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Abstract

We study a modal language for negative operators —an intuitionistic-like negation and its paraconsistent
dual—added to (bounded) distributive lattices. For each non-classical negation an extra operator is hereby
adjoined in order to allow for standard logical inferences to be opportunely restored. We present abstract
characterizations and exhibit the main properties of each kind of negative modality, as well as of the asso-
ciated connectives that express consistency and determinedness at the object-language level. Appropriate
sequent-style proof systems and adequate kripke semantics are also introduced, characterizing the minimal
normal logic and a few other basic logics containing such negative modalities and their companions.
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1 Context

Negationless normal modal logics with box-like and diamond-like operators were

studied by Dunn in [10], where the author obtains completeness results for the sys-

tems characterized by the class of all kripke frames and by a few specific subclasses

thereof. In [7], Celani & Jansana extend that study so as to cover many other logics,

and to that effect they consider kripke-style semantics based on frames containing

two relations —one of them being a preorder, as in intuitionistic logic, allowing for

the expression of appropriate heredity conditions. Systems containing analogous

negative modalities were studied by Dunn & Zhou, who investigate in [11] modal

logics with conjunction, disjunction, an impossibility operator intended to play the

role of an intuitionistic-like negation and a non-necessity operator intended to play
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the role of a paraconsistent negation. Restall, in [16], proposed a combination of

positive and negative diamond-like modal operators; one of his aims was to use the

resulting system to exhibit examples of modal logics that turn out to be undecidable

even in the absence of classical negation. In the present paper we will study a logic

that contains the already mentioned negative modal operators over a strictly pos-

itive propositional basis (on a fragment agreed upon by intuitionists and classical

logicians) to which we add extra operators that express at the object-language level

the very notions of consistency and determinedness that allows one to recover much

of the standard logical reasoning even when neither classical negation nor classical

implication are available. The mentioned extra modal ‘restoration’ connectives were

first proposed in [14]. The basic universal logic apparatus used here is based on [13]

and [15], and the proof-theoretical approach to the consistency operator is inherited

from [3].

The structure of the paper is as follows: in Section 2 we present the Universal

Logic background, including the formulation of properties characterizing negative

modalities, and the properties that characterize connectives intended to express

consistency and determinedness at the object-language level; in Section 3 a sequent

system is used to define our main and most basic modal system, in which we include

rules for introducing the restoration connectives and rules for the interaction be-

tween the non-classical negations; in Sections 4 and 5 the intended kripke semantics

is presented for our full modal language and our deductive system is shown to be

sound and complete with respect to this semantics; a few extensions of the basic

system are then formulated in Section 6; in Section 7 we study how the inferences of

more standard logic systems may be recovered with the use of our rich modal lan-

guage, by way of appropriate Derivability Adjustment Theorems; last, in Section 8,

we briefly comment upon some directions for future research.

2 Universal Logic perspective

Let L be a standard propositional language. As customary, we shall use small Greek

letters to denote arbitrary sentences, and capital Greek letters for sets of sentences

of L. A generalized consequence relation (gcr) will here be assumed to be a relation� ⊆ 2L × 2L that enjoys the following universal properties:

(ovl) Γ, ϕ � ϕ,Δ

(mon) If Γ1 � Δ1, then Γ2,Γ1 � Δ1,Δ2

(trn) If Γ1, ϕ � Δ1 and Γ2 � ϕ,Δ2, then Γ1,Γ2 � Δ1,Δ2

In writing a statement such as Π ∪ {π} � ∅ in the simplified form Π, π � we are

simply aligning with standard usage from the literature. Here we shall write Γ�Δ

to indicate that Γ � Δ fails, that is, that 〈Γ,Δ〉 /∈ �. Furthermore, aiming at a

structured outlook on the above properties and on proofs based on them, we shall

employ the following graphical representation:
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(ovl)
Γ, ϕ � ϕ,Δ

Γ1 � Δ1
(mon)

Γ2,Γ1 � Δ1,Δ2

Γ1, ϕ � Δ1 Γ2 � ϕ,Δ2
(trn)

Γ1,Γ2 � Δ1,Δ2

A set Σ ⊆ L will be called a �-theory if ϕ ∈ Σ whenever Σ�ϕ,Δ for every Δ ⊆ L.
Dually, the set of sentences Σ will be called a �-cotheory if ϕ ∈ Σ whenever Γ, ϕ�Σ

for every Γ ⊆ L. Taking such definitions into account, a �-theory pair will be

any pair 〈Σ1,Σ0〉 where Σ1 is a �-theory and Σ0 is a �-cotheory. Given two �-

theory pairs Σ = 〈Σ1,Σ0〉 and Π = 〈Π1,Π0〉, we say that Π extends Σ if Σ1 ⊆ Π1

and Σ0 ⊆ Π0 — we denote this by Σ ⊆ Π. In addition, fixed a given gcr �, a

theory pair Σ = 〈Σ1,Σ0〉 is called unconnected if Σ1 �Σ0, and is called closed if

Σ1 ∪Σ0 = L. A gcr is called trivial if it does not allow for any unconnected theory

pair.

A gcr � is called finitary if it enjoys the following property:

(fin) If Γ � Δ, then there are finite sets Γ′ ⊆ Γ and Δ′ ⊆ Δ such that Γ′ � Δ′

For finitary gcrs, thus, a connected theory pair extends some finite connected theory

pair.

We confirm next that finitary gcrs enjoy the following property — a version of

the well-known Lindenbaum-Asser Lemma (cf. [17]):

Proposition 2.1 Let � be a finitary gcr. Then every unconnected �-theory pair

can be extended into a closed unconnected �-theory pair.

Proof. Assume Γ�Δ. Let E be the collection of unconnected extensions of 〈Γ,Δ〉,
partially ordered by inclusion, and let C = {〈Ci

1,C
i
0〉}i∈I be some chain (a totally

ordered set) on E . We claim that
⋃

C = 〈⋃i∈I C
i
1,
⋃

i∈I C
i
0〉 is an upper bound for E ,

i.e., we claim that Π ⊆ ⋃
C for every Π ∈ E (which is obvious) and also claim that

(∗) ⋃C ∈ E .
We check (∗). Where Λ = 〈Λ1,Λ0〉 is a �-theory pair, let Fin(Λ) denote the

set of �-theory pairs 〈Λ̂1, Λ̂0〉 where Λ̂1 ∪ Λ̂0 is a finite set and Λ extends 〈Λ̂1, Λ̂0〉.
Consider an arbitrary Φ = 〈Φ1,Φ0〉 such that Φ ∈ Fin(

⋃
C). Then there is some

Ck ∈ C such that Φ ⊆ Ck. Once Ck
1�Ck

0, by (mon) we conclude that Φ1�Φ0. By (fin)

it follows that
⋃

C is unconnected. By Zorn’s Lemma, if every chain in a partially

ordered set has an upper bound, then there is a maximal element in that set; so,

we conclude that E must have a maximal unconnected element 〈Γ�,Δ�〉 ⊇ 〈Γ,Δ〉.
To see that 〈Γ�,Δ�〉 is indeed closed, suppose there is some ϕ ∈ L such that neither

〈Γ� ∪ {ϕ},Δ�〉 nor 〈Γ�,Δ� ∪ {ϕ}〉 are unconnected. Then, by (trn), it would follow

that Γ� � Δ�. �
From this point on we consider some language specifics, concerning connectives

of L. A binary connective ∧ in L will be called a �-ordinary conjunction when

it satisfies

(oC) Γ, ϕ ∧ ψ � Δ iff Γ, ϕ, ψ � Δ

for arbitrary sentences ϕ, ψ ∈ L and arbitrary contexts Γ,Δ ⊆ L. In other words,

to have a classic-like behavior, a conjunction will be expected to internalize, at the

object-level, the meta-level commas that appear in the left-hand side of �. Dually,
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a binary connective ∨ is called a �-ordinary disjunction when it satisfies

(oD) Γ � ϕ ∨ ψ,Δ iff Γ � ϕ, ψ,Δ

In addition, a �-ordinary top and a �-ordinary bottom are 0-ary connectives �
and ⊥ satisfying

(oT) Γ,� � Δ iff Γ � Δ (oB) Γ � ⊥,Δ iff Γ � Δ

From such definitions one may easily check for instance that:

Proposition 2.2 For any �-ordinary conjunction ∧ and any �-ordinary disjunc-

tion ∨, the following rule-statements may be shown to hold:

Γ1 � α,Δ1 Γ2 � β,Δ2
(Cj1)

Γ1,Γ2 � α ∧ β,Δ1,Δ2

Γ1, α � Δ1 Γ2, β � Δ2
(Dj1)

Γ1,Γ2, α ∨ β � Δ1,Δ2

Proof. The proofs proceed as follows. We starting with rule-statement (Cj1):

Proof using the properties of gcr Graphical representation of the proof

Assume (1) Γ1 � α,Δ1 and (2)

Γ2 � β,Δ2. By (ovl) we know

that (3) α∧β � α∧β. By (3) and

(oC) it follows that (4) α, β � α∧
β. Using (trn) on (1) and (4)

we obtain (5) Γ1, β � α ∧ β,Δ1.

From (5), (2) and (trn) we con-

clude that Γ1,Γ2 � α∧β,Δ1,Δ2.

(ovl)
α ∧ β � α ∧ β

(oC)
α, β � α ∧ β Γ1 � α,Δ1

(trn)
Γ1, β � α ∧ β,Δ1 Γ2 � β,Δ2

(trn)
Γ1,Γ2 � α ∧ β,Δ1,Δ2

For rule-statement (Dj1) we rely directly on the corresponding tree-like presentation:
(ovl)

α ∨ β � α ∨ β
(oD)

α ∨ β � α, β Γ1, α � Δ1
(trn)

Γ1, α ∨ β � β,Δ1 Γ2, β � Δ2
(trn)

Γ1,Γ2, α ∨ β � Δ1,Δ2 �
An immediate offshoot of the above result is that theories are closed under

ordinary conjunctions and cotheories are closed under ordinary disjunctions:

Corollary 2.3 Let ∧ be a �-ordinary conjunction, ∨ be a �-ordinary disjunction,

� be a �-ordinary top and ⊥ be a �-ordinary bottom. Consider a �-theory pair

〈Σ1,Σ0〉. Then:

(i) If ϕ ∈ Σ1 and ψ ∈ Σ1, then ϕ ∧ ψ ∈ Σ1 (iii) � ∈ Σ1

(ii) If ϕ ∈ Σ0 and ψ ∈ Σ0, then ϕ ∨ ψ ∈ Σ0 (iv) ⊥ ∈ Σ0

This will be very useful later on, in particular in Section 5. For closed theories, a

further important result may be proven:
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Proposition 2.4 Let ∧ be a �-ordinary conjunction and ∨ be a �-ordinary dis-

junction, and let 〈Σ1,Σ0〉 be a closed unconnected �-theory pair. Then:

(i) If ϕ ∨ ψ ∈ Σ1, then ϕ ∈ Σ1 or ψ ∈ Σ1

(ii) If ϕ ∧ ψ ∈ Σ0, then ϕ ∈ Σ0 or ψ ∈ Σ0

Proof. For item (i), suppose by contraposition that ϕ /∈ Σ1 and ψ /∈ Σ1. By closure

it follows that ϕ ∈ Σ0 and ψ ∈ Σ0. By the definition of cotheory, this means that

Γ, ϕ � Σ0 and Γ, ψ � Σ0 for every Γ ⊆ L. For any arbitrary such Γ it follows by

(Dj1) that Γ, ϕ ∨ ψ �Σ0. So, given that Σ0 is a cotheory, we have ϕ ∨ ψ ∈ Σ0, and

by unconnectedness it follows that ϕ ∨ ψ /∈ Σ1. The proof of item (ii) uses (Cj1).�
Fix now a unary connective # in L. We say that # is �-preserving if it satisfies

(Pvs#) ϕ � ψ implies #ϕ � #ψ

and say that # is �-reversing if

(Rvs#) ϕ � ψ implies #ψ � #ϕ

Following [15], the minimal conditions we will demand for calling # a negation

consist on the existence of sentences ϕ and ψ such that #ϕ�ϕ and ψ�#ψ, that is,

such that the theory pairs 〈#ϕ, ϕ〉 and 〈ψ,#ψ〉 are unconnected. The underlying

intuition is that negation should bring about some ‘inversion’ with respect to the

underlying notion of consequence. It should be noticed that, in principle, a nega-

tion abiding to such minimal conditions need not be �-reversing —yet, (Rvs#) is

a typical and desirable property of modal negations such as the ones we will be

studying in the present paper. The following result introduces some properties that

will play an important role in what follows:

Proposition 2.5 Assume ∧ to be a �-ordinary conjunction and ∨ to be a �-

ordinary disjunction. For any �-preserving connective #, the following statements

may then be checked to hold:

(PM1.1#) #(ϕ ∧ ψ) � #ϕ ∧#ψ (PM2.1#) #ϕ ∨#ψ � #(ϕ ∨ ψ)

If # is �-reversing, the following alternative statements may be checked instead:

(DM1.1#) #(ϕ ∨ ψ) � #ϕ ∧#ψ (DM2.1#) #ϕ ∨#ψ � #(ϕ ∧ ψ)

Proof. The proofs below use rule-statements (Cj1) and (Dj1) from Prop. 2.2.

(ovl)
ϕ � ϕ

(mon)
ϕ, ψ � ϕ

(oC)
ϕ ∧ ψ � ϕ

(Pvs#)
#(ϕ ∧ ψ) � #ϕ

(ovl)
ψ � ψ

(mon)
ϕ, ψ � ψ

(oC)
ϕ ∧ ψ � ψ

(Pvs#)
#(ϕ ∧ ψ) � #ψ

(Cj1)
#(ϕ ∧ ψ) � #ϕ ∧#ψ

(ovl)
ϕ � ϕ

(mon)
ϕ � ϕ, ψ

(oD)
ϕ � ϕ ∨ ψ

(Rvs#)
#(ϕ ∨ ψ) � #ϕ

(ovl)
ψ � ψ

(mon)
ψ � ϕ, ψ

(oD)
ψ � ϕ ∨ ψ

(Rvs#)
#(ϕ ∨ ψ) � #ψ

(Cj1)
#(ϕ ∨ ψ) � #ϕ ∧#ψ

(ovl)
ϕ � ϕ

(mon)
ϕ � ϕ, ψ

(oD)
ϕ � ϕ ∨ ψ

(Pvs#)
#ϕ � #(ϕ ∨ ψ)

(ovl)
ψ � ψ

(mon)
ψ � ϕ, ψ

(oD)
ψ � ϕ ∨ ψ

(Pvs#)
#ψ � #(ϕ ∨ ψ)

(Dj1)
#ϕ ∨#ψ � #(ϕ ∨ ψ)

(ovl)
ϕ � ϕ

(mon)
ϕ, ψ � ϕ

(oC)
ϕ ∧ ψ � ϕ

(Rvs#)
#ϕ � #(ϕ ∧ ψ)

(ovl)
ψ � ψ

(mon)
ϕ, ψ � ψ

(oC)
ϕ ∧ ψ � ψ

(Rvs#)
#ψ � #(ϕ ∧ ψ)

(Dj1)
#ϕ ∨#ψ � #(ϕ ∧ ψ) �
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In what follows we shall say that # has type [+] (read ‘box-plus’) if it respects

(PM1.2#) #ϕ ∧#ψ � #(ϕ ∧ ψ)

and say that # has type <+> (‘diamond-plus’) if it respects

(PM2.2#) #(ϕ ∨ ψ) � #ϕ ∨#ψ

When a �-ordinary top � is available, we will expect a full type [+] connective #

to also respect

(PT#) �#�
Given an �-ordinary bottom ⊥, a full type <+> connective # is also to respect

(PB#) #⊥�
Dually, we shall say that # has type [-] (read as ‘box-minus’) if it respects

(DM1.2#) #ϕ ∧#ψ � #(ϕ ∨ ψ)

and say that # has type <-> (‘diamond-minus’) if it respects

(DM2.2#) #(ϕ ∧ ψ) � #ϕ ∨#ψ

When a �-ordinary top � or a �-ordinary bot ⊥ are available, a full type [-]

connective # will be expected to respect

(DB#) �#⊥
and a full type <-> connective # will be expected to respect

(DT#) #��
We now turn to properties induced by our main (non-classical) negations and

use them to characterize the restoration connectives that will accompany them.

Here, given some specific sentence ϕ, the gcr � will be called #-consistent with

respect to ϕ in case it satisfies

(Cns#ϕ) Γ, ϕ,#ϕ � Δ

for any choice of contexts Γ and Δ. Dually, the gcr � will be called #-determined

with respect to ϕ in case it satisfies

(Dtm#ϕ) Γ � #ϕ, ϕ,Δ

for any choice of contexts Γ and Δ. A gcr will be called #-inconsistent if there

is some sentence ϕ with respect to which (Cns#ϕ) fails, and will be called #-

undetermined if there is some sentence ϕ with respect to which (Dtm#ϕ) fails.

If some negation # is available such that � turns out to be both #-consistent and

#-determined with respect to all sentences, such # will be called a �-ordinary

negation. For #-inconsistent and for #-undetermined gcrs it will often be useful to

have a way of internalizing, at the object-level, the corresponding notions of consis-
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tency and determinedness. To that effect, a �-ordinary consistency connective

will be defined as a unary symbol #© satisfying

(GC#) Γ � #©ϕ,Δ iff Γ, ϕ,#ϕ � Δ

for any choice of contexts Γ and Δ and any sentence ϕ. Analogously, a �-ordinary

determinedness connective will be defined as a unary symbol #© satisfying

(GD#) Γ, #©ϕ � Δ iff Γ � #ϕ, ϕ,Δ

A useful alternative abstract characterization of such new connectives is exhibited

in what follows:

Proposition 2.6 Let � be a gcr. Then:

[EQ1] Clause (GC#) is equivalent to the following three clauses taken together:

(Cb#) Γ, #©ϕ,#ϕ, ϕ � Δ (Ck1#) Γ � ϕ, #©ϕ,Δ (Ck2#) Γ � #ϕ, #©ϕ,Δ

[EQ2] Clause (GD#) is equivalent to the following three clauses taken together:

(Db#) Γ � ϕ,#ϕ, #©ϕ,Δ (Dk1#) Γ, #©ϕ, ϕ � Δ (Dk2#) Γ, #©ϕ,#ϕ � Δ

Proof. Rule-statement (GC#) may be split in two halves, namely:

Γ, ϕ,#ϕ � Δ
(GC1#)

Γ � #©ϕ,Δ

Γ � #©ϕ,Δ
(GC2#)

Γ, ϕ,#ϕ � Δ

These will help in attaining our goals below. We start by verifying [EQ1].

[Part 1] Assume (GC1#) and (GC2#) to hold. Then notice that:

(ovl)
Γ, #©ϕ � #©ϕ,Δ

(GC2#)
Γ, #©ϕ,#ϕ, ϕ � Δ

(ovl)
Γ, ϕ � ϕ,Δ

(mon)
Γ, ϕ,#ϕ � ϕ,Δ

(GC1#)
Γ � ϕ, #©ϕ,Δ

(ovl)
Γ,#ϕ � #ϕ,Δ

(mon)
Γ, ϕ,#ϕ � #ϕ,Δ

(GC1#)
Γ � #ϕ, #©ϕ,Δ

[Part 2] Assume (Cb#), (Ck1#) and (Ck2#) to hold. Then notice that:

Γ, ϕ,#ϕ � Δ
(Ck1#)

Γ � ϕ, #©ϕ,Δ
(trn)

Γ,#ϕ � #©ϕ,Δ
(Ck2#)

Γ � #ϕ, #©ϕ,Δ
(trn)

Γ � #©ϕ,Δ

Γ � #©ϕ,Δ
(Cb#)

Γ, #©ϕ,#ϕ, ϕ � Δ
(trn)

Γ, ϕ,#ϕ � Δ

Verifying equivalence [EQ2], now, is an entirely analogous exercise, which we shall

leave to the interested reader. �
From this point on we shall fix a set of sentences L inductively defined by:

ϕ ::= p | (ϕ1 ∧ ϕ2) | (ϕ1 ∨ ϕ2) | (�ϕ) | (�ϕ) | (�©ϕ) | (�©ϕ)

where p ranges over a denumerable set P of propositional variables, both � and �
are symbols intended to represent negation, and the symbols �© and �© are intended

to represent the restoration connectives that will be associated to the latter negation

symbols. Fixed an arbitrary sentence ϕ, we will define � as an abbreviation for

ϕ∨�ϕ∨ �©ϕ and will define ⊥ as short for ϕ∧�ϕ∧ �©ϕ. In the following sections

we shall introduce a convenient deductive system involving the above connectives,

and provide subsequently a characteristic modal interpretation for them. Using
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such proof system and such interpretation we will be able to easily classify each

connective of L with respect to the terminology introduced above.

It is worth adding a few words on the connection between inconsistency, unde-

terminedness and the perhaps more usual terms ‘paraconsistency’ and ‘paracom-

pleteness’, now very common in the literature on non-classical negations. Suppose

the language of a given gcr � contains a symbol # satisfying the minimal conditions

to be called a negation. In that case, we say that � is #-paraconsistent if there

are sentences ϕ and ψ such that ϕ,#ϕ� ψ, and say that � is #-paracomplete if

there are sentences ϕ and ψ such that ϕ � #ψ,ψ. Obviously, in case a #-ordinary

bottom ⊥ is available, #-paraconsistency simply coincides with #-inconsistency,

and in case a #-ordinary top � is available, #-paracompleteness coincides with

#-undeterminedness. Paraconsistent logics equipped with ordinary consistency

connnectives constitute particularly interesting examples of the so-called logics of

formal inconsistency, or more simply LFIs (check [6,5]). Their duals, paracom-

plete logics with ordinary determinedness connectives, are called logics of formal

undeterminedness, or LFUs.

As an additional useful matter of notation for the next sections, given T ⊆ L
and any unary connective � we shall by �[T ] denote the set {�ϕ : ϕ ∈ T}, and by

�−1[T ] denote the set {ϕ : �ϕ ∈ T}. By T we will denote the complement of T

relative to L.

3 Proof-theoretical presentation

We will introduce in what follows our main sequent systems, namely, proof for-

malisms with each rule has the format
{Ai ⇒ Bi : i ∈ I}

(rule)
A ⇒ B

where each Ak and

each Bk represents a finite sequence of sentences of L and where I is a finite set of

indices. As usual, given a collection R of rules, a deductive system is associated to

R by defining Γ � Δ to hold if there are finite sets A ⊆ Γ and B ⊆ Δ such that

A ⇒ B is derivable from the rules in R. In what follows we impose the standard

structural rules, defining the system S:
(id)ϕ ⇒ ϕ

A1, ϕ ⇒ B1 A2 ⇒ ϕ,B2
(cut)

A1, A2 ⇒ B1, B2

A ⇒ B
(W/)

A,ϕ ⇒ B
A ⇒ B

(/W )
A ⇒ ϕ,B

Such rules and the very definition of � are obviously sufficient to guarantee that the

corresponding deductive system is a finitary gcr. As is well-known, the system DL
for distributive lattices is obtained from S by adding the standard rules for (classical)

conjunction and disjunction:

A,ϕ, ψ ⇒ B
(∧/)

A,ϕ ∧ ψ ⇒ B

A ⇒ ϕ,B A ⇒ ψ,B
(/∧)

A ⇒ ϕ ∧ ψ,B

A,ϕ ⇒ B A,ψ ⇒ B
(∨/)

A,ϕ ∨ ψ ⇒ B

A ⇒ ϕ, ψ,B
(/∨)

A ⇒ ϕ ∨ ψ,B
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Where �dl is the gcr associated to DL, the interplay between the structural rules

and the logical rules allows us to easily check that both ∧ and ∨ are �dl-ordinary, as

well as to derive the usual distributivity rules involving the connectives ∧ and ∨ —

namely, to derive both ϕ∧(ψ∨χ) ⇒ (ϕ∧ψ)∨(ϕ∧χ) and (ϕ∧ψ)∨(ϕ∧χ) ⇒ ϕ∧(ψ∨χ),
as well as their duals, exchanging the roles of ∧ and ∨.

Our main system Kn adds to DL the following logical rules involving the re-

maining connectives of the language L:
A ⇒ ϕ,B A ⇒ �ϕ,B

(�©/)
A, �©ϕ ⇒ B

A,ϕ,�ϕ ⇒ B
(/�©)

A ⇒ �©ϕ,B

A ⇒ ϕ,�ϕ,B
(�©/)

A, �©ϕ ⇒ B

A,ϕ ⇒ B A,�ϕ ⇒ B
(/�©)

A ⇒ �©ϕ,B

A ⇒ ϕ,B
(��)

�[B],�ϕ ⇒ �[A]

A,ϕ ⇒ B
(��)

�[B] ⇒ �ϕ,�[A]

Using the structural rules and the rules for �© and �©, it easily follows that (as

in Prop. 2.6):

Proposition 3.1 The following sequents are derivable in Kn:

(GCb�) �©ϕ,�ϕ, ϕ ⇒ (GDb�) ⇒ ϕ,�ϕ, �©ϕ

(GCk1�) ⇒ ϕ, �©ϕ (GDk1�) �©ϕ, ϕ ⇒
(GCk2�) ⇒ �ϕ, �©ϕ (GDk2�) �©ϕ,�ϕ ⇒

Recalling the appropriate definitions from Section 2 and substituting �n for �,

one may easily check in Kn the following assertions as derived rules:

Proposition 3.2

(i) ⊥ is a �n-ordinary bottom and � is a �n-ordinary top

(ii) � is a full type [-] �n-reversing connective, and

� is a full type <-> �n-reversing connective

(iii) �© is a �n-ordinary determinedness connective, and
�© is a �n-ordinary consistency connective

Proof. [⊥ is a �n-ordinary bottom]

A ⇒ B
(/W)

A ⇒ ⊥, B

A ⇒ ⊥, B
(def. ⊥)

A ⇒ ϕ ∧�ϕ ∧ �©ϕ,B

(GCb�)
ϕ,�ϕ, �©ϕ ⇒

(∧/)
ϕ ∧�ϕ, �©ϕ ⇒

(∧/)
ϕ ∧�ϕ ∧ �©ϕ ⇒

(cut)
A ⇒ B

[� is a �n-ordinary top]

A ⇒ B
(W/)

A,� ⇒ B

A,� ⇒ B
(def. �)

A,ϕ ∨�ϕ ∨ �©ϕ ⇒ B

(GDb�)⇒ ϕ,�ϕ, �©ϕ
(/∨)⇒ ϕ ∨�ϕ, �©ϕ
(/∨)⇒ ϕ ∨�ϕ ∨ �©ϕ
(cut)

A ⇒ B
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[� is a full type [-] �n-reversing connective]
(GCb�)

ϕ,�ϕ, �©ϕ ⇒
(∧/)×2

ϕ ∧ �ϕ ∧ �©ϕ ⇒
(def. ⊥)

⊥ ⇒
(��)⇒ �⊥

(id)ϕ ⇒ ϕ
(id)

ψ ⇒ ψ
(∨/)

ϕ ∨ ψ ⇒ ϕ,ψ
(��)

�ϕ,�ψ ⇒ �(ϕ ∨ ψ)
(∧/)

�ϕ ∧ �ψ ⇒ �(ϕ ∨ ψ)

ϕ ⇒ ψ
(��)�ψ ⇒ �ϕ

[� is a full type <-> �n-reversing connective]
(GDb�)⇒ ϕ,�ϕ, �©ϕ

(/∨)×2⇒ ϕ ∨ �ϕ ∨ �©ϕ
(def. �)

⇒ �
(��)�� ⇒

(id)ϕ ⇒ ϕ
(id)

ψ ⇒ ψ
(/∧)

ϕ,ψ ⇒ ϕ ∧ ψ
(��)

�(ϕ ∧ ψ) ⇒ �ϕ,�ψ
(/∨)

�(ϕ ∧ ψ) ⇒ �ϕ ∨ �ψ

ϕ ⇒ ψ
(��)�ψ ⇒ �ϕ

[�© is a �n-ordinary determinedness connective and �© is a �n-ordinary consistency

connective] To check this, note first that rules (�©/) and (/�©) already do half of

the job. As for the other half:

A, �©ϕ ⇒ B
(GDb�)⇒ ϕ,�ϕ, �©ϕ
(cut)

A ⇒ ϕ,�ϕ,B

A ⇒ �©ϕ,B
(GCb�)

ϕ,�ϕ, �©ϕ ⇒
(cut)

A,ϕ,�ϕ ⇒ B �
The following simple observation follows from Prop. 3.2(ii) and rules (�©/) and

(/�©), as may be easily checked by the reader:

Proposition 3.3 The sequents ⇒ �©� and �©⊥ ⇒ are derivable in Kn.

The following result concerns �-theory pairs, and will play an important role in

Section 5:

Proposition 3.4 Let 〈Σ1,Σ0〉 be an unconnected �-theory pair. Then, the deriv-

ability of the nonempty sequent A ⇒ B implies that either α /∈ Σ1 for some α ∈ A,

or β /∈ Σ0 for some β ∈ B.

Proof. Consider a derivable sequent of the form α1, α2, . . . , αm ⇒ β1, β2, . . . , βn
where m+ n > 0. Using rules (∧/) and (/∨) we may derive the sequent α1 ∧ α2 ∧
. . . ∧ αm ⇒ β1 ∨ β2 ∨ . . . ∨ βn. Call the latter sequent Seq. Suppose αi ∈ Σ1 for

every 1 ≤ i ≤ m, and βj ∈ Σ0 for every 1 ≤ j ≤ n. By Corol. 2.3 and in view of

the fact that ∧ is a �-ordinary conjunction and that ∨ is a �-ordinary disjunction,

it follows that (i) α1 ∧ α2 ∧ . . . ∧ αm ∈ Σ1 and that (ii) β1 ∨ β2 ∨ . . . ∨ βn ∈ Σ0.

Given that Σ1 is a �-theory, from (i) and the derivability of Seq it follows that (iii)

β1 ∨ β2 ∨ . . .∨ βn ∈ Σ1; given that Σ0 is a �-cotheory, from (ii) and the derivability

of Seq it follows that (iv) α1 ∧ α2 ∧ . . . ∧ αm ∈ Σ0. Now one may use the sequent

axiom (id) to conclude from (i) and (iv), in case m �= 0, that the pair 〈Σ1,Σ0〉 is

not unconnected; the same may be concluded from (ii) and (iii) in case n �= 0. �
The next section will introduce an adequate kripke semantics for Kn.

4 Kripke semantics

Here, as usual, a frame F = 〈W,R〉 will be a structure containing a nonempty

set W and a relation R ⊆ W ×W — members of W are often called worlds and R
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is said to be an accessibility relation between these worlds. A state-of-affairs s

on the frame F is a mapping s : P → 2W . A valuation is defined as the recursive

extension of a given state-of-affairs s into a mapping V s : L → 2W , as follows:

V s(p) = s(p), where p ∈ P
V s(ϕ1 ∧ϕ2) = V s(ϕ1) ∩ V s(ϕ2)

V s(ϕ1 ∨ϕ2) = V s(ϕ1) ∪ V s(ϕ2)

V s(�ϕ) = {w ∈ W : ∀v ∈ W (wRv implies v /∈ V s(ϕ))}
V s(�ϕ) = {w ∈ W : ∃v ∈ W (wRv and v /∈ V s(ϕ))}
V s(�©ϕ) = {w ∈ W : w /∈ V s(ϕ) and w /∈ V s(�ϕ)}
V s(�©ϕ) = {w ∈ W : w /∈ V s(ϕ) or w /∈ V s(�ϕ)}

As there is thus a unique valuation V s associated to each given state-of-affairs s,

we will in what follows simply omit the index s from V s. It is helpful to fix at this

point the reading of the statement ‘w ∈ V (�©ϕ)’ as guaranteeing the consistency

of ϕ at w, and to fix the reading of the statement ‘w /∈ V (�©ϕ)’ as guaranteeing the

determinedness of ϕ at w.

Given the definitions of ⊥ and � as abbreviations (Section 2), it is easy to check

from the above notion of valuation that V (⊥) = ∅ and V (�) = W . A model

M = 〈F , V 〉 is a structure where F is a frame and V is a valuation on F . Given

a class of frames F, with the above definitions we may immediately consider the

class M of all models based on such frames. We say that ϕ ∈ L is satisfied at a

state w ∈ W of a model M = 〈W,R, V 〉 if w ∈ V (ϕ); this is denoted by M, w � ϕ.

When w /∈ V (ϕ) we write M, w �� ϕ and say that M falsifies ϕ at w. Given two

sets of sentences, Γ and Δ, we say that Γ entails Δ, denoted by Γ |= Δ, when at

every world of every model either some sentence in Γ is falsified or some sentence

in Δ is satisfied; sometimes this definition is relativized to some given class of frames

on which the relevant models are to be based. It is not hard to check that |= is

a gcr. As usual, the failure of Γ |= Δ will be denoted by Γ �|= Δ. When ϕ is

satisfied at all states of all models of a given frame F we say that ϕ is valid in F ,

in symbols F � ϕ. The definition of satisfaction is extended to sequents by writing

M, w � A ⇒ B if M falsifies some ϕ ∈ A at w or M satisfies some ϕ ∈ B at w.

Moreover, on what concerns the other definitions, for any given model M and any

given frame F we write M � A ⇒ B to say that M, w � A ⇒ B at every state w

in M, and write F � A ⇒ B to say that M � A ⇒ B for every model M of F .

Using the above semantics, and taking into account the definitions in Section 2,

is not hard to check that:

Proposition 4.1 Both � and � enjoy the minimal conditions expected of a nega-

tion. Indeed, for any atomic variables p and q:

(1) �p �|= p (2) q �|= �q

(3) �p �|= p (4) q �|= �q
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Proof. Consider the frame in which W = {w}, R = ∅ and, based on this frame,

consider a model such that V (p) = ∅ and V (q) = W . It is easy to see that

this is a counter-model that bears witness to (1) and (4). From that a counter-

model witnessing assertions (2) and (3) is built by simply replacing R = ∅ by its

complement R = W ×W . �
Proposition 4.2 The entailment |= is �-undetermined as well as �-inconsistent.

Proof. Consider a frame F such thatW = {u, v} and R is the total relationW×W ,

and consider a model M such that V (p) = {u} for an atomic variable p. It follows

that V (�p) = {u} and V (�p) = ∅, thus both p and �p are satisfied at u, and

both p and �p are falsified at v. �
Our present semantical framework allows us also to provide straightforward ver-

ifications for many inferences which would give rise to long derivations. The fol-

lowing statements that guarantee that consistency propagates through conjunction

and that determinedness propagates through disjunction may indeed very easily be

verified by the reader.

Proposition 4.3 �©ϕ, �©ψ |= �©(ϕ ∧ ψ) and �©(ϕ ∨ ψ) |= �©ϕ, �©ψ

More importantly, the usual inductive reasoning allows us to establish that any

derivable inference can be checked semantically:

Proposition 4.4 [Soundness] All rules of Kn are sound for frame validity, for

arbitrary frames, that is, the conclusion of each given rule is valid on all frames

that validate the premisses of that rule.

Proof. Let F be some fixed arbitrary frame. We will skip the proof of frame

validity for the standard structural rules and for the standard rules for conjunction

and disjunction, and concentrate below on the distinctive rules of Kn.

Rule (�©/) : Assume that (a) F � (A ⇒ ϕ,B) and (b) F � (A ⇒ �ϕ,B). Suppose

that F �� A, �©ϕ ⇒ B. Then, there are a model M = 〈F , V 〉 and a world w in

M such that M, w �� A, �©ϕ ⇒ B. From this we have that (c) M, w � α for

every α ∈ A, (d) M, w � �©ϕ and (e) M, w �� β for every β ∈ B. By (c), (e)

and (a) it follows that (f) M, w � ϕ. Now from (c), (e) and (b) it follows that

(g) M, w � �ϕ. By the definition of valuation, (f) and (g), we conclude that

M, w �� �©ϕ. This contradicts (d).

Rule (/�©) : Assume that (a) F � (A,ϕ,�ϕ ⇒ B) and suppose that (b) F ��
(A ⇒ �©ϕ,B). By (b) there are a model M and a world w such that (c) M, w � α

for every α ∈ A, (d) M, w �� �©ϕ and (e) M, w �� β for every β ∈ B. By (a),

(c) and (e) we have that M, w �� ϕ or M, w �� �ϕ, and so M, w � �©ϕ, which

contradicts (d).

Rule (�©/) : Assume that (a) F � (A ⇒ ϕ,�ϕ,B) and suppose that (b) F ��
(A, �©ϕ ⇒ B). By (b) there are a model M and a world w such that (c) M, w � α

for every α ∈ A, (d) M, w � �©ϕ and (e) M, w �� β for every β ∈ B. By (a), (c) and

(e) we have that M, w � ϕ or M, w � �ϕ, and so M, w �� �©ϕ, contradicting (d).
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Rule (/�©) : Assume that (a) F � (A,ϕ ⇒ B) and (b) F � (A,�ϕ ⇒ B). Suppose

that F �� A ⇒ �©ϕ,B. Then, there are a model M and a world w in M such that

M, w �� A ⇒ �©ϕ,B. From this we have that (c) M, w � α for every α ∈ A, (d)

M, w �� �©ϕ and (e) M, w �� β for every β ∈ B. By (c), (e) and (a) we have that

(f) M, w �� ϕ, and from (c), (e) and (b) it follows that (g) M, w �� �ϕ. By (f) and

(g) we have M, w � �©ϕ, which contradicts (d).

Rule (��) : By contraposition assume that F �� (�[B],�ϕ ⇒ �[A]). Then, there

are a model M and a state u in M such that (i) M, u � �β for every β ∈ B, (ii)

M, u � �ϕ and (iii) M, u �� �α for every α ∈ A. By (ii) there exists a world v

in M such that (iv) uRv and (v) M, v �� ϕ. It follows, by (iii) and (iv), that (vi)

M, v � α for every α ∈ A. From (i) and (iv) it follows that (vii) M, v �� β for

every β ∈ B. By (v), (vi) and (vii) we conclude that M, v �� A ⇒ ϕ,B, therefore

F �� A ⇒ ϕ,B.

Rule (��) : By contraposition assume that F �� (�[B] ⇒ �ϕ,�[A]). Then, there

are a model M and a state w in M such that (i) M, w � �β for every β ∈ B, (ii)

M, w �� �ϕ and (iii) M, w �� �α for every α ∈ A. By (ii) there exists a world z in

M such that (iv) wRz and (v) M, z � ϕ. It follows, by (iii) and (iv), that M, z � α

for every α ∈ A. From (i) and (iv) it follows that (vii) M, z �� β for each β ∈ B. By

(v), (vi) and (vii) we conclude that M, z �� A,ϕ ⇒ B, therefore F �� A,ϕ ⇒ B. �
As an immediate application of the above soundness result, we may transfer

the results in Prop. 4.2 to our sequent system, and conclude that the consequence

relation � associated to Kg is in fact �-undetermined and �-inconsistent. For the

same reason, the results in Prop. 3.1 may be transferred to our semantics. With little

effort, results analogous to those in Prop. 3.2 concerning the �-ordinary connectives

originally characterized by way of our sequent system may also be restated in our

present modal semantical framework, in which those connectives are conveniently

interpreted. The connections between the two previous approaches will in fact be

strengthened by the completeness result to be proven in the next section.

5 Completeness

Recall from Section 2 that a theory Σ1 and a cotheory Σ0 define a closed theory pair

if Σ1 ∪ Σ0 = L. For closed theory pairs it will often be simpler thus to refer to the

cotheory Σ0 as Σ1, and we shall follow such policy from this point on, calling the

single theory Π saturated if 〈Π,Π〉 forms a closed (and obviously unconnected)

theory pair. Following the definition of gcr from Section 3, we will concentrate

below on the gcr � defined by the deductive system for Kn. Given a set of sentences

Ψ, by �Ψ� we will denote the theory {ψ : Ψ � ψ}, and by �Ψ� we will denote the

cotheory {ψ : ψ � Ψ}.
The interaction rules of our system Kn allow us to prove some useful properties

of saturated theories:

Lemma 5.1 For any saturated theory Σ:

(i) �−1[Σ] is a theory (ii) �−1[Σ] is a cotheory

A. Dodó, J. Marcos / Electronic Notes in Theoretical Computer Science 300 (2014) 21–45 33



Proof. [Item (i)] Assume that �−1[Σ] � ϕ and suppose by reductio that ϕ /∈
�−1[Σ], that is, �ϕ ∈ Σ. By the assumption we know that there is some derivable

sequent ϕ1, ϕ2, . . . , ϕn ⇒ ϕ in Kn where {ϕ1, ϕ2, . . . , ϕn} ⊆ �−1[Σ]. From this

sequent, using rule (��) it follows that �ϕ ⇒ �ϕ1,�ϕ2, . . . ,�ϕn is derivable in Kn.

Given that Σ is a theory, ∨ is �-ordinary, and �ϕ ∈ Σ, then �ϕ1∨�ϕ2∨. . .∨�ϕn ∈
Σ. But Σ is also saturated, thus �ϕi ∈ Σ for some 1 ≤ i ≤ n, by Prop. 2.4(i). It

follows that ϕi �∈ �−1[Σ]. Absurd.

[Item (ii)] This is analogous to the previous item, but we now use rule (��), the

fact that ∧ is �-ordinary and Prop. 2.4(ii). Details are safely left to the reader. �
Let WS be the set of all saturated theories of Kn. Define over WS the following

binary relation RS :

ΓRS Δ iff �−1[Γ] ⊆ Δ ⊆ �−1[Γ]

The canonical frame is defined as the structure FS = 〈WS , RS〉.
The two following auxiliary results will be helpful in establishing the proof of

the Canonical Model Lemma, further on.

Lemma 5.2 Let Σ be a saturated theory. Then �ϕ ∈ Σ if and only if there is a

saturated theory Π such that ΣRS Π and ϕ /∈ Π.

Proof. Assume first that there is some Π such that ΣRS Π and ϕ /∈ Π. Since ϕ /∈ Π

and �−1[Σ] ⊆ Π it follows that ϕ /∈ �−1[Σ]. From this we conclude that �ϕ ∈ Σ.

Conversely, assume that �ϕ ∈ Σ. Suppose α ∈ �−1[Σ] and β /∈ �−1[Σ], and

thus �α /∈ Σ and �β ∈ Σ. Recall, by Lemma 5.1, that �−1[Σ] is a theory and

�−1[Σ] is a cotheory. We need to show that there is some saturated theory Π such

that α ∈ Π and β ∈ Π, from which it will follow that ΣRS Π, and such that ϕ /∈ Π.

We claim that the pair P = 〈P1, P0〉 =
〈
�−1[Σ],

⌊
�−1[Σ] ∪ {ϕ}

⌋〉
is �-unconnected.

Suppose instead, by reductio, that �−1[Σ] � ϕ,�−1[Σ]. It follows that there are

finite sequences of sentences α1, . . . , αm /∈ �−1[Σ] and β1, . . . , βn ∈ �−1[Σ] such

that α1, . . . , αm ⇒ ϕ, β1, . . . , βn is derivable. Call such sequent Seq. Notice that

αi /∈ �−1[Σ] means that (a) �αi ∈ Σ, for every 1 ≤ i ≤ m, and β1, . . . , βn ∈ �−1[Σ]

means that (b) �βj ∈ Σ, for every 1 ≤ j ≤ n. From Seq, using rule (��) it follows

that �β1, . . . ,�βn,�ϕ ⇒ �α1, . . . ,�αm is also derivable. In view of Prop. 3.4,

from the latter sequent and facts (a) and (b) we may conclude that �ϕ /∈ Σ, which

conflicts with our initial assumption.

Now that we know that the pair P is unconnected, we may use Prop. 2.1 to

extend it to a saturated unconnected pair P � = 〈Π,Π〉. By construction, α ∈ P1

and β, ϕ ∈ P0, so it follows that α ∈ Π and β ∈ Π, and also that ϕ /∈ Π. �
Lemma 5.3 Let Σ be a saturated theory. Then �ϕ ∈ Σ if and only if ϕ /∈ Π for

every saturated theory Π such that ΣRS Π.

Proof. Runs as in the previous result, with the obvious adaptations. �
We define the canonical model MS as the structure 〈FS , VS〉 where FS is the

canonical frame and VS is the valuation defined by:
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VS(p) = {Γ ∈ WS : p ∈ Γ}
In the proof of the following result it will help to work with the non-canonical

measure of sentence complexity given by the function � : L → N, recursively defined

as follows:

�(p) = 0 if p ∈ P
�(ϕ� ψ) = 1 +max{�(ϕ), �(ψ)} if � ∈ {∧,∨}

�(#ϕ) = 1 + �(ϕ) if # ∈ {�,�}
�(#©ϕ) = 2 + �(ϕ) if #© ∈ {�©, �©}

Lemma 5.4 [Canonical Model]

In the canonical model, for any saturated theory Γ and any sentence ϕ:

MS ,Γ � ϕ if and only if ϕ ∈ Γ

Proof. The proof is an induction over �(ϕ). The base case (�(ϕ) = 0) is trivial,

using (id) and the definition of the canonical model. Assume now, by Induction

Hypothesis, that MS ,Γ � ϕ iff ϕ ∈ Γ, for any saturated theory Γ and for every

sentence ϕ such that �(ϕ) < k. We will detail below the ‘non-local’ cases involving

one of the modal negations and one of the restoration connectives.

[�(�ψ) = k] By the definition of satisfaction, we have MS ,Γ � �ψ iff MS ,Δ �� ψ

for some saturated theory Δ such that ΓRS Δ. Since �(�ψ) = �(ψ) + 1, then

�(ψ) < k, thus the Induction Hypothesis applies and allows us to conclude that

MS ,Δ �� ψ iff ψ /∈ Δ. From Lemma 5.2 we know that there is a saturated theory Δ

such that ΓRS Δ and ψ /∈ Δ if and only if �ψ ∈ Γ. Summing up, we may conclude

that MS ,Γ � �ψ iff �ψ ∈ Γ.

[�(�©ψ) = k] Suppose first that �©ψ ∈ Γ. In view of the derivability of �©ψ,�ψ,ψ ⇒
(Prop. 3.1), from Prop. 3.4 we conclude that either ψ /∈ Γ or �ψ /∈ Γ. Given that

both �(ψ) < �(�©ψ) and �(�ψ) < �(�©ψ), the Induction Hypothesis guarantees that

ψ /∈ Γ iff MS ,Γ �� ψ, and also that �ψ /∈ Γ iff MS ,Γ �� �ψ. By the definition of

satisfaction we know that MS ,Γ �� ψ or MS ,Γ �� �ψ if and only if MS ,Γ � �©ψ.

It follows from �©ψ ∈ Γ, thus, that MS ,Γ � �©ψ. For the converse, suppose now

that MS ,Γ � �©ψ. By the definition of satisfaction, the definition of � and the

Induction Hypothesis, we know that (a) �ψ /∈ Γ or (b) ψ /∈ Γ. In case (b), in

view of the derivability of ⇒ ψ, �©ψ (Prop. 3.1), from Prop. 3.4 we conclude that
�©ψ /∈ Γ, that is, �©ψ ∈ Γ; in case (a) the same conclusion follows in view of the

derivability of ⇒ �ψ, �©ψ. �
As usual, from the above lemma we immediately conclude the following:

Proposition 5.5 [Completeness] If Γ |= Δ then Γ � Δ.

Proof. Suppose by contraposition that Γ �� Δ. By Prop. 2.1 there is a closed

unconnected pair 〈Γ�,Δ�〉 that extends 〈�Γ� , �Δ�〉. It follows that Γ� is a saturated

theory and that Δ� = Γ�. By the Canonical Model Lemma, we have MS ,Γ
� � ϕ

iff ϕ ∈ Γ�. Thus, we conclude that Γ� �|= Δ�, and by monotonicity it follows that

Γ �|= Δ. �
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6 Extensions of Kn

In the literature it is common to find the minimal system of normal modal logic

extended by adding new axioms and to see the resulting system shown to be sound

and complete with respect to a class of frames in which the accessibility relation

enjoys certain appropriate properties. As an illustration of how this strategy may

be applied to our systems with negative modalities, we introduce in this section two

systems that extend Kn. The system T n extends Kn by adding the dual axiomatic

rules ⇒ ϕ,�ϕ
(rf1)

and �ϕ, ϕ ⇒ (rf2)
. Adding the axiomatic rules ��ϕ ⇒ ϕ

(sm1)

and ϕ ⇒ ��ϕ
(sm2)

to Kn we define the system Bn. The gcrs �T
n and �B

n correspond,

respectively, to the deductive systems associated to T n and Bn.

Recall that a binary relation R is called reflexive if xRx holds for every x, and

is called symmetric if xRy implies yRx. In what follows we will show that T n

is sound and complete with respect to the class of reflexive frames (i.e., the class

of frames with a reflexive accessibility relation), and similarly for Bn and the class of

symmetric frames.

Proposition 6.1 [Correspondence] Let F = 〈W,R〉 be a frame. Then:

(1.1) R is reflexive only if F � ⇒ ϕ,�ϕ and F � �ϕ, ϕ ⇒
(1.2) R is reflexive if F � ⇒ ϕ,�ϕ or F � �ϕ, ϕ ⇒
(2.1) R is symmetric only if F � ��ϕ ⇒ ϕ and F � ϕ ⇒ ��ϕ

(2.2) R is symmetric if F � ��ϕ ⇒ ϕ or F � ϕ ⇒ ��ϕ

Proof. (1.1) Assume that (i) R is reflexive and suppose that (ii) F �� ⇒ ϕ,�ϕ, for

some sentence ϕ. It follows from (ii) that (iii) M0, w �� ϕ and (iv) M0, w �� �ϕ

for some model M0 of F and some w in M0. From (i) and (iv), the definition

of valuation gives us (v) M0, w � ϕ. This contradicts (iii). Suppose now that

F �� �ϕ, ϕ ⇒. Then, there are a model M1 and a world u such that M1, u � ϕ

and M1, u � �ϕ. From the latter, invoking the reflexivity of R, we conclude that

M1, u �� ϕ. Contradiction.

(1.2) Suppose that F is not reflexive. Then, there is a worldm such that 〈m,m〉 /∈ R.

Let C be the set {z : 〈m, z〉 ∈ R}. Let p be a propositional variable and let

M2 = 〈F , V 〉 be a model such that V (p) = C. Obviously m /∈ V (p), thus M2

falsifies p at m. Moreover, by construction of C, we have x ∈ V (p) for every x such

that 〈m,x〉 ∈ R. By the definition of valuation, M2 falsifies �p at m. Thus, M2

falsifies ⇒ p,�p at m. If we enrich M2 by a propositional variable q such that

V (q) = C, we see that M2 falsifies �q, q ⇒ at m.

(2.1) Assume that R is symmetric. Suppose that F �� ��ϕ ⇒ ϕ. There is thus a

model M0 and a state w such that (i) M0, w � ��ϕ and (ii) M0, w �� ϕ. From (i),

there must be some z such that (iii) 〈w, z〉 ∈ R and (iv) M0, z �� �ϕ. The symmetry

of R allows us to conclude (v) 〈z, w〉 ∈ R from (iii), and from (iv) and (v) it follows

that M0, w � ϕ. This contradicts (ii). If we suppose that F �� ϕ ⇒ ��ϕ we reach

a contradiction through a similar line of reasoning.
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(2.2) Suppose that R is not symmetric. Then there are m,n such that 〈m,n〉 ∈ R

yet 〈n,m〉 /∈ R. Let C be the set {z : 〈n, z〉 ∈ R}. Let p, q be propositional variables

and let M2 = 〈F , V 〉 be a model where V (p) = C and V (q) = C. Since m /∈ V (p),

then M2 falsifies p at m. Given that, for arbitrary z, we have that 〈n, z〉 ∈ R

implies z ∈ V (p), we conclude by the definition of valuation that M2 falsifies �p

at n. Once 〈m,n〉 ∈ R, then M2 satisfies ��p at m. Thus, M2 falsifies ��p ⇒ p

at m. Similarly, M2 also falsifies q ⇒ ��q at m. �
Soundness of T n and Bn are corollaries of the ‘only-if’ part of Prop. 6.1. To

illustrate some differences between those systems we invite the reader to use rules

(sm1) and (sm2) of Bn, on the one hand, and the soundness of T n, on the other

hand, to check that:

Proposition 6.2 Sequents �©ϕ ⇒ �©�ϕ and �©�ϕ ⇒ �©ϕ are derivable in Bn

but not in T n.

It might be interesting to contrast the latter result concerning the propagation of

consistency through the paraconsistent negation and the dual propagation of de-

terminedness through the paracomplete negation to the earlier general propagation

results in Prop. 4.3.

Completeness will be attained next with the help of the following auxiliary re-

sults.

Lemma 6.3 Assume the theories Γa and Γb to be closed with respect to �T
n and �B

n .

Then:

(i) In T n we have that ϕ ∨�ϕ ∈ Γa.

(ii) In T n we have that ϕ ∧�ϕ /∈ Γa.

(iii) In Bn we have that ��ϕ ∈ Γb implies ϕ ∈ Γb.

(iv) In Bn we have that ϕ ∈ Γb implies ��ϕ ∈ Γb.

Proof. The first two facts follow from closure of Γa and the obvious derivability of

⇒ ϕ ∨ �ϕ and ϕ ∧ �ϕ ⇒ in T n, in view of axiomatic rules (rf1) and (rf2). The

remaining facts are easy consequences of closure of Γb and the axiomatic rules (sm1)

and (sm2). �
We should guarantee that the canonical construction yields the appropriate prop-

erties:

Proposition 6.4 [Canonical Systems] The systems T n and Bn are canonical.

Proof. For T n we have to show, for the canonical frame FS , that 〈Γ,Γ〉 ∈ RS for

all Γ ∈ WS , that is, �−1[Γ] ⊆ Γ ⊆ �−1[Γ]. Suppose that ϕ ∈ �−1[Γ]. Then, �ϕ /∈ Γ.

Since Γ is a closed theory and, by Lemma 6.3(i) and Prop. 2.4(i), ϕ ∨ �ϕ ∈ Γ, it

follows that ϕ ∈ Γ. To show that Γ ⊆ �−1[Γ] the reasoning is similar, in view of

Lemma 6.3(ii) and Prop. 2.4(ii).

For Bn assume that Γ,Δ are closed theories such that 〈Γ,Δ〉 ∈ RS , that is,

�−1[Γ] ⊆ Δ ⊆ �−1[Γ]. If ϕ ∈ �−1[Δ], then �ϕ /∈ Δ. From this we have that
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�ϕ /∈ �−1[Γ], therefore ��ϕ ∈ Γ. By Lemma 6.3(iii) we conclude that ϕ ∈ Γ.

Assume now that ϕ ∈ Γ. By Lemma 6.3(iv), ��ϕ ∈ Γ. It follows that �ϕ /∈ �[Γ].

Since Δ ⊆ �−1[Γ], then �ϕ /∈ Δ, that is, ϕ ∈ �−1[Δ]. Thus, �−1[Δ] ⊆ Γ ⊆ �−1[Δ],

that is 〈Δ,Γ〉 ∈ RS . �
Let |=T be the entailment relation defined with respect to the class of all reflexive

frames, and |=B be defined for the class of all symmetric frames. An immediate

consequence of Prop. 6.4, proven exactly as in Prop. 5.5, is:

Corollary 6.5 [Completeness for X ∈ {T ,B}] For every Γ ∪Δ ⊆ L:

Γ |=X Δ implies Γ �X
n Δ

Having established, for both T n and Bn, that all inferences verified semantically

are also derivable in the next section we will study the role of these stronger modal

systems in helping to more naturally restore inferences of some standard logical

systems by means of Derivability Adjustment Theorems.

7 Recovering the lost perfection

Let ∼ be a unary negation symbol. Some standard rules for negation that could be

added to the system DL are:

A,ϕ ⇒ B
(/∼)

A ⇒ ∼ϕ,B

A ⇒ ϕ,B
(∼/)

A,∼ϕ ⇒ B

It is easy to see that such rules would characterize ∼ as what we have, in Section 2,

called an ordinary negation, respecting both statements (Cns) and (Dtm). Legiti-

mate non-classical negations, nonetheless, while obviously failing either consistency

or determinedness, may still respect other typical rules of negation. We list be-

low, in particular, some standard sequent rules involving negation and the standard

connectives modeled by a bounded distributive lattice:

A,∼ϕ,∼ψ ⇒ B
(dm1.1)

A,∼(ϕ ∨ ψ) ⇒ B

A ⇒ ∼ϕ,B A ⇒ ∼ψ,B
(dm1.2)

A ⇒ ∼(ϕ ∨ ψ), B

A ⇒ ∼ϕ,∼ψ,B
(dm2.1)

A ⇒ ∼(ϕ ∧ ψ), B

A,∼ϕ ⇒ B A,∼ψ ⇒ B
(dm2.2)

A,∼(ϕ ∧ ψ) ⇒ B

A ⇒ ϕ,B
(dm3.1)

A ⇒ ∼∼ϕ,B

A,ϕ ⇒ B
(dm3.2)

A,∼∼ϕ ⇒ B

(dm4.1)
A,∼� ⇒ B

(dm4.2)
A ⇒ ∼⊥, B

We will discuss in this section which of the above rules are derivable and which of

them may be somehow recovered from the viewpoint of each of the sequent systems

studied in the previous sections.

Recall that our language L contains two indigenous symbols for negation, namely,

� and �. For those negations it is not hard to check that:
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Proposition 7.1 In Kn:

(i) Rules (dm1.1) and (dm2.1) are derivable for both � and �.

(ii) Rules (dm1.2) and (dm4.1) are derivable for �.

(iii) Rules (dm2.2) and (dm4.2) are derivable for �.

(iv) Rule (dm1.2) fails for �, and rule (dm2.2) fails for �.

(v) Rules (dm3.1) fails for � and rule (dm3.2) fails for �.

In T n:

(vi) Rule (/∼) is derivable for � and rule (∼/) is derivable for �.

In Bn:

(vii) Rule (dm3.1) is derivable for � and rule (dm3.2) is derivable for �.

Moreover, in either T n or Bn (thus, also in Kn):

(viii) Rule (dm3.2) fails for � and rule (dm3.1) fails for �.

(ix) Rule (∼/) fails for � and rule (/∼) fails for �.

Proof. Items (i), (ii) and (iii) follow directly from Prop. 3.2(ii) and the second

half of Prop. 2.5. Items (vi) and (vii) follow from the characterizing axioms of T n

and Bn.

To check the remaining items the completeness results in Prop. 5.5 and Corol. 6.5

come in handy. A simple strategy to show that some instance of a given schematic

rule must fail involves falsifying some sequent that is derivable from that rule. On

what concerns item (viii), for example, notice that ∼∼p ⇒ p would obviously be

derivable from (dm3.2), for any atomic sentence p. Yet, to falsify the sequent

��p ⇒ p it suffices to consider a frame F1 such that W1 = {u, v} and R1 is the

total (thus reflexive and symmetric) relation W1×W1, and consider a model M such

that V (p) = {v}: note indeed that M, v � p, and uR1v and vR1v imply M, u �� �p

and M, v �� �p, and thus M, u � ��p given that uR1x implies x ∈ {u, v}, while
obviously M, u �� p. Analogously, p ⇒ ∼∼p would be derivable from (dm3.1), yet

in the model just considered we have M, v � p and M, v �� ��p, thus falsifying

the sequent p ⇒ ��p.

For item (iv), consider a frame F2 whereW2 = {u, v, w} andR2 = {〈u, v〉, 〈u,w〉},
and a model M′ in which V ′(p) = {v} and V ′(q) = {w}, for atomic sentences p

and q; this is indeed a model that witnesses the failure of �(p ∧ q) |= (�p ∨ �q)

and the failure of �p∧�q |= �(p∨ q). For item (v) one might consider a frame F2

such that W2 = {u, v} and R2 = {〈u, v〉}, and consider a model M′′ such that

V ′′(p) = {u} and V ′′(q) = ∅.

At last, on what concerns item (ix), note that the proof of Prop. 4.2 still applies

unchanged. �
The result in Prop. 7.1(ix) should come as no surprise: As shown in [14], with

the exception of degenerate cases, normal modal logics based on � are paracomplete

and modal logics based on � are paraconsistent. It is interesting to call attention,
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though, to a particular byproduct of the proof of Prop. 7.1(viii): the counter-models

presented to ��p |= p and to p |= ��p are based on equivalence relations, and so

one should not expect these two inferences to be valid for any of the usual classes

of frames characterizing modal logics weaker than S5 — in other words, one might

say that the intuitionistic-like negation has indeed a good reason to fail double

negation elimination, and analogously the paraconsistent negation may reasonably

be expected to fail double negation introduction.

Notice now that the rules that are shown to fail in the previous proposition may

often be restored in one way or another, with the help of the connectives expressing

consistency and determinedness in our rich modal language. If, for instance, the

following restored versions of our missing sequent rules turn out to be derivable,

this will help us in finding conditions under which one can recover some of the lost

inferences:

A,ϕ ⇒ B
(/�)◦

A ⇒ �ϕ, �©ϕ,B

A ⇒ ϕ,B
(�/)◦

A, �©ϕ,�ϕ ⇒ B

A ⇒ �ϕ,B A ⇒ �ψ,B
(dm1.2)◦

A, �©ϕ, �©ψ ⇒ �(ϕ ∨ ψ), �©(ϕ ∨ ψ), B

A,�ϕ ⇒ B A,�ψ ⇒ B
(dm2.2)◦

A, �©(ϕ ∧ ψ),�(ϕ ∧ ψ) ⇒ �©ϕ, �©ψ,B

A ⇒ ϕ,B
(dm3.1)◦

A, �©ϕ ⇒ ��ϕ, �©�ϕ,B

A,ϕ ⇒ B
(dm3.2)◦

A, �©�ϕ,��ϕ ⇒ �©ϕ,B

Rules (/�)◦ and (�/)◦ are obviously derivable from the basic rules (/�©) and (�©/).

The remaining rules above may be checked with the help of the following sequents:

Proposition 7.2 In Kn the following are derivable:

(SD12) �©ϕ, �©ψ,�ϕ,�ψ ⇒ �(ϕ ∨ ψ), �©(ϕ ∨ ψ)

(SD22) �©(ϕ ∧ ψ),�(ϕ ∧ ψ) ⇒ �ϕ,�ψ, �©ϕ, �©ψ

(SD31) �©ϕ, ϕ ⇒ ��ϕ, �©�ϕ

(SD32) �©�ϕ,��ϕ ⇒ ϕ, �©ϕ

Proof. For (SD12), suppose by reductio that there is a model M with a world w in

which �©ϕ, �©ψ,�ϕ,�ψ are all satisfied and �(ϕ ∨ ψ), �©(ϕ ∨ ψ) are both falsified.

It follows from the joint satisfaction of �©ϕ and �ϕ at w that ϕ must by falsified

at w. The same reasoning applies to ψ, and thus we may conclude that ϕ ∨ ψ

is falsified at w. From the latter, given that �©(ϕ ∨ ψ) is also falsified at w, we

conclude that ϕ ∨ ψ is falsified indeed at every world accessible to w. Note now

that the satisfaction of �ϕ at w demands in particular the existence of a world w′

accessible to w. Given that �(ϕ ∨ ψ) is falsified at w, we must also conclude that

ϕ ∨ ψ is satisfied at w′. We reach thus a contradiction.

For (SD31), suppose by reductio that in the world w of a model M the sentences
�©ϕ and ϕ are both satisfied (forcing thereby ϕ to be satisfied at any world accessible
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to w), while the sentences ��ϕ and �©�ϕ are both falsified (forcing ϕ to be falsified

at any world accessible to w). But to falsify ��ϕ at w there must first of all exist

some world w′ accessible from w. Contradiction.

Items (SD22) and (SD32) are proved similarly. In all cases, completeness may

be used in the end to transfer the semantically verified results to facts about the

proof formalism. �
It is instructive to contrast the latter result to what we had learned from items (iv)

and (v) from Prop. 7.1.

Instead of axiomatizing Classical Logic (CL) simply by adding rules (/∼) and

(∼/) to DL, we will here axiomatize it in the language L by adding the restored rules

(/�)◦ and (�/)◦ to DL, plus the two following rules: ⇒ �©ϕ
(cns)

and �©ϕ ⇒ (dtm)
.

The associated gcr will be referred to as �cl. The intuition behind such system is

precisely that CL is to be obtained by explicitly imposing a universal consistency

assumption as well as a universal determinedness assumption.

At this point we can finally state:

Proposition 7.3 [Derivability Adjustment Theorem] Let Π#
∼ be the result of uni-

formly substituting each occurrence of the symbol ∼ in each sentence of Π by an

occurrence of a unary symbol # ∈ {�,�}. Then, inferences from CL may be recov-

ered from T n in the following way:

Γ#
∼ �cl Δ

#
∼ iff there are finite sets Σc,Σd ⊆ L such that �©[Σc],Γ �T

n Δ, �©[Σd]

Furthermore, Σc may be constrained above to a finite collection of sub-sentences

of Γ, and Σd may be constrained to a finite collection of sub-sentences of Δ.

Proof. For the right-to-left direction, first one should notice that all the rules

of T n are classically valid. Any derivation constructed in T n may then in principle

be reproduced as a derivation associated to the gcr �cl, any occurrence of a sentence

of the form �©ϕ on the left-hand side of a given sequent may be eliminated by cut

using the axiomatic rule (cns), and any occurrence of a sentence of the form �©ϕ on

the right-hand side of a given sequent may be eliminated by cut using the axiomatic

rule (dtm).

For the left-to-right direction, one may proceed by induction on the structure

of the derivations. The base case (0-step derivations) is trivial, and it suffices to

take Σc = Σd = ∅. The idea for the remainder of the construction is to collect con-

sistency assumptions and determinedness assumptions on the fly: for each further

step of a CL-derivation intended to witness the fact that A#
∼ �cl B

#
∼ , for appropri-

ate finite sets A ⊆ Γ and B ⊆ Δ, check whether a rule has been used that does

not belong to the common core of the sequent systems for CL and for T n, in that

case, construct the corresponding step in the T n-derivation by using the qualified

versions of the same rules (taking into account Prop. 7.1 and the rules derived with

the help of Prop. 7.2). For a bit more of detail, suppose the construction of the

classical derivation has proceeded by applying rules (dm1.1) or rule (dm2.1) at a

given derivation step. Then, according to Prop. 7.1(i), exactly the same derivation
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step may be taken in Kn (thus also in T n). Similarly, according to items (ii) and

(iii) of Prop. 7.1, the same steps may be taken in Kn (or in T n) in case (dm1.2) is

used with respect to � or in case (dm2.2) is used with respect to �. Now, if (dm1.2)

is expected to be used with respect to �, then (dm1.2)◦ should be used instead, and

if (dm2.2) is expected to be used with respect to �, then (dm2.2)◦ should be used

instead — notice that in both cases there will be consistency and determinedness

assumptions added to the contexts at the root of the derivation, that is, there will be

sentences added to Σc and to Σd. Finally, notice that any derivation step using rule

(/∼) in a classical derivation may still be taken in T n with respect to �, in view of

Prop. 7.1(vi); with respect to � one should use the derivable rule (/�)◦ instead —

and in this case an appropriate sentence will be added to Σd. Dually, any classical

derivation step using rule (∼/) may be reproduced in T n with respect to �, or be

replaced, with respect to �, by a step making use of rule (�/)◦, demanding the

addition of an appropriate sentence to Σc. �
The above result could alternatively be checked by using the appropriate con-

sistency and determinedness assumptions to semantically constrain the T n-models

in order to emulate the corresponding CL-models.

In the case of our basic system Kn, a counterpart for the above result would not

try to recover all classical inferences. The natural candidate, in that case, would

be a weaker system, which we briefly mention. Let DM be the system obtained

by adding rules (dm1.1), (dm1.2), (dm2.1) and (dm2.2) to system DL, let DMi be

DM plus (dm3.1), and let DMe be DM plus (dm3.2). Adding both (dm3.1) and

(dm3.2) to DM characterizes the so-called De Morgan Logic (cf. [12]). Now, other

Derivability Adjustment Theorems are to be expected if we fix our attention on the

relation between DMi and the paracomplete fragment of Kn, or on the relation

between DMe and the paraconsistent fragment of Kn. Furthermore, if Bn is used

instead of T n then less consistency and determinedness assumptions will need to be

collected, as iterated negation is more well-behaved by the very design of Bn.

A fully detailed exploration of the latter results on derivability adjustment is

left as matter for a future study.

8 Closing remarks

We have started our study from the logic underlying bounded distributive lattices

and investigated in this paper the logic Kn that upgrades the former by adding a

modal paraconsistent negation and a modal paracomplete negation, and also adds

modal operators internalizing appropriate notions of consistency and determined-

ness into the object-language level. We have characterized the properties of our

connectives from an abstract viewpoint, proposed a sequent-style proof formalism

for the minimal normal system enjoying such properties in our chosen language,

and proven its completeness with respect to the expected standard kripke-like se-

mantics. We have also considered two extensions of our basic system, adding ax-

ioms connected to versions of excluded middle, pseudo-scotus and forms of double

negation manipulation, and we have discussed how these systems allow one to re-
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cover the inferences of some logics lying in between De Morgan Logic and Classical

Logic. Studying other extensions should be instigating inasmuch as they are at-

tained by adding axioms that express intuitively important properties of negation,

such as the ‘controllable forms’ of consistency and of determinedness expressed by

�ϕ,�(�ϕ) ⇒ and ⇒ �(�ϕ),�ϕ, which are valid in euclidean frames. Axioms

that involve the interaction between the two non-classical negations are also at-

tractive, such as �ϕ ⇒ �ϕ, valid in functional frames, or as �ϕ,�(�ϕ) ⇒ and

⇒ �(�ϕ),�ϕ, valid in transitive frames, or as ��ϕ ⇒ ��ϕ, valid in confluent

(a.k.a. Church-Rosser) frames.

Nonetheless, in producing deductive extensions of the basic system without ex-

tending its language, the standard kripke semantics which we have employed has a

somewhat serious shortcoming. Indeed, even though we have thought of our para-

complete negation as independent of our paraconsistent negation, both T n and Bn

were built by adding not just one but two ‘dual’ axioms. It would have seemed more

appropriate, however, to devise complete systems in which each one of those axioms

could be introduced in separate. An obvious alternative to deal with such difficulty

related to frame incompleteness is simply to change the semantical framework. Such

a strategy is common in the literature on systems of intuitionistic modal logics, in

which a second relation (a quasi ordering) is added to the frame, coupled with the

consideration of truth-increasing valuations. This seems very well-motivated, and

would allow one to prove in particular that truth is hereditarily preserved towards

the future, according to the order introduced by the second relation, and falsity is

hereditarily preserved towards the past, according to the same order (for the posi-

tive case, cf. [7]; for an application to the case of our modal negations, cf. [11]). The

additional advantage of this alternative framework, besides bringing the heredity

conditions to the fore, is that it allows one to add each axiom in separate, and

continue thinking thus about the two non-classical negations as really independent

of each other. However, that strategy cannot be extended without modification to

our richer language. The reason is simple: the restoration connectives were in a

sense designed to fail the heredity conditions, as they allow one to recover standard

classic-like models when they are applied to sentences of a given theory. It rests as

a challenge, thus, to identify the right semantic framework in which the study of ex-

tensions of our system Kn should be done. For one thing, from [14] we already know

that if we add a classical implication connective → to Kn, any normal modal logic

may be rewritten in the minimal language containing just such → and the para-

consistent negation �; in this case indeed the usual classical connectives, the usual

box-plus and diamond-plus connectives, the dual paracomplete negation �, and

the restoration connectives dealing with �-consistency and with �-determinedness

may all be explicitly defined. There is also a rich literature (important references

include [9,18]) concerning the systems obtained by the addition of an intuitionistic

implication instead of a classical implication — for those systems it is customary

to consider interpretation structures containing two accessibility relations, one to

deal with implication and another one to deal with the non-classical negations. In

the present study we have concentrated however on the implicationless fragment of
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these logics, to which the restoration connectives were explicitly added in order to

internalize the corresponding useful meta-theoretical concepts.

Another line of research that we see as potentially fruitful is the investigation

of matters related to variegated versions of our Derivability Adjustment Theorems,

especially from a semantical perspective. We note that there is a modular way of

connecting ‘quasi canonical sequent rules’ such as the main ones we have proposed

in this paper to restrictions concerning the so-called ‘non-deterministic semantics’

(cf. [1,2]). From that viewpoint, one may see how De Morgan Logic gets associated

to four truth-values, where conjunction and disjunction are interpreted as in Dunn-

Belnap matrices, and its negation (both paraconsistent and paracomplete) is defined

according to the so-called truth-order. Furthermore, by adding rule (/∼) a further

determinization is produced, and only three truth-values are left, as negation ceases

to be paracomplete; an analogous phenomenon happens if (∼/) is added, and nega-

tion ceases to be paraconsistent; if both rules are added, Classical Logic is obtained.

Now, if one considers DM from the start, a four-valued semantics is still available,

but negation is non-deterministic: there are two possibilities of output for each of the

four inputs. Such negation may be partially determinized by adding rules (dm3.1)

or (dm3.2); adding both rules would result in the full determinization that corre-

sponds to De Morgan Logic. Our non-classical negations go the other way round, by

deleting some De Morgan rules, (dm1.2) or (dm2.2). The result of performing this

deletion over DM is that disjunction will also start to behave non-deterministically.

Such modular approach may be easily extended to include the consistency and the

determinedness operators, which will also be (non-deterministically) interpretable

over the already mentioned four truth-values (an automated mechanism for uncov-

ering the semantic aspects of such paraconsistent fragments of DM was launched

in [8]). Our Derivability Adjustment Theorems could then be thought of as ways of

taming non-classicality and controlling non-determinism from a logical viewpoint.

Some of the sequent rules that we have studied are more important than others.

Such is the case of the interaction rules (��) and (��), which could be thought

of as a sort of multiple-conclusion sequent calculus contextual generalization of the

so-called ‘Becker’s Rule’, from the traditional modal literature, adapted to the case

of negative normal modalities. To the best of our knowledge, they seem not to

have been proposed before. It is worth noting that by the addition of the usual

sequent rules for classical implication, our system Kn is upgraded into a modal

version of the logic of formal inconsistency BK (see [3]), obtained precisely by the

addition of the already mentioned interaction rules (so, to be sure, Kn plus classical

implication coincides with BK plus interaction rules). Such interaction rules are

indeed absolutely instrumental in warranting the modal character of our systems

(and, in particular, in guaranteeing that we are dealing with systems respecting

the standard replacement property), and it seems worth studying the classes of

paraconsistent and paracomplete logics that lend themselves in a natural way to

reasonable extensions obtained by the addition of such rules. In a future study

we will also show how sequent systems such as those studied in the present paper

may be seen as particular examples of the ‘Basic Sequent Systems’ studied in [4].
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In that paper, the authors have shown how to provide kripke semantics to such

kinds of systems in a way so as to allow one to semantically obtain confirmations

of important proof-theoretic properties such as cut-admissibility and analyticity.

In showing that the mentioned approach indeed applies to our systems, we will

guarantee that one can count on such proof-theoretic properties, provide alternative

completeness proofs and allow for a smoother extension of our systems to normal

systems characterized by other important classes of frames.
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(Beograd) (N.S.), 35(49):3–14, 1984.

[10] J. Michael Dunn. Positive modal logic. Studia Logica, 55(2):301–317, 1995.

[11] J. Michael Dunn and Chunlai Zhou. Negation in the context of gaggle theory. Studia Logica, 80(2):235–
264, 2005.

[12] Josep M. Font. Belnap’s four-valued logic and De Morgan lattices. Logic Journal of the IGPL, 5(3):1–
29, 1997.

[13] Lloyd Humberstone. The Connectives. The MIT Press, 2011.

[14] João Marcos. Nearly every normal modal logic is paranormal. Logique et Analyse, 48(189-192):279–300,
2005.

[15] João Marcos. On negation: Pure local rules. Journal of Applied Logic, 3(1):185–219, 2005.

[16] Greg Restall. Combining possibilities and negations. Studia Logica, 59(1):121–141, 1997.

[17] Krister Segerberg. Classical Propositional Operators: An exercise in the foundations of logic, volume 5
of Oxford Logic Guides. Clarendon Press, Oxford, 1982.

[18] Dimiter Vakarelov. Consistency, completeness and negation. In G. Priest, R. Sylvan, and J. Norman,
editors, Paraconsistent Logic: Essays on the inconsistent, pages 328–363. Philosophia Verlag, 1989.

A. Dodó, J. Marcos / Electronic Notes in Theoretical Computer Science 300 (2014) 21–45 45


	Context
	Universal Logic perspective
	Proof-theoretical presentation
	Kripke semantics
	Completeness
	Extensions of Kn
	Recovering the lost perfection
	Closing remarks
	References

