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2 LoLITA and DIMAp, UFRN, Brazil

3 SQIG, Instituto de Telecomunicações and Depto. de Matemática, IST, Portugal

Abstract. A general procedure is presented for producing classic-like
cut-based tableau systems for finite-valued logics. In such systems, cut is
the only branching rule, and formulas are accompanied by signs acting as
syntactic proxies for the two classical truth-values. The systems produced
are guaranteed to be sound, complete and analytic, and they are also
seen to polynomially simulate the truth-table method, thus extending
the results in [7]. !Lukasiewicz’s 3-valued logic is used throughout as a
simple illustrative example.

1 Introduction

In [4,5], in accordance with the so-called Suszko’s Thesis, the authors have shown
how to take advantage of the intrinsic bivalence that stems from the distinction
between designated and undesignated truth-values in any sufficiently expressive
finite-valued logic in order to provide the latter with a (non-truth-functional)
bivalent semantics, and ultimately with a classic-like tableau proof system, using
2-signed formulas, associated to a simple decision procedure. However, due to
the necessary encoding of the original semantics of the logic in terms of the
two classical values, one ends up having to work with tableau rules having a
significant number of branches that unavoidably lead to very large derivations.

It is widely known that proofs not involving cuts (or equivalently modus
ponens) can be very inefficient. For classical propositional logic, for instance,
cut-based proofs can be exponentially smaller than the shortest corresponding
cut-free proofs (see [2]). Still, the unrestricted use of the cut rule poses a seri-
ous challenge for proof-search. First proposed by Mondadori, KE tableaux for
classical logic, thoroughly studied in [6,9,7], are a cut-based tableau system that
employs only analytic cuts and which is known to polynomially simulate the
truth-table decision method, in the general case, bringing thus an exponential
gain over conventional cut-free tableau systems in the worst cases.

Recent interest in KE tableaux (e.g. [10]) stimulated us to consider exploring
a similar strategy, but now for producing classic-like cut-based tableau systems
for finite-valued logics in general, capitalizing on [4,5], to which an analytic
restriction of cut may be imposed, and which might in principle share the benefits
of KE tableaux in terms of proof complexity. This paper reports on such an
exploration.
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2 Background

Consider an alphabet with a denumerable set A of atoms and a finite set Σ of
primitive connectives. The arity of a given connective ⊙ ∈ Σ is to be denoted by
arg⊙. The set S of formulas is the carrier of the free Σ-algebra generated by A. In
dealing with finite-valued logics, Vn = {v0, v1, . . . , vn−1} will be used to denote
sets of truth-values, given n ∈ N, and these are supposed to be partitioned into
a set D = {vi | 0 ≤ i ≤ m} of designated values and a set U = {vi | m + 1 ≤
i ≤ n − 1} of undesignated values. As a matter of stipulation, we will denote
v0 by F and vn−1 by T . In general, an (n-valued) assignment of truth-values
to the atoms is any mapping ρ : A → Vn, and an (n-valued) valuation is any
extension w : S → Vn of such an assignment to the set of all formulas. An
n-valent semantics for S based on Vn, then, is simply a collection of n-valued
valuations. In particular, we will call bivalent any (classic-like) semantics where
V2 = {F, T}and D2 = {T}; the corresponding valuations are called bivaluations.
As usual, we call a valuation w a model of ∆ ⊆ S if w(∆) ⊆ D. A canonical
notion of entailment characterizing a logic L over S is associated to an n-valent
semantics Sem by setting Γ |= α iff every model of Γ in Sem is a model of {α}.
A remarkable case of n-valent semantics corresponds to those we call truth-
functional: such a semantics is given to the set of formulas S by defining an
appropriate Σ-algebra V with carrier Vn, by associating a k-ary interpretation
operator ⊙̂ : Vk

n → Vn to each ⊙ ∈ Σ with arg⊙ = k, and by collecting in Sem
the set of all homomorphisms § : S → V. Any such homomorphism, as usual,
may be understood as the unique extension of an assignment ρ : A → Vn into
a valuation §ρ : S → V where §(⊙(ϕ1, . . . ,ϕk)) = ⊙̂(§(ϕ1), . . . , §(ϕk)). Any logic
characterized by truth-functional means, for a given Vn, is called n-valued.

Let us now consider the total mapping t : Vn → V2 such that t(v) = T iff
v ∈ D and define, for any valuation § : S → V of an n-valued semantics Sem, the
bivaluation b§ = t ◦ §. Though this bivalent semantics gives up the fundamental
feature of truth-functionality, we have shown in previous papers (check [3] and
the survey [5]) that it can still be very useful. As explained below, to accomplish
the bivalent reduction constructively, in order to be able to distinguish any
given value from any other value we just need to associate a unique ‘binary
print’ to each truth-value of a given n-valued logic L. Given vi, vj ∈ V , we write
vi ♯ vj and say that vi and vj are separated in case t(vi) ̸= t(vj). Given two
formulas ϕi and ϕj and a valuation § such that vi = §(ϕi) ̸= §(ϕj) = vj yet
b§(ϕi) = b§(ϕj), we say that a one-variable formula θij(p) of L separates vi and vj
if §(θij(ϕi)) ♯ §(θij(ϕj)) (or, equivalently, b§(θij(ϕi)) ̸= b§(θij(ϕj))). In that case
we will also say that the values vi and vj of L are effectively distinguishable, as
they may be separated using the original linguistic resources of L. Finally, we will
say that the logic L is effectively separable in case its truth-values are pairwise
effectively distinguishable, that is, for any pair of distinct values ⟨vi, vj⟩ ∈ D2∪U2

a one-variable formula θij(p) can be found in L that separates vi and vj . From
this point on, for simplicity of exposition, we assume that all the necessary
separators belong to the set Σ of primitive connectives of the logic — note
that this is not really a restriction, as one can always conservatively extend an
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n-valued logic L with a conveniently interpreted n-ary connective. Let Θ denote
a finite sequence [θr(p)]sr=0 = ⟨θ0(p), θ1(p), . . . , θs(p)⟩ of one-variable formulas
used as separators, where we assume θ0(p) = p. Obviously, θ0(p) by itself suffices
to separate any pair of values ⟨vi, vj⟩ ∈ (D × U) ∪ (U × D). We will call binary
print of a value v ∈ V the sequence v = [b§(θr(p))]sr=0, where §(p) = v. Notice
that for every pair of distinct values ⟨vi, vj⟩ ∈ V2 it is now obviously the case
that vi ̸= vj .

Example 1. Our running example will be !Lukasiewicz’s 3-valued logic, !L3. The
logic may be described by choosing as primitive connectives Σ = {¬, ⋄ ,⊃}, with
arg¬ = arg⋄ = 1 and arg⊃ = 2, and by considering the set of truth-values
V3 = {v0, v1, v2}, with v2 as the sole designated value. The operators interpreting
the connectives are described in Table 1.

Table 1. Interpretation operators in !L3

x ¬̂x ⋄̂x

v0 v2 v0
v1 v1 v2
v2 v0 v2

x⊃̂ y v0 v1 v2

v0 v2 v2 v2
v1 v1 v2 v2
v2 v0 v1 v2

We need to look for a way of separating the two undesignated values v0 and
v1, and accordingly we will have to set Θ = ⟨p, θ1(p)⟩, for some convenient
separator θ1. There are two obvious separators already in the alphabet of !L3. We
will here choose !Lukasiewicz’s ‘possibility’ operator ⋄ as θ1. The same choice
has in fact been made in [4], but there we have introduced ⋄ by abbreviation,

noticing that ⋄̂x def
== (¬̂x)⊃̂x. Clearly, such choice originates the binary prints

⟨F, F ⟩, ⟨F, T ⟩ and ⟨T, T ⟩, respectively for v0, v1 and v2. Note that the sequence
⟨T, F ⟩ is unrealizable, as it does not correspond to any of the values in V3.
Below, when ⋄ appears in the role of the separator θ1 we will write it as θ, to
help calling attention to the two different roles played by this connective. In [12]
we have studied the effect of choosing !Lukasiewicz’s ‘negation’ operator ¬ as θ1.

In earlier work, we have used this bivalent setting to produce classic-like tableau
systems T (L,Θ) for any given n-valued logic L effectively separable by Θ =
[θr(p)]sr=0. We refer the reader to [4,5] for the full details. However, it is worth
mentioning here a few key ingredients of the procedure. Mirroring the classical
truth-values {F, T}, we work with 2-signed formulas X:ϕ such that X ∈ {F,T}
and ϕ ∈ S. As a matter of convention, we shall say that an n-valued valuation §
satisfies a labeled formula X:ϕ if b§(ϕ) = X . The notion of satisfaction extends
naturally to sets of labeled formulas. Given a binary print v = [Xr]sr=0, we use
vS(ϕ) to denote the sequence of signed formulas [Xr:ϕ]sr=0.

The cornerstone of T (L,Θ) is the recipe for obtaining elimination rules for
the connectives. Using & to represent conjunction in the classical metalan-
guage, || to represent disjunction, =⇒ to represent implication, and ! to rep-
resent an absurd, we produce a tableau rule for each schematic signed formula
X:θ(⊙(ϕ1, . . . ,ϕk)) where X ∈ {F,T}, θ ∈ Θ, and ⊙ ∈ Σ with arg⊙ = k.
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We further demand that if θ = θ0, then ⊙ /∈ Θ, and we write more simply
X:⊙ (ϕ1, . . . ,ϕk) instead of X:θ0(⊙(ϕ1, . . . ,ϕk)). The elimination rules are pro-
duced by collecting the tuples of binary prints that a homomorphic n-valuation §
can assign to the formulas ϕ1, . . . ,ϕk in order to satisfy the signed formula. Let-
ting Bθ⊙

X ([ϕi]ki=1) = {&[viS(ϕi)]ki=1 | t(θ̂(⊙̂([vi]ki=1))) = X}, the corresponding
tableau rule is then given by

X:θ(⊙([ϕi]
k
i=1)) =⇒ || Bθ⊙

X ([ϕi]
k
i=1).

In our metalanguage the above expression represents a tableau rule: the an-
tecedent of each rule is the head, and the succedent describes the children nodes
that may be created once the head matches a node of a previously given branch.

Example 2. In the case of !L3 with the single separator θ = ⋄ , the above described
recipe would produce, for instance, a rule of the form

T:θ(¬ϕ1) =⇒ (F:ϕ1 & F:θ(ϕ1)) || (F:ϕ1 & T:θ(ϕ1))

simply because §(⋄ (¬ϕ1)) = v2 if and only if ⋄̂ (¬̂(§(ϕ1))) = v2 if and only if
§(ϕ1) = v0 or §(ϕ1) = v1. Note that ⟨F, F ⟩ and ⟨F, T ⟩ are precisely the binary
prints associated respectively to v0 and v1.

Another example, now using the identity θ0, would yield

F:ϕ1 ⊃ ϕ2 =⇒ (F:ϕ1 & T:θ(ϕ1) & F:ϕ2 & F:θ(ϕ2))
|| (T:ϕ1 & T:θ(ϕ1) & F:ϕ2 & T:θ(ϕ2))
|| (T:ϕ1 & T:θ(ϕ1) & F:ϕ2 & F:θ(ϕ2))

because §(ϕ1 ⊃ ϕ2) ̸= v2 if and only if §(ϕ1)⊃̂§(ϕ2) ̸= v2 if and only if §(ϕ1) = v1
and §(ϕ2) = v0, or §(ϕ1) = v2 and §(ϕ2) = v0, or §(ϕ1) = v2 and §(ϕ2) = v1.

Such rules may be streamlined using classical equivalences in the metalan-
guage, and completeness of the tableau system is attained by the addition of
suitable closure rules (see [4]).

As it might be expected, the tableau systems produced using the above recipe
originate in general very redundant and highly branching derivations. The next
sections will show how to use a similar approach to obtain more efficient systems,
in which the only branching rule is an analytic version of the cut rule.

Before proceeding, we introduce some extra useful terminology and nota-
tion. As usual, each ϕi, for 1 ≤ i ≤ k, is called an immediate subformula
of ⊙(ϕ1, . . . ,ϕk). The set of proper subformulas of a given ⊙(ϕ1, . . . ,ϕk) con-
tains the immediate subformulas of this formula and the immediate subformu-
las of any formula therein contained. We here dub Θ-immediate subformula of
⊙(ϕ1, . . . ,ϕk) any formula of the form θ(ϕi), for 1 ≤ i ≤ k and θ ∈ Θ. The
set of proper Θ-subformulas of a given formula has the obvious definition. A
Θ-formula is called atomic if it has no Θ-immediate subformulas. We also define
the size of a formula (signed or not) to be the cardinality of its set of subformulas
(forgetting the sign, in the case of a signed formula). For convenience, we will
assume FC = T and TC = F as the conjugates of the two classical truth-values,
and extend the notation accordingly to the syntactic labels T and F.
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In the next section we will illustrate the ideas behind our novel rule-extraction
algorithm by discussing what happens in the running example of !L3. After that
we will present and study our general method in full detail.

3 A Cut-Based Tableau System for !L3

The idea here is to find a suitable way of defining a tableau system for !L3 whose
only branching rule is a cut rule, in a way that generalizes the KE tableaux
of [6,9], proposed for classical logic. Recall that we consider !L3 separators Θ =
⟨p, θ(p)⟩, where θ = ⋄ . Our tableau system will consist of three classes of rules:
the cut rule, elimination rules, and closure rules.

The cut rule is the only branching rule, i.e., the only rule with more than one
branch in the succedent, and has the following typical form:

(!L3.Cut) =⇒ F:ϕ || T:ϕ

In Section 4 we will show that it is possible to restrict its use only to analytic
applications.

We will now take full advantage of the classic-like semantics of !L3 introduced
by its corresponding bivalent semantics, obtained following the procedure de-
tailed in [3], and extract from it suitable elimination and closure rules for our
novel cut-based system.

As explained and illustrated in Section 2, we will need suitable elimination
rules for signed formulas of the forms X:¬ϕ1, X:ϕ1 ⊃ ϕ2, X:θ(¬ϕ1), X:θ(ϕ1 ⊃ ϕ2)
and X:θ(⋄ (ϕ1)), where θ = ⋄ and X ∈ {F,T}. Recall that, given a formula ϕ,
we can express its 3-valued truth-table as a bivalent one, where the value of ϕ
depends only on the values of its Θ-subformulas. Given that the procedure is
systematic, let us focus at a fragment of it, and consider the bivalent version of

Table 2. The bivalent version of ⊃

combination ϕ1 θ(ϕ1) ϕ2 θ(ϕ2) ϕ1 ⊃ ϕ2

0 F F F F T
1 F F F T T
2 F F T F –
3 F F T T T
4 F T F F F
5 F T F T T
6 F T T F –
7 F T T T T
8 T F F F –
9 T F F T –
10 T F T F –
11 T F T T –
12 T T F F F
13 T T F T F
14 T T T F –
15 T T T T T
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the truth-table corresponding to the formula ϕ1 ⊃ ϕ2. In Table 2 we include all
the combinations for the signs of ϕ1, θ(ϕ1), ϕ2, θ(ϕ2). A dash (–) in the last
column indicates that the corresponding combination contains a sequence ⟨T, F ⟩
for some ⟨ϕ, θ(ϕ)⟩ that corresponds to no binary print v, for v ∈ V3.

From Table 2 we can mechanically extract a set of elimination rules for !L3’s
‘implication’ connective ⊃. Indeed, consider the partial bivaluation bj described
at combination j of the table, in such a way that we shall say that Xj :ψ is satisfied
if ψ is at the head of some column and the j-th combination below it contains
value Xj . In our cut-based tableau system there will be a rule corresponding
to each collection R of signed formulas satisfied by some partial bivaluation bj
with the requirement that such collection must contain Xj :ϕ1 ⊃ ϕ2. For in-
stance, some possible such collections are {F:ϕ1 ⊃ ϕ2}, {F:ϕ1 ⊃ ϕ2,T:ϕ1} and
{T:ϕ1 ⊃ ϕ2,F:θ(ϕ1),T:θ(ϕ2)}. Each such collection R, read as a conjunction,
will form the antecedent of a tableau rule. Let Mod(R) be the set of all par-
tial bivaluations corresponding to combinations that satisfy R. The succedent
of the corresponding rule will contain the (possibly empty) collection, read as a
conjunction, of all signed formulas that are simultaneously satisfied by all the
bivaluations in Mod(R). As an example, let {F:ϕ1 ⊃ ϕ2} be the antecedent of a
given rule. Then we can restrict our attention to the combinations 4, 12 and 13
from Table 2. We may easily notice that {T:θ(ϕ1),F:ϕ2} is an invariant in these
combinations. The corresponding tableau rule will in this case read:

(!L3.⊃ 1∗) F:ϕ1 ⊃ ϕ2 =⇒ T:θ(ϕ1) & F:ϕ2.

Note that we omit the (empty) rules originating from partial bivaluations for
which in the derived restricted table we have no invariants (other than the signed
formulas fixed for the antecedent). For example, we do not have any rule with
{T:ϕ1 ⊃ ϕ2} as antecedent, since T:ϕ1 ⊃ ϕ2 itself is the only invariant in the
corresponding restricted table (it suffices to contrast combinations 0 and 15).
A general and formal account of this rule-extraction procedure will be given in
Section 4. Table 3 contains the full set of rules obtained, in particular, for the
connective ⊃.

It is clear that the procedure described above for the mechanical extraction of
elimination rules may generate a lot of redundancies. As a trivial example, one
may notice that the rule (!L3.⊃ 2∗) of Table 3 is redundant in the presence of
(!L3.⊃ 1∗) since they have the same succedent and the collection of antecedents
of one of them is included in the other. One may notice that the rule (!L3.⊃ 4∗)
is also redundant in the presence of (!L3.⊃ 1∗), given that the latter has a more
informative succedent than the former, even if it contains less hypotheses in the
antecedent. After the elimination of all such redundant rules, and repeating the
procedure for all connectives, with and without the separator θ, we obtain
the elimination rules in Table 4.

Finally, with respect to the closure rules, we follow [4] to the letter. Besides
the traditional closure rule for 2-signed tableaux, which says that a branch is
closed once it contains two signed formulas of the form F:ϕ and T:ϕ, additional
closure rules will be needed in order to exclude unrealizable binary prints — in
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Table 3. Rules automatically derived from the truth-table for ⊃

(!L3.⊃ 1∗) F:ϕ1 ⊃ ϕ2 =⇒ T:θ(ϕ1) & F:ϕ2

(!L3.⊃ 2∗) F:ϕ1 ⊃ ϕ2 & F:θ(ϕ2) =⇒ T:θ(ϕ1) & F:ϕ2

(!L3.⊃ 3∗) F:ϕ1 ⊃ ϕ2 & T:θ(ϕ2) =⇒ T:ϕ1 & T:θ(ϕ1) & F:ϕ2

(!L3.⊃ 4∗) F:ϕ1 ⊃ ϕ2 & F:ϕ2 =⇒ T:θ(ϕ1)
(!L3.⊃ 5∗) F:ϕ1 ⊃ ϕ2 & F:ϕ2 & F:θ(ϕ2) =⇒ T:θ(ϕ1)
(!L3.⊃ 6∗) F:ϕ1 ⊃ ϕ2 & F:ϕ2 & T:θ(ϕ2) =⇒ T:ϕ1 & T:θ(ϕ1)
(!L3.⊃ 7∗) F:ϕ1 ⊃ ϕ2 & T:θ(ϕ1) =⇒ F:ϕ2

(!L3.⊃ 8∗) F:ϕ1 ⊃ ϕ2 & T:θ(ϕ1) & F:θ(ϕ2) =⇒ F:ϕ2

(!L3.⊃ 9∗) F:ϕ1 ⊃ ϕ2 & T:θ(ϕ1) & T:θ(ϕ2) =⇒ T:ϕ1 & F:ϕ2

(!L3.⊃ 10∗) F:ϕ1 ⊃ ϕ2 & T:θ(ϕ1) & F:ϕ2 & T:θ(ϕ2) =⇒ T:ϕ1

(!L3.⊃ 11∗) F:ϕ1 ⊃ ϕ2 & F:ϕ1 =⇒ T:θ(ϕ1) & F:ϕ2 & F:θ(ϕ2)
(!L3.⊃ 12∗) F:ϕ1 ⊃ ϕ2 & F:ϕ1 & F:θ(ϕ2) =⇒ T:θ(ϕ1) & F:ϕ2

(!L3.⊃ 13∗) F:ϕ1 ⊃ ϕ2 & F:ϕ1 & F:ϕ2 =⇒ T:θ(ϕ1) & F:θ(ϕ2)
(!L3.⊃ 14∗) F:ϕ1 ⊃ ϕ2 & F:ϕ1 & F:ϕ2 & F:θ(ϕ2) =⇒ T:θ(ϕ1)
(!L3.⊃ 15∗) F:ϕ1 ⊃ ϕ2 & F:ϕ1 & T:θ(ϕ1) =⇒ F:ϕ2 & F:θ(ϕ2)
(!L3.⊃ 16∗) F:ϕ1 ⊃ ϕ2 & F:ϕ1 & T:θ(ϕ1) & F:θ(ϕ2) =⇒ F:ϕ2

(!L3.⊃ 17∗) F:ϕ1 ⊃ ϕ2 & F:ϕ1 & T:θ(ϕ1) & F:ϕ2 =⇒ F:θ(ϕ2)
(!L3.⊃ 18∗) F:ϕ1 ⊃ ϕ2 & T:ϕ1 =⇒ T:θ(ϕ1) & F:ϕ2

(!L3.⊃ 19∗) F:ϕ1 ⊃ ϕ2 & T:ϕ1 & F:θ(ϕ2) =⇒ T:θ(ϕ1) & F:ϕ2

(!L3.⊃ 20∗) F:ϕ1 ⊃ ϕ2 & T:ϕ1 & T:θ(ϕ2) =⇒ T:θ(ϕ1) & F:ϕ2

(!L3.⊃ 21∗) F:ϕ1 ⊃ ϕ2 & T:ϕ1 & F:ϕ2 =⇒ T:θ(ϕ1)
(!L3.⊃ 22∗) F:ϕ1 ⊃ ϕ2 & T:ϕ1 & F:ϕ2 & F:θ(ϕ2) =⇒ T:θ(ϕ1)
(!L3.⊃ 23∗) F:ϕ1 ⊃ ϕ2 & T:ϕ1 & F:ϕ2 & T:θ(ϕ2) =⇒ T:θ(ϕ1)
(!L3.⊃ 24∗) F:ϕ1 ⊃ ϕ2 & T:ϕ1 & T:θ(ϕ1) =⇒ F:ϕ2

(!L3.⊃ 25∗) F:ϕ1 ⊃ ϕ2 & T:ϕ1 & T:θ(ϕ1) & F:θ(ϕ2) =⇒ F:ϕ2

(!L3.⊃ 26∗) F:ϕ1 ⊃ ϕ2 & T:ϕ1 & T:θ(ϕ1) & T:θ(ϕ2) =⇒ F:ϕ2

(!L3.⊃ 27∗) T:ϕ1 ⊃ ϕ2 & F:θ(ϕ2) =⇒ F:ϕ1 & F:θ(ϕ1) & F:ϕ2

(!L3.⊃ 28∗) T:ϕ1 ⊃ ϕ2 & F:ϕ2 =⇒ F:ϕ1

(!L3.⊃ 29∗) T:ϕ1 ⊃ ϕ2 & F:ϕ2 & F:θ(ϕ2) =⇒ F:ϕ1 & F:θ(ϕ1)
(!L3.⊃ 30∗) T:ϕ1 ⊃ ϕ2 & F:ϕ2 & T:θ(ϕ2) =⇒ F:ϕ1

(!L3.⊃ 31∗) T:ϕ1 ⊃ ϕ2 & T:ϕ2 =⇒ T:θ(ϕ2)
(!L3.⊃ 32∗) T:ϕ1 ⊃ ϕ2 & F:θ(ϕ1) =⇒ F:ϕ1

(!L3.⊃ 33∗) T:ϕ1 ⊃ ϕ2 & F:θ(ϕ1) & F:θ(ϕ2) =⇒ F:ϕ1 & F:ϕ2

(!L3.⊃ 34∗) T:ϕ1 ⊃ ϕ2 & F:θ(ϕ1) & T:θ(ϕ2) =⇒ F:ϕ1

(!L3.⊃ 35∗) T:ϕ1 ⊃ ϕ2 & F:θ(ϕ1) & F:ϕ2 =⇒ F:ϕ1

(!L3.⊃ 36∗) T:ϕ1 ⊃ ϕ2 & F:θ(ϕ1) & F:ϕ2 & F:θ(ϕ2) =⇒ F:ϕ1

(!L3.⊃ 37∗) T:ϕ1 ⊃ ϕ2 & F:θ(ϕ1) & F:ϕ2 & T:θ(ϕ2) =⇒ F:ϕ1

(!L3.⊃ 38∗) T:ϕ1 ⊃ ϕ2 & F:θ(ϕ1) & T:ϕ2 =⇒ F:ϕ1 & T:θ(ϕ2)
(!L3.⊃ 39∗) T:ϕ1 ⊃ ϕ2 & F:θ(ϕ1) & T:ϕ2 & T:θ(ϕ2) =⇒ F:ϕ1

(!L3.⊃ 40∗) T:ϕ1 ⊃ ϕ2 & T:θ(ϕ1) =⇒ T:θ(ϕ2)
(!L3.⊃ 41∗) T:ϕ1 ⊃ ϕ2 & T:θ(ϕ1) & F:ϕ2 =⇒ F:ϕ1 & T:θ(ϕ2)
(!L3.⊃ 42∗) T:ϕ1 ⊃ ϕ2 & T:θ(ϕ1) & F:ϕ2 & T:θ(ϕ2) =⇒ F:ϕ1

(!L3.⊃ 43∗) T:ϕ1 ⊃ ϕ2 & T:θ(ϕ1) & T:ϕ2 =⇒ T:θ(ϕ2)
(!L3.⊃ 44∗) T:ϕ1 ⊃ ϕ2 & F:ϕ1 & F:θ(ϕ2) =⇒ F:θ(ϕ1) & F:ϕ2

(!L3.⊃ 45∗) T:ϕ1 ⊃ ϕ2 & F:ϕ1 & F:ϕ2 & F:θ(ϕ2) =⇒ F:θ(ϕ1)
(!L3.⊃ 46∗) T:ϕ1 ⊃ ϕ2 & F:ϕ1 & T:ϕ2 =⇒ T:θ(ϕ2)
(!L3.⊃ 47∗) T:ϕ1 ⊃ ϕ2 & F:ϕ1 & F:θ(ϕ1) & F:θ(ϕ2) =⇒ F:ϕ2

(!L3.⊃ 48∗) T:ϕ1 ⊃ ϕ2 & F:ϕ1 & F:θ(ϕ1) & T:ϕ2 =⇒ T:θ(ϕ2)
(!L3.⊃ 49∗) T:ϕ1 ⊃ ϕ2 & F:ϕ1 & T:θ(ϕ1) =⇒ T:θ(ϕ2)
(!L3.⊃ 50∗) T:ϕ1 ⊃ ϕ2 & F:ϕ1 & T:θ(ϕ1) & F:ϕ2 =⇒ T:θ(ϕ2)
(!L3.⊃ 51∗) T:ϕ1 ⊃ ϕ2 & F:ϕ1 & T:θ(ϕ1) & T:ϕ2 =⇒ T:θ(ϕ2)
(!L3.⊃ 52∗) T:ϕ1 ⊃ ϕ2 & T:ϕ1 =⇒ T:θ(ϕ1) & T:ϕ2 & T:θ(ϕ2)
(!L3.⊃ 53∗) T:ϕ1 ⊃ ϕ2 & T:ϕ1 & T:θ(ϕ2) =⇒ T:θ(ϕ1) & T:ϕ2

(!L3.⊃ 54∗) T:ϕ1 ⊃ ϕ2 & T:ϕ1 & T:ϕ2 =⇒ T:θ(ϕ1) & T:θ(ϕ2)
(!L3.⊃ 55∗) T:ϕ1 ⊃ ϕ2 & T:ϕ1 & T:ϕ2 & T:θ(ϕ2) =⇒ T:θ(ϕ1)
(!L3.⊃ 56∗) T:ϕ1 ⊃ ϕ2 & T:ϕ1 & T:θ(ϕ1) =⇒ T:ϕ2 & T:θ(ϕ2)
(!L3.⊃ 57∗) T:ϕ1 ⊃ ϕ2 & T:ϕ1 & T:θ(ϕ1) & T:θ(ϕ2) =⇒ T:ϕ2

(!L3.⊃ 58∗) T:ϕ1 ⊃ ϕ2 & T:ϕ1 & T:θ(ϕ1) & T:ϕ2 =⇒ T:θ(ϕ2)
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this case of !L3 and Θ, we are talking about ⟨T, F ⟩. Hence, an additional closure
rule will say that branches containing both a signed formula of the form T:ϕ
and a signed formula of the form F:θ(ϕ) may be closed. One might represent the
above mentioned such closure rules by writing:

(!L3.C0) F:ϕ & T:ϕ =⇒ !
(!L3.C1) T:ϕ & F:θ(ϕ) =⇒ !

Table 4. Streamlined elimination rules of the tableau system for !L3

(!L3.¬1) F:¬ϕ1 =⇒ T:θ(ϕ1)
(!L3.¬2) T:¬ϕ1 =⇒ F:ϕ1 & F:θ(ϕ1)
(!L3.⊃ 1) F:ϕ1 ⊃ ϕ2 =⇒ T:θ(ϕ1) & F:ϕ2

(!L3.⊃ 2) F:ϕ1 ⊃ ϕ2 & T:θ(ϕ2) =⇒ T:ϕ1 & T:θ(ϕ1) & F:ϕ2

(!L3.⊃ 3) F:ϕ1 ⊃ ϕ2 & F:ϕ1 =⇒ T:θ(ϕ1) & F:ϕ2 & F:θ(ϕ2)
(!L3.⊃ 4) T:ϕ1 ⊃ ϕ2 & F:θ(ϕ2) =⇒ F:ϕ1 & F:θ(ϕ1) & F:ϕ2

(!L3.⊃ 5) T:ϕ1 ⊃ ϕ2 & F:ϕ2 =⇒ F:ϕ1

(!L3.⊃ 6) T:ϕ1 ⊃ ϕ2 & T:ϕ2 =⇒ T:θ(ϕ2)
(!L3.⊃ 7) T:ϕ1 ⊃ ϕ2 & F:θ(ϕ1) =⇒ F:ϕ1

(!L3.⊃ 8) T:ϕ1 ⊃ ϕ2 & F:θ(ϕ1) & T:ϕ2 =⇒ F:ϕ1 & T:θ(ϕ2)
(!L3.⊃ 9) T:ϕ1 ⊃ ϕ2 & T:θ(ϕ1) =⇒ T:θ(ϕ2)

(!L3.⊃ 10) T:ϕ1 ⊃ ϕ2 & T:θ(ϕ1) & F:ϕ2 =⇒ F:ϕ1 & T:θ(ϕ2)
(!L3.⊃ 11) T:ϕ1 ⊃ ϕ2 & T:ϕ1 =⇒ T:θ(ϕ1) & T:ϕ2 & T:θ(ϕ2)
(!L3.θ¬1) F:θ(¬ϕ1) =⇒ T:ϕ1 & T:θ(ϕ1)
(!L3.θ¬2) T:θ(¬ϕ1) =⇒ F:ϕ1

(!L3.θ ⊃ 1) F:θ(ϕ1 ⊃ ϕ2) =⇒ T:ϕ1 & T:θ(ϕ1) & F:ϕ2 & F:θ(ϕ2)
(!L3.θ ⊃ 2) T:θ(ϕ1 ⊃ ϕ2) & F:θ(ϕ2) =⇒ F:ϕ1 & F:ϕ2

(!L3.θ ⊃ 3) T:θ(ϕ1 ⊃ ϕ2) & T:ϕ2 =⇒ T:θ(ϕ2)
(!L3.θ ⊃ 4) T:θ(ϕ1 ⊃ ϕ2) & F:θ(ϕ1) =⇒ F:ϕ1

(!L3.θ ⊃ 5) T:θ(ϕ1 ⊃ ϕ2) & F:θ(ϕ1) & T:ϕ2 =⇒ F:ϕ1 & T:θ(ϕ2)
(!L3.θ ⊃ 6) T:θ(ϕ1 ⊃ ϕ2) & T:ϕ1 =⇒ T:θ(ϕ1) & T:θ(ϕ2)
(!L3.θ(⋄1)) F:θ(⋄(ϕ1)) =⇒ F:ϕ1 & F:θ(ϕ1)
(!L3.θ(⋄2)) T:θ(⋄(ϕ1)) =⇒ T:θ(ϕ1)

Figure 1 shows an example of a tableau for !L3 using the set of rules obtained as
described above. In this example we get (2.1) and (2.2) by applying rule (!L3.⊃1)
to the formula (1). The same rule applies to (2.2) to originate (3.1) and (3.2). An
application of (!L3.⊃3) to (1) and (3.2) gives (4.1). Thenwe apply (!L3.θ ⊃1) to (4.1)
and get (5.1) and (5.2).We close the tableau by applying (!L3.C0) to (2.1) and (5.2).
Note that the derivation tree is linear as no use of (!L3.Cut) was necessary.

(1) F:(p0 ⊃ (p1 ⊃ p0))

(2.1) T:θ(p0)
(2.2) F:(p1 ⊃ p0)

(3.1) T:θ(p1)
(3.2) F:p0

(4.1) F:θ(p1 ⊃ p0)

(5.1) T:p1

(5.2) F:θ(p0)

!

Fig. 1. A refutation of p0 ⊃ (p1 ⊃ p0) in the cut-based tableau system for !L3
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4 The Tableau System

4.1 Rules

Let L be an effectively separable n-valued logic with a set of formulas S generated
over the set of connectives Σ by the set of atoms A, and having D ⊆ Vn as its
set of designated values. We assume also that its binary prints are produced by
a convenient sequence of separators Θ = [θr(p)]sr=0, where θ0(p) = p. In the
following, we will exhibit the rules of our novel cut-based tableau system for L.

As explained before, the only branching rule of our system is:

(L.Cut) =⇒ F:ϕ || T:ϕ

Below in this section, we will show that it is possible to restrict the use of such
cut rule only to analytic applications, that is, applications to tableau branches
of which ϕ is a Θ-subformula.

Let now BP = {F, T}s+1 be the set of all (s + 1)-long binary prints and let
a partial binary print be any sequence cR = [cr]r∈R such that R ⊆ {0, 1, . . . , s}
and each cr ∈ {F, T} (this definition includes, of course, all binary prints in BP,
as strict partiality occurs precisely when R is a proper subset of {0, 1, . . . , s}).
We say that a partial binary print dU extends cR if R ⊆ U and dr = cr for every
r ∈ R.

We say that a sequence [vi]ki=1 of binary prints satisfies a signed formula

X:θ(⊙([ϕi]ki=1)) if t(θ̂(⊙̂([vi]ki=1))) = X . Further, we say that a signed formula
is satisfiable by a sequence [ciRi

]ki=1 of partial binary prints if it is satisfied by
some sequence of binary prints that extends [ciRi

]ki=1 componentwise.
Let Ri, Ui ⊆ {0, 1, . . . , s} be such that Ri ∩ Ui = ∅, for each 1 ≤ i ≤ k,

let [ciRi
]ki=1 and [diUi

]ki=1 be two disjoint sequences of partial binary prints, and
let δ be the signed formula X:θ(⊙([ϕi]ki=1)). We say that [ciRi

]ki=1 entails [diUi
]ki=1

with respect to δ when, for every sequence [vi]ki=1 of binary prints satisfying δ,
if [vi]ki=1 extends [ciRi

]ki=1 then [vi]ki=1 extends [diUi
]ki=1.

We now produce elimination rules for each signed formula δ = X:θ(⊙([ϕi]ki=1))
such that if θ = θ0, then ⊙ /∈ Θ. We consider, for each sequence of partial binary
prints [ciRi

]ki=1 that satisfies δ, the following rule:

(L.Rθ⊙
X [ciRi

]ki=1) X:θ(⊙([ϕi]ki=1)) & (&[ciSRi
(ϕi)]ki=1) =⇒ &[di

S
Ui
(ϕi)]ki=1

where [diUi
]ki=1 is the largest sequence of partial binary prints entailed by [ciRi

]ki=1

with respect to δ. That is to say that diUi
extends any other sequence of partial

binary prints entailed by [ciRi
]ki=1 with respect to δ. Note that such a largest

partial binary print is well-defined. Indeed, given the fact that δ is satisfiable,
any two entailed sequences of partial binary prints [eiVi

]ki=1 and [fiWi
]ki=1 are

compatible, i.e., for each i, if j ∈ Vi ∩Wi then eij = fij , and can thus be joined
into [giVi∪Wi

]ki=1 such that, for each i, gij = eij if j ∈ Vi and gij = fij if j ∈ Wi.
Clearly, [giVi∪Wi

]ki=1 extends both sequences and is also entailed by [ciRi
]ki=1

with respect to δ.



330 M. Volpe, J. Marcos, and C. Caleiro

The set of elimination rules listed above might contain a lot of redundancies.
We can see an elimination rule as a pair of sets ⟨Π1,Π2⟩ where Π1 contains the
signed formulas in the antecedent and Π2 the signed formulas in the succedent
of the rule. In this case, we say that a rule (∆1,∆2) is redundant in a system T
if there is a different rule (Γ1,Γ2) in T such that: (i) Γ1 ⊆ ∆1; and (ii) ∆2 ⊆ Γ2.

Finally, closure rules look precisely as in the system of [5]. We briefly explain
the procedure below, for the sake of self-containment.

We consider first the usual classic-like closure rule:

(L.C0) F:ϕ & T:ϕ =⇒ !

In addition, we have to consider the unrealizable binary prints. Let CS = BP\{v |
v ∈ Vn} be the set of all the bivalent sequences that are not produced as binary
prints of truth-values of L. Intuitively, any closuring sequence c ∈ CS brings
about information that is unobtainable, allowing one thus to close a tableau
branch that contains it. Information, even if partial, leading unambiguously to
a sequence in CS should always give rise to a closed tableau. Indeed, closur-
ing information is carried by any partial binary print cR such that all of its
2#(Θ)−#(R) possible total extensions are in CS. Hence, it would be reasonable to
add a different closure rule for each such partial closuring information. However,
it suffices to take into account just the minimal closuring situations, that is, clo-
suring partial sequences cR that cannot be obtained as extensions of any other
closuring partial sequence. In general, where cR = [cr]r∈R is some partial binary
print, we write cSR(ϕ) = [s(cr):θr(ϕ)]r∈R for the linguistic 2-signed version of
such sequence, where s(cr) = T if cr = T and s(cr) = F if cr = F . Accordingly,
for each minimal closuring partial binary print cR, we consider an additional
closure rule:

(L.Ck) &
(
cSR(ϕ)

)
=⇒ !

Finally, we get further closure rules as particular cases in the production of
elimination rules. Namely, we need to consider when the formula X:θ(⊙([ϕi]ki=1))
is not satisfiable. For any such a case, we consider the additional closure rule:

(L.Cθ⊙
X ) X:θ(⊙([ϕi]ki=1)) =⇒ !

We can now define our full cut-based tableau system.

Definition 1. The tableau system T cut(L,Θ) for the logic L with respect to Θ
is composed of rule (L.Cut), non-redundant elimination rules (L.Rθ⊙

X [ciRi
]ji=1),

and closure rules (L.C0), (L.Ck), (L.Cθ⊙
X ) defined as above.

Tableaux are built as usual, by applying the above rules, given an initial sequence
of 2-signed formulas, and a branch is said to be closed if its closure is obtained
by the application of any of the (Ck) rules, including (C0), or of any Cθ⊙

X rule.
Branches that are not closed are said to be open. A tableau is said to be closed
in case all of its branches are closed.
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4.2 Properties

We will now check the soundness and completeness of our cut-based tableau
systems T cut(L,Θ).

As usual, we say that the system is sound if the root of any closed tableau is
unsatisfiable. Conversely, we say that the system is complete if every unsatisfiable
finite set of signed formulas is the root of some closed tableau.

Theorem 1. The tableau system T cut(L,Θ) is sound and complete.

Proof. For soundness, it is sufficient to show that if a homomorphic n-valuation
§ : S → Vn satisfies the head of a rule then it must satisfy one of the branches
of its succedent. This is clearly the case for the cut rule. The property also
holds for the closure rules, as shown in [4,5]. We are thus left with proving the
claim for the linear elimination rules (L.Rθ⊙

X [ciRi
]ki=1), which holds basically by

construction. Indeed, if § satisfies X:θ(⊙([ϕi]
j
i=1)) and [ciSRi

(ϕi)]ki=1 then § must

also satisfy [di
S
Ui
(ϕi)]ki=1 because [ciSRi

(ϕi)]ki=1 entails [di
S
Ui
(ϕi)]ki=1 with respect

to X:θ(⊙([ϕi]
j
i=1)).

We prove completeness of T cut(L,Θ) by exploiting the completeness of the
tableau system T (L,Θ) defined in [4,5]. Clearly, it is enough to show that all
the rules of T (L,Θ) are derivable in T cut(L,Θ). Closure rules are common to
both systems. Thus, we just need to show that it is possible to simulate in
T cut(L,Θ) the branching elimination rules of T (L,Θ), extracted as explained in
Section 2. Let us pick one arbitrary such rule

X:θ(⊙([ϕi]
k
i=1)) =⇒ || Bθ⊙

X ([ϕi]
k
i=1)

where we recall that Bθ⊙
X ([ϕi]ki=1) = {&[viS(ϕi)]ki=1 | t(θ̂(⊙̂([vi]ki=1))) = X}.

Given the root X:θ(⊙([ϕi]ki=1)), we start by using (L.Cut) to cut on all the
immediate Θ-subformulas of ⊙([ϕi]ki=1). This will produce 2k·#(Θ) branches
corresponding to all possible combinations of classical values for θj(ϕi) with
j = 0, 1, . . . , s and i = 1, . . . , k. The branches that correspond to combina-
tions that satisfy the head of the rule coincide precisely with the elements of
Bθ⊙

X ([ϕi]ki=1). Thus we are left with showing that the remaining branches can all
be closed. Some of these branches may close simply by means of an application
of some (L.Ck) rule because they correspond to combinations that include some
unrealizable binary print (as the dashed lines in Table 2). Hence, we only need
to analyze what happens with the branches corresponding to valid combinations
that assign the value XC to θ(⊙([ϕi]ki=1)). Consider the sequence of elements in
one such branch and take its largest prefix that turns X:θ(⊙([ϕi]ki=1)) satisfiable.
It is, of course, a proper prefix. Assume also that Y:θj(ϕi) is the next element in
the sequence. Clearly, the prefix corresponds to some sequence [ciRi

]ki=1 of par-
tial binary prints whose associated rule (L.Rθ⊙

X [ciRi
]ki=1) will produce Y

C :θj(ϕi)
(or a simpler rule if this one is redundant). Finally, we may close the branch
using the rule (L.C0). ⊓2

The strategy used in the completeness proof above is simple but often builds
unnecessarily complex tableaux. Below, when we study the proof complexity
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of our cut-based systems, we will show that such tableaux can be significantly
simplified. In any case, most importantly, the proof of Theorem 1 also shows the
completeness of the analytic version of our cut-based systems, i.e., a restriction
that allows applications of cut only to Θ-subformulas of the formulas occurring
in the root of the tree.

Corollary 1. The analytic restriction of T cut(L,Θ) is complete.

In the light of the analyticity result in Corollary 1, the cut-based tableau system
T cut(L,Θ) can be used as a decision procedure for the logic L. Since finite-valued
logics are already known to be decidable by the ‘brute force’ truth-table method,
it will be interesting to know more about the computational complexity of the
decision procedure associated to T cut(L,Θ). As in the case of the KE system for
classical logic (see [6]), it is expectable that our cut-based tableaux for finite-
valued logics fare significantly better than conventional tableaux in terms of
proof complexity, and in general not worse than the truth-table method. We
adapt from [8] the definition of some typical complexity measures to be used
below.

Definition 2. The size of a tableau π, denoted by |π| is the total number of
formulas occurring in π. The λ-complexity of a tableau π, denoted by λ(π), is
the number of nodes in π.The ρ-complexity of a tableau π, denoted by ρ(π), is
the maximum number of formulas in a node of π.

As an example, for the tableau π in Figure 1, we have |π| = 9, λ(π) = 6 and
ρ(π) = 2. Clearly, the following relation holds in general: |π| ≤ λ(π) · ρ(π). Note
that in the case of a tableau π produced within T cut(L,Θ), the ρ-complexity
of π is bounded by ρ(π) ≤ k(s+ 1), where s+ 1 is the cardinality of Θ and k is
the maximum arity of any connective from the alphabet of L.

The following theorem shows that the cut-based tableau systems given by
Definition 1 can polynomially simulate (p-simulate) the truth-table method.

Theorem 2. Given a valid signed formula X:ϕ of L with size a and containing v
distinct atoms, there is a refutation π of XC :ϕ in T cut(L,Θ) of complexity λ(π) =
O(a ·#(Θ) · 2v·#(Θ)).

Proof. First we apply (L.Cut) to all the atomic Θ-subformulas of ϕ. This will
generate a tree with 2v·#(Θ) branches. Then, for each such branch, we proceed
by applying (L.Cut) to a Θ-subformula ϕi of ϕ such that all of its immediate
Θ-subformulas are already in the branch. By construction, such a ϕi exists.
We note that at least one of the two branches thereby generated gives rise to a
contradiction and may be closed by applying at most one elimination rule and one
closure rule. Indeed, by the definition of the system, either the system contains
an elimination rule for ϕi whose application gives rise to a contradiction on one
of the Θ-subformulas of ϕi or, as a trivial case, ϕi is of the form θ(⊙(. . . )) and
we can apply a closure rule (L.Cθ⊙

X ), that is, either F:ϕi =⇒ ! or T:ϕi =⇒ !.
If one of the branches does not close, we can reiterate on it the same procedure,
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by applying (L.Cut) to a further Θ-subformula of ϕ such that all its immediate
Θ-subformulas are in the branch.

We conclude by noticing that all the initial 2v·#(Θ) branches may be closed
by following the above described procedure, i.e., by applying (L.Cut) to at most
the Θ-subformulas of ϕ, and so linearly in a ·#(Θ). ⊓2

We can further show that T cut(L,Θ) is not worse than T (L,Θ). Intuitively,
we must be able to reproduce efficiently in T cut(L,Θ) any tableau constructed
within T (L,Θ), and in particular more efficiently than we managed to do in
the proof of Theorem 1. To illustrate how we proceed, we show in particular
how it is possible to efficiently simulate in the cut-based tableau system for !L3

(Section 3) the branching rule for F:p ⊃ q (Example 2). While the tree on the
left of Figure 2 portrays an application of the rule obtained in Section 2, the one
on the right represents its efficient simulation by means of rules of the cut-based
system. In particular, we use (!L3.⊃1) to derive (2.1) and (2.2); then we cut on
p and obtain (3.1) and (3.2); finally, we obtain (4) by using (!L3.⊃3) on (1) and
(3.1) and we obtain (5.1) and (5.2) by cutting on θ(q).

F:p ⊃ q

F:p
T:θ(p)
F:q

F:θ(q)

T:p
T:θ(p)
F:q

F:θ(q)

T:p
T:θ(p)
F:q

T:θ(q)

(1) F:p ⊃ q

(2.1) T:θ(p)
(2.2) F:q

(3.1)F:p

(4)F:θ(q)

(3.2)T:p

(5.1)F:θ(q) (5.2)T:θ(q)

Fig. 2. Finding efficient simulations of branching elimination rules for !L3

The proof of the following theorem uses a similar strategy.

Theorem 3. For every proof π in the system T (L,Θ), there exists a proof πcut

with the same root in the system T cut(L,Θ) such that |πcut| ≤ |π|.

Proof. Building upon the proof of Theorem 1, it is enough to show that each
branching elimination rule of T (L,Θ) can be efficiently derived in the cut-based
system. Let us consider an arbitrary such rule

X:θ(⊙([ϕi]
k
i=1)) =⇒ || Bθ⊙

X ([ϕi]
k
i=1)

where Bθ⊙
X ([ϕi]ki=1) = {&[viS(ϕi)]ki=1 | t(θ̂(⊙̂([vi]ki=1))) = X}, as in Section 2.

Starting with root X:θ(⊙([ϕi]ki=1)), in T cut(L,Θ) we can follow a procedure
consisting in applying linear elimination rules for X:θ(⊙([ϕi]ki=1)) whenever pos-
sible, or (L.Cut) on some missing Θ-subformula if none of the elimination rules
can be applied. It is easy to see that, by construction, the amount of informa-
tion in the simulating tree is not bigger than the one produced by the given rule,
i.e., each formula in such a simulating tree also occurs in at least one branch of
the rule. ⊓2
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The existence of extremely bad cases, in general, for T (L,Θ) is very likely,
although exploring that path lies beyond the scope of this paper. Together with
the above results, one would then certainly expect to be able to show, as in
the case of classical logic, that the cut-based systems allow in general for a
significantly better performance.

5 Conclusions

Other paths could have been explored for defining appropriate cut-based versions
of the tableau systems in [4,5]. Yet, we believe that the path explored here
achieves a good trade-off between efficiency of proof construction and usability
of the system. On what concerns the first aspect, as it is common in this area, we
measured efficiency in terms of size of the tableaux produced, by having in mind,
as a minimum requirement, that p-simulation of truth-tables must hold. Clearly,
the use of a larger number of rules would help in this sense; in particular, we
could add a closure rule for each unsatisfiable situation arising from the analysis
of truth-tables, as illustrated in Section 3 and formalized in Section 4. This would
in principle reduce —but asymptotically not in any significant way— the size of
the closed tableaux built as in the proof of Theorem 2, since each unsatisfiable
branch could be closed immediately. A further option would consist in allowing
only elimination rules such that all the immediate subformulas are involved in
the rule, either in the antecedent or in the succedent. As an example, the rule
(!L3.⊃ 1) would not be allowed in the system of Section 3. The systems resulting
from such approach allow for the p-simulation of the truth-table method (the
procedure described in the proof of Theorem 2 can still be applied) and have
the advantage of facilitating proof search, in the sense that for each formula in
a tableau one needs to apply at most one elimination rule. A drawback of such
systems is that they tend to require more uses of cut, e.g., the formula in the
example of Figure 1 (see Section 3) would not have a linear closed tableau.

On what concerns readability and compactness of the system, we mainly tried
to minimize the number of rules and the number of formulas per rule. With such
goal in mind, further simplifications could be proposed. As an example, one can
notice that the rule (!L3.⊃ 2) might be rewritten as

F:ϕ1 ⊃ ϕ2 & T:θ(ϕ2) =⇒ T:ϕ1

since the other formulas in the succedent may be obtained by an application of
(!L3.⊃ 1). By generalizing such simplifications, one would obtain a more compact
system for which, however, the result of Theorem 2 would not hold. Finally, we
note that the proof of Theorem 2 suggests a very simple decision procedure,
which is enough for p-simulating truth-tables. However, in general there might
be better heuristics for guiding the construction of a tableau. For example, the
canonical procedure given in [8] for the KE system for classical logic coincides,
in essence, with the procedure we adopted in the proof of Theorem 3.

As we have seen, the syntactic encoding of the truth-tabular semantics presup-
posed by our classic-like approach to cut-based tableaux generates in principle
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a multiplication of the number of rules. Moreover, in the resulting tableau sys-
tems, rules contain a number of expressions in the antecedent which need to be
simultaneously matched to the nodes of a given branch in order to be applied.
Even though proof-complexity theorists do not in general take into account the
costs implicit in the use of a deductive system with a large number of rules and
with rules which require a lot of pattern-matching effort, and we have here done
our study in accordance with that tradition, one might also think it wiser to
measure such costs in calculating the efficiency of a given proof system.

Though our methods cannot be expected to apply to infinite-valued logics in
general, it is predictable that they extend smoothly at least to those infinite-
valued logics with a finite-valued non-deterministic semantics [1]. The possible
connection between our approach and resolution-based sets-as-signs methods [11]
is another interesting topic for future research.
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