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In spite of the multiplication of truth-values, a noticeable shade
of bivalence lurks behind the canonical notion of entailment that
many-valued logics inherit from the 2-valued case. Can this bi-
valence be somehow used to our advantage? The present note
briefly surveys the progress made in the last three decades to-
ward making that theme precise from an abstract point of view,
with emphasis on the most recent work on effectively extracting
useful procedures from it, and illustrating some of its applica-
tions to the domains of semantics and proof-theory.
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1 ANTIDOTES FOR ‘A MAGNIFICENT CONCEPTUAL DECEIPT’

In a 1976 lecture (cf. [45]), the Polish logician Roman Suszko complained
that “after 50 years [of the construction of so-called many-valued logics by
Jan Łukasiewicz] we still face an illogical paradise of many truths and false-
hoods”. The bold philosophical thesis behind such an assertion (cf. [43]),
updating and extending Frege’s discrimination between the sense and the ref-
erence of saturated concepts, was that a sharp distinction should be drawn in
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between the ‘algebraic valuations’ of the most usual multiple-valued truth-
functional logics, and their “genuine definition” in terms of two-valued ‘log-
ical valuations’ (cf. [44]). Suszko’s Thesis, as formulated in [32] and [24],
roughly says that “every logic is logically two-valued”. To put it like that,
however, would result in allowing for circumstances in which it is outright
wrong, others in which it is but trivial, and still some others in which it is
just useless. The present note aims precisely at clarifying these issues while
doing the Thesis some justice, in showing how and when it works fine, and
in surveying some nice applications for it. For a start, we will need some
preparation, to be supplied in the present section.

As customary in the general theory of consequence relations (cf. [47]),
a propositional logic L will be characterized as a collection of formulas S
together with a single-conclusion consequence relation  somehow defined
as a subset of Pow(S) × S . Moreover, following Łoś & Suszko’s method-
ological work on sentential logics (cf. [30]), we will assume S to be freely
generated over a denumerable set of atoms At = {p0, p1, p2, . . .} by the
constructors Ct =

⋃
m∈N Ctm, where each Ctm itself denotes a collection

of connectives of arity m. We will call a set of formulas Σ overcomplete
in L = 〈S,〉 in case Σ  β for every β ∈ S. Taking advantage of the al-
gebraic character of S, for each given total substitution mapping σ:At −→ S
there will be a unique endomorphism εσ:S −→ S that extends it, and we
will assume henceforth that the consequence relations of our logics enjoy the
following property of substitutionality (a.k.a. ‘structurality’):

(L0) Γ  α implies εσ(Γ)  εσ(α)

It will also help in the following to denote by At[Σ] the set of atoms that occur
in the construction of a given theory Σ ⊆ S.

From a semantical viewpoint, let an interpretation for the formulas in S
be a total valuation mapping w:S −→ Vw into a given universe of truth-
values Vw, and assume that Vw is partitioned into sets of designated val-
ues V1

w and undesignated values V0
w. A many-valued semantics Sem here

will be any collection of such valuations. From these elements, local (|=w)
and global (|=Sem) consequence relations may then be defined according to
a canonical concept of T -entailment that sets Γ |=w α iff (w(γ) ∈ V0

w, for
some γ ∈ Γ, or w(α) ∈ V1

w), and sets Γ |=Sem α iff (Γ |=w α, for ev-
ery w ∈ Sem). It has since long been known that a consequence relation 
over S can be characterized by an adequate T -entailment relation |=Sem iff it
enjoys the following properties, for arbitrary Γ ∪∆ ∪ {α} ⊆ S:
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(L1) Γ ∪ {α}  α

(L2) Γ  α implies ∆ ∪ Γ  α

(L3) (Γ  δ, for every δ ∈ ∆, and ∆  α) imply Γ  α

Let us call this result W-theorem (cf. [47]). Fix hereafter the set of ‘logi-
cal values’ as B = {F, T}, partitioned into the singletons B1 = {T} and
B0 = {F}, and for each mapping w:S −→ Vw let its bivalent counterpart
bw:S −→ B be defined by setting bw(ϕ) = F if w(ϕ) ∈ V0

w and bw(ϕ) = T

if w(ϕ) ∈ V1
w. Collecting all such bivalent valuations, hereon referred to as

bivaluations, into Sem2, it is obvious that Γ |=Sem α iff Γ |=Sem2 α. This
may be said to constitute the very core of Suszko’s observation on logical
2-valuedness, and we will call this result S-theorem. A brief review of the
above mentioned theorems and their proofs (also for the multiple-conclusion
case) may be found in [34].

A particularly interesting genre of many-valued semantics Sem is obtained
when one fixes the sets Vw and V1

w (call them V and V1), for every w ∈ Sem,
and also fixes the interpretation d c©e of each c© ∈ Ctm in such a way that,
for every w ∈ Sem and α1, . . . , αm ∈ S, the following equation holds good:

(S1) w( c©(α1, . . . , αm)) = d c©e(w(α1), . . . , w(αm))

This means that we may think now of the universe of truth-values V as orga-
nized in terms of an algebra with the same similarity type of the algebra of for-
mulas, where to each syntactical constructor c©:Sm −→ S there corresponds
a semantical operator d c©e:Vm −→ V . This also means, of course, that any
basic state of affairs given by a total mapping e:At −→ V may be uniquely
extended into a homomorphic valuation we:S −→ V from the algebra of for-
mulas into the algebra of truth-values. Any semantics given by the collection
Hom of all such homomorphisms is called truth-functional. Now, say that
the sets of formulas Σ and Π are disconnected in case At[Σ] ∩ At[Π] = ∅.
A remarkable result by Shoesmith & Smiley (cf. [41]) shows that a logic L
is characterized by a truth-functional T -entailment iff it enjoys all the (L#)-
properties above, plus the following cancellation property:

(L4)
⋃
k∈K Γk ∪ Γ  ϕ implies Γ  ϕ, once, for every k ∈ K, we have

that Γ ∪ {ϕ} and Γk are disconnected, and that Γk is not overcomplete

A logic L is said to be genuinely κ-valued if κ is the cardinality of the small-
est collection of truth-values Vκ with the help of which L can be given a
truth-functional semantics. The drama set up by the S-theorem reaches its
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climax exactly in the cases in which L turns out to be genuinely κ-valued, for
some κ > 2: in such a case a bivalent characterization of L will presume an
open abandonment of a truth-functional characterization.

A genuinely κ-valued logic L with a set of constructors Ct is said to be
functionally complete in case any operator d~e over Vκ can be defined by
way of some convenient combination of operators associated to the construc-
tors Ct. Consider any two distinct values vi, vj ∈ Vκ, let θij be such that
At[{θij}] = {p0} and let σ[pn 7→δ] be a substitution mapping that outputs the
value δ with input pn and behaves as the identity mapping otherwise. Given
a state of affairs e such that e(pi) = vi and e(pj) = vj , and its correspond-
ing valuation we, we say that the formula θij effectively separates vi and vj
in case bwe(εσ[p0 7→pi]

(θij)) 6= bwe(εσ[p0 7→pj ]
(θij)). Obviously, it suffices to

take θij as p0 itself to separate truth-values that are not both designated, nor
both undesignated. For pairs of truth-values from the same partition class,
however, it may or it may not be the case that the logic L has the linguis-
tic resources to separate them. We will here say that a genuinely κ-valued
logic L is sufficiently expressive when its language is expressive enough to
separate each pair of truth-values from the collection Vκ. Clearly, functional
completeness gives a sufficient, yet not necessary, condition for a logic to
be sufficiently expressive. Noticeably, for any genuinely κ-valued logic L
with κ > 2, either L or some conservative extension of L is bound to be
sufficiently expressive? . A full proof of this fact may be found in [19], but
an illustration can easily be drawn at the light of the theory of logical matri-
ces (see [47]). If L is genuinely κ-valued then the Leibniz congruence [9]
of its κ-valued semantics must be the identity. Thus, in order to separate
two given truth-values vi and vj , it is sufficient to note that the congruence
generated by the equation vi ≈ vj is incompatible with the distinction be-
tween designated and undesignated values. Concretely, there must exist a
formula ϕ(p0, p1, . . . , pm) ∈ S and values vt1 , . . . , vtm ∈ Vκ such that
w0(ϕ) ∈ V0

κ and w1(ϕ) ∈ V1
κ, where w0(p0) = vi, w1(p0) = vj and

w0(pn) = w1(pn) = vtn for each n ∈ {1, . . . ,m}. Hence, by extending
the syntax of the logic with 0-ary constructors �t1 , . . . ,�tm , and working in
the conservative extension of L obtained by requiring that each d�tne = vtn ,
it is simple to see that the envisaged separating formula θij may be set as
ϕ(p0,�t1 , . . . ,�tm).

? More recently, an analogous and homonymous requirement on expressiveness has also been
employed in [2], with the goal of providing a sufficient condition for the extraction of adequate
ordinary sequents for logics based on an extended notion of truth-functionality, for which ade-
quate characterizations in terms of n-sided sequents were already known.
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Back from semantics to abstract properties of consequence relations, given
a logic L = 〈S,〉, we say that two formulas γ and δ are L-equivalent,
and denote this by γ ≡L δ, if both {γ}  δ and {δ}  γ. An important
feature of classical logic, shared also by all the usual modal logics, is given
by the enjoyment of the so-called replacement property, according to which
equivalent formulas are ‘logically indistinguishable’, that is:

(L5) α ≡L β implies ε[q 7→α](ϕ) ≡L ε[q 7→β](ϕ),
for any ϕ ∈ S and any q ∈ At

Suszko sometimes called this property the ‘Fregean Axiom’ (cf. [43,45]) and
claimed that “the construction of [the] so-called many-valued logics by Jan
Łukasiewicz was the effective abolition of the Fregean Axiom”. However, it
is worth noticing that such a claim is only true, in fact, for sufficiently ex-
pressive logics. There are indeed genuinely κ-valued logics, with κ > 2, that
enjoy the replacement property: a simple example would be that of a truth-
functional logic L~ with V = {v0, v1, v2}, V1 = {v2}, and a single binary
constructor~ interpreted by setting d~e(vn, vn) = vn, for n ∈ {0, 1, 2}, and
d~e(vi, vj) = v2, otherwise. A corrected version of Suszko’s claim should
then be something like: “a sufficiently expressive truth-functional logic may
only satisfy the replacement property in case it is genuinely 2-valued”. A
sufficiently expressive conservative extension of L~ could be obtained for
instance by adding to the language of this logic a 0-ary constructor � in-
terpreted by setting d�e = v0, but then of course this logic would fail the
replacement property (notice how (L5) fails if one considers, e.g., α = p0,
β = p0 ~ � and ϕ = q ~ p0). Once we will be interested below ex-
clusively on sufficiently expressive many-valued logics, all the non-classical
truth-functional logics we will consider are indeed to fail replacement — and
this fact would certainly gratify Suszko in his analysis of the Fregean Axiom.

Several other important aspects of truth-functionality are discussed in [36],
where open problems related to ‘computationally well-behaved’ generaliza-
tions of the notion of truth-functionality are also mentioned. An interest-
ing non-deterministic variety of truth-functionality has been proposed in [3],
where again the sets of truth-values are fixed for all interpretation mappings,
but this time for each c© ∈ Ctm there corresponds an operator b c©c:Vm −→
Pow(V) \∅ such that, for every w ∈ Sem and formulas α1, . . . , αm:

(S2) w( c©(α1, . . . , αm)) ∈ b c©c(w(α1), . . . , w(αm))

This suggests that there might be a number of ways of interpreting the mean-
ing of each constructor as applied to a given tuple of inputs. Consider for
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instance the simple example of a logic having a binary constructor ⊃ inter-
preted deterministically over B = {F, T}, B0 = {F}, and B1 = {T} as
the classical implication, that is, such that vab⊃cvb ∈ B0 if (va ∈ B1 and
vb ∈ B0), and vab⊃cvb ∈ B1 otherwise, and having also a 0-ary construc-
tor ⊥> interpreted non-deterministically by setting b⊥>c = B. In that case
the resulting logic would not enjoy property (L4) (just consider K = {?},
Γ? = {p0 ⊃ ⊥>, p0}, Γ = ∅ and ϕ = p1 ⊃ ⊥>), and would fail thus to be
truth-functional (cf. [36]). It is not entirely clear, however, what the meaning
of Suszko’s Thesis on logical two-valuedness would be in such a scenario,
and in particular it is not as yet known how the class of consequence relations
related to such a wider class of non-deterministically truth-functional logics
is to be characterized from an abstract viewpoint.

The next sections will show how logical two-valuedness has been explored
from a constructive perspective. To be perfectly fair, however, we will end the
present section by briefly mentioning some ways in which a logic may fail to
be bivalent, even in the sense of the S-theorem. The obvious way of obtaining
that effect, of course, would be by proposing consequence relations that fail
some of the (L#)-properties. Such is the case for the notion of ‘inferential
many-valuedness’ studied in [33], that goes against Suszko’s Thesis in that it
turns out to be based on ‘logical three-valuedness’ and on a slightly modified
notion of entailment. Yet another illuminating way of eluding the bivalence
behind the concept of T -entailment would be by allowing either V1 ∩ V0 or
V \ (V1 ∪ V0) to be non-empty, as proposed in [46].

2 THE EXTRACTION OF BIVALENT SEMANTICS FOR FINITE-
VALUED LOGICS

The use of bivalent non-truth-functional semantics has proven extremely use-
ful in the domain of non-classical logics, especially when no other insightful
varieties of semantics are available for those logics, at a given moment. The
realms of paraconsistent and paracomplete logics, for instance, have indeed
benefitted a lot from the bivalent approach (cf. [29]), in particular when one
is dealing with logics that fail the replacement property and also fail to have
genuinely finite-valued semantics (cf. [22]). The pre-requisites for obtaining
completeness for such bivalent semantics are now well understood (cf. [7]),
and associated decision procedures known as ‘quasi matrices’ have been em-
ployed in such situations since [23]. Similar procedures are in fact available,
as we have argued in [11], at least when the bivalent semantics is presented
in a certain specific ‘dyadic’ format.
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Suszko’s Thesis, however, is equally valid when the logics do have a finite-
valued truth-functional semantics, and this section and the next will discuss
the worthiness of the Thesis also for such a domain. We will start here by
succinctly appraising the more recent efforts toward constructively securing,
prêt-à-porter, the finest consequences of the S-theorem.

One of the first announcements concerning the availability of a bivalent
semantics for a genuinely 3-valued logic, Łukasiewicz’s logic Ł3, may be
found in [44] — though the corresponding clauses concerning the collection
of adequate bivalent interpretation mappings appear only in [31]. One cannot
exaggerate, however, in asserting that that specific bivalent characterization
for Ł3 looked rather mystifying, as no effort was put into clarifying how it
could be obtained directly from the collection of truth-tables that characterize
the original semantics of the logic. Given the considerably non-constructive
character of the S-theorem, nonetheless, the definition of an effective pro-
cedure for extracting such a bivalent characterization should be particularly
welcomed. A substantial step toward that goal was made in [6], where the
author suggested that in many cases an ‘algebraic’ truth-value may be con-
structively exchanged by a unique ‘binary print’, in terms of a tuple of values
from B, with the exclusive help of the original linguistic resources of the
given logic. To make matters more concrete, from this point on we will il-
lustrate the mentioned ideas and procedures by way of the {¬,→}-fragment
of the Gödel logic G3, the first of a well-known hierarchy of many-valued
logics that approximate intuitionistic logic from above. In G3 we have the
values V = {v0, v1, v2}, naturally ordered by their corresponding indices;
we also have V1 = {v2}, and sometimes abbreviate v0 by f and v2 by t.
The operators of G3 are defined by setting (along the lines of equation (S1),
from the previous section): d¬e(v) = t if v is f , and d¬e(v) = f oth-
erwise; d→e(vi, vj) = t if i ≤ j, and d→e(vi, vj) = vj otherwise. The
valuations w:S −→ V in HomG3 are all the mappings that respect the above
restrictions on the meaning of the operators. Now, it is easy to see that the
formula ¬p0 effectively separates the undesignated values f and v1, which
would otherwise both be mapped into the logical value F . Accordingly, one
might think of rewriting the initial algebraic values of G3 in terms of their
corresponding uniquely identifying binary prints 〈dp0e, d¬p0e〉, to the effect
that: V0

B = {〈F, T 〉, 〈F, F 〉} and V1
B = {〈T, F 〉}. Notice, however, that

for our goal of uniformly expressing the algebraic valuations w:S −→ V
in terms of logical (bi)valuations bw:S −→ B, we are still one step short:
what we have at this point are algebraic valuations in disguise, of the form
wB :S −→ VB , which just exchange the initial many-valued codomain for
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the corresponding collection of tuples written in terms of binary prints.
A fuller study of how such a procedure can realize Suszko’s Thesis and

smoothly fit into the variegated many-valued scenarios from the literature
was presented in [14] and [13]. Subsequently, in a number of papers starting
with [11] we have finally shown how Suszko’s two-valued reduction can be
fully accomplished, in a constructive way. In particular, we have also pro-
posed a procedure for extracting the axioms on the class of bivaluations that
correspond to a given finite-valued logic. The input of that first algorithm cor-
responds to the specification of a sufficiently expressive genuinely κ-valued
logic, and its output are the clauses of a sound and complete bivalent seman-
tics for it. The basic idea, to be sure, is still to use the available linguistic
resources to produce the effective separation of each pair of truth-values, and
then use the corresponding syntactically expressed binary prints of those val-
ues to couch the original many-valued specification into a two-valued envi-
ronment. Going back to the above illustration, that of the logic G3, the rough
procedure consists in directly using the tuple 〈ϕ,¬ϕ〉, instead of its corre-
sponding interpretation, whenever we need to refer to a formula ϕ. The truth-
tables of G3 could then be exhaustively described, in principle, by stating
convenient restrictions governing the bivaluations assigning values T and F
to ϕ and ¬ϕ, when ϕ is matched either to ¬α or to α→β.

The whole process may be illustrated by defining the bivalent semantics
of G3, where we employ a classical metalinguistic notation in which a ‘,’ re-
places an and, a ‘|’ replaces an or, a ‘=⇒’ stands for an if-then assertion, and
a ‘>’ symbol represents the absurd. For a start, we postulate:

biv[T0] =⇒ (b(α) = F | b(α) = T )
biv[C0] (b(α) = F , b(α) = T ) =⇒ >
biv[C1] (b(α) = T , b(¬α) = T ) =⇒ >

On the one hand, axioms biv[T0] and biv[C0] follow from the definition of bw
and the fact that each w is a total function. On the other hand, biv[C1] reflects
the semantically unobtainable assignment, given the meaning of ¬ inG3, that
would try to set w(ϕ) = t = w(¬ϕ).

Extracting convenient clauses governing the whole bivaluation semantics
for the implication connective of G3 is also simple. A brief analysis of its
semantics shows that α→β is ‘false’ according to the bivalent setting pro-
vided by the S-theorem precisely when its value is v0 or v1, which amounts
to demanding the value of α to be bigger (using the natural order on the corre-
sponding indices) than the value of β, that is, when 〈α, β〉 are assigned either
the values 〈v1, v0〉 or 〈v2, v0〉 or 〈v2, v1〉. Using the correspondence with the

8



binary prints mentioned above, one could write:

biv[→]〈F 〉? b(α→β) = F =⇒
(b(α) = F , b(¬α) = F , b(β) = F , b(¬β) = T )
| (b(α) = T , b(¬α) = F , b(β) = F , b(¬β) = T )
| (b(α) = T , b(¬α) = F , b(β) = F , b(¬β) = F )

Repeating this method for the truth and for the falsehood of each connective
of the logic, possibly occurring in the scope of a separating formula, we can
obtain a complete characterization of the bivaluation semantics of G3. Note,
however, that the descriptions obtained can be greatly simplified if one uses
the classical metalanguage to manipulate the bivaluation axioms so as to re-
duce their inner redundancies. For instance, one never needs to write both
b(ϕ) = T and b(¬ϕ) = F , as the latter expression, b(¬ϕ) = F , follows
from the former, b(ϕ) = T , in the presence of biv[C1]. The usual classi-
cal equivalences may be employed to reduce the overall complexity of the
expression in disjunctive normal form that appears in the right of each meta-
implication =⇒, originating a much simpler way of defining the same collec-
tion of bivaluations. In particular, biv[→]? simplifies to:

biv[→]〈F 〉 b(α→β) = F =⇒
(b(¬α) = F , b(¬β) = T ) | (b(α) = T , b(β) = F )

A full list of simplified axioms that should be respected by each b ∈
SemG3

2 results from adding to biv[T0], biv[C0], biv[C1] and biv[→]〈F 〉 the
following conditions:

biv[→]〈T 〉 b(α→β) = T =⇒
(b(¬α) = T ) | (b(β) = T ) | (b(α) = F , b(¬β) = F )

biv[¬→]〈F 〉 b(¬(α→β)) = F =⇒ (b(¬α) = T ) | (b(¬β) = F )

biv[¬→]〈T 〉 b(¬(α→β)) = T =⇒ b(¬α) = F , b(¬β) = T

biv[¬¬]〈F 〉 b(¬(¬α)) = F =⇒ b(¬α) = T

biv[¬¬]〈T 〉 b(¬(¬α)) = T =⇒ b(¬α) = F

Observation. It is worth pointing out that each bivaluation clause above is in-
deed an equivalence, as the right-hand sides of the 〈F 〉 and 〈T 〉 cases are dis-
joint and all other possibilities are precluded by the initial postulates biv[T0],
biv[C0] and biv[C1].

One may show SemG3
2 to constitute an adequate bivalent semantics for the

genuinely 3-valued logic G3 by way of the two results that follow:
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Convenience. Given w ∈ HomG3 , define bw, for every ϕ ∈ S, by setting
bw(ϕ) = T if w(ϕ) = t, and bw(ϕ) = F otherwise. Then, bw ∈ SemG3

2 .

Proof. Each of the above bivaluation axioms has to be checked against the
presently given definition. We choose here biv[¬→]〈F 〉 to offer details of
a representative case. Accordingly, assume that bw(¬(α→β)) = F . By the
definition of bw, this is the case iffw(¬(α→β)) 6= t. An easy calculation with
the meanings of ¬ and → in G3, however, guarantee that w(¬(α→β)) 6= t

iff (A) w(¬α) = t or (B) w(¬β) 6= t. Using the definition of bw again,
one concludes that (A) or (B) is the case iff either (A′) bw(¬α) = T or (B′)
bw(¬β) = F . But the disjunction (A′) or (B′) constitutes exactly the scenario
allowed by biv[¬→]〈F 〉. Similar reasoning takes care of the other bivaluation
axioms.

Representability. Given b ∈ SemG3
2 , define wb by setting:

wb(ϕ) = f if b(¬ϕ) = T

wb(ϕ) = v1 if b(ϕ) = b(¬ϕ) = F

wb(ϕ) = t if b(ϕ) = T

Then, wb ∈ HomG3 .

Proof. Here one must check that the given definition provides a 3-valued
mapping that respects all the restrictions concerning the meaning of the oper-
ators of G3. For a start, it is helpful to notice, given biv[C1], that b(ϕ) = T

implies b(¬ϕ) = F . Now, for the details of a representative case, assume
that wb(α→β) = f . The definition of wb says that this is the case exactly
when b(¬(α→β)) = T . But biv[¬→]〈T 〉 guarantees that b(¬α) = F and
b(¬β) = T . From the definition of wb, one may conclude from b(¬β) = T

alone that wb(β) = f , and from b(¬α) = F that wb(α) 6= f . The con-
clusions are appropriate, as an inspection of the truth-table of→ shows that
vad→evb = f only if b = 0 and a ∈ {1, 2}. The verifications for the case of
other truth-values and connectives are entirely analogous.

While in the finite-valued truth-functional case, 3-valued in the case of
G3, a usual decision procedure by way of truth-tables may immediately be
associated, it is not at all obvious that to an arbitrarily given collection of
bivaluations there should also be an associated decision procedure — and in
general this is indeed not the case. However, an essential feature of the recipe
we used for producing the bivaluation axioms is precisely this key property
is retained, as it will be illustrated in the following. In the case of G3, we
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can indeed measure the number of necessary evaluation steps by way of a
function dpth : S −→ N inductively defined as follows:

dpth(p) = dpth(¬p) = 0, if p ∈ At;
dpth(α→β) = 1 + dpth(α) + dpth(¬α) + dpth(β) + dpth(¬β);
dpth(¬(α→β)) = 1 + dpth(α) + dpth(¬α) + dpth(β) + dpth(¬β);
dpth(¬(¬α)) = 1 + dpth(α) + dpth(¬α).

Effectiveness. Given ϕ(p1, . . . , pm) ∈ S and b ∈ SemG3
2 , the value b(ϕ)

is uniquely determined by the values b(pn), b(¬pn) for n ∈ {1, . . . ,m}.
Moreover, b(ϕ) can be computed using at most dpth(ϕ) applications of the
bivaluation axioms.

Proof. The first statement is a consequence of the convenience and repre-
sentability of SemG3

2 , as the values b(pn), b(¬pn) for n ∈ {1, . . . ,m} unique-
ly determine a 3-valuation from which b obtains in a unique way.

The second statement follows easily by induction on the structure of the
formula ϕ, using the bivaluation axioms corresponding to each case, whose
right-hand sides are easily seen to comply with the above definition of dpth.
In the base case, let ϕ be p, or ¬p, for some p ∈ At. As b(p) and b(¬p) are
given, we are done with dpth(p) = dpth(¬p) = 0 applications of the valua-
tion axioms. Regarding the induction step, let us consider the case when ϕ is
of the form α→β. By induction hypothesis, the values of b(α), b(¬α), b(β)
and b(¬β) can be computed using at most dpth(α), dpth(¬α), dpth(β) and
dpth(¬β) applications of the axioms, respectively. Then, exactly one of the
axioms biv[→]〈T 〉 or biv[→]〈F 〉will apply and yield b(α→β) in dpth(α→β)
steps. The remaining cases for ϕ, namely, when ϕ is of the form ¬(α→β) or
of the form ¬(¬α), are analogous.

This ends our illustration concerning G3. For the case of other logics,
the extraction procedure is essentially the same, namely, given a finite-valued
logic L with a primitive collection of operators Op:

(E1) Find a collection Sep of unary formulas that can produce the effective
separation of the truth-values; if such a collection is not fully definable
from the original linguistic resources of the given logic, conservatively
extend the latter by the addition of convenient 0-ary or unary operators.
By stipulation, we’ll leave the omnipresent identity unary formula id

(for which w(id(p)) = w(p)) out of Sep.

(E2) Use the binary prints corresponding to the separation formulas in order
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to describe a set of restrictive axioms governing the bivaluations. These
axioms will include:

(E2.1) an axiom biv[ c©]〈v〉 for each c© ∈ Op \ Sep, and each v ∈ B;

(E2.2) an axiom biv[s c©]〈v〉 for each combination of s ∈ Op and
c© ∈ Op, and each v ∈ B;

(E2.3) axioms biv[T0] and biv[C0], guaranteeing that each b ∈ Sem2

is a total function;

(E2.4) axioms biv[Cn], for n > 0, for each unobtainable bivalent se-
mantic situation, that is, for each situation that does not corre-
spond to the binary print of an algebraic value.

For more formal details on the above described general procedure, and
many further illustrations, we had better direct the reader to the appropriate
sources: for languages that are not sufficiently expressive and the correspond-
ing conservative extensions that might be necessary to make them expressive
enough, the preparatory phase mentioned in step (E1) is described in [19] and
in the previous section; descriptions of how the bivaluation axioms in steps
(E2.1) and (E2.2) look like were presented in [11] and updated in [17]; the
final form of the axioms in step (E2.4) may be found in [37] and [19]. Analo-
gously to what we have done above using the non-canonical complexity mea-
sure dpth for G3, in [17, 19] we also show how, in the general finite-valued
case, a well-founded evaluation order supporting the effectiveness of the bi-
valent semantics can also be obtained alongside the extraction procedure.

The next section will show an immediate application of our effective ver-
sion of the S-theorem. The new procedure will consist in associating ade-
quate analytic proof systems to a given bivaluation semantics. Such proof
systems, that will here be presented as classic-like tableau systems, are avail-
able not just for the case of bivaluation axioms obtainable from one of our
above mentioned extraction algorithms, but in general for any collection of
bivaluation axioms that are formulated in a very general format that will be
briefly discussed below.

3 A BIRD’S EYE VIEW OF SOME APPLICATIONS TO MODEL
THEORY AND TO PROOF THEORY

A number of applications may be envisaged for bivalent semantics, some
of which we will briefly examine in this section. One of their most striking
advantages, at first sight, lies in providing a uniform classic-like framework in
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which a plethora of different non-classical logics can be specified, and more
easily compared with each other. We shall insist on this point below.

From a model-theoretic perspective, one sophisticated attitude that one
might take when confronted with a collection of more than two truth-values
involves a change in the notion of entailment so as to generalize the clas-
sical insistence on ‘truth-preservation’. Such an approach has indeed been
explored within the realm of abstract algebraic logic [26, 27, 46]. In contrast,
our present approach, using bivaluations, avoids departing from the classical
strategy, and looks for the preservation, in the non-truth-functional domain, of
other nice computational features such as decidability or effectiveness. Truth-
functionality is for sure a nice and simple property for our algebraic-oriented
minds, but there is no reason to abhor its absence, even from a strictly al-
gebraic point of view, as results from recent developments in algebraic logic
(cf. [10, 15, 16]) have shown.

One productive application for a bivalent semantics consists in providing a
useful intermediary step in the process of associating another more informa-
tive kind of semantics to the same logic. Such has been the case, for instance,
with the use of bivalent semantics in the proof of completeness of a certain
semantics given by way of combinations of finite-valued truth-functional sce-
narios, even when the given non-classical logic turn out not to be characteriz-
able by way of a genuinely finite-valued truth-functional semantics (cf. [35]).
The underlying idea is somehow to ‘split’ a given complex logic in terms
of more well-behaved ingredients (cf. [34]), a very generally applicable ap-
proach to model theory known as possible-translations semantics, first pro-
posed in [20].

Now, for the case of logics that do have a finite-valued truth-functional se-
mantics, the constructive procedure for extracting a bivalent characterization
for them, reported upon in the previous section, has borne some fruits also
from a proof-theoretical perspective. Even though general axiomatization al-
gorithms for finite-valued logics have been known for long, they are typically
based on indiscriminate extensions of the linguistic resources of the original
logics, as in [42], or else they produce rules, as in [28] and [5], that do not
easily lend themselves to the comparison of a genuinely κa-valued to a gen-
uinely κb-valued logic, when κa 6= κb. Such a general non-uniform approach
to finite-valued logics in terms of tableaux, for example, has been available
at least since [21]. On what concerns the comparison between the inferences
sanctioned by two different logics, obvious difficulties arise if these logics are
specified over different languages, as this might require quite some ingenuity
in finding suitable ways of translating assertions from one logic to another.
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The above mentioned ‘traditional’ methods for extracting adequate collec-
tions of tableau rules for a given many-valued logic typically meets the same
difficulty, but at a different level: even without modifying the object language
of a given logic, in transforming the truth-values of such logic (or collections
of such truth-values) into signs to be put in front of the formulas, such meth-
ods may very easily, again, introduce new syntactical discrepancies that make
rules from different logics hard to compare. For all such cases, thus, it would
seem that the introduction of a more uniform framework, such as the the one
we illustrate here, could only help for the logic comparison task.

In the finite-valued case, at any rate, a novel conservative algorithm has
been proposed (cf. [11]) that produces tableau rules with only two labels,
as in the classical case, exactly by exploring the underlying bivalence be-
hind the notion of T -entailment, as supplied by our constructive rendering
of the S-theorem. Furthermore, as argued in [38], the uniform classic-like
approach, with its emphasis on distinguishing among designated values and
among undesignated values, may benefit even the user that wishes to compare
the deductive strength of truth-functional logics based on essentially the same
algebraic structures, with Card(Va) = Card(Vb) yet Card(V0

a) 6= Card(V0
b ).

A full implementation of the above mentioned algorithm, receiving as in-
put the specification of a sufficiently expressive finite-valued logic, together
with the appropriate separation formulas, and producing as output a complete
set of tableau rules as a ready-to-use Isabelle theory (cf. [40]) was pre-
sented in [39], and made available online† . The tableau theory implemented
in the framework of the higher-order metalanguage of a very flexible proof-
assistant includes structural rules that allow for the relatively easy derivation,
by the user, of theorems and rules of the given logics, as well as for the com-
parison between different logics, all re-specified now in a uniform two-signed
framework. Progress toward the complete automation of the associated proof
procedures, however, was initially hindered by the fact that the set of tableau
rules produced by the procedure laid out in [11] includes a kind of dual-cut
branching rule that in principle would sanction the production of derivations
that do not terminate, should the user make some bad choices along their con-
struction. Though it had been known that in general this dual-cut rule was not
eliminable, a conjecture had been made that all uses of cut in our systems
could be made ‘analytic’, as in [25]. Such non-eliminable use of a dual-cut
rule was in fact an ordinary feature of the bivaluation semantics presented in
dyadic format, as studied in [11], even for non-finite-valued logics.

† Check http://tinyurl.com/5cakro.
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Now, instead of proceeding towards directly proving the above mentioned
conjecture about analytic cuts, for the finite-valued case, we have later pro-
posed, in [17], a novel algorithm that receives the very same many-valued
specifications, and outputs adequate cut-free tableau systems. Let’s illustrate
below how this second algorithm works, again for the case of the logic G3,
as in the previous section. The rough general idea is to consider signed for-
mulas of the forms F:ϕ and T:ϕ, and explore again the full capabilities of the
classical metalinguistic notation used in the last section, in the following way:

(P0) Exchange each expression of the form b(⊕(−→ϕ )) = Vn for a signed
formula of the form Vn:⊕(−→ϕ ).

(P1) Treat the translation tab[⊕]〈V〉 of a given axiom biv[⊕]〈V 〉 as a tableau
rule for ⊕: at the left-hand side of each meta-implication you find a
signed formula that should be matched to a node of a given branch; the
meta-disjuncts on its right-hand side describe the content of distinct
branches generated by the application of the rule, each of which will
contain a collection of signed formulas.

(P2) Treat the translation tab[Cn] of a given axiom biv[Cn] as a closure rule:
at the left-hand of each meta-implication you find a collection of signed
formulas which allow you to declare a given branch closed once you
can match all the former formulas to nodes of the latter branch.

In the case of G3, the procedure will produce the following tableau rules.

tab[→]〈F〉 F:α→β
F:¬α,T:¬β |T:α,F:β tab[¬→]〈F〉

F:¬(α→β)
T:¬α |F:¬β

tab[→]〈T〉 T:α→β
T:¬α |T:β |F:α,F:¬β tab[¬→]〈T〉

T:¬(α→β)
F:¬α,T:¬β

tab[¬¬]〈F〉
F:¬(¬α)

T:¬α tab[C0]
F:α,T:α

>

tab[¬¬]〈T〉
T:¬(¬α)

F:¬α tab[C1]
T:α,T:¬α

>

It is worth pointing out that the distinguished Observation from the last sec-
tion guarantees that the above 〈F〉 and 〈T〉 rules are all invertible.
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As expected, we will say that b ∈ SemG3
2 satisfies a signed formula V :ϕ

exactly when b(ϕ) = V . Also, we will say that a set R of signed formulas
is satisfiable if its signed formulas may be jointly satisfied by some fixed
bivaluation. Recall that a branch in a tableau is said to be exhausted if it is
closed and a tableau rule has been applied to every formula of positive depth.

Adequation. The following properties hold of the tableau system for G3,
given a root set R of signed formulas.

Soundness. If all the branches in a tableau with root R are closed
then R is not satisfiable.

Completeness. If an exhausted branch in a tableau with root R is not
closed then R is satisfiable.

Termination. If R is finite then a tableau with root R can be built such
that every branch is either exhausted or closed.

Proof. Soundness is straightforward. Assume, by absurd, that b ∈ SemG3
2

satisfies the root. As by definition b verifies the conditions posed by the
clauses from which the tableau rules are built, then, using a simple induc-
tive argument, b must satisfy some of the branches of the tableau. But if
all the branches are closed, this configures a non-satisfiable situation for b,
according to the closure axioms (Cn). Thus, the root cannot be satisfied.

Completeness is a corollary of the effectiveness of the bivaluation seman-
tics. Consider any exhausted non-closed branch of a tableau with root R.
Take all the depth 0 formulas and consider any b ∈ SemG3

2 satisfying them
(such a b must exist as it obviously satisfies all the closure axioms). From the
invertibility of our tableau rules we know that if b satisfies one of the conclud-
ing branches of a rule it also satisfies the premise. As all the possible rules
have been applied, the result follows easily by induction on the construction
of the tableau.

The procedure for termination is very simple. Just apply all possible rules
in branches that are not closed. Since every formula of positive depth has ex-
actly one applicable rule, in the present example of G3, and each rule appli-
cation produces branches with formulas of lesser depth, the process is clearly
bound to terminate.

We shall use the setting posed by the tableau system for G3 to show how
the classic-like 2-signed framework we adopted enables one to compare log-
ics. One possibility would be to confront G3 with Łukasiewicz’s logic Ł3,
by showing that F:p,F:¬p,T:¬q |=Ł3 F:¬(p→q) and F:p,F:¬p,T:¬q |=G3
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T:¬(p→q), but we would first have to develop here the example of Ł3 (this
has been done in detail in [17] and [39]). We could also distinguish G3 from
classical logic by showing 6|=G3 T:((p→q)→p)→p. We shall, however, illus-
trate here the functioning of our framework by pinpointing the exact way in
which the interpretation of G3 (or intuitionistic) implication departs from the
truth-table of classical implication and using the above tableau system for G3

to show that F:p,F:q 6|=G3 T:p→q.

F:p
F:q

F:p→q
tab[→]〈F〉

oooooo
NNNNNNN

F:¬p T:p
T:¬q F:q

tab[C0]

>

The open branch on the left allows us to extract the unique 3-valued counter-
model for the given signed inference, w(p) = v1 and w(q) = f .

A note should be added here on the effect that the separating formulas
might have on the termination of the tableau systems generated by our axiom
extraction procedures. As remarked in [17], in all cases in which such sepa-
rating formulas are introduced by abbreviation, with the help of the primitive
constructors of the language of a given logic, the systems obtained will allow
for some non-determinism in the choice of rules that build derivations. The
reason is that in such a case there will typically be circumstances in which
the heads of more than one rule match the same node. In that case, a bad
choices of rules to be applied by the user in constructing her derivation could
in fact result in non-termination. To deal with that issue, and to guarantee
deduction in the new systems to be completely automatic, our second extrac-
tion algorithm was in fact associated to a convenient proof strategy based, in
each case, on a non-canonical complexity / depth measure of the formulas
involved. The aim is to make the corresponding tableau systems ‘analytic’,
in an extended sense of the term, once the adherence to the mentioned proof
strategies does guarantee termination of the task of verifying the validity of
a given inference. Moreover, as usual, when any given such terminated task
produces a non-closed tableau, exhausted according to the new definition of
complexity measure, full counter-models may be promptly extracted from the
open branches of the tableau, as exemplified above. The challenges raised by

17



the implementation of such a proof strategy were taken up-front in [37].
Finally, going back one last time to a topic discussed in the previous

sections, a case of special interest, from the viewpoint of our above men-
tioned axiom extraction algorithms, is the one in which conservative ex-
tensions are needed in order to distinguish between algebraic truth-values.
Consider, for instance, the {¬,→}-fragment of the Gödel logic G4. In G4

we have V = {v0, v1, v2, v3} and V1 = {v3}, and abbreviate v0 by f

and v3 by t. The operators are then defined exactly as in G3 (section 2).
In order to separate the values we need, for example, to add a constant �
such that d�e = v1. In the extended language, we can see that the tuples
formed from 〈dp0e, d¬p0e, dp0→�e〉 map the truth-values v0, v1, v2, v3 to
the binary prints〈F, T, T 〉, 〈F, F, T 〉, 〈F, F, F 〉, 〈T, F, T 〉, respectively. It is
straightforward to produce the bivaluation axioms biv[→]〈V 〉, biv[¬→]〈V 〉,
biv[(→)→�]〈V 〉, biv[¬¬]〈V 〉, biv[(¬)→�]〈V 〉, for V ∈ {F, T}, as well as
the closure conditions (this time taking � also into account), and the cor-
responding tableau rules. The complexity measure is defined straightfor-
wardly, by starting with dpth(p) = dpth(¬p) = dpth(p→�) = dpth(�) =
dpth(¬�) = dpth(�→�) = 0. However, given the non-determinism gen-
erated by the overlap of the ranges of applicability of the rules tab[→]〈V〉
on the one hand with the rules tab[(→)→�]〈V〉 and tab[(¬)→�]〈V〉 on the
other, the depth function which guarantees the analyticity of the tableau con-
struction procedure must give priority to the latter. The corresponding proof
strategy that guarantees termination of the proof system is defined in accor-
dance with such priority, allowing the former rule to be applied only when
none of the latter rules are applicable. This specific issue is discussed and
illustrated in [17, 19].

4 CONCLUDING REMARKS

Analyticity has also been the focus of a recent study on non-deterministic
semantics (recall Section 2 and check [1], where the emphasis is put on the
modularity of the approach), and canonical multi-signed sequent-style proof
systems have been developed for logics characterized by this kind of seman-
tics (cf. [4]). Some effort on the development of uniform classic-like proof-
theoretical frameworks has also been put in [2]. Moreover, cut-free classic-
like sequent systems adequate for logics presented by way of a bivalent se-
mantics have been studied elsewhere as well (cf. [8]). In [12] we are to show
how our novel classic-like automated axiomatization procedure may indeed
be extended from bivalent semantics extracted from finite-valued logics to all
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other logics whose semantics are specifiable in dyadic format, coupling the
obtained proof system, in each case, with a convenient proof strategy origi-
nated from a convenient non-canonical complexity measure.

Developments toward the implementation of our updated axiom-extraction
procedure, together with a fully automated proof tactic in a computer-assisted
environment, are reported in [37]. In [19] we show how such aim may be
attained, introducing only ‘minimal’ changes to the original logic.

Further extensions of such constructive procedures and strategies should
target also genuinely infinite-valued logics, logics endowed with other kinds
of semantics that generalize the traditional notion of truth-functionality, and
first-order logics. Improvements on efficiency of the associated proof sys-
tems should be expected if the format of the extracted rules is modified, for
instance, in order to have them be produced as KE-tableaux (cf. [25]), allow-
ing for a finer negotiation with the notion of analyticity.

Suszko’s Thesis is certainly unavailing if regarded as a dogma, but it can
be an insightful tool of logical analysis, as we hope to have illustrated here.
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http://sqig.math.ist.utl.pt/pub/MarcosJ/04-M-pts.pdf.

[35] João Marcos. (2008). Possible-translations semantics for some weak classically-based
paraconsistent logics. Journal of Applied Non-Classical Logics, 18(1):7–28. Preprint
available at:
http://sqig.math.ist.utl.pt/pub/MarcosJ/04-M-PTS4swcbPL.pdf.

[36] João Marcos. (2009). What is a non-truth-functional logic? Studia Logica, 92:215–240.

[37] João Marcos. (2010). Automatic generation of proof tactics for finite-valued logics.
Electronic Proceedings in Theoretical Computer Science, 21:91–98. Available at:
http://arxiv.org/abs/1003.4802v1.

[38] João Marcos. (2010). The value of the two values. Extended abstract, LoLITA and
DIMAp / UFRN, and Theory and Logic Group, TU-Wien. Presented at 31st Linz Seminar
on Fuzzy Set Theory: Lattice-valued logic and its applications (LINZ 2010), Feb 9–13,
2009, Linz, AT. Submitted for publication.

21



[39] João Marcos and Dalmo Mendonça. (2009). Towards fully automated axiom extraction
for finite-valued logics. In W. Carnielli, M. E. Coniglio, and I. M. L. D’Ottaviano, editors,
The Many Sides of Logic, Studies in Logic, pages 425–440. College Publications, London.
Preprint available at:
http://sqig.math.ist.utl.pt/pub/MarcosJ/08-MM-towards.pdf.

[40] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. (2002). Isabelle/HOL —
A Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer.

[41] D. J. Shoesmith and Timothy J. Smiley. (1971). Deducibility and many-valuedness. The
Journal of Symbolic Logic, 36(4):610–622.

[42] Stanisław J. Surma. (1974). An algorithm for axiomatizing every finite logic. In David C.
Rine, editor, Computer Science and Multiple-Valued Logics, Selected Papers from the
IV International Symposium on Multiple-Valued Logics (ISMVL 1974), pages 143–149.
North-Holland, Amsterdam. 2nd edition, 1984.

[43] Roman Suszko. (1972). Abolition of the Fregean Axiom. In R. Parikh, editor, Logic
Colloquium: Symposium on Logic held at Boston, 1972–73, volume 453 of Lecture Notes
in Mathematics, pages 169–239. Springer-Verlag, Berlin.

[44] Roman Suszko. (1975). Remarks on Łukasiewicz’s three-valued logic. Bulletin of the
Section of Logic, 4:87–90.

[45] Roman Suszko. (1977). The Fregean Axiom and Polish mathematical logic in the 1920s.
Studia Logica, 36:377–380.

[46] Heinrich Wansing and Yaroslav Shramko. (2008). Suszko’s Thesis, inferential many-
valuedness, and the notion of a logical system. Studia Logica, 88(3):405–429.
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