
The Value of the Two Values
João Marcos

abstract. Bilattices have proven again and again to be extremely
rich structures from a logical point of view. As a matter of fact, even
if one fixes the canonical notion of many-valued entailment and consider
the smallest non-trivial bilattice, distinct logics may be defined accord-
ing to the chosen ontological, epistemological or informational reading
of the underlying truth-values. This note will explore the consequence
relations of two very natural variants of Belnap’s well-known 4-valued
logic, and delve into their interrelationship. The strategy will be that of
reformulating those logics using only two ‘logical values’, by way of uni-
form classic-like semantical and proof-theoretical frameworks, with the
help of which such logics may be more easily compared to each other.

1 Introduction

Consider the order-bilattice (V,≤1,≤2) where V = {t,>,⊥, f}, the ‘truth or-
der’ ≤1 has t as its greatest element and f as its least element, as well as
intermediate mutually incomparable elements > and ⊥, and the ‘information
order’ ≤2 has > as its greatest element and ⊥ as its least element, as well
as intermediate mutually incomparable elements t and f (see Figure 1). Con-
struing V as a set of ‘truth-values’, one may consider the algebraic structures
Li = (V,∧i,∨i,¬i), for i = 1, 2, where ∧i (resp. ∨i) denotes the meet ui (resp.
the join ti) under ≤i, and ¬i is an order-reversing involution for ≤i having
the intermediate elements, in each case, as fixed-points. It is easy to see that
these algebraic structures are ‘interlaced’, i.e., the operators of L1 (resp. L2)
are all monotone with respect to ≤2 (resp. ≤1). Even stronger than that,
all distributive laws hold between the two meets and the two joins. Morever,
¬1 (called ‘negation’) and ¬2 (called ‘conflation’) obviously commute, that
is, ¬1¬2x = ¬2¬1x. Coalescing L1 and L2 into a single diagram suggests a
strongly symmetric bidimensional structure B = (V,∧1,∧2,∨1,∨2,¬1,¬2).

Let Γ ∪∆ be a collection of formulas from the term algebra TB freely gen-
erated by a denumerable collection of atoms over the connectives (operator
symbols) from the structure B, and let Hom denote the set of all homomor-
phisms, called ‘valuations’, from TB into V. This is known as a ‘truth-functional
interpretation’, and the meaning of each operator is said to be fixed by a ‘truth-
table’. There are various notions of entailment that might be associated to the
above structure, so that one could talk about an ‘inference’ that holds, or does
not hold, between two given collections of formulas, Γ and ∆. For instance, one
could explore the underlying orders once again (they have already been used
in defining truth-tables for the connectives), and define, for each dimension i
of the above structure its own notion of ‘o-entailment’ |=o

i , according to which

2 João Marcos

Γ |=o
i ∆ iff

d
i w(Γ) ≤i

F
i w(∆), for every w ∈ Hom. A different notion of en-

tailment that is canonically found in the literature on many-valued logics, that
will here be called ‘p-entailment’, assumes some partition of the truth-values Vj

into sets Dj (called ‘designated values’) and Uj (called ‘undesignated values’).
In that case, the inference Γ |=p

j ∆ is said to hold iff, for every w ∈ Hom, either
w(Γ)∩Uj 6= ∅ or w(∆)∩Dj 6= ∅. We will almost exclusively be talking about
p-entailment, from this point on, and omit accordingly the superscript from |=p

whenever we see no risk of misunderstanding.

b

b

b

b

f

�

t

⊥

info (≤2)

truth (≤1)

e�

nb

Figure 1. A representative bilattice, sliced in 3 different ways.

It is clear that the canonical many-valued entailment relation is remarkably
sensitive to the choice of designated / undesignated values. There are at least
three non-trivial such choices that could be made from the viewpoint of the
truth order:

[Vb] Db = {t,>,⊥} and Ub = {f}
[Ve`] De` = {t,>} and Ue` = {⊥, f}
[Vn] Dn = {t} and Un = {>,⊥, f}

Choice [Ve`] has in fact been intensely investigated in the literature, and the
corresponding p-entailment relation, |=e`, is essentially the same as each of the
associated o-entailments. It is known to be adequate for the so-called ‘Logic
of De Morgan lattices’, and some presentations of it are intimately related
to a formalization of the so-called ‘first-degree entailment’. It is also both
paraconsistent and paracomplete. On the other hand, the p-entailment relation
|=b, that corresponds to [Vb], is paraconsistent but not paracomplete, and the
exact opposite is the case for the p-entailment relation |=n, that corresponds
to [Vn]. A reasonable rationale for the choice [Vb], according to the ordinary
‘truth-degree interpretation’, is that one might be dealing with vague states-
of-affairs in which some values should not be ascertained to be ‘false’, yet they
are ‘not quite true’. Analogously, for [Vn], there may be other kinds of inexact
states-of-affairs in which some values should not be ascertained to be ‘true’,
yet they are ‘not quite false’ (see Figure 1, again).

The Value of the Two Values 3

The present study will show in more detail what do such entailment relations
have in common, and how do they differ from each other. The comparison will
be made simpler when the logics involved are recast in terms of semantics and
proof-systems that mention only two truth-values or two syntactic labels, as
it happens in classical logic. To enhance the readability of the next sections,
comments on the history, the scope and the challenges for our present approach
will be left for Section 5. It should be clear at this point, however, that the task
that interests us here is the one that is of concern for the logic-designer, much
more than for the logic-user, to wit, the task of finding a common coherent
framework in which it all the above logics can be simultaneously formulated
and have their properties contrasted.

2 A Closer Look at the Logical Operators

From the semantical point of view, a logical operator & called conjunction is
often used to internalize at the object-language level a collection of properties
commonly attributed to the metalinguistic ‘and’, such as:

[and1] w(α&β) ∈ D if w(α) ∈ D and w(β) ∈ D
[and2] w(α&β) ∈ D only if w(α) ∈ D and w(β) ∈ D

Similarly, a logical operator || called disjunction is often used to internalize
properties commonly attributed to the metalinguistic ‘or’, such as:

[or1] w(α || β) ∈ D if w(α) ∈ D or w(β) ∈ D
[or2] w(α || β) ∈ D only if w(α) ∈ D or w(β) ∈ D

Obviously, the use of a classical metalanguage, together with the above assumed
partition of the truth-values into exactly two classes, allows us to immediately
rewrite [and1] and [or1] as:

[and1] w(α&β) ∈ U only if w(α) ∈ U or w(β) ∈ U
[or1] w(α || β) ∈ U only if w(α) ∈ U and w(β) ∈ U

As it turns out, according to |=e`, each operator ∧i enjoys properties [and1]
and [and2], and each operator ∨i enjoys properties [or1] and [or2], for i = 1, 2.
However, according to either |=b or |=n, this only holds good for i = 1, that is,
for the logical operators defined according to the truth-order ≤1. Indeed, for
both the latter entailment relations, on what concerns the operators defined
according to the information order ≤2, it can easily be checked that ∧2 enjoys
property [and1] but fails property [and2], while ∨2 enjoys property [or2] but
fails property [or1]. One can also say that ¬2 only behaves like a real negation
according to |=e`, but not according to |=b nor according to |=n. Indeed, for
the latter entailment relations conflation behaves more like a kind of identity
relation, in that the formulas ϕ and ¬2ϕ are always interderivable (being equiv-
alent, yet not congruent). This much for the similarities between |=b and |=n.
The mixed language of the structure B, where a lot of surprising interactions
occur between the original separate algebraic structures, produces other differ-
ences and dualities between |=b and |=n that go, as we shall see, much beyond
the mere contrast between paraconsistent × paracomplete behavior.

It’s not overemphasizing to insist here on the difficulty of the general task
of comparing two given finite-valued logics just by having a quick look at their
truth-tables. It is far from obvious, in fact, how examples of inferences that
help in either distinguishing or likening two given logics are even to be found,

4 João Marcos

without exercising some ingenuity. In all such cases, however, the task con-
sists in, given logics Lx and Ly, finding appropriate collections of formulas, Γ
and ∆, such that: (1) Γ |=x ∆ (verified by performing a check ranging over all
valuations wx of Lx) and (2) Γ 6|=y ∆ (verified, in the canonical reading of en-
tailment, by finding a valuation wy of Ly such that wy satisfies all formulas in Γ
and simultaneously falsifies all formulas in ∆). Nonetheless, serious difficulties
hinder the automation, or even the very accomplishment, of such a task.

Let’s assume, for the sake of the argument, that the language of Lx is at least
as rich as the language of Ly — lest the comparison task is made more difficult
by the requirement of some previous massage of the formulas being done by
way of previous translations and reinterpretations of the underlying languages.
Even based on the same initial language, however, it is not obvious how two
distinct given many-valued logics compare to each other. One might think, for
instance, of transferring the problem from semantics into proof-theory, with
the following reasoning: If both Lx and Ly are formulated in terms of rules
governing the behavior of their operators, one could in principle use the rules
of Lx to check the derivability of the rules of Ly, or perform an induction
on the derivations of Lx to check whether each rule of Ly is admissible. But
is there a common proof-theoretical language in which all such rules may be
expressed? The most well-known automated approaches to finite-valued logics
would suggest that this is not the case. It is common and straightforward,
for instance, to extract signed tableau systems, in each case, from the received
truth-tables, by way of a simple trick that transforms the truth-values, or the
collections of truth-values, into syntactic signs that are used, say, in front of
the formulas. An obvious difficulty for the logic comparison, in that case,
appears when Lx is](Vx)-valued and Ly is](Vy)-valued, for](Vx) 6=](Vy).
In that case, the rules extracted for each logic will be written in different
languages, as they will allow in principle for different collections of signs, and
will hardly be comparable. At least this specific difficulty would seem to be
circumvented, however, in our current case study, where we are concerned about
the comparison of different 4-valued logics. One might argue, however, that
in this case, where the availability of a common language would not seem to
a problem, an even more insidious difficulty slips in. The problem could be
described as one that touches upon coherence of the whole approach. Indeed,
even if we transform the truth-values> and⊥ into signs to be used in expressing
the rules of both the logic behind choice [Vb] and the logic behind choice [Vn],
they could hardly be claimed to have the same significance: While both signs
refer to gradations of truth from the viewpoint of |=b, they refer to gradations
of falsity from the viewpoint of |=n. Using the same signs, for different logics,
as symbols that refer to different entities in their corresponding interpretations,
would just confuse the metatheory for the logic-designer and at the same time
risk making equivocal the conversation between the users of each logic. It would
be as if, for instance, the logic-users employed the same connective symbol to
denote, in each case, a different operator — they would certainly experience a
lot of difficulty thus in talking to each other about it. That the logic-designer
should insist in lifting such misunderstandings to his own high-level framework
is likely to make him prone to schizophrenia.

The Value of the Two Values 5

The remainder of the paper will show that there is indeed a strategy that
lends itself for a straightforward and fully mechanizable comparison between
different many-valued logics, and one that is applicable both to the challenging
cases of logics Lx and Ly with](Vx) 6=](Vy) and to the hereby illustrated more
subtle cases in which](Vx) =](Vy) yet](Dx) 6=](Dy). The next section will
show in detail, as an illustration of the application of general methods that will
be identified further on, how one of our 4-valued logics may be recast in a classic-
like fashion, using only two truth-values. The methods are fully general, and
will capitalize in our specific illustrations on the primitive expressivity strength
of the language TB. The new semantics that will originate, as a matter of fact,
is to be formulated in such a way that we will be able to show, in the succeeding
section, that a classic-like tableau-theoretic presentation is available for that
same logic. The chosen formalism will have the property of analyticity, making
the associated decision procedures fully automatable.

3 Alternative Bivalent Semantics

The definition of p-entailment that we have been using to characterize the
underlying inference relations of our logics in no way depends on the fact that
the proposed collections of valuations provide truth-functional interpretations.
Indeed, any such inference relation may be determined using only two ‘logical
values’. Classical Logic, in that case, has the best of both worlds, being truth-
functional (and in fact functionally complete) over the collection V2 = {1, 0},
naturally partitioned into ‘logical truth’ (D2 = {1}) and ‘logical falsity’ (U2 =
{0}). As the following exposition will make clear, however, it is not hard
to realize that any other specific p-entailment relation can alternatively be
characterized in a similar, classic-like way.

Let’s call a ‘bivaluation’ any mapping of the form b : TB −→ V2, and call
‘bivalent’ any collection Biv of bivaluations. The corresponding notion of p-
entailment, that will here be denoted by |=Biv, is defined just as before, but
now substituting Biv for Hom. For each w ∈ Hom and associated partition
of the truth-values, a ‘bivalent counterpart’ bw may immediately be defined
with the help of the characteristic function r2 : V −→ V2 that takes each
designated value into logical truth and each undesignated valued into logical
falsity: Just consider the ‘bivalent reduction’ bw = r2 ◦ w. There is of course
also a bivalent counterpart for the associated entailment relation |=p: Take
Biv = {bw : w ∈ Hom}, and notice that Γ |=Biv ∆ iff Γ |=p ∆. A different
question is whether there is anything as convenient, concise and useful as truth-
tables that might be used to describe the bivaluation semantics obtained from
such a bivalent reduction.

A constructive positive answer to the above question may be provided if
the very language of our logic turns out to be expressive enough so as to
distinguish between any pair of designated values, and any pair of undesignated
values, even after having them ‘flattened’, in a sense, by the bivalent reduction.
In the particular case of Vb, for instance, what we are looking for is a way
of distinguishing the three logically true values in Db (and similarly, in the
case of Vn, for the three logically false values in Un). This will be possible
and easy to describe in case one can find convenient one-variable ‘separating

6 João Marcos

formulas’ sv1v2(p) to the effect that, given w1,w2 ∈ Hom with v1 = w1(p) 6=
w2(p) = v2, then bw1(sv1v2(p)) 6= bw2(sv1v2(p)). If v1 and v2 come from
different partitions, one may use p itself as a separating formula. For the case
of the logics obtained from choices [Vb] and [Vn], in particular, the values t
and f may be distinguished from the values > and ⊥ through the separating
formula ¬1p. Now, can > and ⊥ also be distinguished from each other, using
the primitive linguistic resources of B? Yes, they can. Indeed, here is one way
of doing it:

c©n(p)
4
== c©b(p)

4
== s(p)

4
==

p ¬1p p ∧1 ¬2p ¬1 c©n (¬1¬2(p)) c©b (p ∧2 c©n(p))

t f t t t
> > f t f
⊥ ⊥ f t t
f t f f f

Notice in particular how c©1 and c©2 might be regarded as characteristic func-
tions of the sets of designated values Dn and Db.

Remark 1. For its expressive power, from this point on we will be working
directly with the structure Bs, where the definable separating formula s is
introduced among the primitive operators. The important thing to bear in mind
is that the interpretation of the triple 〈p,¬1p,sp〉, after the bivalent reduction,
gives a unique identification to each v ∈ Vx, irrespective of the choice [Vx], so
that each truth-value is given a unique ‘binary print’.

It is clear that choice [Ve`] is the most symmetric among the three ones we
have chosen to distinguish. As a matter of fact, the logic behind this choice may
be thought of as a combination of two ‘De Morgan lattices’, 〈V,∧1,∨1,¬1〉 and
〈V,∧2,∨2,¬2〉, and some classical results about dualization of logical operators
do easily carry over from the components into the combined structure B. To
be more precise, consider the endomorphism ε on TB defined by setting:

pε = p where p is an atom
(oα)ε = o(αε) where o ∈ {¬1,¬2,s}

(α⊕ β)ε = (αε ⊗ βε) where 〈⊕,⊗〉 ∈ {〈∧i,∨i〉, 〈∨i,∧i〉} and i ∈ {1, 2}
Then we have the following classic-like result:

Theorem 1. Given Γ ∪∆ ⊆ TBs , then Γ |=e` ∆ iff ∆ε |=e` Γε.

In what follows we will see how such result may easily be proven, and also
how it may be extended in order to reveal fascinating connections between our
other two distinguished logics.

For all that matters, we will hereupon be concentrating on the choice [Vb]:
All our results and considerations will be easily adaptable and dualized for the
choice [Vn]. Accordingly, if we use ¬1 and s to express at the object language
level the difference between the three designated values behind choice [Vb], one
might arrive to a set of axioms constraining the set of bivalent mappings having
domain TBs and providing an alternative description of the underlying 4-valued
logic, with its original entailment relation. In more precise terms, concerning
the collection of bivaluations Bivb described in the Appendix, the following may
be proven:

The Value of the Two Values 7

Theorem 2. Bivb provides a sound and complete bivalent semantics for the
paraconsistent logic behind choice [Vb].

This result is indeed a consequence of the following two lemmas, that can be
checked in an entirely constructive fashion. Full details of the corresponding
proofs will be exhibited for illustrative cases and subcases.

Lemma 1. Given w ∈ Hom, define bw by:

bw(ϕ) =

¨
0 if w(ϕ) = f,

1 otherwise.

Then, bw ∈ Bivb.

Proof. One must show that the bivaluation axioms biv[xy]〈v〉 are all respected by
this definition. Consider for instance the case in which y is ¬2.

Subcase biv[¬2]〈1〉. Assume bw(¬2ϕ) = 1. By the above definition, this means that
w(¬2ϕ) 6= f . From the truth-tables of B one may conclude that w(ϕ) 6= f , and
using again the above definition we have that bw(ϕ) = 1, as desired.

Subcase biv[¬2]〈0〉. Assume bw(¬2ϕ) = 0. By the definition of bw, w(¬2ϕ) = f ,
and the 4-valued interpretation of ¬2 tells us that w(ϕ) = f . Here, from the
definition of bw we can say that bw(ϕ) = 0.

Subcase biv[¬1¬2]〈1〉. Assume bw(¬1¬2ϕ) = 1. The definition of bw gives us
w(¬1¬2ϕ) 6= f . But the truth-tables of ¬1 and of ¬2 inform us that w(¬1¬2ϕ) 6=
f iff w(¬1ϕ) 6= f . So, using the definition of bw again, bw(¬1ϕ) = 1.

Subcase biv[¬1¬2]〈0〉. Analogous to the previous subcase.

Subcase biv[s¬2]〈1〉. Assume bw(s¬2ϕ) = 1. From the definition of bw, we have
that w(s¬2ϕ) 6= f . The truth-table of s tells us that w(s¬2ϕ) = t and
also that it must be the case that w(¬2ϕ) ∈ {t,⊥}, and we should check next
what the truth-table of ¬2 has to tell us. The first option, w(¬2ϕ) = t, is
equivalent to writing that (i) w(ϕ) = f ; the second option, w(¬2ϕ) = ⊥, is
equivalent to (ii) w(ϕ) = >. From the interpretation of s and (ii) it follows
that (iii) w(sϕ) = f . Now, the definition of bw allows us to say, in case (i), that
(iv) bw(ϕ) = 0, and to say, in case (ii)+(iii), that (v) bw(ϕ) = 1 and bw(sϕ) = 0.
Conversely, (i) follows from (iv) and the definition of bw. Similarly from (v)
and the definition of bw we may conclude that both w(ϕ) 6= f and w(sϕ) = f ,
and in this case the truth-table of s guarantees that we are talking about a
situation in which (ii) holds good.

Subcase biv[s¬2]〈0〉. Analogous to the previous subcase.

The proofs for the cases of the other connectives follow analogous patterns. The cases
in which y is a binary connective, in fact, are quite similar to the latter two subcases.
In simplifying the proofs of the corresponding converses it will often be useful to
establish and use the following auxiliary facts:

w(ϕ) = > iff bw(ϕ) = 1 and bw(sϕ) = 0
w(ϕ) = ⊥ iff bw(¬1ϕ) = 1 and bw(sϕ) = 1
w(ϕ) ∈ {>,⊥} iff bw(ϕ) = 1 and bw(¬1ϕ) = 1

Finally, one must also verify the bivaluation axioms biv[mn]. The case in which m
is T is guaranteed to hold good, using the above definition, from the fact that each
homomorphism w is total. Additionally, the cases in which m is C all reflect, from a

8 João Marcos

bivalent perspective, semantic assignments that are unobtainable from the viewpoint
of truth-tables. For n = 0, all one needs to guarantee is that each bw is a function
—and so it must be, as the characteristic mapping of the function w. Moreover, given
that it is impossible, for instance, to attribute the values w(ϕ) = f and w(¬1ϕ) = f ,
given the truth-table of ¬1, the above definition tells us that bw(ϕ) = 0 and bw(¬1ϕ) =
0 cannot simultaneously obtain, proving thus biv[C1]. Similarly for n ∈ {2, 3}. �

Lemma 2. Given b ∈ Bivb, define wb by:

wb(ϕ) = t if b(¬1ϕ) = 0
wb(ϕ) = > if b(ϕ) = 1 and b(sϕ) = 0
wb(ϕ) = ⊥ if b(¬1ϕ) = 1 and b(sϕ) = 1
wb(ϕ) = f if b(ϕ) = 0

Then, [A] wb(ϕ) ∈ D iff b(ϕ) = 1. Moreover, [B] wb ∈ Hom.

Proof. To check statement [A], the only non-obvious cases are those in which wb(ϕ) ∈
{t,⊥}, that is, the cases in which either (a) b(¬1ϕ) = 0, or (b) both b(¬1ϕ) = 1 and
b(sϕ) = 1. On what concerns (a), biv[C1] guarantees that b(ϕ) = 0 cannot be the
case. As for (b), biv[C2] and b(sϕ) = 1 guarantee again that b(ϕ) = 0 is not the
case. In both situations we must conclude from biv[T0] that b(ϕ) = 1.

For statement [B] one has to check that wb is well-defined as a 4-valued homomor-
phism, according to the corresponding truth-tables that interpret each operator from
the language of TBs . Let’s consider in detail the particular case in which ϕ has the
form α ∧2 β.

Subcase [wb(ϕ) = t]. By the above definition of wb, this is the same as asserting
that b(¬1(α ∧2 β)) = 0. But in this case, the bivaluation axiom biv[¬1∧2]〈0〉
guarantees that this is a situation in which either (a) b(¬1α) = 0 and b(¬1β) =
0, or (b) b(¬1α) = 0 and b(β) = 1 and b(sβ) = 0; or else (c) b(α) = 1 and
b(sα) = 0 and b(¬1β) = 0. Using again the definition of wb, we see that this
corresponds to having either (aw) wb(α) = t and wb(β) = t, or (bw) wb(α) = t
and wb(β) = >; or else (cw) wb(α) = > and wb(β) = t. But this is in accordance
to what we desired, as it describes exactly the three pairs of inputs for which
the truth-table of ∧2 outputs the value t.

Subcase [wb(ϕ) = >]. This time, by the definition of wb, we know that both
(a) b(α ∧2 β) = 1 and (b) b(s(α ∧2 β)) = 0. From (a) and biv[∧2]〈1〉, we
are left with three situations to consider. Combining them with what we ob-
tain from (b) and biv[s∧2]〈0〉, and in view of biv[T0], we are left with but one
situation, in which (c) b(α) = 1 and b(sα) = 0, and also (d) b(β) = 1 and
b(sβ) = 0. So, from the definition of wb, we must conclude that wb(α) = >
and wb(β) = >, again in accordance with the truth-table of ∧2.

Subcase [wb(ϕ) = ⊥]. Analogous to the previous case, but now using biv[¬1∧2]〈1〉
and biv[s∧2]〈1〉 to conclude that either wb(α) = ⊥, or wb(β) = ⊥, or else
〈wb(α),wb(β)〉 ∈ {〈t, f〉, 〈f, t〉}.

Subcase [wb(ϕ) = f]. Use biv[∧2]〈0〉, and reason as before.

The analysis follows the same pattern for the case of the other operators, using in
each case the appropriate bivaluation axioms. One should still check in separate,
however, the cases in which ϕ has the form op, where op represents a separating
formula applied to an atom, that is, o ∈ {¬1,s}.

Consider first the case in which ϕ has the form ¬1p.

The Value of the Two Values 9

Subcase [wb(ϕ) = t]. Using the above definition of wb, this is to say that b(¬1¬1p) =
0. But in this case the bivaluation axiom biv[¬1¬1]〈0〉 says that we are exactly
in a situation in which b(p) = 0. The definition of wb guarantees that such is
the case iff wb(p) = f .

Subcase [wb(ϕ) = >]. In that case, the definition of wb says that we are in a
situation in which both (a) b(¬1p) = 1 and (b) b(s¬1p) = 0. However, (b)
informs us, given the bivaluation axiom biv[s¬1]〈0〉, that either (c) b(¬1p) = 0
or else (d) both b(p) = 1 and b(sp) = 0. Now, we know that (a) and (c) are
jointly untenable, given axiom biv[T0]. The only option left, (d), means, by the
definition of wb, that we have wb(p) = >.

Subcase [wb(ϕ) = ⊥]. Follows the same line as the two previous subcases, but now
using biv[¬1¬1]〈1〉 and biv[s¬1]〈1〉.

Subcase [wb(ϕ) = f]. Immediate from the definition of wb, as we have wb(¬1p) = f
iff b(¬1p) = 0 iff wb(p) = t.

Consider at last the case in which ϕ has the form sp.

Subcase [wb(ϕ) = t]. By the definition of wb, this is exactly the situation in
which b(¬1sp) = 0. Using the bivaluational axiom biv[¬1sp]〈0〉, this cor-
responds to (i) b(sp) = 1. From the definition of wb, this already guarantees
that (ii) wb(p) 6= >. Now, from biv[C2] and (i) one may also conclude that
(iii) b(p) 6= 0, and from this biv[T0] gives us (iv) b(p) = 1. Recalling state-
ment [A], from (iv) we may conclude that wb(p) ∈ {t,>,⊥}. Taking (ii) into
account, we’re left with wb(p) ∈ {t,⊥}.

Subcase [wb(ϕ) = >]. By the definition of wb this would imply that both (i) b(sp) =
1 and (ii) b(ssp) = 0. From (ii) and biv[ss]〈0〉 we conclude (iii) b(sp) = 0,
contradicting (i) in view of biv[C0].

Subcase [wb(ϕ) = ⊥]. Again impossible, as the previous subcase. Use biv[ss]〈1〉.
Subcase [wb(ϕ) = f]. Here the definition of wb puts us in the situation in which

(i) b(sp) = 0 and also tells us, in such situation, that wb(p) 6= ⊥. In one
direction, the bivaluation axiom biv[C3] uses (i) to establish that (ii) b(¬1p) 6=
1, from which biv[T0] informs us that (iii) b(¬1p) = 1. The latter rules out,
from the definition of wb, the possibility that wb(p) = t. So, we’re left with
wb(p) ∈ {>, f}. In the other direction, from biv[T0] we know that either
(iv) b(p) = 0 or (v) b(p) = 1. The definition of wb uses (iv) by itself to say that
wb(p) = f , and uses (i) and (v) together to say that wb(p) = >.

In both the latter cases and all their subcases we see that wb(op) behaves in accor-
dance to the corresponding truth-tables. �

While the 4-valued truth-functional presentation of the logic behind choice
[Vb] brings along an immediate associated decision procedure in terms of truth-
tables, it might not be obvious at first glance at its apparently complicated
bivalent presentation that an alternative such procedure is also available in
such case. The next section will show though how that can be achieved, once
we associate a very simple analytic classic-like proof system to the proposed
bivalent semantics.

4 A Uniform Tableau-theoretic Framework
Given the specific format in which the bivaluation axioms for choice [Vb] were
presented, it is easy to extract from them a two-signed tableau system that

10 João Marcos

can be used to check the inferences of the corresponding logic. The restrictions
on the bivaluations that appear in the Appendix may indeed be converted into
tableau rules in the following manner:
(P0) each expression of the form b(ϕ) = v is rewritten as a signed formula Sv:ϕ,

using one of the two signs S1 = T or S0 = F ;

(P1) a ‘⇔’ is read as separating the head of a tableau rule (to the left) from its
conclusions (to the right);

(P2) each ‘,’ is understood as separating nodes (signed formulas) from the same
branch;

(P3) an ‘|’ at the right of a ‘⇔’ demarcates bifurcations in the output of a given
rule;

(P4) an expression of the form ‘h1, . . . , hn ⇒ >’ denotes a closure rule.

After such a conversion, for each bivaluation axiom biv[xy]〈v〉 there will corre-
spond a tableau rule tab[xy]〈Sv〉, and for each axiom biv[Cn] there will be, in
the tableau system, a corresponding closure rule tab[Cn]. The standard deci-
sion procedure that will be presented below shows that the tableau rule that
corresponds to biv[T0] (a kind of dual-cut rule for tableaux), while certainly
admissible, does not need to be taken as primitive in the proof system. Now,
while the closure rule tab[C0] is also to be found in two-signed tableaux for
classical logic, rules tab[C1] to tab[C3] are all distinctive marks of the 4-valued
choice [Vb]. We will call Tabb the tableau system thereby obtained, and use
for tableaux here the usual terminology and definitions that are found in the
standard literature of the area.

Theorem 3. Tabb provides a sound and complete proof system for the logic
behind choice [Vb].
Using the bivalent semantics discussed in the previous section, one direction of
this result is obvious, as the tableau rules directly translate bivaluation axioms.
To check the converse direction, it will be useful to define a convenient ‘com-
plexity measure’ cm : TBs −→ N over the structure of a formula ϕ, according
to which:

cm(ϕ) =

8>><
>>:

0 if ϕ is an atom p,

cm(α) if ϕ is nα for a separating connective n,
1 + cm(α) if ϕ is oα for any other unary connective o,
1 + Max (cm(α), cm(β)) if ϕ is α ./ β for some binary connective ./ .

To extend the complexity measure for signed formulas, just ignore the signs.
Now the following lemma suffices to complete the proof of the above result:

Lemma 3. For any collection of signed formulas it is always possible to pro-
duce an exhausted tableau in Tabb.

Proof. Just notice that every signed formula with non-null complexity, whichever
form it has, is the head of a (uniquely determined) tableau rule, and that the
body of such rule only contains formulas of lower complexity. �

As a corollary of the previous result we also immediately obtain a completely
standard tableau-theoretic decision procedure for our logic. Indeed, if one wants
to check whether {γ1, γ2, . . . , γm} |= {δn, . . . , δ2, δ1} is the case, one should

The Value of the Two Values 11

construct a tableau for {T :γ1, T :γ2, . . . , T :γm} ∪ {F :δn, . . . , F :δ2, F :δ1}. If it
closes at any moment, the inference is valid. Otherwise, when one arrives to
an exhausted tableau and it still has open branches, counter-models may be
extracted from such branches by collecting all the thereby occurring formulas
of complexity 0.

As an illustration, an exhausted tableau to test the validity of the infer-
ence {¬2p ∧1 ¬2q)} |= {¬1(p ∨2 q)} will use the tableau rules tab[¬2∨2]〈F 〉,
tab[∧1]〈T 〉, tab[¬1¬2]〈F 〉, tab[¬2]〈T 〉, tab[s¬2]〈T 〉, tab[s¬2]〈F 〉, plus the clo-
sure rules tab[C0], and tab[C3], not necessarily in this order, and produce some
open branches. A first class of such open branches is the one that contains both
the formula F :¬1p and the formula F :¬1q. This is enough to tell us that they
represent the 4-valued counter-models in which w(p) = t = w(q). A second
class of such open branches is the one that contains only one of the above for-
mulas, say F :¬1p, and on what concerns the other atom, q, it contains both
T :q and T :sq (mutatis mutandis if one exchanges the roles of p and q). All
we can say in that case is that the 4-valued counter-models represented by the
open tableau for the above inference allow for assignments in which w(p) = t
and w(q) ∈ {t,⊥} (mutatis mutandis, the assignments in which w(q) = t and
w(p) ∈ {t,⊥} also represent counter-models).

The logic-user might be satisfied with such procedure by itself in testing
inferences of the logic underlying choice [Vb]. But in this case there would
hardly be a good technical reason to be found for not having stayed with
the initial class of 4-valued models, which were even simpler and in many
senses more well-behaved. One should insist here, though, that a much more
attractive task, from the viewpoint of the logic-designer, is to compare different
logics. There is a real advantage, in this case, in doing the bivalent reduction,
from the semantical perspective, and working with the associated two-signed
tableaux. For if that same reduction can be done for other logics, say the
logics underlying the choices [Ve`] or [Vn], or, for all that matters, for any other
finite-valued logics, for instance, checking whether a primitive or derived rule
from the logic Ly is valid from the perspective of a logic Lx, as long as such
logics are written over comparable languages, costs just the same, in principle,
as testing an inference of Lx inside Lx.

For a practical illustration on how the present approach may also be used
to produce easy proofs of some important meta-theoretical results concerning
the comparison of the logics presented by way of bivalent semantics, consider
the following extension of Theorem 1:

Theorem 4. Given Γ ∪∆ ⊆ TBs , then:
Γ |=b ∆ iff ∆ε |=n Γε and Γ |=n ∆ iff ∆ε |=b Γε.

Proof. These may be verified by a quick inspection of the restrictions governing the
classes of bivaluations Bivb and Bivn, in the Appendix — and in particular instructions
(DA) and (DB), that make the ‘dual’ relation between the bivaluation axioms quite
explicit. �

Taking now the associated adequated tableau systems, Tabb, Tabe` and Tabn,
into account, an even more inclusive practical result that may immediately be
established by ‘classic-like dualization’ is the following:

12 João Marcos

Theorem 5. Let T 4
== F and F

4
== T . Given {ϕ1, ϕ2, . . . , ϕj} ⊆ TBs and

given signs Si ∈ {T, F}, for 1 ≤ i ≤ j, then there is a closed tableau for
{S1:ϕ1, S2:ϕ2, . . . , Sj :ϕj} using the rules of Tabx iff there is a closed tableau
for {S1:ϕε

1, S2:ϕε
2, . . . , Sj :ϕε

j} using the rules of Taby, where 〈x, y〉 ∈ {〈b, n〉,
〈e`, e`〉, 〈n, b〉}.

To sum up with, it is important to mention that general constructive reduc-
tion mechanisms such as the ones described above are indeed available, for any
finite-valued logic, and the class of logics characterized by bivalent semantics
that can be associated to adequate analytic tableaux goes in fact much beyond
the class of finite-valued logics. In the next section we will finish by disclosing
a bit more about the range of applicability of the above ideas and techniques.

5 Context, considerations, and future work

The algebraic structures now widely known as bilattices (cf. [Ginsberg, 1986])
were introduced in [Belnap, 1976] and frequently investigated in the literature
since then (cf. [Belnap, 1977; Ginsberg, 1988; Fitting, 1990; Fitting, 1994;
Arieli and Avron, 1998]) and even generalized (cf. [Wansing and Shramko,
2005]) for their potential applications to several areas of computer science.
A useful source of information for developments on bilattices is [Arieli and
Avron, 2000], a paper to whose title the title of present study explicitly refers.
In a sense, there is no essential loss of generality here as we concentrate our
efforts over a simple four-valued bilattice, as there is a representation theorem
that supports it, and its structure stands among other bilattices in a similar
way as the canonical structure underlying classical logic stands among other
boolean algebras.

Some criticism has recently been raised to the whole idea that such logics
could really serve as a foundation for computerized reasoning under inconsis-
tent / incomplete information, arguing that their alleged significance is based on
a “confusion between truth-values and information states” (cf. [Dubois, 2008]).
This has almost immediately been counteracted by evidence suggesting that
the critique is based on a “confusion of information states with belief states”
(cf. [Wansing and Belnap, 2010]). The controversy does not affect our work in
this paper, nonetheless, as all we do here is largely independent of how the two
involved logical dimensions are explicated.

Still and all, we do have seen above how the logic represented by the bilattice
is very sensible to how its underlying truth-values are grouped and interpreted.
Having shown the difficulties that lie in effecting the comparison between the
inferences sanctioned by such logics, from the viewpoint of the logic-designer,
and the even more difficult task of comparing such logics with arbitrarily other
many-valued logics, we have next illustrated a general method that is based in
providing a uniform approach to these logics, starting with a bivalent reduction
of their semantics. Even though the illustration has been presented in detail
only for the choice that led to a paraconsistent logic based on the four-valued
structure, the slightly extended language that we have used was chosen to be
appropriate also for the application of the same techniques to the alternative
paracomplete logic based on a different choice made over the same structure,
and in several points we have commented on the adaptations that must be

The Value of the Two Values 13

made on the statements and results of the former case so as to deal also with
the latter case. In the currently detailed case study, as a matter of fact, what
we have is a variant of the output of a general method that allows for the
extraction of classic-like semantics for any finite-valued logic (check [Caleiro and
Marcos, 2010] for a recent survey). The output of that method, as presented
in the Appendix, has indeed been optimized here, by the use of equivalences
stated in the classical metalanguage, in much the same way as formulas in DNF
(namely, the sentences to the right of the ‘⇔’ symbol, representing the body of
the axioms / rules) can be manipulated into reduced DNF (the simplifications
also take the closure rules into account).

Our two-valued formulation of the chosen illustration has also been carefully
crafted so as to serve as input to another general method that allowed for the
extraction of adequate proof-theoretical counterparts of our logic in terms of
analytic tableaux. The method, in this case, is even more general than the
previous one, and applies not only to logics whose classic-like semantic presen-
tations result from the above mentioned reduction (cf. [Caleiro and Marcos,
2009]), but to many other logics that can be characterized by way of bivalu-
ation axioms of a similar ‘dyadic’ format (cf. [Caleiro et al., 2005]). In that
case, to facilitate the comparison between different logics it might be necessary
to fiddle with structural rules in order to guarantee that the obtained proof
systems are able to derive all the rules they have as admissible (cf. [Marcos
and Mendonça, 2009])). In any case, for each logic obtained through the above
methods, fully automated proof tactics are available (cf. [Marcos, 2010]). In
particular, it should be noted that analyticity of the proof procedure was guar-
anteed in the present paper through a simpler strategy as the one used in our
previous papers, where the introduction of a separating connective by abbre-
viation required a proof strategy to be associated, in general, to secure the
termination of the construction of an arbitrary tableau proof. Here we simpli-
fied matters (and the definition of the complexity measure) by introducing the
missing separating connective directly as part of the underlying propositional
signature.

For sure, on what concerns the beautiful and well-developed theory of bilat-
tices, the present approach provides a novel outlook, yet only starts scratching
some of the many issues that are of interest for the logic-designer. For instance,
even though we have tried to modify the initial language of the bilattice as little
and harmlessly as possible, the introduction of a suitable implication into B
can simplify many of the above tasks, in making the underlying language more
expressive in a very helpful way (cf. [Arieli and Avron, 2000]). It rests to be
shown, anyway, how much of the deeper interest behind the 4-valued approach
can be thoroughly retained within the present classic-like bivalent / two-signed
approach.

Finally, for a note on a completely different direction, we have given a few
hints along this study on how the above four-valued logic could be seen as a
sort of combination of simpler fragments, where interaction axioms have an
important role to play. It should be interesting to investigate the underlying
technique, for its own interest, as a new mechanism for the combination of
truth-functional logics (contrast with [Coniglio and Fernández, 2005]), where

14 João Marcos

‘coalescing’ a logic into another would consist in a way of adding a new dimen-
sion to a given structure. In that sense, for instance, the inner structure of the
four-valued formalism could be seen as a result from a natural combination of
classical logic with itself.

Acknowledgments

The author is much obliged to partial funding received from CNPq and CAPES
during the periods in which this paper was confected. Criticisms and stimuli
received from Chris Fermüller and Carlos Caleiro were also fundamental. Fi-
nally, the presentation also owes a lot to the provoking audiences of the 31st
Linz Seminar on Fuzzy Set Theory, the SQIG/IT, and the CLE/UNICAMP,
where the ideas herein contained were presented at different stages.

BIBLIOGRAPHY
[Arieli and Avron, 1998] Ofer Arieli and Arnon Avron. The value of the four values. Arti-

ficial Intelligence, 102:97–141, 1998.
[Arieli and Avron, 2000] Ofer Arieli and Arnon Avron. Bilattices and paraconsistency. In

D. Batens, C. Mortensen, G. Priest, and J. P. Van Bendegem, editors, Frontiers of Para-
consistent Logic, Proceedings of the I World Congress on Paraconsistency, held in Ghent,
BE, July 29–August 3, 1997, pages 11–28. Research Studies Press, Baldock, 2000.

[Belnap, 1976] Nuel D. Belnap. How a computer should think. In G. Ryle, editor, Contem-
porary Aspects of Philosophy, pages 30–55. Oriel Press, 1976.

[Belnap, 1977] Nuel D. Belnap. A useful four-valued logic. In J. M. Dunn and G. Epstein,
editors, Modern Uses of Multiple-Valued Logic, pages 8–37. D. Reidel, 1977.

[Caleiro and Marcos, 2009] Carlos Caleiro and João Marcos. Classic-like analytic tableaux
for finite-valued logics. In H. Ono, M. Kanazawa, and R. de Queiroz, editors, Proceed-
ings of the XVI Workshop on Logic, Language, Information and Computation (WoLLIC
2009), held in Tokyo, JP, June 2009, volume 5514 of Lecture Notes in Artificial Intelli-
gence, pages 268–280. Springer, 2009. Preprint available at:
http://sqig.math.ist.utl.pt/pub/CaleiroC/09-CM-ClATab4FVL.pdf.

[Caleiro and Marcos, 2010] Carlos Caleiro and João Marcos. Two many values: An algo-
rithmic outlook on Suszko’s Thesis. In Proceedings of the XL International Symposium
on Multiple-Valued Logic (ISMVL 2010), pages 93–97. IEEE Computer Society, 2010.
Preprint available at: http://sqig.math.ist.utl.pt/pub/CaleiroC/10-CM-ismvl.pdf.

[Caleiro et al., 2005] Carlos Caleiro, Walter Carnielli, Marcelo E. Coniglio, and João Mar-
cos. Two’s company: “The humbug of many logical values”. In J.-Y. Béziau, editor,
Logica Universalis, pages 169–189. Birkhäuser Verlag, Basel, Switzerland, 2005.
Preprint available at: http://sqig.math.ist.utl.pt/pub/CaleiroC/05-CCCM-dyadic.pdf.

[Coniglio and Fernández, 2005] Marcelo E. Coniglio and Vı́ctor L. Fernández. Plain fib-
ring and direct union of logics with matrix semantics. In Proceedings of the 2nd Indian
International Conference on Artificial Intelligence, pages 1648–1658. IICAI, 2005.

[Dubois, 2008] Didier Dubois. On ignorance and contradiction considered as truth-values.
Logic Journal of IGPL, 16(2):195–216, 2008.

[Fitting, 1990] Melvin Fitting. Bilattices in logic programming. In Proceedings of the XX
International Symposium on Multiple-Valued Logic (ISMVL 1990), pages 238–246. IEEE
Computer Society, 1990.

[Fitting, 1994] Melvin Fitting. Kleene’s three valued logics and their children. Fundamenta
Informaticae, 20(1–3):113–131, 1994.

[Ginsberg, 1986] Matthew L. Ginsberg. Multi-valued logics. In AAAI-86 Proceedings, pages
243–249. AAAI, 1986.

[Ginsberg, 1988] Matthew L. Ginsberg. Multivalued logics: A uniform approach to inference
in artificial intelligence. Computational Intelligence, 4:265–316, 1988.

[Marcos and Mendonça, 2009] João Marcos and Dalmo Mendonça. Towards fully automated
axiom extraction for finite-valued logics. In W. Carnielli, M. E. Coniglio, and I. M. L.
D’Ottaviano, editors, The Many Sides of Logic, Studies in Logic, pages 425–440. College
Publications, London, 2009. Preprint available at:
http://sqig.math.ist.utl.pt/pub/MarcosJ/08-MM-towards.pdf.

The Value of the Two Values 15

[Marcos, 2010] João Marcos. Automatic generation of proof tactics for finite-valued logics.
Electronic Proceedings in Theoretical Computer Science, 21:91–98, 2010. Available at:
http://arxiv.org/abs/1003.4802v1.

[Wansing and Belnap, 2010] Heinrich Wansing and Nuel Belnap. Generalized truth values:
A reply to Dubois. Logic Journal of the IGPL, 18(6):921–935, 2010.

[Wansing and Shramko, 2005] Heinrich Wansing and Yaroslav Shramko. Some useful 16-
valued logics: How a computer network should think. Journal of Philosophical Logic,
34:121–153, 2005.

Appendix

Here one can find the exhaustive bivalent description of all the above mentioned
4-valued logics.

In the metalinguistic notation below, a ‘,’ replaces an and, a ‘|’ replaces an
or, a ‘⇒’ replaces an if-then assertion, a ‘⇔’ stands for an iff assertion, and a
‘>’ represents the absurd. So, the first bivaluation axiom biv[∧2]〈1〉 below, for
instance, should be read as restricting the class of bivaluations of interest to
those in which b(α∧2β) = 1 is the case, for arbitrary formulas α and β of TB, if
and only if one of three following situations occur: either b(sα) = 1 is the case,
or b(sβ) = 1 is the case, or else both b(α) = 1 and b(β) = 1 are simultaneously
the case. Further, an axiom rule such as the first biv[C2] below should be read
as stating that b(α) = 0 and b(s(α)) = 1 cannot simultaneously obtain, for
any bivaluation b and formula α of TB.

The first bivalent semantics described below, Bivb, corresponds to the logic
underlying choice [Vb], whose completeness proof was presented in detail in the
preceding text. It corresponds to the collection of all bivaluations that conform
to the restrictions listed in what follows.

biv[∧1]〈1〉 b(α ∧1 β) = 1 ⇔
(b(¬1α) = 0 , b(β) = 1)

| (b(α) = 1 , b(¬1β) = 0)
| (b(sα) = 1 , b(sβ) = 1)
| (b(α) = 1 , b(sα) = 0 , b(β) = 1 , b(sβ) = 0)

biv[∧1]〈0〉 b(α ∧1 β) = 0 ⇔
(b(α) = 0)

| (b(β) = 0)
| (b(¬1α) = 1 , b(sα) = 1 , b(sβ) = 0)
| (b(sα) = 0 , b(¬1β) = 1 , b(sβ) = 1)

biv[¬1∧1]〈1〉 b(¬1(α ∧1 β)) = 1 ⇔ b(¬1α) = 1 | b(¬1β) = 1

biv[¬1∧1]〈0〉 b(¬1(α ∧1 β)) = 0 ⇔ b(¬1α) = 0 , b(¬1β) = 0

biv[s∧1]〈1〉 b(s(α ∧1 β)) = 1 ⇔ b(sα) = 1 , b(sβ) = 1

biv[s∧1]〈0〉 b(s(α ∧1 β)) = 0 ⇔ b(sα) = 0 | b(sβ) = 0

. .

biv[∧2]〈1〉 b(α ∧2 β) = 1 ⇔
(b(sα) = 1)

| (b(sβ) = 1)
| (b(α) = 1 , b(β) = 1)

biv[∧2]〈0〉 b(α ∧2 β) = 0 ⇔
(b(α) = 0 , b(sβ) = 0)

| (b(sα) = 0 , b(β) = 0)

16 João Marcos

biv[¬1∧2]〈1〉 b(¬1(α ∧2 β)) = 1 ⇔
(b(α) = 0)

| (b(β) = 0)
| (b(¬1α) = 1 , b(sα) = 1)
| (b(¬1β) = 1 , b(sβ) = 1)
| (b(¬1α) = 1 , b(¬1β) = 1)

biv[¬1∧2]〈0〉 b(¬1(α ∧2 β)) = 0 ⇔
(b(¬1α) = 0 , b(¬1β) = 0)

| (b(¬1α) = 0 , b(β) = 1 , b(sβ) = 0)
| (b(α) = 1 , b(sα) = 0 , b(¬1β) = 0)

biv[s∧2]〈1〉 b(s(α ∧2 β)) = 1 ⇔ b(sα) = 1 | b(sβ) = 1

biv[s∧2]〈0〉 b(s(α ∧2 β)) = 0 ⇔ b(sα) = 0 , b(sβ) = 0
. .

biv[∨1]〈1〉 b(α ∨1 β) = 1 ⇔ b(α) = 1 | b(β) = 1

biv[∨1]〈0〉 b(α ∨1 β) = 0 ⇔ b(α) = 0 , b(β) = 0

biv[¬1∨1]〈1〉 b(¬1(α ∨1 β)) = 1 ⇔
(b(sα) = 0 , b(sβ) = 0)

| (b(α) = 0 , b(¬1β) = 1)
| (b(¬1α) = 1 , b(β) = 0)
| (b(¬1α) = 1 , b(sα) = 1 , b(¬1β) = 1 , b(sβ) = 1)

biv[¬1∨1]〈0〉 b(¬1(α ∨1 β)) = 0 ⇔
(b(¬1α) = 0)

| (b(¬1β) = 0)
| (b(sα) = 1 , b(β) = 1 , b(sβ) = 0)
| (b(α) = 1 , b(sα) = 0 , b(sβ) = 1)

biv[s∨1]〈1〉 b(s(α ∨1 β)) = 1 ⇔ b(sα) = 1 | b(sβ) = 1

biv[s∨1]〈0〉 b(s(α ∨1 β)) = 0 ⇔ b(sα) = 0 , b(sβ) = 0
. .

biv[∨2]〈1〉 b(α ∨2 β) = 1 ⇔
(b(¬1α) = 0)

| (b(¬1β) = 0)
| (b(α) = 1 , b(sα) = 0)
| (b(β) = 1 , b(sβ) = 0)
| (b(α) = 1 , b(β) = 1)

biv[∨2]〈0〉 b(α ∨2 β) = 0 ⇔
(b(α) = 0 , b(β) = 0)

| (b(α) = 0 , b(¬1β) = 1 , b(sβ) = 1)
| (b(¬1α) = 1 , b(sα) = 1 , b(β) = 0)

biv[¬1∨2]〈1〉 b(¬1(α ∨2 β)) = 1 ⇔
(b(sα) = 0)

| (b(sβ) = 0)
| (b(¬1α) = 1 , b(¬1β) = 1)

biv[¬1∨2]〈0〉 b(¬1(α ∨2 β)) = 0 ⇔
(b(sα) = 1 , b(¬1β) = 0)

| (b(¬1α) = 0 , b(sβ) = 1)

biv[s∨2]〈1〉 b(s(α ∨2 β)) = 1 ⇔ b(sα) = 1 , b(sβ) = 1

biv[s∨2]〈0〉 b(s(α ∨2 β)) = 0 ⇔ b(sα) = 0 | b(sβ) = 0
. .

biv[¬1¬1]〈1〉 b(¬1(¬1α)) = 1 ⇔ b(α) = 1

biv[¬1¬1]〈0〉 b(¬1(¬1α)) = 0 ⇔ b(α) = 0

biv[s¬1]〈1〉 b(s(¬1α)) = 1 ⇔ b(α) = 0 | (b(¬1α) = 1 , b(sα) = 1)

biv[s¬1]〈0〉 b(s(¬1α)) = 0 ⇔ b(¬1α) = 0 | (b(α) = 1 , b(sα) = 0)
. .

The Value of the Two Values 17

biv[¬2]〈1〉 b(¬2α) = 1 ⇔ b(α) = 1

biv[¬2]〈0〉 b(¬2α) = 0 ⇔ b(α) = 0

biv[¬1¬2]〈1〉 b(¬1(¬2α)) = 1 ⇔ b(¬1α) = 1

biv[¬1¬2]〈0〉 b(¬1(¬2α)) = 0 ⇔ b(¬1α) = 0

biv[s¬2]〈1〉 b(s(¬2α)) = 1 ⇔ b(¬1α) = 0 | (b(α) = 1 , b(sα) = 0)

biv[s¬2]〈0〉 b(s(¬2α)) = 0 ⇔ b(α) = 0 | (b(¬1α) = 1 , b(sα) = 1)
. .

biv[¬1s]〈1〉 b(¬1(sα)) = 1 ⇔ b(sα) = 0

biv[¬1s]〈0〉 b(¬1(sα)) = 0 ⇔ b(sα) = 1

biv[ss]〈1〉 b(s(sα)) = 1 ⇔ b(sα) = 1

biv[ss]〈0〉 b(s(sα)) = 0 ⇔ b(sα) = 0
. .

biv[T0] ⇒ b(α) = 0 | b(α) = 1
biv[C0] (b(α) = 0 , b(α) = 1) ⇒ >
biv[C1] (b(α) = 0 , b(¬1α) = 0) ⇒ >
biv[C2] (b(α) = 0 , b(sα) = 1) ⇒ >
biv[C3] (b(¬1α) = 0 , b(sα) = 0) ⇒ >

Using precisely the same technique illustrated in the preceding text, a biva-
lent semantics Bivn corresponding to the logic underlying choice [Vn] may be
produced. Its description is quite simple to present if we take into account the
above exhaustive description of Bivb. Indeed, all we have to do is:

(DA) rewrite each expression of the form b(ϕ) = v as b(ϕ) = 1− v
(DB) exchange each ∧ for a ∨, and vice-versa

So, a bivaluation axiom for Bivb such as:

biv[¬1∧2]〈0〉 b(¬1(α ∧2 β)) = 0 ⇔
(b(¬1α) = 0 , b(¬1β) = 0)

| (b(¬1α) = 0 , b(β) = 1 , b(sβ) = 0)
| (b(α) = 1 , b(sα) = 0 , b(¬1β) = 0)

becomes in Bivn the axiom:
biv[¬1∨2]〈1〉 b(¬1(α ∨2 β)) = 1 ⇔

(b(¬1α) = 1 , b(¬1β) = 1)
| (b(¬1α) = 1 , b(β) = 0 , b(sβ) = 1)
| (b(α) = 0 , b(sα) = 1 , b(¬1β) = 1)

and a closure rule for Bivb such as

biv[C3] (b(¬1α) = 0 , b(sα) = 0) ⇒ >

becomes in Bivn the closure rule:

biv[C3] (b(¬1α) = 1 , b(sα) = 1) ⇒ >

Finally, a bivalent semantics Bive` corresponding to the logic underlying
choice [Ve`] is even easier to describe than the previously described semantics,
given that there is no real need to use for that effect more than one separating
connective — and each one of ¬1, ¬2 and s will do the job equally well. As
a matter of stipulation, choosing for that effect the latter connective, s, the
corresponding straightforward bivaluation axioms that we obtain are presented
in what follows.

18 João Marcos

biv[¬1]〈0〉 b(¬1α) = 0 ⇔ b(sα) = 1
biv[s¬1]〈0〉 b(s¬1α) = 0 ⇔ b(α) = 1

biv[¬2]〈0〉 b(¬2α) = 0 ⇔ b(sα) = 0
biv[s¬2]〈0〉 b(s¬2α) = 0 ⇔ b(α) = 0

biv[ss]〈0〉 b(ssα) = 0 ⇔ b(sα) = 0

biv[∧1]〈0〉 b(α ∧1 β) = 0 ⇔ b(α) = 0 | b(β) = 0
biv[s∧1]〈0〉 b(s(α ∧1 β)) = 0 ⇔ b(sα) = 0 | b(sβ) = 0

biv[∧2]〈0〉 b(α ∧2 β) = 0 ⇔ b(α) = 0 | b(β) = 0
biv[s∧2]〈0〉 b(s(α ∧2 β)) = 0 ⇔ b(sα) = 0 , b(sβ) = 0

biv[∨1]〈0〉 b(α ∨1 β) = 0 ⇔ b(α) = 0 , b(β) = 0
biv[s∨1]〈0〉 b(s(α ∨1 β)) = 0 ⇔ b(sα) = 0 , b(sβ) = 0

biv[∨2]〈0〉 b(α ∨2 β) = 0 ⇔ b(α) = 0 , b(β) = 0
biv[s∨2]〈0〉 b(s(α ∨2 β)) = 0 ⇔ b(sα) = 0 | b(sβ) = 0

The above listed bivaluation axioms for Bive` clearly tell only half of the story.
However, to obtain the other half one simply has to follow instructions (DA)
and (DB). Axioms biv[T0] and biv[C0] must still be added to the above list,
but no extra closure axioms are needed for a complete presentation, in the
present case.

