
Automatic extraction of axiomatizations in terms

of two-signed tableaux for finite-valued logics

Dalmo Mendonça
Scientific Undergraduate Fellow, UFRN

dalmo3@gmail.com

João Marcos
DIMAp / CCET, UFRN

jmarcos@dimap.ufrn.br

Abstract

Classical Logic is bivalent in that it admits exactly two truth-values: the
true and the false. Many-valued logics, in contrast, allow for the consider-
ation of arbitrarily large classes of truth-values. To export the canonical
notion of entailment to the realm of many-valuedness, the trick is to char-
acterize any such class of truth-values by saying that some of these values
are ‘designated’. One might remark then that a shade of bivalence lurks
in the distinction between the values that are designated and those that
are not. It is known (cf. [2]) that this residual bivalence allows in fact for
an alternative, and in many cases even constructively obtained (cf. [1]),
representation of many-valued logics in terms of appropriate bivalent se-
mantics. In this paper we will present a first concrete implementation of
the method devised in [1] in order to obtain sound and complete classic-
like tableaux systems for a very comprehensive class of finite-valued logics.
The method is implemented in the functional programming language ML,
and our program outputs a text file containing the corresponding theory
to be processed by Isabelle, a flexible theorem-proving environment in
which it is possible to check meta-results and theorems about the logics
under scrutiny. The formulation of different many-valued logics under a
common ground —two-signed tableaux systems— makes it easier to com-
pare properties of these logics and to appreciate the relations between
them.

Keywords. Many-valued logics, bivalence, axiomatization, tableaux, au-
tomated theorem proving.

Reducing logics to a bivalent common ground

In the 1970s, the Polish logician Roman Suszko used to insist that there are but
two logical values, true and false, and complained about the mad multiplication

1

Joao Marcos
CLE e-Prints 8(6), 2008.Proceedings of the CLE 30 YEARS / XV Brazilian Logic Conference / XIV Latin-American Symposium on Mathematical Logic, Paraty / RJ, Brazil, May 11-17, 2008.

of logical values that plagued the literature on many-valuedness (cf. [5]). He
insisted that the many different algebraic truth-values of many-valued logics,
belonged in the end to two classes: the ‘true’ values (those we nowadays call
designated) and the ‘false’ ones (those we call undesignated. To illustrate the
significance of those classes, Suszko showed (cf. [4] that it is possible to represent
 Lukasiewicz’s 3-valued logic L3 in terms of a bivalent semantics.

Caleiro et al. presented a constructive method to reduce a large class of
logics characterized by truth-functional finite-valued semantics into semantics
containing exactly two truth-values (cf. [1]). To fit as input for that method, a
given logic should prove sufficiently expressible, that is, it should be possible to
distinguish any given truth-value from all the remaining ones using exclusively
the linguistic resources of that very logic. The main output of the method
is a set of clauses written in the language of First-Order Logic (FOL) that
impose restrictions over the set of bivaluation functions in such a way that this
set should provide a sound and complete two-valued semantics for the many-
valued logic considered from the start. Those same clauses can then be used,
as shown in [1], to provide a sound and complete two-signed tableaux system
for the given logic, which looks and tastes very much like the well-known signed
tableaux systems for Classical Logic.

An illustration of the reductive algorithm

Let’s consider Lukasiewicz’s logic L3, which has three truth-values (0, 1
2 and 1)

and four connectives (¬, →, ∧ and ∨) defined over this 3-valued domain. The
value 1 is the only designated value in this logic. Let’s also define the function b
that maps T for designated values and F for undesignated ones:

 L3 =
〈
{0, 1

2 , 1}, {¬,→,∧,∨}, {1}
〉

¬v1 = 1− v1 (v1 → v2) = Min(1, 1− v1 + v2)
(v1 ∨ v2) = Max(v1, v2) (v1 ∧ v2) = Min(v1, v2)

b : {0, 1
2 , 1} −→ {T, F}

x 0 1
2 1

b(x) F F T

Notice that, in the bivalent semantics obtained after composing b with the
truth-functional semantics of L3, the truth-value 1 is ‘separated’ from both 1

2
and 0, but how can we now separate the latter two? The constructive answer
goes by finding appropriate separating connectives. In this case, the primitive
connective ¬, as defined below, solves the problem:

2

x 0 1
2 1

b(x) F F T

¬x 1 1
2 0

b(¬x) T F F

Indeed, we can now distinguish the truth-values by taking a series of state-
ments about them that, together, provide a unique identification to each value:

x = 0 iff b(x) = F and b(¬x) = T
x = 1

2 iff b(x) = F and b(¬x) = F (I)
x = 1 iff b(x) = T

Let v : For L3
−→ {0, 1

2 , 1} be an assignment function from the set For L3
of

well-formed formulas of L3 to the set of truth-values of the same logic. Now
consider the truth-table of implication, and its negation:

→ 0 1
2 1

0 1 1 1
1
2

1
2 1 1

1 0 1
2 1

¬ → 0 1
2 1

0 0 0 0
1
2

1
2 0 0

1 1 1
2 0

To obtain a sound and complete two-valued semantics for a many-valued logic,
it’s necessary to write restrictive clauses on bivaluations that describe the be-
havior of all connectives of the language. By the ¬ → table above, it’s correct
to say for instance that:

v(¬(α→ β)) = 1 iff v(α) = 1 and v(β) = 0 (II)

Adding the following notations:

T : α iff b(v(α)) = T
F : α iff b(v(α)) = F

and combining them with the statements in (I), it follows that:

v(α) = 0 iff F : α and T : ¬α
v(α) = 1

2 iff F : α and F : ¬α
v(α) = 1 iff T : α

In that case we may rewrite sentence (II) as:

T : ¬(α→ β) iff T : α and F : β and T : ¬β

Using FOL as our meta-language this can alternatively be written as:

T : ¬(α→ β)⇔ T : α & F : β & T : ¬β

3

where⇔ and & represent, respectively, the bi-implication and conjunction from
FOL. According to the method proposed in [1], this clause originates the fol-
lowing tableau rule:

T : ¬(α→ β)

T : α, F : β, T : ¬β

For another instructive example, let’s consider the truth-table of disjunction:

∨ 0 1
2 1

0 0 1
2 1

1
2

1
2

1
2 1

1 1 1 1

Repeating the above process of reducing this into a bivalent version and trans-
lating the corresponding clauses using FOL, it follows for instance that:

F : (α∨β)⇔ F : α & T : ¬α & F : β & T : ¬β | F : α & T : ¬α & F : β & F : ¬β |
F : α & F : ¬α & F : β & T : ¬β | F : α & F : ¬α &F : β & F : ¬β

where the vertical bar, |, represents the disjunction from FOL. Again we may
extract from that the corresponding tableau rule:

F : (α ∨ β)

F : α,
T : ¬α,
F : β,
T : ¬β

F : α,
T : ¬α,
F : β,
F : ¬β

F : α,
F : ¬α,
F : β,
T : ¬β

F : α,
F : ¬α,
F : β,
F : ¬β

Now, while this is indeed the clause obtained from the blind application of
the method proposed in [1], one can use FOL to show that the following is an
equivalent formulation of the latter clause, in the presence of the other clauses
on the bivaluations:

F : (α ∨ β)⇔ F : α | F : β

This of course gives rise to a much simpler (classic-like) tableau rule, namely:

F : (α ∨ β)

F : α F : β

In fact, the main clause on bivaluations that guarantees this equivalence
between the latter two tableau rules is the one that asserts that:

T : α | F : α

4

for any formula α. This, again, clearly reveals a shade of bivalence. The tableau
rule that corresponds to that clause is the following branching rule:

T : α F : α

that may turn the corresponding tableaux non-analytical.
A sound and complete set of tableaux rules can always be obtained by adding

this branching rule to the set of all rules of the form V : c©(α1, . . . , αn) and
V : s(c©(α1, . . . , αn)), where V is one of the two signs, T or F, c© is an
arbitrary n-ary connective of the given logic, and s an arbitrary separating
connective among those appropriate for this given logic.

ML and Isabelle

We used the functional programming language ML to automate the axiom ex-
traction process. ML provides us, among other advantages, with an elegant and
suggestive syntax, and a very handy compile-time type checking and type in-
ference that guarantees that we never run into unexpected run-time problems
with our program, once it is proved correct with respect to the specification.
Isabelle is a generic theorem-proving environment, also written in ML, in which
it’s quite simple to create theories with rules and axioms in various deductive
systems, and easy to define functions and prove theorems about these systems.

Here’s an illustration of part of Isabelle’s syntax, taking as example the
first two tableau rules obtained in the last section:

TNegImp "[$H, T:A, F:B, T:~B, $E] ==> [$H, T:~(A-->B), $E]"

FDisj "[| [$H, F:A, T:~A, F:B, T:~B, $E] ;
[$H, F:A, T:~A, F:B, F:~B, $E] ;
[$H, F:A, F:~A, F:B, T:~B, $E] ;
[$H, F:A, F:~A, F:B, F:~B, $E]

|] ==> [$H, F:A|B, $E]"

Here T:X and F:X are (labeled) formulas, $H and $E are sequences of such
formulas (contexts) that are not involved in the rule, each sequence between
square brackets represents a tableau branch, and a collection of branches is
delimited by [| and |]. The symbol ==> is the meta-implication. In Isabelle,
the application of a rule means that is possible to achieve the goal (branch on
the right of the meta-implication), once it’s possible to prove the hypothesis (on
the left of meta-implication), which is the new goal (or a collection of subgoals).

Now, the Isabelle clause corresponding to the third tableau rule from the
last section can be written as:

FDisjA "[| [$H, F:A, $E] ;
[$H, F:B, $E]

|] ==> [$H, F:A|B, $E]"

5

The proof that FDisj and FDisjA are indeed equivalent tableau rules, in the
sense that one can prove the other in the presence of the remaining rules present
at our theory, can now be done directly inside Isabelle.

Our ML logic-reductor program takes as input a definition of a finite-valued
logic, such as the logic L3 presented above, together with an appropriate set of
separating connectives for that logic. Those separating connectives, when they
exist, can also be found automatically through another procedure presented in
this event (cf. [3]). Our program then extracts the axioms corresponding to the
two-valued representation of that logic and generates a text file containing the
full theory ready to use in Isabelle.

References

[1] Carlos Caleiro, Walter Carnielli, Marcelo E. Coniglio, and João Marcos. Two’s
company: “The humbug of many logical values”. In J.-Y. Béziau, editor, Logica
Universalis, pages 169–189. Birkhäuser Verlag, Basel, Switzerland, 2005. Preprint
available at:
http://wslc.math.ist.utl.pt/ftp/pub/CaleiroC/05-CCCM-dyadic.pdf.

[2] Newton C. A. da Costa, Jean-Yves Béziau, and Otávio A. S. Bueno. Malinowski
and Suszko on many-valued logics: on the reduction of many-valuedness to two-
valuedness. Modern Logic, 3:272–299, 1996.

[3] Talis Lincoln and João Marcos. Automating the calculation of the degree of ex-
pressiveness of finitary algebras. In Proceedings of the XV EBL, Brazil, 2008.

[4] Roman Suszko. Remarks on Lukasiewicz’s three-valued logic. Bulletin of the Sec-
tion of Logic, 4:87–90, 1975.

[5] Roman Suszko. The Fregean Axiom and Polish mathematical logic in the 1920’s.
Studia Logica, 36:373–380, 1977.

6

