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1 Introduction

In [3, 1], the authors study models for a certain kind of fuzzy modal logics and prove
weak completeness results for a couple of modal extensions of classic-like fuzzy models
of some traditional normal modal systems, viz. K, T , D, B, S4 and S5. Here we shall
follow a similar thread to prove completeness results for a much more inclusive class
of fuzzy normal modal systems which contain instances of the axiom of confluence
pGk,l,m,nq ♦klmϕ Ą ll♦nϕ, as the systems K ` Gk,l,m,n obviously encompass the
above traditional systems, and much else. Indeed, one may observe that the charac-
teristic modal axioms pT q lϕ Ą ϕ, pDq lϕ Ą ♦ϕ, pBq ϕ Ą l♦ϕ, p4q lϕ Ą llϕ
and p5q ♦ϕ Ą ♦lϕ are but particular instances of pGk,l,m,nq where xk, l,m, ny are
x0, 0, 1, 0y, x0, 0, 1, 1y, x0, 1, 0, 1y, x0, 2, 1, 0y and x1, 1, 0, 1y, respectively.

The so-called Geach axiom pG1,1,1,1q is well-known to characterize, in terms of the
associated notion of accessibility ù (and its inverse ø) in the corresponding Kripke
frames, the diamond property, namely: if y ø x ù z, then there is some w such that

y ù w ø z. As noted in [5], where
i

ù denotes an i-long sequence of ù transitions
(and similarly for ø transitions), the natural generalization of the diamond property

is the following xk, l,m, ny-confluence property : if y
k

ø x
l

ù z, then there is some

w such that y
m

ù w
n

ø z. From the logical viewpoint, a general completeness proof
based directly on the axiom of confluence, thus, is attractive in having the potential
to subsume a denumerable number of particular instances of pGk,l,m,nq.

At any rate, it should be noted that the confluence property has importance on
its own. In abstract rewriting systems, for instance, one deals with frames in which
accessibility characterizes some appropriate notion of reduction. There, confluence is
used together with termination to guarantee convergence of reductions, which on its
turn guarantee the existence of normal forms and has applications on the design of
decision procedures. Strong normalization, in particular, is a much desirable property
of lambda calculi, and is a property guaranteed by theorems of confluence à la Church-
Rosser, with applications to programming language theory. The availability of modal
logics of confluence, and in fact of fuzzy versions of such logics, allows one to expect
to have a local perspective on rewrite systems and on program evaluation, and this
time imbued with varying degrees of uncertainty, customized to the user’s discretion.

The plan of the paper is as follows: in section 2 we define a set of fuzzy operators,
in section 3 we present the concept of classic-like fuzzy semantics, in section 4 we
present a particular kind of fuzzy kripke semantics for modal logics, and in section 5
we prove completeness results for the modal system K extended with instances of the
axiom of confluence.



Fuzzy Modal Logics of Confluence 329

2 Fuzzy Operators

We first fix some useful terminology:

Definition 1. Throughout the paper we shall use O to denote the boolean
domain t0, 1u of classical logic, and U to denote the unit interval r0, 1s, typical of
fuzzy logics. By ď we will always denote the natural total order on U . Given an n-
ary operator c©b on O and an n-ary operator c©u on U , we shall say that c©u agrees
with c©b if c©u|O “ c©b.

Next we axiomatize the properties of the more or less standard fuzzy operators
used to interpret their classical counterparts:

Definition 2. A fuzzy negation is a unary operation N on U such that: (N0)
N agrees with classical negation, (N1) N is antitone, that is, order-reversing.

Definition 3. A fuzzy conjunction, or t-norm, is a binary operation T on U
such that: (T0) T agrees with classical conjunction, (T1) T is commutative, (T2) T is
associative, (T3) T is monotone, that is, order-preserving, on both arguments, and
(T4) T has 1 as neutral element. We call x P U a zero-divisor of a t-norm T if
there exists some y P U such that T px, yq “ 0; such zero-divisor is called non-trivial
if minpx, yq ‰ 0.

Using the properties of t-norms we can easily prove the following result.

Proposition 1. If T px, yq “ 1, then x “ y “ 1.

Proof. Let x, y P U . As y ď 1 , by (T3) it follows that T px, yq ď T px, 1q. But by (T4)
we have T px, 1q “ x, so we conclude that (i) T px, yq ď x. For analogous reasons, we
know that (ii) T px, yq ď y. From (i) and (ii) it follows that T px, yq ď minpx, yq. Given
T px, yq “ 1, then 1 ď minpx, yq, so x “ y “ 1.

Definition 4. A fuzzy disjunction, or s-norm, is a binary operation S on U such
that: (S0) S agrees with classical disjunction, (S1) S is commutative, (S2) S is asso-
ciative, (S3) S is monotone on both arguments, and (S4) S has 0 as neutral element.
We call x P U a one-divisor of an s-norm S if there exists some y P U such that
Spx, yq “ 1; such one-divisor is called non-trivial if maxpx, yq ‰ 1.

Definition 5. A fuzzy implication is a binary operation I on U such that: (I0)
I agrees with classical implication, (I1) I is antitone on the first argument, and (I2)
I is monotone on the second argument.

Definition 6. A fuzzy bi-implication is a binary operation B on U such that: (B0)
B agrees with classical bi-implication, (B1) B is commutative, (B2) Bpx, xq “ 1, and
(B3) if w ď x ď y ď z then Bpw, zq ď Bpx, yq.

3 Fuzzy Semantics

Let P a denumerable set of propositional variables, and let the set of formulas of
classical propositional logic, LP , be inductively defined by:

ϕ ::“ p | J | K | p ϕq | pϕ1 ^ ϕ2q | pϕ1 _ ϕ2q | pϕ1 Ą ϕ2q | pϕ1 ” ϕ2q

where p ranges over elements of P .
The following definition employs the standard fuzzy operators in interpreting the

above symbols for the classical connectives:
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Definition 7. A fuzzy evaluation of the propositional symbols is any total function
e : P ÝÑ U . The structure S “ xN,T, S, I, By will be called a fuzzy semantics of the
propositional connectives x ,^,_,Ą,”y. By way of a fuzzy semantics, an evaluation e
may be recursively extended to a function eS : LP ÝÑ U as follows:

eSppq “ eppq for each p P P
eSp αq “ NpeSpαqq
eSpα^ βq “ T peSpαq, eSpβqq
eSpα_ βq “ SpeSpαq, eSpβqq
eSpα Ą βq “ IpeSpαq, eSpβqq
eSpα ” βq “ BpeSpαq, eSpβqq

A formula α P LP is an S-tautology, denoted by |ùS α, if for each fuzzy evaluation
e we have eSpαq “ 1.

We shall denote by TpLP q the set of all classical tautologies in LP and by TSpLP q

the set of all S-tautologies in LP . The fact that each fuzzy operator agrees with the
corresponding classical operator allows one to immediately prove the following:

Proposition 2. Let S “ xN,T, S, I, By be a fuzzy semantics. All fuzzy tautologies
are classical tautologies, that is, TSpLP q Ď TpLP q.

The following definition and the subsequent result come from [2], and strive to
capture the core of classical semantics from within the context of fuzzy semantics:

Definition 8. S is a classic-like fuzzy semantics if TpLP q Ď TSpLP q.

Proposition 3. A fuzzy semantics S “ xN,T, S, I, By is a classic-like fuzzy seman-
tics iff

– N is the fuzzy negation

NCpxq “

"

1, if x ă 1
0, if x “ 1

– all zero-divisors of T are trivial
– all one-divisors of S are trivial
– Ipx, yq “ 1 if and only if x ă 1 or y “ 1
– B is the fuzzy bi-implication

BCpx, yq “

"

minpx, yq, if maxpx, yq “ 1
1, otherwise

4 Fuzzy Kripke Semantics

The set of modal formulas, LMP , is defined by adding p♦φq to the inductive clauses
defining LP . The connective l may be introduced by definition by setting lα :“
 ♦ α.

Definition 9. Generalizing the notion of a characteristic function to the domain
of fuzzy logic, a fuzzy n-ary relation B over a universe A is characterized by a
membership function µB : An ÝÑ U which associates to each tuple ÝÑx P An its degree
of membership µBp

ÝÑx q in B. In this context, a fuzzy subset is characterized by a
fuzzy unary relation, or the corresponding unary membership function. A crisp n-ary
relation is any fuzzy n-ary relation B over a given A such that µBpA

nq Ď O, and
crisp sets are defined analogously.

In the following definitions the standard kripke models are fuzzified:
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Definition 10. A fuzzy frame F is a structure xW,ùy, where W is a non-empty
crisp set (of ‘objects’, ‘worlds’, or ‘states’) and ù is a fuzzy binary (‘reduction’,
‘accessibility’, or ‘transition’) relation over W . As expected, to characterize m-step

accessibility,
m

ù, we set:

– µ 0
ù
pwi, wjq “ 1 means that wi “ wj

– µn`1
ù
pwi, wjq “ 1 means that there is some wk such that µ n

ù
pwi, wkq “ 1 and

µùpwk, wjq “ 1 (intuitively, this means wj is ‘crispily’ accessible from wi in n`1
steps)

Furthermore, wi
m

ø wj is to denote wj
m

ù wi.

Definition 11. Given a fuzzy frame F, an F-evaluation is any total function ρ :
P ˆ W ÝÑ U . A fuzzy kripke model is a structure K “ xF,S, ρy, where F is a
fuzzy frame, S is a classic-like fuzzy semantics where T is a left-continuous t-norm
and ρ is an F-valuation. Given a fuzzy kripke model K, the associated degree of
satisfiability is a total function , : W ˆ LMP ÝÑ U recursively defined as follows
(in infix notation, we write w , ϕ where w PW and ϕ P LMP ):

w , α “ ρpα,wq, if α P P
w ,  α “ Npw , αq
w , α^ β “ T pw , α,w , βq
w , α_ β “ Spw , α,w , βq
w , α Ą β “ Ipw , α,w , βq
w , α ” β “ Bpw , α,w , βq
w , ♦α “ suptT pµùpw,w1q, w1 , αq : w1 PW u
w , lα “ Npw , ♦ αq

A formula ϕ P LMP is said to be true in a fuzzy kripke model K, denoted by |ùK α, if
pw , ϕq “ 1 for every w PW . Given a collection K of fuzzy kripke models, a formula
ϕ P LMP is said to be a K-tautology if ϕ is true in every model in K.

Many standard properties of the binary relations have natural ‘weakly’ fuzzy coun-
terparts, among which we may mention:

Definition 12. We say the fuzzy accessibility relation ù is:

– reflexive if µùpx, xq “ 1, for every x PW
– symmetric if µùpx, yq “ µùpy, xq, for every x, y PW
– transitive if µ 2

ù
px, yq “ 1 implies µùpx, yq “ 1 for every x, y PW

– euclidean if µùpx, yq “ 1 and µùpx, zq “ 1 imply µùpy, zq “ 1 for every
x, y, z PW

In general, given natural numbers k, l,m, n, we say that ù is
(k,l,m,n)-confluent if for each x, y, z P W such that µ k

ù
px, yq “ µ l

ù
px, zq “ 1

there exists w PW such that µ m
ù
py, wq “ µ n

ù
pz, wq “ 1.

5 Characterization of Fuzzy Kripke Models for Normal
Modal Systems based on Instances of Gk,l,m,n

The following result, [3], shows that each fuzzy modal semantics may be assumed to
be based on a convenient crisp accessibility relation.

Proposition 4. Let KM “ xW,ù,S, ρy be a fuzzy kripke model and define the
model KMC

“ xW,ùC ,S, ρy to be such that µùC pw,w1q “ 1 if µùpw,w1q “ 1,
and µùC pw,w1q “ 0 if µùpw,w1q ă 1. Then, α P LMP is true in KM iff α is true
in KMC .
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5.1 The K-Modal System

Definition 13. The K-modal system is the triple xLMP , ∆Yt(K)u, t(MP), (Nec)uy,
where ∆ is an axiomatization of Classical Propositional Logic and (K) is the axiom

lpα Ą βq Ą plα Ą lβq

(MP) and (Nec) are respectively the rules of Modus Ponens and Necessitation, namely:

(MP) :
α, α Ą β

β

and

(Nec) :
$ α

$ lα

Definition 14. A fuzzy kripke model K is K-like if each theorem in the K-modal
system is true in K and, conversely, each formula that is true in K is a theorem in
the K-modal system.

Proposition 5. Let α P LMP , α is a theorem in the K-modal system iff |ùK α for
each fuzzy kripke model K “ xW,ù,S, ρy.

Proof. pñq We already know that the theorems of classical logic are all valid in any
classic-like fuzzy semantics. It remains to be proven that the axiom (K) is valid and
that the inferences rules preserve validity. Suppose that there exists a w P W such
that pw , lpα Ą βq Ą plα Ą lβqq ă 1. So by Prop. 3 it follows that:

pw , lpα Ą βqq “ 1 (1)

And
pw , lα Ą lβq ă 1 (2)

By (2) and Prop. 3
pw , lαq “ 1 (3)

And
pw , lβq ă 1 (4)

By (4) and Def. 11

NCpsuptT pµùpw,w1q, NCpw
1 , βqq{w1 PW uq ă 1 (5)

By (5) and Prop. 3

suptT pµùpw,w1q, NCpw
1 , βqq{w1 PW u “ 1 (6)

By (6) there exists a w˚ PW such that

T pµùpw,w˚q, NCpw
˚ , βqq “ 1 (7)

By (7) and the Prop. 1
µùpw,w˚q “ 1 (8)

and
NCpw

˚ , βq “ 1 (9)

From (9), by Prop. 3 we know that

pw˚ , βq ă 1 (10)

By (1)
suptT pµùpw,w1q, NCpw

1 , α Ą βqq{w1 PW u ă 1 (11)
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By (11) and (8) in particular when w1 “ w˚ we have NCpw
˚ , α Ą βqq ă 1, by

Prop. 3, that is,
pw˚ , α Ą βq “ 1 (12)

Using (3),(8) and Prop. 3 analogously we conclude that

pw˚ , αq “ 1 (13)

By (12), (13) and the interpretation of classic-like fuzzy implication it follows that

pw˚ , βq “ 1 (14)

But (14) contradicts (10).
Assume now that |ùK β. Suppose by contradiction that |ùK lβ is not the case. So

there exists a w P W such that pw , lβq ă 1, that is,
NCpsuptT pµùpw,w1q, NCpw

1 , βqq{w1 P W uq ă 1. It follows by Prop. 3 that
suptT pµùpw,w1q, NCpw

1 , βqq{w1 P W u “ 1. For some w˚ P W it is the case that
T pµùpw,w˚q, NCpw

˚ , βqq “ 1. From the latter we conclude that pw1 , βq ă 1,
and this contradicts the assumption.
Assume next that |ùK ϕ and |ùK ϕ Ą ψ. Suppose again by contradiction that |ùK ψ
fails. So there exists a v such that pv , ψq ă 1. However, pv ,K ϕq “ 1. By Prop. 3
it follows that pv , ϕ Ą ψq ă 1, so ϕ Ą ψ is not a K-tautology.
pðq The K system is known to be complete with respect the class of all kripke models.
So, by Prop. 4, if |ùK α then $K α.

5.2 Modal Normal System KGk,l,m,n

Definition 15. Given a fuzzy kripke model KG is KG-like if each theorem in the
KG modal system is true in KG and, conversely, each formula that is true in KG is
a theorem in the KG-modal system.

5.3 Completeness of KGk,l,m,n

Lemma 1. Let M “ xW,R,S, ρy be a fuzzy kripke model. If pw , ♦zφq “ 1, then
there exists a wz such that both µ z

ù
pw,wzq “ 1 and pwz , φq “ 1.

Proof. The proof proceeds by induction on z.
rBasiss z “ 1
If pw , ♦βq “ 1, then, by Def. 7, suptT pµùpw,w1q, w1 , βq{w1 P W u “ 1. So,
there is a w1 P W such that T pµùpw,w1q, w1 , βq “ 1. By Prop. 1 we have
µùpw,w1q “ 1 and pw1 , βq “ 1.
rSteps Suppose by Induction Hypothesis that for z “ k the property is valid.
Note that:
If pw , ♦k`1βq “ 1, then, by Def. 11,

suptT pµùpw,w1q, w1 , ♦kβq{w1 PW u “ 1 (15)

From p15q there exists a w1 such that:

T pµùpw,w1q, w1 , ♦kβq “ 1 (16)

By p16q and Prop. 1 we have:
µùpw,w1q “ 1 (17)

and
pw1 , ♦kβq “ 1 (18)

By p18q and Induction Hypothesis it follows there exists a wk1 such that
µ k

ù
pw1, wk1q “ 1 and pwk1 , βq “ 1. Using p17q and setting wk`1 “ wk1 we conclude

µk`1
ù
pw,wk`1q “ 1 and pwk`1 , βq “ 1.
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Lemma 2. Let M “ xW,R,S, ρy be a fuzzy kripke model. If µ m
ù
pw, vq “ 1 and

pw , lmφq “ 1, then pv , φq “ 1.

Proof. The proof is carried out by induction on m.
rBasiss m “ 1
Assume that:

µùpw, vq “ 1 (19)

and
pw , lβq “ 1 (20)

Expanding p20q we have
pw ,  ♦ βq “ 1 (21)

By Prop. 3 it follows that
Ncpw , ♦ βq “ 1 (22)

By p22q
suptT pµùpw,w1q, Ncpw

1 , βq{w1 PW u ă 1 (23)

From p23q, for every w1 PW ,

T pµùpw,w1q, Ncpw
1 , βqq ă 1 (24)

In particular, for w1 “ v,

T pµùpw, vq, Ncpv , βqq ă 1 (25)

By (19), (25) and Prop. 1
Ncpv , βq ă 1 (26)

We conclude from (26) and Prop. 3 that pv , βq “ 1.
rSteps m “ k ` 1
The Induction Hypothesis states that for m “ k, if µ k

ù
pw, vq “ 1 and pw , lkβq “ 1

then pv , βq “ 1.
Note that, given

µk`1
ù
pw, vq “ 1 (27)

and
pw , lk`1βq “ 1 (28)

it follows from (28) and Prop. 3 that

suptT pµùpw,w1q, NCpw
1 , lkβqq{w1 PW u ă 1 (29)

On the other hand, for every w1 PW we have

T pµùpw,w1q, NCpw
1 , lkβqq ă 1 (30)

By (27) there is a v0 such that µùpw, v0q “ 1. Note that for such v0 it is thus the
case that T pµùpw, v0q, NCpv0 , lkβqq ă 1. It follows that

pv0 , lkβq “ 1 (31)

We conclude, by (31), that µ k
ù
pv0, vq “ 1 and from the Induction Hypothesis it

follows that pv , βq “ 1.

The following result concerns equivalences between formulas with nested modali-
ties.

Lemma 3. If M “ xW,R,S, ρy is a fuzzy kripke model, and w is a element of W ,
then pw ,  ♦mφq “ 1 iff pw , lm φq “ 1.
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Proof. It is not hard to check this by induction on m. The basis and inductive step
follow by Def. 11, using Prop. 3.

Lemma 4. Let M “ xW,R,S, ρy be a fuzzy kripke model. If pw ,  ♦nφq “ 1 and
µ n

ù
pw, vq “ 1, then pv , φq ă 1.

Proof. This is a straightforward consequence of the previous results. Indeed, note first
that by Lemma 3 we have pv ,  ♦mφq “ 1 iff pv , lm φq “ 1. So we know that
pw , lm φq “ 1 and µ n

ù
pw, vq “ 1, and by applying Lemma 2 it follows that

pv ,  φq “ 1. By Prop. 3 we conclude that pv , φq ă 1.

Lemma 5. Let M “ xW,R,S, ρy be a fuzzy kripke model. If pw , lnφq ă 1, then
there exists some wn such that µ n

ù
pw,wnq “ 1 and pwn ,  φq “ 1.

Proof. This is checked by induction on n. The basis is straightforward from Def. 11.
If pw , lk`1φq ă 1 we have for some w1 that µùpw,w1q “ 1 and pw1 , lkφq ă 1.
So, using the Induction Hypothesis it follows that µk`1

ù
pw,wk`1q “ 1 and pwk`1 ,

 φq “ 1

The next lemma show that the axiom Gk,l,m,n is sound with respect fuzzy kripke
models where ù is pk, l,m, nq-confluent:

Lemma 6. If α is a formula of form Gk,l,m,n and G is a fuzzy kripke model where ù is
pk, l,m, nq-confluent, then |ùG α.

Proof. Let α be ♦klmβ Ą ll♦nβ. Suppose that pw ,G ♦klmβ Ą ll♦nβq ă 1 for
some w PW . Then by Def. 7

pw ,G ♦klmβq “ 1 (32)

and
pw ,G ll♦nβq ă 1 (33)

By p32q and Lemma 1 there exists a wk such that

µ k
ù
pw,wkq “ 1, (34)

and
pwk ,G lmβq “ 1 (35)

By p33q and Lemma 5 there exists a wl such that

µ l
ù
pw,wlq “ 1 (36)

and
pwl ,G  ♦

nβq “ 1 (37)

By p34q, p36q and the appropriate instance of the confluence property of ù there
exists a x PW such that

µ m
ù
pwk, xq “ 1 (38)

and
µ n

ù
pwl, xq “ 1 (39)

By p35q, p38q and Lemma 2 we conclude that

px ,G βq “ 1 (40)

By p37q, p39q and Lemma 4, on the other hand, we conclude that

px ,G βq ă 1 (41)

Note that p41q contradicts p40q.
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Theorem 1. For any α P LMp, we have that α is a theorem of KGk,l,m,n iff |ùKG α
for each fuzzy kripke model KG “ xW,ù,S, ρy such that ù is pk, l,m, nq-confluent.

Proof. (ñ) Let α be a theorem of the KGk,l,m,n and KGk,l,m,n be a fuzzy kripke
model where ù is pk, l,m, nq-confluent. We will prove that |ùKG α. In view of Prop. 5,
however, it is sufficient to check the case where α is an instance of the Gk,l,m,n-axiom,
i.e., to check that pw ,KG ♦klmβ Ą ll♦nβq “ 1 for each w P W and β P LMP , but
from the Lemma 6 it is immediate.
pðq In [4] the completeness of system KGk,l,m,n with respect the class of models that
satisfies the confluence accessibility relation is established. By Prop. 4 it follows that
the system KG is complete with respect the KGk,l,m,n system. So, if |ùKG β then
$KG β.

The completeness results proven in Prop. 1 can be shown to hold not only for
singular instances of Gk,l,m,n, but also for several such instances combined. Indeed:

Proposition 6. Let Gk1,l1,m1,n1 , . . . , Gkp,lp,mp,np be instances of the schema Gk,l,m,n.
Let K`Gk1,l1,m1,n1 ` . . .`Gkp,lp,mp,np be the system which results from extending K
with Gk1,l1,m1,n1 , . . . , Gkp,lp,mp,np . A formula α is a theorem of
K ` Gk1,l1,m1,n1 ` . . . ` Gkp,lp,mp,np iff ,KG` α for each fuzzy
kripke model KG` “ xW,ù,S, ρy such that ù is pk1, l1,m1, n1q-confluent, . . .,
pkp, lp,mp, npq-confluent.

Proof. pñq By Theorem 1 this result is valid forK`Gk1,l1,m1,n1 . If we addGk2,l2,m2,n2

and use Lemma 6 we can conclude that K ` Gk1,l1,m2,n2 ` Gk2,l2,m2,n2 is sound in
all fuzzy kripke models such that ù is pk1, l1,m1, n1q-confluent and pk2, l2,m2, n2q-
confluent. Using the same reasoning we can extend the result for each system K `

Gk1,l1,m1,n1` . . .`Gkp,lp,mp,np . pðq From Prop. 4 this proof is analogous to the proof
of completeness for extensions of K with finitely many instances of Gk,l,m,n, as done,
e.g., in [6].

Notice that the completeness of the modal systems KT , KB and KD are direct
consequences of Prop. 1, while the completeness of B, S4 and S5 follows from Prop. 6.
For instance, here is how we may obtain completeness for S5.

Example 1. S5 is complete with respect all reflexive and euclidean fuzzy kripke mod-
els. The modal system S5 is axiomatized by K, T and 5, i.e. K`x0, 0, 1, 0y`x1, 1, 0, 1y.
But ù is x1, 1, 0, 1y-confluent iff (by Definition 12)
@x@y@zppµùpx, yq “ 1 ^ µùpx, zq “ 1q Ñ Dwpy “ w ^ µùpz, wq “ 1qq iff for
arbitrary x, y, z PW we have that pµùpx, yq “ 1^µùpx, zq “ 1q Ñ pµùpz, yq “ 1q
iff @x@y@zpµùpx, yq “ 1 ^ µùpx, zq “ 1q Ñ pµùpz, yq “ 1qq iff (by Defini-
tion 12) ù is euclidean. Furthermore, using a similar reasoning we note that ù is
x0, 0, 1, 0y-confluent iff @x@y@zppx “ y ^ x “ zq Ñ Dwpµùpy, wq “ 1 ^ z “ wqq iff
@xpµùpx, xq “ 1q iff ù is reflexive. So, by Theorem 6 follows the completeness of
K ` x0, 0, 1, 0y ` x1, 1, 0, 1y with respect all fuzzy kripke models that are reflexive and
euclidean.

6 Final Remarks

We believe it is possible to study a multimodal (diamond) version of the axiom of
confluence by adding appropriate indices to the modalities, at the linguistic level,
and adding corresponding fuzzy accessibility relations, at the semantic level (in such
case, the initial case with iterated modalities will accordingly be reduced to distinct
one-step modalities). Completeness should in this case be attainable, as in the case
of normal modal logics extending classical logic, by adding appropriate interaction
axioms.

We also conjecture that the above results on the axiom of confluence and its
corresponding collection of frames may be extended to every Sahlqvist-definable frame
class. This thread of investigation, however, shall be left as matter for future work.
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