listing some of the main novelties and contributions of the
present paper (you can go there and read them at any time), and hints at some generaliza-
tions and extensions of the basic notions hereby assumed and at directions in which this
research should be furthered.

A warning: The intended generality in the exposition of the pure rules for negation, be-
low, might make them hard to read, here and there. It is always easier though to start by
looking at the basic cases of each family of rules. The reader should also try not to get
psychologically deterred by the formulation of the Facts relating those rules. Some might
have the impression that | am trying to draw a map of the empire at a scale 1:1. That is
surelynot the intentionThe goal is indeed to be precise about our roads and connections,
but, curiously, the full details of the map itself are often not that important here—besides,
the map is really easy to draw, once you get an idea of what's going on. Much of what fol-
lows is in fact part of many logicians’ folklore, now updated into a uniform setting, which
reveals relationships already known, and makes it easy to check some new unsuspected
relationships... and to introduce some new concepts altogether. The idea, then, avoiding
disorder, is that you get the spirit, ardbn’t lose the feeling (let it out somehow).
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0. Background

Logic,n. The art of thinking and reasoning in strict accordance with limitations and
incapacities of the human misunderstanding.
—Ambrose Bierce, The Devil’s Dictionary, 1881-1906.

After a century of historical reinvention in the field of logic, it rests still rather un-
controversial to admit that there is no general agreement about what a logic or a logical
constantis. Nonetheless, one might feel quite safe here, yet free, with the forthcoming
non-dogmatic definitiond.Following a good deal of the recent literature, this short in-
vestigation will assume that logics are concerned with the formal study of (patterns of)
reasoning, or argumentation, that is, they are concerned with deduction, with ‘what fol-
lows from what'. Accordingly, let's take &ogic £ as a structure of the forns., I-,),
whereS, is a set of (well-formedformulasandi- C o (Sz) x 0 (Sg) is a (multiple-
conclusion consequence relatigior entailmentdefined over sets of formulas (also called
theorieg of £. Using occasionally decorated capital Greek letters as variables for theories,
and doing a similar thing with lowercase Greek for formulas, then putting the consequence
relation in infix format, | shall often write something & a, I’ I A’, B, A to say that
(FU{atUT’, A"U{B}U A) falls into the relation-,. Such clauses will be calladfer-
encesand their intended reading is that some formula or another amorgjtdraatives
in the right-hand side df » should follow from the whole set gfremisesn its left-hand
side. The theories’, I'’, A’, A will be calledcontextsof the inference. A similar move is
made by thecanonical model-theoretic accouat a consequence relation: At least one of
the alternatives should be true when all the premises are true. Keeping in mind that each
such inference should always be relativized to some previously given logic, | shall omit
subindices whenever | see no risk of confusion among the plethora of diverse consequence
relations and logics which will be allowed to appear below.

The following paragraphs are mostly notational and somewhat boring, so | guess the
reader can thread them very quickly and return only when and if they feel the need of it.
Note that expressions like<A’, * A/B’ and ‘A//B’ will be used as abbreviations for the
metalogical statementsi‘is not the case’, ‘ifA then B’ and ‘A if and only if B’, and
expressions likeA = B {NN}' and ‘A < B {NN}' will abbreviate the metalinguisticA
implies B, in the presence afN’, and ‘A is equivalent toB, in the presence afiN’. Let
[Aplpr<c denote someequence®f the form ‘A, , ..., Ay ’, whose members are exactly
the members of the famiIYAb}b<C;4 whenever the sequence is composed of inference
clauses, commas will be read as metalinguistic conjunctions; whenewdy, ©ne is sim-
ply dealing with an empty sequence. Note that at the metalinguistic level we shall be freely
using the mathematical reasoning from classical logic.

3 By this ‘non-dogmatic’ | mean that the following definitions and formulations should be taken and inves-
tigated as what they ar@roposals rather tharprescriptions So, | will (try) not (to) be committing myself to
any particular set of assumptions, but rather be interested in investigating the effects of each particular choice.
A gentle bias towards the concerns of the paraconsistent scenario might though be noted—that is explained by
this being the area of my major expertise and experience, and the area whose open questions originated this study.
4n general this family will be finite, or at most denumerably finite—ultimately, though, its cardinality will
always be supposed here to be limited by the cardinality of the underlying set of forgiulas
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In order to add some structure to the set of formuadet ©; denote somdogi-
cal constantof arity ar(i) € N. S will be dubbedschematiqwith respect toe;) in case
©i(lajlj<ari)) €S and{ﬂj }igar) €S imply @i ([Bjlj<ari)) € S. This already embodies
some notion of ‘logical form’. To make it even strongemyill be said to have aalgebraic
characterin case it is the algebra freely generated over soméGedtf logical constants
with the help of a convenient set of atomic sentenceshus implying, in particular, that
{Bj}j<ari) ©S= ®i([Bjlj<ari)) €S. An endomorphisnin £ is any mapping:S — S
that preserves the constantsiofthat is, such thatto; ([ <ar(i))* = @i ([} j<ar(iy) for
any®; € LC. Given a ses of formulas with algebraic character and a set of generators
a uniform substitutior—another commonly required ingredient of the notion of ‘logical
form’—is the unique endomorphic extension of a mappingt — S into the whole set of
formulas. Given the aims of this study, | shall assume below that a unegigtionsymbol
~ will always be present as a logical constant in the underlying language of our logics,
ands will be assumed to contain at least one formula of the ferm. This assumption,
together with the schematism 8fwhich shall be postulated from here on, will allow us to
quantify metalinguistically over formulas. As some further notational help, | will use the
following symbols for iterated negations®x := o and~"1q := ~"~a—these will be
used to inject a bit more of generality into the formulation of the rules in Se2tion

Here, a(ninferencé rule will be simply a relation involving one or more inferences.
Given some ruled, | will sometimes be writingVform)A or (3form) A in order to quan-
tify in this way over the lowercase Greek elements that appedr, isimilarly, | will be
writing (Ycont) A or (3cont) A in order to quantify accordingly over its elements in upper-
case Greek. A formula will be said todepend only orits componenformulas[e; ;<
wheneverp can be written with the sole help of the mentioned component formulas and
the logical constants of the language—this shall be denoteg(fay];<i). In a similar
vein, to denote a theorg whose formulas depend only on the formulag]; <, one will
write @ ([¢;]i<1). Unless | say something to the contrary, when | state a rule below | shall
be referring to the universal closure of this rule, that is, | shall be writirsgteematic
rule, a rule that holds for any choice of contexts and formulas explicitly displayed in it.
In the same spirit, when | write by way df, [o;];<1 ¥ [B]1;<3, A—o0r, what amounts
to the samer(I', [o;]i<1 IF [B}];<3, A)—the metalogical denial of a rule, I shall mean
that there issomechoice of contexts™ and A and of formulasie; i<, [8;]j<3 under
which the ruler, [o;];<i IF [B,]j<3, A doesnot hold. The notation”, « | 8, A shalll
abbreviate the metalogical conjunction Bfa I+ 8, A and I', 8 IF a, A—obviously, this
is symmetric, and it results in the same to writeg | «, A. To be sure, most state-
ments below will have instances with the fornjat,],<c#D, where each element of
[Aplp<c and eachD represents an inference clause, and # represents some sort of ‘im-
plication’: Positive localschematic rules such as (C1) and (C2) a few lines below will be
constituted of universally quantified schemas, in the f@viform)(Ycont) ([Aplp<c#D);
negative locabkchematic rules such agC1) are opposed to positive rules, having thus the
form (3form)(3cont)—([A]p<c# D); global positiveschematic rules will have the form
(Vform)([(Ycont) A, ]p<c#(Veont) D); global negativeschematic rules will have the form
(Fform) ([(3cont)—A,lp<c#(3cont)—D). Note that each local, or contextual, rule of the
above formats can immediately be given a global version, by suitably distributing some of
the metalinguistic contextual quantifiers as expected.
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1. Rulesfor abstract consequencerelations

Ex falso nonnumquam sequitur verum, et tamen semper absur-
dum.
—Jakob Bernoulli, XVII century.

| now proceed to consider some rules which have often been proposed as general prop-
erties of ‘any’ consequence relation. Let’s start by:

(C1) Overlap, or Reflexivity(I', at, I'' I A’, a, A)
(C2) (Ful)Cut: " Fa,Aandl™, al- A/ (I, T'IF A, A)

To facilitate reference in the following, cadimpleany logic whose consequence relation
respects the two above properties (dff). Given that it is quite usual for a formula to

be assumed to follow from itself, most known logics will indeed respect overlap, thus |
will not explicitly consider here any weaker versions of this rule (but the reader should be
aware of the existence of, for instance, some relevance logics failing the general version of
overlap). The full formulation of cut above, however, is quite often more than one needs (or
that one can count on) for most practical purposes, as the reader shall see in the following.
Many a time, one of the following weaker formulations will suffice:

(C2.1.1) (I-)left cautious cut:[(" IF o, Al;i and T, [ ]i<1 IF A) [ (T IF A)
(C2.2.J) (JI-)right cautious cutl'(IF [e;]<3. A and[1, aj IF Al ;<) / (' IF A)

Obviously, (C2.1.1) and (C2.2.1) are identical rules; call theoadtious cutand call 1-
simplethose logics respecting (C1) and (C2.k.1). In the Facts | will mention below, | shall
often be relying on overlap and 1-cautious cut, and sometimes | will use full cut. There are
other interesting ‘contextual versions’ of cut which dwell in between its cautious versions
and the full version, but | shall not study them here.

Other very common rules characterizing general consequence relations are:

(C3) Weakening, or Monotonicity: left weakening plus right weakening
(C3.1) Leftweakening(I" IF A) [/ (I'!, " IF A)
(C3.2) Rightweakening:I" I A) [ ("'l A, A)

Useful information to bear in mind, to fill the gaps in the proofs of the assertions which
will be found below, are the easily checkable derivations:

Fact 1.1. Consider the rules

(r1) (I, [eili<i F [Bjlj<a, A)

(r2) [I'lF o, Alict/(T F[B1j<3. A)
(r3) [, Bj IF Alj<a/ (I, [ i<t IF A)

Then
(i) (r1) = (r2),for1=0 {
(r1) = (r2), forJ=0 {(C2)}

(rl) = (r2), in all other cases {(C2) and(C3)}
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(i) (r1) = (r3),forJ=0 {t

(r1) = (r3), for 1 =0 {(C2)}

(r1) = (r3), in all other cases {(C2) and(C3)}
(iii) (r2) or (r3) = (r1) {(C1)}

Standardarskianconsequence relations (¢85]) are characterized by the validity of
(C1), (C2) and (C3), but fonon-monotonidogics this rule (C3) (and also (C2)) fails to
obtain in full generality. Thus, the model-theoretic account related to non-monotonic logics
should be expected to be an update of the standard one, so as to take contexts into account
in evaluating the truth of formulas or the satisfiability of schematic rules. Some interesting
milder versions of the weakening rule are the following:

(C3.1.K) (K-)left cautious weakenindfI" IF o lrek and " IE A) [ (T, [og kek IF A)
(C3.2.L) (L-)right cautious weakeningfo; IF AljeL and ™ I A) [ (T IF [aglieL, A)

Now, many interesting nhon-monotonic logics—the so-cafdailisibleones (cf.[3]), of
which adaptive logics (cf6]) under the ‘minimal abnormality’ strategy constitute a special
case—will still respect (C1), (C2.1.1), (C2.2.J), (C3.2) and (C3.1.K). Other exotic conse-
guence relations, such as the one inducedhigrentially many-valuedogics (cf.[25]),

will only respect, in general, the properties (C2.1.1), (C2.2.J) and (C3). | will call a logic
cautious tarskiann case it respects overlap, cautious cut and cautious weakening.

Note that, from this point on, | will often be using italic lowercase / uppercase letters
as wildcards for a string of one / finitely-many arbitrary variables. Note also that ‘finitely-
many’ does not exclude the empty string. Separating dots are not parsed. One can then
easily check that:

Fact 1.2.
() (C2.k.0)and(C3.¢.0) i
(i) (C2)= (C2x.a) o
(iii) (C3.x) = (C3x.3) {}
(iv) (Cn.x.at+b)= (Cn.x.a), forn € {2, 3} {
(v) (C2x.a)and(C2x.b) = (C2x.a+b) {(C3.x)}
(vi) (C2x.1)= (C2) {(C3)}

So, diverting from uninformative rules such as (i), we see that some forms of cut imply
others (see (ii) and (iv)), and the same holds for weakening (see (iii) and (iv)). Cautious cut
is in fact equivalent to full cut in the presence of weakening (see (v) and (vi)).

Some further important properties of general consequence relations are:

(C4) Compactness: left compactness plus right compactness
(C4.1) Left compactness: for ady and A such thatI" I A) there is some finitd” € I”
such that(I"’ IF A)
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(C4.2) Right compactness: for afiyandA such thatI" I+ A) there is some finite\’ € A
such thai(I" IF A")
(C5) Structurality: for any endomorphisg (I" I A) implies (I'* |- A*)

Compactness is usually invoked, for instance, to guarantee the finitary character of proofs,
and is often equivalent to the axiom of choice in model theory. Typical examples of con-
sequence relations failing compactness are those of higher-order logics. Structurality is
the rule that allows for uniform substitutions to preserve entailment. Still some other rules,
such as those regulating left- and right-contractions, expansions and permutation will in the
present framework come for free, given that | have chosen to express inferences using only
sets—when the repetition of formulas or their order becomes important, as in the case of
linear logics or in categorial grammatr, it is convenient to upgrade the previous definitions
so as to deal with multi-sets or ordered sets of contexts.

Not all the consequence relations which respect some or even all the above properties
are decent and worth of being studied. A particularly striking way of being uninteresting
and uninformative occurs when the nature of the formulas of the contexts involved in an
inference does not really matter, but only the cardinality of the contexts is determinant of
the validity of the inference involving them. Consider thus the following kind of property:

(CO.1.J) 1.J-overcompletenesdT, [a]i< I [Blj<3, A)

0.0-overcompleteness says that whatever set of alternatives follows from whatever set of
premises. This is clearly not a very attractive situation, as it ceases to draw a difference be-
tween inferences. Everything is permitted—one might call this ‘Dostoyevski's God-is-dead
situation’. But some other instances of overcompleteness may be worth looking at. If you
fix a particular sequence of alternatiighj 1<, you might call it an I.dalternativeif for

some cardinal | and any contextsand A one has thatI'", [«]; < IF [8];<J, 4) holds; call

it simply a Jalternativeif it is an 1.J-alternative for any I. Similarly, if you fix a particular
sequence of premisg¢s; ]; <, you might call it I.3trivializing if (I, [a]i<) IF [B]j<3, 4)

holds for some cardinal J and any contektand A; call it simply I-trivializing if it is an
|.J-alternative for any J. A particularly interesting case here is théhivély trivializing
theories, i.e. those theories which are I-trivializing for some finite I. Of course, if at least
overlap holds then the whole set of formulas is both 1-trivializing and a 1-alternative the-
ory. Note, for instance, that the difference between a 1.1-alternative and a 0.1-alternative
is only very slight: It is the distinction, if it makes any sense to say that there is any, be-
tween a formula being a consequenceanfthingor of whatever(in Latin, quocumque
versusqualiscumqug A similar observation can be made about 1.1- and 1.0-trivializing
theories> Any formula ¢ will be called atop particle or simply athesis® whenever it

5 But the distinction becomes ineffable once you start using single-conclusion instead of multiple-conclusion
consequence relations (§26]).

6 The theses of a given logic are sometimes calletbigical truths in the manner of Quine. Some authors
would prefer, though, to call logical truths the formulas which are proved under empty contexts (but not necessar-
ily under all other contexts, what makes a difference if your logic is non-monotonic). This terminology is not at
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is a O-alternative, and will be calledl@ttom particle or anantithesis whenever it is
O-trivializing.
Note that:

Fact 1.3. By definition

(i) any formula of &.1-overcomplete logic is a top partigle
(ii) any formula of al.0-overcomplete logic is a bottom partigle
(iii) any logic respecting weak cut and having a formula which is both a top and a bottom
particle is0.0-overcomplete
(iv) any overcomplete logic is tarskian.

Moreover

(v) (CO.LY)< (COI+KI+ L), forl,J>0 {

(vi) (C0.0.0)= (C0.1.J) {3

(vii) (C0.0.1)= (C0.0.0) {ottom and C2.k.j)}
(viii) (C0.1.0)= (C0.0.0) {op and(C2.k.j)}

From the above we see that all varieties of overcompleteness reduce thus to one among
0.0-, 0.1-, 1.0- and 1.1-overcompleteness. From the point of view of the standard model-
theoretic account, 0.1-overcomplete logics can be characterized by a unique model in
which everything is true; similarly for 1.0-overcomplete logics and models in which every-
thing is false. The empty set of valuations, with no truth-values, provide an adequate
semantics for 0.0-overcomplete logics, and for 1.1-overcomplete logics you might com-
bine two valuation mappings: One which makes all formulas true, and another one which
makes them all false. From this point on, | will be calling a logédlaisticin case itis 0.1-
overcompletenihilistic in case itis 1.0-overcompleteivial in case it is 0.0-overcomplete,
andsemitrivialin case it is I.J-overcomplete for anyJi> 0.

As we have seen, the four above kinds of overcompleteness collapse into triviality in
case weak cut is respected and there are bottoms and tops around. A cheaper way of
producing that collapse is by assuming the following properties on consequence relations
(extending the proposal {21]):

(CG) Coherence: left coherence plus right coherence
(CG.1) Left coherencal I+ 8, A) & (Ya)(I,alF B, A)
(CG.2) Right coherencél", al- A) < (VB)(I, ol B, A)

Although the above properties are clearly admissible in most usual logics, they are also
considerably esoteric, and we will not assume them at any point in this paper.

A warning From this point on, unless otherwise stated, all the above sorts of overcom-
pleteness shall explicitly be avoided.

issue here—I shall rather, in general, just takearianceunder contexts for granted and assume these definitional
matters to be largelgonventionalin the manner of Carnap.
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2. Purerulesfor negation

Sameness leaves us in peace, but it is contradiction that makes us produc-
tive.
—Johann Wolfgang Von Goethe, Conversations with Eckermann,

March 28, 1827.

Let us now consider some genemlre sub-classical properties of negation—in the
sense that their statement does not involve other logical constants but negation—which
often appear in the literature (some of them known since medieval or even ancient times).
Be aware that, even though | will be in what follows presenting positive contextual (and,
later on, negative contextual) schematic rules for negation and then studying their interre-
lations in the next Facts by way of local or global schematic tautologies, lack of space will
prevent me from analyzing in this paper the (usually weaker) global versions of the same
contextual rules hereby presented, in spite of their possible interest.

For each choice develsm, n € N, consider the rules:

(1.1.m) (I, ~"a, ~M 1y - A) (2.1.n) (I'lF~M1g ~Ng A)
pseudo-scoty®r explosion casus judicaner implosion or
excluded middle
(1.1.m.n) (I, ~Mo, ~MH g |- ~NB, A) (2.1.n.m) (I', ~Mg |- ~"t1g ~Nng A)
ex contradictione sequitur quodlibet quodlibet sequitur ad casos

Rules of the form (1.1.m) postulate the existence of special kinds of 2-trivializing theories,
those containing both a formula and its negation; rules (2.1.n) do the same for some similar
2-alternatives. From the simple schematic character of the rules, it is obvious that (1.1.m.n)
follows from (1.1.m), and (2.1.n.m) follows from (2.1.n)—the latter are, in fart;/ ad

nihil forms of the former. The converses, however, are usually not that immediate, as one
can conclude fronfract 1.3vii) and (viii). One form of the rules in the family (X)) or an-

other have been in vogue since at least the XIV century, where they could indeed be found
in the work of John of Cornwall (the ‘Pseudo-Duns Scotus’), commenting on Aristotle’s
Prior Analytics An emphasis on the validity of all forms ofsus judicansas regulating

the so-called ‘Principle of Excluded Middle’ was strongly advocated already by stoics like
Chrysippus, in which they would early be opposed, with equal strength, by Epicurus and,
more modernly, by Brouwer. The validity of all forms of its dual rydsgudo-scotyseg-

ulates the so-called ‘Principle of Explosion’. Accordingly, the rules in family§lwill

be related to the metatheoretical notion of ‘consistency’, and those in famiy (@Il be

related to ‘(model-)completeness’, or ‘determinedness’.

From the point of view of the standard model-theoretic account, (1.1.m) will make sure
that no formula (of the form-"«) can ever be true together with its negation; (1.1.m.0)
will guarantee that any model for™o and its negation will be dadaistic. A dual remark
can be made about (2.1.n), (2.1.n.0), formulas being false together with their negations,
and nihilistic models.
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The attentive and well-informed reader will have already suspected that gpaeaal
consistencyas to do with the basic failure of explosion, that is, the failure of rule (1.1.0);
dually, generaparacompletenedsas to do with the failure of (2.1.0). Thus, in particular,
relevance logics provide examples of paraconsistent logics, and intuitionistic logic is an ex-
ample of a paracomplete logic. In fact, duality intuitions will guide the statement of most
negation rules above and below; sometimes rules from both sides of each dual pair will
be well-known from the logico-mathematical praxis, in some other occasions only one of
the sides will be really that common, like in the case of (1.1.m.n)—people rarely mention
(2.1.n.m) at all. As a matter of fact, it seems that it is only because there is an old ten-
dency to work under the asymmetrical multiple-premise-single-conclusion environments
that people even care to look at (1.1.m.n), localizing the issue of (para)consistency over
there instead of over (1.1.m). A more detailed discussion of that can be fo(@@].in

| proceed now to state some other rules which can easily be harvested in the literature:

(1.2.m}) (IlF~Ma, A)/ (2.2.n)) (I, ~"BIFA)/
(I, ~Mt 1y |- A) (I' I ~"H1B. A)
(1.2.mp) (I IF~Mtly A)/ (2.2.n1) (I, ~"1gI-A)/
(I', ~Mo |- A) (I' - ~"B, A)
dextro-levo symmetry of negation levo-dextro symmetry of negation
(1.3.m})) (I, ~™ g |- ~My, A)/ (2.3.n)) (I, ~"gI-~"1g A)/
(I, ~™ g |- A) (I' I ~"H1g. A)
(1.3.m1) ([, ~"a Ik ~Mly A)/ (2.3.n1) (I, ~"1gI-~"B8,A)/

(I, ~Ma |- A)
causa mirabilis

(I'lF-~"B, A)
consequentia mirabilis

According to[28], forms ofconsequentia mirabilig/ere first applied in modern mathemat-

ics by Cardano and Clavius, in the XVI century. A century later, Saccheri adopted them as
some of his main tools for doing some early work on non-Euclidean geometry. At about
the same period, Huygens, and to some extent also Tacquet, argued that one should refrain
from merely ‘formal’ applications ofonsequentia mirabilito mathematics, adopting in-
stead the more ‘intuitive’ forms ateductio ad absurdunfcf. [7], and below). But then,
results fromFact 2.3will show that such a move is not without consequences: The latter
rule is in general much stronger than the former.

Rules of symmetry, from families (1.2) and (2.2X) (cf. [1]), are quite similar to
their analogues in the families (1X3) and (2.3X). They are sometimes used, for instance,
in presenting the very definition of negation (§£7]) for logics intermediate between
intuitionistic and classical logic.

Next, consider the rules:

1.4.m) (€ IF~"a, Aand (2.4.n) (,~"BIFAand
e~ o, A ', ~"igi- A/
(I'',TIFA,A) (I'',TIFA,A)

right-redundancy left-redundangcygr proof by cases

Forms of proof by cases are some of the most ancient and probably the most common
rendering of patterns of reasoning by excluded middle in mathematics and philosophy.
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2.5.m{.n) ([,~"BIF~Ma, A and (2.5.ny.m) (I",~"BI-~Ma, A and

I~ I ~My, AT I~ ~Mly AT
(r',r,~™lg kA, A (I'", I IF~"18 A A
(1.5.mp.n) ([, ~"BlI-~™1y Aand  (2.5.mp.m) (I, ~"t18IF~Ma, A and
I~ g MLy A7) I~ MLy AT
', I, ~"al- A, A) (I, T'IF~"B, A, A)
reductio ex evidentia reductio ad absurdum

One or another form akductio ad absurduroan be found integrating the standard suite of
mathematical tools at least since Pythagoras’s discovery / invention of irrational numbers—
the reduction to absurdity is indeed the gist of methods of indirect proof and of proof by
refutation. Zeno of Elea also excelled the use of this rule as applied to argumentation,
foreshadowing a sort of dialectical approach to critical thinking which was to become very
popular later on. Buteductiois altogether dispensed by consequence relations such as that
of intuitionistic logic (in accordance with results froRact 2.3, in concert with its general
demise of excluded middle.

Continuing, a second set of pure rules for negation which can also be handy and which
are often insisted upon are the following—for each choice of levdisad, e € N:

(B.lab.cd) (I, ~2yIF~Ps5, A)/ (4.1.a.e) (I~ |- ~a+28), A)

(I, ~3+ 20y || ~DF2d5 A7) double negation introduction
(3.2.a.b.c.d) (I, ~ 2 | ~bs A) /[ (4.2.a.e) (I',~2t28) | ~2y A)

(I, ~3y | ~PF2ds A7) double negation elimination

(3.3.a.b.c.d) (I',~3y I ~bt2ds A)/
(T, Na+2cy I Nba, A)
(3.4.a.b.c.d) (I', ~82Cy || ~b+2d5 A/
(I, ~3y |- ~P5. A)
double negation manipulation

(5.1.ab.cd) (I~ I-~Ps, A)/ (6.1.a.b.e) (I',~3 H|-~Ps A)/
(T, ’\'b+2d+18 = ,\,a+20+ly’ A) (T, ,\,a+ey |+ ,\,b+e5’ A)
(5.2.ab.c.d) (I',~a26t1y, | ~bs Ay (6.2.a.b.e) (I',~ey |- ~Ps5 A)/
(I, ~PH2dHLs |- ~2y ) (I, ~3y |- ~P+es, A)
(5.3.a.b.c.d) (I',~3y Ik ~bt20+1s Ay (6.3.a.b.e) (I',~3y |- ~Pte5 A)/
(T, Nba = Na+2c+1y, A) (T, ,\,a+ey |+ Nba, A)
(5.4.a.b.c.d) (I', ~a26t1y, | ~b+20+15 A)  (6.4.a.b.e) (I', ~3 €y |- ~PtEs A)
[ (I, ~Ps |-~y A) [ (I, ~3y |- ~Ps, A)
contextual contraposition contextual replacement

(for negation)

The above rules regulate some fixed-point and involutive properties of negation. | should
here insist that one ought not to confuse any of the above contextual rules with their
(weaker) global versions. Note indeed, by way of an example, that basic forms of global
contraposition, or even better, basic forms of global replacement will provide exactly what
one needs for a negation to be amenable to a Lindenbaum-Tarski algebraization, and to
have an adequate standard modal interpretation. But local forms of contextual contraposi-
tion and replacement will often fail for non-classical logics such as paraconsistent logics
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(seeFact 2.5below), even though some of those logics will in fact be perfectly algebraiz-
able (cf.[32] and the Section 3.12 ¢16]).

Let me now invite you to have a look at some of the aftereffects and interrelations among
the rules introduced just above, to get a taste of how powerful they cén be.

Fact 2.1. Some relations that hold among the last set of rules for negatian are

() tawawx.Y)= (t.ua+bwxY) forabeN {

(i) (tuwv.ax.Y)= (tuv.a+bx.Y) forabeN {3
(i) (du.aw)= (du.a+bw),forabeN {3
(iv) (3.x.ab.0.0) {}

(V) (4.x.0.0) & (C1) {}
(vi) (6.x.ab.0) {}
(vii) (8.x.ab.c.d)= (3.x.abrxct xd),forr>0 {}

(viii) (4.x.ae) = (4.x.at xe),forr>0 {(C2k.1)}

(ix) (6.x.ab.e) = (6.x.ab.r xe),fort>0 {}

(X) (x.laaf+uf+v)= (4y.a+2f+z.e),for {(C1)}

(x,u,v,v,2) €{(3,0,¢,1,0), (3,60, 2,0),
(5,,0,1,1),(50,€ 2, 1)}
(xi) (x.2.aa+2c+y.ce)= (4z.ac+e+y),for {(C1)}
(x,y,2) €{(3,0,1),(51,2)}
(xii) (x.3.a+2c+ y.aec)= (4.z.ac+e+y),for {(C1)}
(-xv Y Z) € {<37 Os 2)7 (51 19 1)}
(xii)) (x.4.a+2r.a+2s.c+t.c+u)= (4.y.ae),for {(C1)}
(x,r,s,t,u,y)€{(3,0,e,6,0,1), (3,60,0, ¢ 2),
(5,6,0,0,e1),(50,e¢0,2)}
(Xiv) (x.4.0.0.f +r.f+s) and(4.y.2f + z.e) = (C1),for {}
(x,r,5,y,2)€{(3,0,e,1,0),(3,€0,20),
(5,0,e,1,1),(5e0,2 1)}
(xv) (v.x.ab.ee) and(v.y.b.aee) = (6.z.ab.2e+ w), for {1
(v, w) € {(3,0), (5,1)} and
(x,y,2) €{(1,1,1),(2,3,2),(3,2,3), (4,4, 4)}
(xvi) (8.x.a+2eb.c.d)and(4.z.ac+e) = (3.y.ab.ed), {(C2)}, or

for (x,y,2) €{(1,2,1),(2,1,2),(3,4,1),(4,3,2} {(C2k.,j) and(C3.1)},or
{(4.3—z.ac+e) and(C2.kj)and(C3.1.p)}
(xvii) (3.x.ab+ 2f.c.d)and(4.z.b.d+f) = (3.y.ab.cf), {(C2)}, or
for (x,y,z) €{(1,3,2),(2,4,2),(3,1,1),(4,2,1)} {(C2k.j) and(C3.2)},or
{(4.3—z.b.d+f) and(C2.k.j)and(C3.2.9)}

(xviii) (3.x.a+2eb+ 2f.c.d) and (4.w.a.c+e) and (4.z.b.d+f)
= (3.y.ab.ef), for (x,y,w,z) €{(1,4,1,2), (4,1,2,1)} {(C2)}, or

7 In the next facts, | do not claim of course to present ‘all’ the interesting results, and not even the ‘best’
possible results—in the sense of working always with the weakest premises and deriving the strongest conclusions
by way of the feeblest set of assumptions, in the most general way. But | have advanced a great deal polishing the
results in that direction, and the reader will see they are indeed not that bad.



198 J. Marcos / Journal of Applied Logic 3 (2005) 185-219

{(4.3—w.ac+e) and(4.3—z.b.d+f) and(C2.k.j)and(C3.1.p)and(C3.2.q)}
(xix) (4.x.a.c) and(4.y.b.d) = (3.z.ab.c.d),

for (x,y,z) €{(2,1,1),(1,1,2),(2,2,3), (1,2,4)} {(C2)}, or
{(4.3—-w.ac) and (4.3 —z.b.d) and(C2.k.j)and (C3.1.p)and(C3.2.q9)}
(xx) (5.1l.ab.cd)and(5.1.b+2d+1.a+2c+ 1.f.e) = {
(8.labc+e+1d+f+1)
(xxi) (5.2.a+2b+ 1l.b.ed)and(5.3.b+2d+ 1.af.c)= {3
(82abc+e+1d+f+1)
(xxii) (5.3.ab+2d+ 1.cf)and(5.2.b.a+2c+1.d.e) = {
(33abc+e+1d+f+1)
(xxiii) (5.4.a+42c+ 1.b+ 2d+ l.ef) and (5.4.b.ad.c) = {
(84.abc+e+1d+f+1)
(xxiv) (5.x.a+2e+ 1.b.c.d)and@.2.ac+e+1) = (5.y.ab.ed), {(C2)}, or

for (x,y,z)€{(1,2,2),(2,1,1),(3,4,2), (4,3,1)} {(C2.k.j) and(C3z)}, or
{(4.1.ac+e+1) and(C2.k.j)and (C3z.p)}
(xxv) (b.x.ab+2f+1l.cd) and(4.1lbd+f+ 1) = (5.y.ab.cf), {(C2)}, or
for (x,y,z)€{(1,3,1),(3,1,2),(2,4,1), (4,2,2)} {(C2.k.j) and(C3z)}, or
{(4.2.b.d+f+ 1) and(C2.k.j)and (C3z.p)}
(xxvi) (5.x.a+2e+ 1b+2f+ 1.c.d)and {(C2)}, or
(4.1b.d+f+1)and(4.2.ac+e+1)and {(C2.k.j) and (C3z.p)}
(4.2bd+f+1)and(@d.l.ac+e+1) = (5.y.ab.ef),
forx,ye{l,4,x#£y

(xxvii) (6.x.ab.e) & (6.x.b.ae), for x € {1, 4} {}
(xxviii) (6.2.ab.e) « (6.3.b.ae) {
(xxix) (6.2.aa+ee) = (4.1lae) and(4.2.ae) {(C1)}
(xxx) (6.x.a+e.b.e) and(4.1.a.ejand(4.2.a.e)}= (6.y.ab.e),
forx,ye{l,2},x#y {(C2.k.j) and(C3.1.p)and(C3.2.q)}
(xxxi) (6.x.ab+e.e) and(4.1.b.e)and(4.2.b.e)= (6.y.ab.e),
forx,ye{2,4,x#y {(C2.k.j) and(C3.1.p)and (C3.2.9)}
(xxxii) (6.x.a+eb+ee) and(4.1.m.eland(4.2.m.e)= (6.y.ab.e),
forx,ye{l,4},x #y, {(C2.k.j) and(C3.1.p)and(C3.2.9)}

andm = min(a, b)

Assuming we are talking about 1-simple logics, that is, taking overlap and 1-cautious cut
for granted, let me briefly comment on the above Fact: Note that, by schematism (remem-
ber last section), less complex rules—those dealing with fewer negations—usually imply
more complex ones (see (i)—(iii)); less generous rules—those introducing or eliminating
fewer negations—often imply more generous ones (see (vii)—(ix)), and in the most basic
cases they sometimes do not tell you much (see (iv)—(vi)); each form of double negation
introduction / elimination is implied by some appropriate form of double negation manipu-
lation or contextual contraposition (see (x)—(xiii)) and a similar thing happens with respect
to contextual replacement (see (xv)); moreover, some strong forms of the rules for dou-
ble negation manipulation or contraposition can only hold together with the introduction /
elimination rules for double negation in case the underlying consequence relation respects
overlap (see (xiv)); contextual replacement alone can also force double negation introduc-
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tion / elimination rules to hold (see (xxix) and (xxviii)); all forms of double negation ma-
nipulation can in fact be deduced from appropriate forms of double negation introduction
/ elimination (see (xix)); combinations of appropriate forms of contextual contraposition
will also immediately yield some forms of double negation manipulation (see (xx)—(xxiii));
some forms of double negation manipulation will even imply others, given convenient
rules for double negation introduction / elimination (see (xvi)—(xviii)), and a similar thing
will happen with contextual contraposition (see (xxiv)—(xxvi)); some forms of contextual
replacement will also imply others, either in general (see (xxvii) and (xxviii)) or in the pres-
ence of appropriate forms of double negation introduction / elimination (see (xxx)—(xxxii)).

Itis now easy to conclude from the above that there are some rules which are somehow
‘more fundamental’ than others. For instance:

[llustration 2.2. Here are a few possible choices of rules from which all the other rules
from families(3.X), (4.X), (5.X) and(6.X) follow, inside any cautious tarskian logic:

(1) (5.4.0.0.0.1) and(5.4.0.0.1.0)
(2) (5.1.1.1.0.0) and(5.2.0.1.0.0) and(5.3.1.0.0.0)

To check that, use the last Fact. In case (1), parts (i) and (ii) give you schematism, from
which you can conclude (5.4.a.b.0.1) and (5.4.a.b.1.0), for gamg¢ &. From that you have
in particular that (5.4.2.0.0.1) and (5.4.0.2.1.0), thus (4.1.0.1) and (4.2.0.1) are inferred
from (xiii). From (iii), (viii) and (v) you can derive all rules from familg. X). With the
help of those rules and (xxvi) all the rules of the fo¢dnl.Y) and(5.4.Y) ensue, and using
(xxiv) and (xxv) you can derive the rest of the fam{ly. X). The remaining derivations are
left to the reader.

In case (2), (4.2.0.1) follows from (5.2.0.1.0.0) by (xi) and (4.1.0.1) follows from
(5.3.1.0.0.0) by (xii). From that, (5.1.1.1.0.0), and schematism, (5.4.a.b.c.d) follows, us-
ing (xxvi), and we're back to case (1).

Another interesting set of results concerning the above rules is presented in what fol-
lows.

Fact 2.3. Here are some other relations which can be checked to hold among the above
rules for negation

() A.XxaY)= (1LX.a+by) forab+#],1 {3
(i) (lx.a+bY)and@4lae) = (1.x.aY),fore>0and
(x,v,2)€{(1,1,1),(2,1,2),(4,2,2), (5,1, 2)} {(C2)}, or

{(C2.k.j) and(C3.y) and(C3z)}, or

{(4.2.ae) and(C2.k.j)and (C3.y.p) and (C3z.q)}

(i) (1.x.Y.a+b)and(4.2.ae) = (1.x.Y.a), fore> 0and {(C2)}, or
(x,y,2) €{(1,2,2), (51, 1)} {(C2.k.j) and(C3.y) and(C3z)}, or
{(4.1.ae) and(C2.k.j)and (C3.y.p) and(C3z.q9)}

(iv) (1L.3.a+b.))and4.l.ae) = (1.3a ), {(4.2.a+ 1.e)and(C2)}, or
fore>0 {(4.2.a.e)and (C2.k.j)and (C3.1.p)and (C3.2.q9)}



200 J. Marcos / Journal of Applied Logic 3 (2005) 185-219

(v) (1.3.a+b.1)and4.2.ae) = (1.3.a 1), {(4.1.a.e)and(C2)}, or
fore>0 {(4.1.a.e)and (C2.k.j)and (C3.1.p)and (C3.2.q9)}
(vi) (1.1.0.1) and(5.4.0.0.0.0= (C1) {3
(vii) (1.1.m)= (1.1.m.x) {3
(viii) (1.1.m.0) = (1.1.m) {bottom andC2.k.j)}
(ix) (1.1.m)= (1.2.m. }) and(1.2.m. 1) {(C2)} or {(C2.k.j)+(C3.1)}
x) (1.2m. })or (1.2m. 1) = (1.1.m) {(C1)}
(xi) (1.2m.x) = (1.3.m.x) {3
(xii) (1.1.m)=(1.3.m.})and(1.3.m.?1) {(C2.k.j)}
(xiii) (1.3.m. })or (L.3.m. 1) = (1.1.m) {(C1)}
(xiv) (1.1.m)= (1.4.m) {(C2)}
(xv) (1.4.m)= (1.x.m.Y),for x €{1,2, 3} {(C1)}
(xvi) (L.3.m.1)and(2.1.m+ 1.m)= (41.m.1) {3
(xvi) (L.3.m+1 })and.1.mm+2) = (4.2.m.1) {
(xviii) (1.5.m.1.m+1)= (4.1.m.1) {(C1)}
(xix) (1.5.m+1.).m) = (4.2m.1) {(C1)}
(xx) (1.5.m+ 1.x.n)and(4.1.m.1)= (1.5.m.y.n), {(C2)}, or
(xr,y,2) e {({. 1.1, (1.1, 2)} {(C2.k.j) and(C3z)}, or
{(4.2.m.1) and(C2.k.j) (C3z.p)}
(xxi) (1.5.m.x.n) and(4.2.m.1)= (1.5.m+ 1.y.n), {(C2)}, or
(x,y,2) e {{{, 1.2, (1, . 1)} {(C2.kj) and(C3z)}, or
{(4.1.m.1) and(C2.k.)) (C3z.p)}
(xxii) (L.5.m. | .x) or (1.5.m. 1 .x) = (1.1.m) {(C1)}
(xxiii) (1.5.m. 1 .n) = (2.1.n.m) {(C1)}
(xxiv) (1.5.m. | .n)= (2.1.n.m+1) {(C1)}
(xxv) (1.2.m.x) and(2.4.n) = (1.5.m.x.n) {
(xxvi) (1.3.0.1) and(2.1.0.0) = (C1) {
(xxvii) (1.3.m. 1) and (2.1.n.m) = (1.5.m. 1 .n) {(C2)}

(xxviii) (1.3.m.})and(2.1.n.m+1) = (1.5.m. | .n) {(C2)}

This much for thg1.X)-column. Dual results obtain for th€.X)-column, if one only
uniformly substitutes, in the formulation of the above items, e¢kcl) for (2.X), and
vice-versa(4.1.X) for (4.2.X), and vice-versatops for bottoms(C3.1X) for (C3.2X),
and vice-versa.

To make things more concrete, if we assume we are talking about simple consequence
relations then the non-obvious parts of the previous Fact boil down to something like this:
Again, by schematism, less complex rules imply more complex ones (see (i)), but then,
in the presence of appropriate forms of double negation introduction elimination, com-
plex rules can on their turn be simplified (see (ii)—(v)); there are always equivalent forms
of pseudo-scotysiextro-levo symmetry of negationausa mirabilisand right-redundan-
cy (see (ix)—(xv));ex contradictionds in reality weaker thapseudo-scotfs(see (vii)

8 Recall for instance the semitrivial logic from the last section. That specific 1.1-overcomplete logic respects
ex contradictionéut notpseudo-scotusA more general realization of that phenomenon as applied to non-over-
complete logics was explored j&6].
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and (viii)); 1-forms and|-forms ofreductio ex evidenti@an in fact imply each other if
appropriate forms of double negation introduction or elimination are available (see (xx)
and (xxi)); moreover, some double negation rules are impliecktyctio(see (xviii) and
(xix)); reductio ex evidentialso gives yoypseudo-scotugsee (xxii)) and some forms of
qguodlibet sequitur ad casdsee (xxiii) and (xxiv)); in fact, you can only count on both
‘full consistency’ and ‘semicompleteness’ then you canrgatictio ex evidentiack (see
(xxv), (xxvii) and (xxviii)); no surprise, appropriate forms cdusa mirabilisandad ca-
soscan tell you something about double negation (see (xvi) and (xvii)). Note also, for
more general classes of logics, that a consequence relation cannot fail overlap once it re-
spects, for instance, either some basic formgafsa mirabilisandad casosor some
forms ofex contradictioneand contextual contraposition (see (xxvi) and (vi)). This much
for the ‘consistency’ column (X); dual readings are readily available for the column of
‘determinedness’, (X). Consequently, in case you have a (simple) paraconsistent or para-
complete logic you are bound to lose some forms of symmetry of negation, some of its
miraculous and redundancy rules, and some formedictia

In a single-conclusion framework, rules suchmgudo-scotyssymmetry, proof by
cases anceductio ex evidentiare not expressible in the way they were here presented—so
it will happen, for instance, thgiseudo-scotuandex contradictionevill be indistinguish-
able. Observe that, if your (multiple-conclusion) consequence relation respects overlap,
then the validity ofreductio ad absurdurimplies the validity ofex contradictiongdiffer-
ently from the single-conclusion case, thougheudo-scotusan now still fail in such a
situation. The attentive reader will have noticed that not everything is completely symmet-
rical, however, even in the multiple-conclusion framework. For instance:

[llustration 2.4. Inside simple logics:

1) x.5m4.n)= (x.5m.|.n),forn<m+1
(2) (x.5.m.}.n) = (x.5.m+1.1.n),forn<m

To check those assertions, use parts (i) and (xviii)—(xxi) from the last Fact. Moreover, you
can now easily check that all rules from familiesX).and (2X) become valid once both
(1.5.0.1.0) and (2.5.0.4.0) are verified by a simple logic. Another option to generate a
basis for all the other rules is to include a top particle together (ith0.1.0), or else to
include a bottom particle together wit@.5.0.4.0).

Notice, at any rate, that one can easily think of a simple logic for wkick.m.|.n)
holds good, for all levels tm € N, and where tops and bottoms are present, while
(x.5.0.4.0) is still not inferable—such is the case, for instance, of intuitionistic logic.

In [8], Béziau pointed out an interesting way of correcting the above asymmetry, which
runs like this. Recall from Sectiobthat we have added and have been using symbols for
iterated negations, defined in terms of a single negatigby setting~% := o« and~"+1«

:= ~"~q, for n € N. Now, take instead all such symbolg' as primitive symbols, and
consider the ‘symmetric domain’ given by the integers, requiring only the schematic axiom
~athby — ~a. by for every ab € Z, to be respected. Keeping the above rules exactly as
they were presented, it is clear that all the Facts that we proved (or else some slightly
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modified versions of them) keep provable with this new definition. But now the above
pathology cannot obtain, and if 6.m.}.n) holds good, for a given simple logic and any
given levels mn € Z, then (.5.m4.n) will also hold good, as a consequence, for glhra

7. So far, so well. The author @8], however, after using this symmetrization on the content

of the above lllustration to suggest that, in a symmetric domain, the differences between
classical and intuitionistic negation will vanish, also proceeded to use particular cases of
the derivations irFact 2.3in order to point some forms of the above rules from which all
the other rules would be derived. More specifically, in the single-conclusion environment
that he works in, he points out that the validityrefiuctio ad absurdurin a simple logic

will be enough to allow for the derivation of all the other rules for negation. But, as we
have seen above, in case we use a multiple-conclusion environment and there is no bottom
present in the language of the logic, one might quite well have all formechfctio ad
absurdumholding good whilgpseudo-scotustill fails; in case there is no top in the logic,

all forms ofreductio ex evidentiaight be available and stilasus judicansnight fail. (It

does not really help to point out that canonical sequent-style presentations of intuitionistic
logic are single-conclusion. Multiple-conclusioned presentations for that same logic have
been known since long—che{84], for instance.) So, to be sure, contrarily to what Béziau
asserts, here we see thiatluctio ad absurduralone doesiot sanction the derivation of

all the other rules for negation. One always has to be alert not to let a particular choice of
framework fool oneself into deceivingly general conclusions.

Fact 2.5. Some further interesting relations among the two above sets of rules for negation
are(letopt={(J, |, 1), (1,1.2), (1, 1. 3), (1, 1. H}):

() (1.2a+r.x)and(l.2b+s.y) and(2.2.a+t.x) and (2.2.b+ u.x) = {
(8.z.ab.c.d), for (x, y, z) € optand
(z,r,s,t,u) €{(1,1,0,0,1),(2,0,0,1,1),(3,1,1,0,0), (4,0,1,1,0)}
(i) (w.2.ax)and(@—w.2a+ 1l.x) = (4.y.ae), forwe {1, 2} {(C1)}
(i) (1.2.b.y) and(2.2.a.x) = (5.z.ab.0.0), for (x, y, z) € opt {
(iv) (L.2a+1lx)and(1.2b.y)and(2.2.ax)and22b+1y)= {}
(5.z.ab.c.d), for (x,y,z) € opt

(v) (L.2ax)and(1.2.b.y) and(2.2.ax) and(2.2.b.y) = {
(6.z.ab.w), forw > 0and(x, y, z) € opt

(vi) (L.2a+1. 1) and4.1lal) = (1.1a {
(vi) (L.2a })and@4.2al) = (1.1a+1) {3
(viii) (L.2.a+2ex)and(4.l.ae) = (1.1.9 {(C2.k.j)}

(ix) (1.2.ax)and(4.2.ae) = (1.1.a+2¢ {(C2.k.j)}

(xX) (5.1.ab.c.d)and(4.2.b.d)= (1.1.b+2da+2c+1) {3}

(xi) (5.2.ab.c.d)and(4.2.b.d)= (1.1.b+2d.a) {3
(xii) (5.3.ab.c.d)yand(4.1.b+1.d)= (1.1.b.a+2c+1) {
(xiii) (5.4.ab.c.d)yand(4.1.b+1.d)= (1.1.b.a) {3
(xiv) (5.1.ab.c.d)yand(4.1.b+ 1.d)= (1.1b.a+2c+1) {(C1) and(C2.k.j)}
(xv) (5.2.ab.cd)yand(4.1.b+ 1.d)= (1.1b.a {(C1) and(C2.k.))}
(xvi) (5.3.ab.c.d)and(4.2.b.d)= (1.1.b+2da+2c+1) {(C1) and(C2.k.j)}

(xvii) (5.4.ab.c.d)and(4.2.b.d)= (1.1.b+ 2d.a) {(C1) and(C2.k.j)}
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(xviii) (C0.0.1)=> (x.y.Z), for x € {2,3,4,5,6} andx.y # 2.4 Iy
(xix) (C0.0.1)= (x.y.Z), forx.y=2.4 {(C2)}
(xx) (C0.0.0)= (2) {}

Dual results hold if one uniformly substitutes, in the above items, :eétlX) for
(2.X), and vice-versaj4.1.X) for (4.2.X), and vice-versaf3.z.b.aX) for (3.z.a.bX);
(5.z.b.a.d.c)or (5.z.a.b.c.d); (3.2) for (3.3.X), and vice-versa(5.2.X) for (5.3.X), and
vice-versaj(C0.1.0)for (C0.0.1)

So, at least as far as simple logics are concerned, one sees that appropriate forms of
symmetry rules from the consistency and the completeness families together are enough to
imply each rule from the second bunch of rules, that is, those rules involving double nega-
tion, contraposition or contextual replacement (see (i)—(v), and recalFals2.1xix));
furthermore, in the presence of appropriate forms of double negation introduction / elim-
ination, one sees how symmetry rules impeudo-scotuandcasus judicansand how
contextual contraposition rules impgx contradictioneand ad casog(see (vi)—(ix) and
(x)—(xvii)). Finally, note that overcompleteness might give you the positive properties for
free (see (xviii)—(xx)). As a particularly interesting base for deriving all the other rules, one
might consider:

[llustration 2.6. Inside any logic respecting overlap (rule (C1)), all the rules from families
(1.X)—(6.X) follow from the validity of basic rules such @%.4.0) together with(2.4.0).

To check that all rules from families (X) and (2X) follow from (1.4.0) and (2.4.0),
recall parts (xv), (vii), (xxv) and (i) ofact 2.3 For the remaining rules, use parts (ii))—(v)
of Fact 2.5 together with parts (iv)—(vi) and (xx)—(xxiii) dfact 2.1

We might now reasonably ask ourselves: Have we not been too permissive? Is there
anythingin common after all, among ‘all negations’? | have prudently not said a word
about that matter this far. More interesting for me was to note the consequences of each set
of rules assumed to hold at each given moment. For instance, tB&ttd.3into consid-
eration, if you are talking about a simple paraconsistent logic, then you should first allow
for inconsistent models, thus you cannot expect any of the rules of the forr.{1). to be
valid—except perhaps f@ax contradictiongand this only in case there is no bottom parti-
cle presentin your logic. Now, #x contradictionds also not valid, as it is usually the case,
thenreductio ad absurdummust also fail. Moreover, takingact 2.1into consideration, if
your logic also lacks some form of double negation introduction / elimination, then not all
forms of contextual contraposition will be interderivable, and not all forms of contextual
replacement will be interderivable; in fact, some forms of contextual contraposition and of
contextual replacement will be simptyeventedrom holding. Finally, taking-act 2.5nto
consideration, any double negation manipulation, contextual contraposition or contextual
replacement rule that might be lacking will cause a failure of symmetry, and your simple
logic might end up being either paraconsistent or paracomplete, in the presence of appro-
priate forms of double negation introduction / elimination; the failurgo®éudo-scotus
at given levels is incompatible with both symmetry and double negation rules at related
levels; the failure ofx contradictionewill condemn either some form of contextual con-
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traposition or of double negation, and so forth. Dual results hold for paracomplete logics
and undetermined models.

All that said and done, it might come as no surprise the acknowledgment that some
of the few things which are common to all negations in the literature are not ‘positive
properties’, but ‘negative’ ones. In fact, it is not that theywesomething in common, but
that theylack some things in unison. Consider the following set of negative rules, for each
level ac N:

(7.1.2) (I, ~2 1l A) (8.1.a) (I' ¥~y A)
nonbot nontop

(72.8) (I'~*lpl~29 A)  (8.2.8) (I',~Ppk ~tlg, A)
verificatio falsificatio

Of course, | continue to consider above only sub-classical properties of negation: The nega-
tive rules stated above are rules whazmhold in classical logic for some particular choice

of contexts and of (negated) formulas, but that shawltll contend, hold in general for an
object we intend to call ‘negatior?’.

From a semantic point of view, (7.1.a) makes sure that our negation is not an operator
which produces only bottom particles, and (8.1.a) poses a similar restriction on operators
which produce only top particles—these could be held as some sort of very basic require-
ments for a decent version of this logical constant. Now, a decent negation operator should
also embody some reasonable notion of ‘opposition’: Accordingly, (7.2.a) requires that the
negation of some formula can be true while that formula itself is false, and (8.2.a) requires,
dually, that some true sentence should have a false negation—thus, no extreme case will be
allowed in which all models are dadaistic (that is, thoroughly inconsistent) or nihilistic (that
is, thoroughly undetermined). In particular, any of those last two rules preclude identity as
an interpretation of negation. This negative axiomatic outlook seems rare, but, | submit,
is not really that controversial—in fact, | am unawareaofy connective which has been
seriously proposed intending to represent some sort of ‘negation’ and that does not respect
all the above negative rules. Some interesting results involving the last set of rules follow:

Fact 2.7. Some further interesting relations among the three above sets of rules for negation
are:

() =(7.1a = (113 {

(i) =(7.18 = (4x.a+le) {

(i) (7.x.a+b)= (7.x.9 ¢
(iv) (7.1.9and(4.1.a+1.e)= (7.1.a+b), fore>=0 {(C2)}, or
{(C2.k.j) and(C3.1))}, or { (4.2.a+ 1.e) and(C2.k.j)and (C3.1.p))}

(v) (7.28 and(3.4.a+ l.aee) = (7.2a+h), fore>0 {3

9 Note that I dichotat any point require—and | will not require—that logics should have any theses / theorems
/ tautologies / top particles, as much as | also did not require at any point that logics should have any antitheses.
Important logics such as Kleene’s 3-valued logic have no theses at all. In particular, | surely did not require that
logics should haveegatedtheses, that is, theses of the form.. An example of paraconsistent logic extending
positive classical logic by the addition of (2.1.0) and (4.2.0.1) and which can be proven to have no negated theses
nor bottom particles is the logic studied under the na&pg, in [15].
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(vi) (7.1a and(1.3.al)= (7.2.9 {3
(vii) (7.28) = (7.1.9) {3
(vii) (7.1.a+21) and(l.2.a+1.))= (8.1la) {
(iX) (7.1.a and(1.2.a+1.1)=(8la+1 {3
(x) (7.2.a+1) = (818 {3
(xi) (7.1.a) and(1.3.a+1.1)= (8.2a+1) {
(xii)y (7.2.@) and(5.4.aa+ l.ee) = (8.2.a+2e+1) {}
(xiii) (C0.0.1)= —(8.x.y) {
(xiv) (2.1.0)and—(7.x.0) = (C0.0.1) {(C2.k.j)}

Dual results hold if one uniformly substitutes, in the above items, dactj) for (2.X), and
vice-versaj7.X) for (8.X), and vice-versa{4.1.X) for (4.2.X), and vice-versa{x.4.a.a+
l.ee) for (x.4.a+ l.a.e.e), and vice-versa{C3.2.q)for (C3.1.p); (C0.1.0jor (C0.0.1)

So we see that: If a logic disrespects nonbot then it canngp$aiido-scotusor dou-
ble negation elimination (see (i) and (ii)); this time more complex negative rules imply
simpler ones by schematism (see (iii)), the converses being true in some special cases, in
an appropriate logical environment, given some appropriate form of double negation in-
troduction / elimination or some form of double negation manipulation (see (iv) and (v));
nonbot impliesverificatioin the presence afausa mirabilis while the converse is always
true in virtue of schematism (see (vi), (vii) and (iii)); nonbot implies an appropriate form
of nontop in the presence of an appropriate form of dextro-levo-symmetry (see (viii) and
(ix)); verificatio always implies nontop in virtue of schematism (see (f)sificatio is
implied by nonbot by way of an appropriate form adusa mirabilis and is implied by
verificatio in the presence of a conveniently strong form of contraposition (see (xi) and
(xii)). This much if we put the family (7X) at the side of the premises; dual readings can
be effected if we now put the family (8) there. Notice also that, on the one hand, basic
forms of overcompleteness imply the failure of the rules from the last two families (see
(xiii)) and, on the other hand, a failure of any of the most basic forms of the last given rules
occasions overcompleteness in the appropriate positive environment (see (xiv))—or, to put
it differently, non-overcompleteness together with determinedness might irapficatio,
together with consistency it might impfalsificatio.

One can conclude from this last Fact that no paraconsistent logic can disrespect nonbot
(and a similar restriction applies to logics without double negation introduction / elimina-
tion); on the other hand, if you fix a logic which respects weak cut, any explosive negation
in it had better respect nontop, or else it can occasion overcompleteness. Moreover, if a
logic respectgerificatiothen it automatically respects nonbot as well, and similarlydbr
sificatioand nontop; besides, in the presence of appropriate forms of levo-dextro-symmetry
of negation, nonbot implies nontop. If a logic respects some of the above negative rules,
then we are safeguarded against the most basic forms of overcompleteness. Non-overcom-
plete logics respecting weak cut and some of the above positive rules will also often respect
some of the above negative rules, but a logic can respect all the given negative rules and
yet respect none of the given positive rules (ok, | concede: This would be quite weak of a
‘negation’—but check the next sections). Dual results can easily be checked for paracom-
plete logics.
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Another pure negative rule which might occur to the reader at this point is the following:

(9.8) — (I~ |- ~*1gp, A)
paradoxical inequivalence

Many set-theoretical paradoxes end up by sanctioning a paradoxical inference which fails
some form of (9.a), rather than directly proving a pair of contradictory formulas. But the
failure of (9.a) means the failure of both of the corresponding rules (7.2.a) and (8.2.a), and
from that it follows, using the last Fact, that those failures leave us standing a very short
step from some form of overcompleteness.

3. Causesand consequences for paranormal logics

It is contrary to common sense to entertain apprehensions or terrors upon ac-
count of any opinion whatsoever, or to imagine that we run any risk hereafter, by
the freest use of our reason. Such a sentiment implies both an absurdity and an
inconsistency.

—David Hume, Dialogues Concerning Natural Religion, 1779.

As | see it, a natural continuation of the last section should include an analysis of the
consequences of the ‘paraconsistent attitude’, that is, a brief list of properties enjoyed or
avoided by logics for which the positive rule (1.1.0) fails, in the light of all previous Facts.
Calculating this is a purely mechanical task, so this section will only provide some lllus-
trations of such calculations, instead of trying the reader’s patience with further lengthy
enumeration of facile results.

To make things even more interesting, | will in fact start by quickly showing how
the present environment can help in the specification of some interesting specializations
of the notion of paraconsistency (sp]). Recall that in paraconsistent logics the rule
(I, a, ~a I- A) does not hold in general, that is, it is not valid for some choice of con-
textsI" and A and some formula. Of course, the ruleloeshold, for instance, in case
eithera or ~a are bottom particles. Now, suppose there is some forma];<|) of a
special format such that neithernor ~¢ are bottom particles for all choices of compo-
nents[g;;el, but such that the rulér, ¢, ~¢ I A) always holds. In that case the logic
will be said to becontrollably explosivein contact withg). Explosive logics are those
which are controllably explosive in contact with any formglao which the definition
applies, and controllably explosive logics are always non-1.0-overcomplete, by definition.
Paraconsistent logics cannot be explosive, but dagbe controllably explosive, and they
often are. Consider for instance the case of a logic in which (1.1.m) fails only for some
m < a, where mae N, and suppose that (7.1.a) holds good—this logic will obviously be
paraconsistent yet controllably explosive in contact withx. An example of logic with
that property is given by the 3-valued maximal paraconsistent IBdicstudied in[30].

Dual definitions can easily be offered for paracompletenesscanttollable implosion
Next, remember that the failure of the rulf, «, ~« I 8, A) is equivalent to the failure

of the rule(I', a, ~a IF A) in the presence of a bottom particle and (C2.k.j). Of course,
(I',a, ~a I- B, A) doeshold, for instance, in casg is a top particle. Suppose then that
o{leilicl) is a formula of a special format such thais not a top particle for all choices
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of component$y; ;<|, but such that the rulel”, o, ~a I+ ¢, A) always holds. Logics with

that property are callegartially explosive(with respect tap). Given a theory® ([¢; ;<)

which happens not to make a J-alternative for every choice of its components, but such
that (I, o, ~a IF @, A) always holds, one may now naturally extend the previous defin-
ition so as to call the underlying logisartially explosive with respect t@. Explosive

logics are partially explosive with respect to any formalar theory® to which the defin-

ition applies, and partially explosive logics are always non-0.1-overcomplete, by definition.
Paraconsistent logics can be partially explosive with respect to some formulas, but not with
respect to all sets of alternatives. Consider the case of a logic having a bottom and such
that (1.1.0.n) fails only for some @ a+ 1, where nae N, and suppose that (8.1.a) holds
good—this logic will obviously be paraconsistent yet partially explosive with respect to
~at1lg Kolmogorov—Johansson’s minimal intuitionistic logic gives an example of a par-
tially explosive paraconsistent logic, since (1.1.0.0) fails in it while (1.1.0.n) holds good
for every n> 0. Finally, a logic is calledoldly paraconsistenin case it is not partially
explosive; obviously, boldly paraconsistent logics are, in particular, paraconsistent. Dual
definitions can be offered for paracompleteness and both its partial and its bold varieties
of implosion. Note that most paraconsistent logics are in practice designed, expected or
even required to be boldly paraconsistent (E8]). Relevance logics, in particular, are
always boldly paraconsistent, in virtue of theariable-sharing propertyAny inference

(I" IF A) can only hold good in casE and A depend on some common atomic sentences.

It is not true though that every boldly paraconsistent logic must have the variable-sharing
property.

Say that a logic igoo paranormalin case it is eithefoo paraconsistent oo para-
complete, wherdoo is one of the above varieties of paraconsistency / paracompleteness.
Can we spell out some of the sufficient and some of the necessary conditidors fara-
normality? Surely. Note, for instance, that: From parts (xii) and (xxviFa€t 2.3 any
logic respecting weak cut and the Principle of Excluded Middle but failing overlap will
forcibly be paraconsistent; from parts (X)—(xiii) and (xx)—(xxiii) ledict 2.1and parts (x)—

(xvii) of Fact 2.5it follows that contextual contraposition and double negation rules are
incompatible with each other, inside any 1-simple boldly paraconsistent logic; from part
(i) and the qualification of part (ix) dfact 2.3we see that there is no reason to suppose,
given a non-monotonic logic, that the failure of dextro-levo-symmetry should be held as a
characterizing mark of paraconsistency. And, of course, similar things can always be said
and done about the other paranormal class of logics, the paracomplete ones. In the way
we have formulated, in the last section, the positive local rules for negation, from families
(1.X)—(6.X), it turns out that no rule alone has all the others as consequences, given some
convenient set of properties of the underlying consequence relation, and, in the same spirit,
there is no single rule whose failure causes the failure of all the other rules at once. But, in
general, neither the validity nor the failure of a given rule, or set of rules, will be without
consequences for some of the other rules. In particular, one could conclude from what
has been seen in the above lllustrations and Facts that all positive rules are inferable, for
instance, fronpseudo-scoty41.1.0), anctasus judicang(2.1.0), via overlap and cut.

Here are a few other selected causes and consequences of the paraconsistent stance:
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[llustration 2.8. Let’s look first for some possibleausedor paraconsistency, that is, some
(combinations of) conditions leading to the failure of (1.1.0). The following logics are
paraconsistent:

(1) Simple logics respecting all rules from families (X}.to (2.4X) but failing any
other rule from families (IX) to (6.X).

(2) Logics respecting weak cut and some rule from familyx{7 while failing a rule at
the same level from family (&) (e.g., respecting (7.1.a) and failing (8.2.a)).

(3) Non-nihilistic logics respecting weak cut and failing basic forms of the rules from
family (8.X) (viz. (8.1.0) or (8.2.0)).

Here are some selectednsequences paraconsistency, that is, some conditions inferable
from the failure of (1.1.0):

(4) If a logic respects overlap, then the basic forms of most rules from famiky)(1.
namely (1.2.0¢), (1.3.0x), (1.4.0) and (1.5.@.y), will fail. Moreover, some basic
forms of contextual contraposition, namely (5.2.9.0) and (5.4.0.Q-0), will also
automatically fail.

(5) The most basic form of nonbot (viz. (7.1.0)) will always be respected.

(6) The underlying logic will not be nihilistic.

If a logic respects the rules from family ) and isnot controllably explosive then:

(7) The logic is paraconsistent.
(8) All forms of nonbot are also respected.

Finally, here are a few consequencedold paraconsistency:

(9) Ex contradictionewill fail alongside withpseudo-scotugnd there is no need for a
bottom to get that result).

(10) Several other basic forms of contextual contraposition, namely (570).@&nd
(5.3.0.0z.0), will also fail inside logics respecting overlap. If the logic also respects
weak cut, that is, if the logic is simple, then it will in general fail every rule of the
form (5x.y.0z.0).

As usual, the whole thing is easily dualizable for the paracomplete case.

4. Oh yes, why not?...(But then again, what is negation, after all?)

There are only two means by which men can deal with one another: guns or
logic. Force or persuasion. Those who know that they cannot win by means of
logic, have always resorted to guns.

—Ayn Rand, Faith and Force: Destroyers of the Modern World, 1960.

The results in the above sections have painfully illustrated the intricate links that tie
the several positive contextual sub-classical rules for negation together. You might have
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noticed that, inside the appropriate logical environment, all positive rules were derivable,
for instance, from (1.1.0) and (2.1.0), the most basic formpsgfudo-scotuand casus
judicans Alternatively, in a similar logical environment, some rules for contextual con-
traposition were also shown to be sufficient for deriving all the positive rules. Besides, if
non-overcompleteness was also guaranteed, then you could also derive the negative rules
from the above mentioned positive rules. The requisites for checking each link have also
been made clear. You might have noticed, in particular, that full monotonicity had little use

in the previous Facts. Anyway, one of the basic lessons one should draw from the whole
thing is that the failure of each positive rule carries forward to the failure of some, but not
necessarily all, of the other positive rules.

But there ismore. | now discuss another, perhaps even more basic lesson, that one
should learn from the above. It is easy to run into ‘triviality’, in an intuitive sense, if one
does not explicitly try to regulate and avoid it. So, 0.0-overcomplete logics respect all
the positive rules for negation, but at the same time respect none of the negative rules.
Moreover, if an arbitrary logic does not respect (7.1.0) then it will automatically respect
explosion, if only for silly reasons, and silliness will also guide you from the failure of
(8.1.0) to the failure of implosion. Together with basa&sus judicansthe failure of either
(7.1.0) or (7.2.0) will lead you to a dadaistic logic, and together with baséudo-scotus
the failure of either (8.1.0) or (8.2.0) will lead you to a nihilistic logic. What seems to be the
safest thing to do about that? To be sure that you kawgenegative rules about logics and
about negation around! This way you can at least avoid both the nonsensical situation of
overcompleteness and the uncomfortable situation in which you have a sample of a logical
constant—negation— which turns out to lack any real substthce.

This connects to the difficult trouble of defining what a logic or a logical conssant
(or, in this case, what iis nof). Well, one might complain that this discussion does not
lead us anywhere, and that it is very likely that researchers will never reach anything like
a general and final agreement about those notions (though they are very likely to keep on
trying, perhaps by use of force or by appeal to some argument stemming from some un-
formalizable consideration about aesthetics or about the ultimate goal of science). Hey, but
why should there be an agreement? This is not what we should be striving for! It seems
to me that we should rather, as scientists and (meta-)logicians, be quite content in investi-
gating, comparing and argumenting for and against each possible ‘interesting’ definition.
Then, as the Western Canon says, “by their fruits ye shall know them”. Irrespective of reli-
gious backgrounds, one might always aspire to find a bit more of impartiality and tolerance
around. ..

Suppose you want to define a class of objects falling under the denomitatiérb
has some common sense meaning(s) in ordinary language, that might give you a good start.

10 This approach is in fact an application of a certain metaphysical stance focused in somestittaitalism:
The really ‘essential’ properties in certain characterizations might in some cases turn out to be the accidental
ones—you enumerate the properties which your class of olgbotgdd notpossess from among the ones which
are actualizable, and then you have at least some necessary conditions for that class of objects to be ‘meaningfully
defined'. It is a bit like deciding what you will be when you grow up by listing all the things yonatevant to
be. There is of course no space for better defending this strategy here, from a more abstract point of view, so this
had better be left for another occasion.
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You begin by abstracting from that meaning toward some specific direction, but it might
happen that you do not want to give neither a purely normative nor a purely descriptive
characterization of thB-objects. What should you do then? You might say, “Listen, | am
only interested irD-objects in case they have the positive propéttyda”. The problem
about positive properties is that there will often be some smart guy to come and say, “Now
look how interesting is the class Bf-objects whichdo nothavebunda!” What is left of

D in such a case? Some people say that you cannot negotiate all your positive properties
(and our present commitment to negative properties is atéeasistentvith the idea that
positive properties are important). For instance, you might define the class of non-mono-
tonic logics as the class of logics given by consequence relations whicbtdave such-
and-such property; but then, why should you still think that such consequence relations
should still be said to define lagic? Fixed a given logic, it might be quite all right that
you define gparaconsistenhegation as the negation which lacks such-and-such property;
but then, how can you really be sure in that case that you have a paraconsgiatibon

(cf. [12])? The problem about positive properties is that they can easily mutate from a
happy finding into a heavy burden. And, depending on the way you write them down and
insist on them, your preferred set of positive properties might easily make you oblivious of
other interesting classes of objects which are very much related to your original intuitions
aboutD, but remain excluded by your rigid dogmatic definition of it. On the other hand,
having positive properties can be very convenient, for you to get a good glimpse of what
rests ahead. It is just so easy to work with them.

So, suppose next that we all agree that ‘decBrtibjects shouleshot have the property
favela. We might still have an argument as to whetliepbjects should haveunda or
not, asbunda andfavela might be but slightly related properties, and turn out to be quite
independent from each other. Now, the advantage of such a negative property is that it
doesgive you a necessary condition for the objects to fall into an ‘decent’ compartment
of the clasD. To be sure, there might be trivial examplesipairound, but now you are
at least confident about having avoided some of them. Anyway, it seems hard to you and
me to negotiate propertiavela. What is ‘decent’ though might not be ‘decent enough'’!

So now we might go on to discuss whether ‘dec&hdbjects should not suffer from the
propertypipoca, in addition to (or instead of) their not having the propeeatyela. Well, |

do have my doubts as to whether we will be able to reach a complete and undisputable set
of sufficient conditions for characteriziri—we might soon have a debate on the status

of the next negative property that we consider: Is the denial of propipbea ‘really
innegotiable’? Does it make sense to strive endlessly towards a really ‘comprehensive’
definition? Anyway, no matter the answer we will give to that, now we have at least agreed
in avoidingfavela, right?

Which positive properties are thedisputableones, if any? | will not take a stand on
that. | do not aim to convince you here of adopting any of the above positive properties
about logics or logical constants. Just look at their consequences and make up your own
mind about them, in the face of the particular application you might be targeting. Now,
| do hope we will agree in avoiding inanity. In that case, take my hand and follow me
to a cut-and-dried territory where we will look fominimally decent’ versions of our
objects of discourse. Note that | will not maintain that what is not minimally decent does
not fall under the scope of those definitions, but only that | will cate about what is
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not minimally decent, and | can only hope to convince you that you should also not care
about that. Anyway, feel free to disagree and propose and study some other smaller or
incomparable set of minimally decent properties, at any point!

| hope you did not get tired with the previous long abstract argumentative digression.
Here is the meat. Given some set of formulas, | now proceed to defind-aonsequence
relationas a binary relation over theories (subsets of the initial set of formulas) which is not
I.J-overcomplete, for any finite | and J. We get rid thus of trivial, semitrivial, dadaistic and
nihilistic logics, besides all other logics suffering from other kinds of finite overcomplete-
ness. One might call this tH&rinciple of Non-Triviality (PNT): “Thou shalt not trivialize!”
Newton da Costa has proposed some sort of such principle many decades agdl(@heck
18]): “From the syntactical-semantical standpoint, every mathematical theory is admissi-
ble, unless it is trivial” (notice that he does not say what ‘theory’ or ‘triviality’ mekn).
Interestingly, much more recently, people like Avron, with a completely different back-
ground and intentions, have been incorporating some instances of such a prindiplé} In
this author requires consequence relations to be (simple and) non-0.0-overcomplete. Peo-
ple in the paraconsistent logic community working with single-conclusion consequence
relations have accordingly interpreted (PNT) as requiring only that a logic should not be
0.1-overcomplete. They have thus explicitly tried to avoid both trivial and dadaistic logics,
while they theoretically allowed for semitrivial and nihilistic logics to linger (a further dis-
cussion of this can be found [@6]). The above definition of enid-consequence relation,
however, clearly extends all the preceding definitions in a natural way—of course, in view
of Fact 1.3 if the logic has both a bottom and a top particles and respects weak cut, then
the present requirement is identical to AvrotfsBy the way, in view of the same Fact,
it is only reasonable to defineraid-top as a top particle that is not also a bottom, and a
mid-bottom as a bottom particle that is not also a top.

Now, for us here anid-negationwill be any unary operator satisfying the negative
properties from families (%) and (8X). Note that this requirement alone safeguards us
against 0.0-, 0.1- and 1.0-overcompleteness. In view of the Facts from the last section, on
the one hand, even if a logic respects the above positive properties, nothing guarantees that
it will respect the negative ones as well, and that it will escape overcompleteness. On the
other hand, if some of the positive properties fail for a given logic, then this logic will often
respect some negative properties as well, but not necessarily all of them. So, the safest thing
to do seems to be just to strive fondd-negation from the start.

By the bye, if our negative sub-classical properties alone are so weak, as one might com-
plain, how is it that one can arrive from them to a full characterization of classical negation?
One possibility is to guarantee, from a semantic perspective, that (7.2.0) and (8.2.0) come

11 pa Costa dubbed this methodological principle the ‘Principle of Tolerance in Mathematics’, by analogy to
Carnap’s homonymous principle in syntax (check p. 5pLdf).

12 One should notice, though, that the present requirement on non-triviality, which sets all 0.0-, 0.1-, 1.0-, 1.1-
overcomplete consequence relations into a class of their own, is exactly the same requirement to be found, later on,
in Avron and Lev’s[5]. The only methodological difference is that in the last paper the structures corresponding
to such relations are somehow “excluded from our [theirs] definition lofy&”; in the present paper, instead,
they are just said to constitute not ‘minimally decent’ such relations, but are allowed to stay as ‘trivial’ (that
is, ‘degenerate’) examples of logics. Do notice also that the entailment relation usually associated to relevance
logics, with its characterizing variable-sharing property, automatically respects the present formulation of (PNT).
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together with truth-functionality and two-valuedness. The margins of this paper are how-
ever too narrow to contain the truly marvelous demonstration of that proposition.

Ways of nay-saying. Before putting an end to this, let me now make a brief comparison
among the present necessary properties ahig@-)negation, and other characterizations
which have been recently proposed in the literature (all the following proposals appeared
in single-conclusion form, so here | will work with their straightforward reformulations
into the multiple-conclusion environment).

In [21], Gabbay proposes a few increasingly complex ‘definitions of negation’, based on
a couple of necessary and sufficient sets of properties. The idea behind his most sophisti-
cated definition was the following. Suppose you are working with structural tarskian logics.
Let ® = {[6klx<k } be a non-empty set of ‘undesirable results’ of ‘unwanted sentences’ of
alogicLl1l= (Sp1, k1), subject to the restriction tha& should not be a K-trivializing set.
Let £L2= (Spo, o) be called econservative extensiarf L1 if I'lFpo A < Tkpq A,
wheneverl” U A C S1. Consider next a binary connectigesuch that:

(Gl) (@ ® BlFa) and(a ® B IF B)

(G2) (o, BlFax®p)

(G3) (y @ TH|Fy) and(T ® y | y), for any top particler
(G4) (@lFkB)/(@@yFBoy)and(a!FB)/ (y@alFy ® B)

Notice that a connective having properties (G1)—(G4) will behave just like a classical con-
junction. Now, a connective- of £1 is said to be aegationif, for some conservative
extensionC2 of £1 having a connective with properties (G1), (G3) and (G4):

(GB) (y k1 ~a) < (y @ all-£20), for somed € ©

For an intuition about that sort of negation, you might understand (GB) as conveying the
idea thaty anda are ‘in conflict’ in the presence of the undesirable senténce

How can one capture the set of unwanted sentences, when it exists? Easy: Just consider
the set of all negated 1-alternatives, thatis= {0 : (Vy, I", A)(I', y IF£1 ~0, A)}. In case
L1 has some top particle, then turns to be more simply the set of all formulas whose
negations are theses of this logic. You might recall though frotnote Shat this already
goes much beyond our present general requirements on logics. Let me note in passing
a few particular features of the above definition. Suppose that this connectdfeL2
also respects property (G2), that is, suppose that it behaves like a classical conjunction.
Then, by overlap we have thatx I-,1 ~o and so, by (GB)~a © a IF.2 6, for some
0 € ®. From (G2) and cut, together with the fact th& is a conservative extension of
L1, one can conclude that ~« -1 6. Similarly, from (G1), (G2) and (GB) again, one
also concludes that I-,1 ~~«a. Moreover, in this case the underlying logic will be at
least partially explosivex, ~a I-£1 ~8, for everya, B € Sy1. Obviously,® should not
contain a top particle, under pain of causifdy to fail (8.2.0), thus producing a negation
that is notmid. For similar reasons;1 should not be 0.1-overcomplete, and we know that
it is not 1.0-overcomplete from the very postulated existence of a non-trivializing set
In caseL1 counts on some top particle, and the connective of £2 not only respects
properties (G1)—(G4) but it is already expressibleCih thenlk,; ~(a © ~a) (use (G3)
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to check that). The interested reader will find238] an extension of the above definition
of negation so as to cover also a class of non-monotonic logics.

In [22], the authors propose a ‘simplified version’ of (GB). Starting from full classical
propositional logic, for each formula they explicitly introduce the connective, for
‘graded negatioh together with another set of connectives for ‘graded tolerance’, in order
to axiomatize what they claim to be a conservative extension of classical logic. Next, they
require graded negation to respect the following property:

(GH) (I'lF~4B) & (I'lFa) and(a A B 1F)

The idea, again, is that the inferencexofrom I” is ‘in contention with’ 8. As the authors
claim that “it is becoming more widely acknowledged that we need to develop more so-
phisticated means for handling inconsistent information”, one might be led to think that
graded negations are non-explosive. This is surely not the case. Indeed, given overlap and
any unary connective, it is easy to check that bott»,x¢ I- ¢) and (¢ A ¢ IF) should
hold good in their logic. The last inference seems quite puzzling, given that it holds for
any definable unary connective (thus also for identity, and for any negation originally
intended to be non-explosive), andis classical conjunction. Thus, we finally conclude,
in particular, that(g I). This renders the present ‘extension of classical logic’ both non-
conservative and nihilistic, thus non-paraconsistent—and so the paper seems not really
to delivers what it promises. (To go back to single-conclusion consequence relations and
write (@ A B IF y) instead of(a A B IF) at the right-hand side of (GH) does not help at alll:
The resulting logic will not banid, being at least semitrivial.) The proposal is glaringly
unsound.

Another fascinating investigation of negation was made by Lenzej24ijh One can
find in that paper a list of ‘necessary conditions for negation-operators’, namely (check
Proposal 42):

(L1) (I, a ¥ ~a, A)

(L2) (IalFB,A)= T, ~BIF~a, A

(L3) (I'lFa, A) = (I' Ik ~~a, A")

(L4) If the logic has a top, theBu(I" IF ~a, A)

Now, (L1) is simply our own property (8.2.0). Even though the paper by Lenzen aims to
give a special account of paraconsistent negations, it seems ungainly not to find in the above
list of necessary properties for negation the dual of property (L1) in family)(4.cannot

say much here about (L2) and (L3)—they are global properties, and | have postponed the
discussion of such properties to a future paper. But again, it is a bit strange not to find other
versions of (L2)—global contraposition—in the above list, and also not to find the dual
version of (L3) there. At any rate, for the purposes of algebraization and modalization,
(L2) is surely more than one needs (as keenly pointed d@2}), given that the following
version of global replacement is already enough:

(L2*) (I'a-FB,4) = T, ~a-|F~8,4")
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There are, though, an awful amount of interesting logics, algebraizable or not, with known
modal interpretations or not, which are supposed to have a ‘negation’ that respects neither
(L2) nor (L2*) (check[16] for many remarkable paraconsistent samples of such logics).
As a final remark, in a multiple-conclusion consequence environment, it would of course
seem only natural to add and study also the dual of (L4):

(L4% If the logic has a bottom, thew (I", ~a IF A)

Let's leave it as a suggestion for further development.

Here is a last case study. [10], Béziau aims to propose “a definition of negation not
depending on explicit logical laws but on a conceptual idea”. To that purpose, the author
tries to formulate a semantical constraint which would be such that the following condition
(BZ) is respected: Given a set of ‘true’ (designated) truth-values and a disjoint set of ‘false’
(undesignated) truth-values, it would always be possible to find mattelsndM2 such
thatp and©¢ would not be both true iM1 nor both false invi2, for some symbol®’
aimed to model ‘negation’, as opposed to ‘affirmation’ (ch&adx 1). Clearly, our rules
(7.2.0) and (8.2.0), from the end of Sectiprare just what one needs for the job, under a
structural tarskian interpretation of semantics, but that’s not the path trodden by the author.
What he does in that paper, in fact, amounts to the following. Call any true Vakrd
any false valueF’, and define the natural order among them, that isFsetF, F < T,
andT < T. Next, call a unary operate positivein case it is monotonic oveg, that is,
in case §(¢) < 82(p) implies §(@¢) < 8(©p), for any choice of valuations;8&and &.
Finally, call® negativen case it is not positive. Béziau proposes that negative connectives
have all the right to be calledegationsIndeed, the identical operato@§ in Fig. 1), for
one, is surely not negative. But then, unfortunately, the last definition is not strong enough
to get rid of the other forms of affirmation. Mind you, consider the oper@tg)'m Fig. 1,
and consider valuations; &nd & and a formulap such that §(¢) = F = 8(¢), but
81(®3¢) = T while &(@5¢) = F. Those valuations would characterizg as a negative

3 2
| 1©3] | 1@ o}
| T | T —_— kinds of
T| T aff .
T| F Fl T rmation
F | F
F| F F| F
4
o} o} o
o] T
kinds of _— T| F T| F
negation T|F Fl F T| T T|T
F| T F| F
F| T F| T
F| T

Fig. 1. Affirmation x negation.
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operator, contrary to our expectations, and a similar example can be writte@gvithis
time taking §(¢) = T = 82(¢). In neither case can we say that condition (BZ) holds good.
The proposal thus is not sound.

A full stop comes. | will make no further inquiries here into what negaisofor what
it is nof. | just wanted to convince you that the connective that is studied in this paper
has some right to bealled ‘negation’. My feeling, though, is that a really good theory
of ‘what negation is’ can only come as a byproduct of a more general and modern and
comprehensive version oftheory of oppositionas we learned from good ol’ Aristotle.
My interest here, however, was much more modest: This was rather a study about what
negationcould be and what itshould not be

5. Directions

‘Would you tell me, please, which way | ought to go from here?’
‘That depends a good deal on where you want to get to, said the
Cat.
‘I don’'t much care where .’ said Alice.
‘Then it doesn’t matter which way you go, said the Cat.
‘...s0 long as | get somewhere, Alieglded as an explanation.
‘Oh, you're sure to do that, said the Cat, 'if you only walk long
enough!

—Lewis Carroll, Alice’s Adventures in Wonderland, 1865.

The present paper aimed at making several different contributions, suggestions, and
some forceful yet not always claimed to be original remarks, among which:

(1) An elaborate illustration is given on the general usenoltiple-conclusiorconse-
guence relations in the abstract study of deductive systems and logical connectives.
Most studies in abstract (universal) logic, such as those by Béziau, have concentrated
on single-conclusion consequence relations, and so have missed a lot of what you
can get straightforwardly by considerationssyginmetry Other studies of multiple-
conclusion consequence relations have usually not been made in a abs#isct
setting, but more frequently in@roof-theoreticaketting (as in the case of some ex-
cellent papers by Avron) or in semanticalsetting (as in the case of the excellent
book by Shoesmith and Smiley). The present paper should be read, then, as a call for
integration.

(2) Many local sub-classical rules for consequence relations and for the negation connec-
tive are systematically studied here in multiple-conclusion formatnagdtiverules
are given so much emphasis—or even more emphasipesitiveones. In factfail-
ing those negative rules can be much more dangerous than failing the positive rules,
as you can check at the end of SectibbiNegative rules are argued to be, in a sense,
more ‘essential’ than positive ones. An extensive justification for that argument is
presented in the first part of Sectidn

(3) Important general approaches to those same rules in the literature (Avron, Béziau,
Curry, Gabbay, Hunter, Lenzen, Wansing, etc.) are surveyed, all along the paper. Cor-
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rections are made on some proposals and results by Béziau, and a proposal by Gabbay
and Hunter is shown to apply only to overcomplete logics (though that flagrant limi-
tation seems to have gone unnoticed up to this moment).

(4) A smallyet comprehensive taxonomy of the most well-known classes of consequence
relations is presented in Secti@n

(5) The prerequisites for proving each Fact interrelating rules for consequence relations
and rules for negations are in each case clearly highlighted. This is quite useful for
you to know at once whether you shall make use, say, of monotonicity (weakening)
or of rules for double negation to prove each given relation.

(6) General rules that make consequence relations ‘trivial’ are presented, generalizing
many other distinguished approaches from the literature.

(7) The multiple-conclusion environment allows us to present ‘consistency’ ruthsahs
to ‘completeness’ rules, in a clear and compelling way. As a consequence, rules that
are duals tex contradictioneconsequentia mirabiligproof-by-cases, angductio
ad absurdunare here introduced, apparently for the very first time.

(8) The same environment, again, allows one in fact to draw a sharp distinction between
pseudo-scotuadex contradictione sequitur quodlibekhis is certainly new, as new
as the accompanying proposal to draw the v@gfinitionof paraconsistency as the
failure of the former rules instead of the latter, in direct duality to the (most) charac-
terizing feature of (intuitionistic-like) paracomplete systems: the failure of excluded
middle.

(9) The definitions of paraconsistency and paracompleteness are precisely stated, and
clearly shown not to bear any compulsory effect, for instance, on the invalidation of
rules for double negation (and vice-versa). Some definitions of important subclasses
of paraconsistent and paracomplete logics (partial, controllable, and bold) are also
presented and exemplified, under a new generality and always having symmetry in
mind.

(10) Studies otonsequentia mirabili¢e.g., Pagli and Bellissima) have at times proposed
to identify mirabilis with reductia This is a historical and a technical abuse, clarified
in the present paper.

(11) Anillustrative list of sufficient and necessary conditions for (bold) (non-controllable)
paraconsistency is presented, in Sec8on

(12) Other proposals of characterizations of negation are offered and analyzed in Sec-
tion 4. Proposals by other authors are summarized and criticized. Incidentally, having
already been mentioned by other autharsry negations can also in this paper be
seriously be taken into consideration (see below, in the present section), as they pretty
smoothly fit the general framework.

The present study of negation was made quite general, this far, under the natural liberties
and restrictions of the chosen framework and our decision to concentrate on pure local
sub-classical rules for negation. The picky reader might observe, though, that even some
seemingly innocuous assumptions that we made may turn out disputable, or at least limited
from their very inception. Thus, | have assumed from the start, for example, that, in this
paper, “a unarynegationsymbol ~ will always be present as a logical constant in the
underlying language of our logics”. Now, why should negatiombary? One might think
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instead that it is much more natural to think of ‘negation as conflict’, as in the second part
of Section4. With that idea in mind, consider the following rules fobanary negation
connective:

(Al.l) (I'lF~(a1,a2), A)/ (A2.1) (I ay,azl-A)/
(I',a1, a2l A) (' IF ~(a1, @), A)
(Al.2) (I'lFaz, A)and(I" IFag, A) / (A2.2) (I, ~(a1,a2) - A)/
(I, ~(a1, a2) IF A) (I' - aq, A) and (I IF ap, A)

Clearly, a unary negation for a formulacan be defined from the above binary connective
by considering~(«a, «). The rules of the preceding connective are analogous to the rules
of NAND, also known as Sheffer stroke, alternative denial One could also look at the
rules of its dualjoint denial also known asioOR:

J1.1) (I'lF~(ay, a2), A)/ (J2.1) (I,ai1lFA)yand(I, a2l A)/
(I, a1 F A) and (T, az - A) (I IF ~(ag, a2), A)

J1.2) (I'lFoag,az, A)/ (J2.2) (I',~(a1,a2) IFA) [/
(I", ~(aq, a2) IF A) (' lFag, az, A)

The above connectives obviously generalize our symmetry rulesk(ladd (2.2X). Ex-

ercises for the reader: Check what should be done for generalizing the other positive and
negative rules in accordance with the above binary connectives, and check what happens
when othem-ary ‘negations’ are defined, including—don't be lazy—infinitary versions.
(By the way, as you have the pencil in hand: | have checked the results in the above sec-
tions to exhaustion, but | would not be so surprised if some errors had slipped into the easy
but general calculations. Have fun on the search for mistakes! | just hope the whole thing
has worked well as an illustration of the idea behind the systematization.)

Finally, I must acknowledge that all of this was but an initial step into the realm of
negation. | had better just add a last note of intentions. The reader should not assume that
| am defending the pure negative rules from the familieXjand (8X), which | used in
the last section in the definition of ‘minimally decent negations’, tabe rules common
to all negations. By no means. Not only do | want to leave, on the one hand, also those
very rules open to debate, but on the other hand I also think that those rules are not even
enough if you are serious about the notion of a decent negation. In fact, in most normal
modal logics, operators such as the necessity opeastaalso expected to respect rules
from families (7X) and (8X). But we surely do not want negation to be interpreted as
necessity, or necessity to be read as a kind of negation! So, a ‘minimally decent negation’
is more likely to be the one that, besides beingia-negation, also respects somen-
local negativerules such as the following ones:

(Gl.1.a) —[(F ~%p) = (IF ~21p)] (G2.1.a) —[(~%IF) = (~1p )]
(Gl.2.a) —[(I"IF~2p, A) = (G2.2.a) —[(I",~ |- A) =
(,\_,a"rl]" = ,\_,a"rl(p’ ,\,a"rlA)] (Na-ﬁ-l[', ~a+l(p I+ ’\’a+1A)]

where~2% denotes, as you might expe¢t?o: o € X'}.

A follow-up to the present investigation should include statements of rules mixing nega-
tion and other more usual logical constants, such as conjunction, disjunction, implication
and bi-implication, always from the point of view of universal logic, and maybe a survey
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of the effects of paraconsistency also in this terrain—it is well known for instance that
some laws of implication might have dreadful consequences for paraconsistency, that rules
such as disjunctive syllogism will often fail, that De Morgan laws will not always be con-
venient, that evemodus ponenmight in some situations be problematic, that adjunctive
conjunctions might be dangerous, and so on. The present results will surely be decisive in
the future investigation of the mixed rules. It would also be interesting and important, at
some moment, to have a good look at global versions of most preceding contextual rules.
This discussion also relates to the trouble of algebraization, which should be clarified in
detail, and the whole thing will be easily dualizable from paraconsistent to paracomplete
logics.

The next step should include the study of some recent contributions to the field: the
consistency connective, and its dual completeness (or determinedness) connective, which
can help internalizing the homonymic metatheoretical notions at the object language level,
recovering through them the inference rules which might be lacking in columig (1.
and (2X). Such connectives also allow us to translate and talk about many (sub-)classical
properties inside ‘gentle’ logics which do not enjoy them.

All that and we are still talking, in a sense, about sub-classical properties of negation.
By way of closure, a few notes should also be added—without any intention of gauging
the full ramifications of the subject in the literature—about some rules for negation which
are ‘really non-classical’: This is the case of MacColl & McCall's connexive negation
(depending on how you look at it), Post’s cyclic negation, Humberstone’s demi-negation,
and so on and so forth. This much for the future.
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