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Abstract
We investigate the combination of fragments of classical logic as a way of conservatively extending a given Boolean logic
by the addition of new connectives, and we precisely characterize the circumstances in which such a combination produces
the corresponding fragment of classical logic over the signature containing connectives from both fragments given as input.
If the thereby produced combined fragment is only incompletely characterized by the components given as input, this means
that connectives from one component need to interact with connectives from the other component, giving rise to interaction
principles. The main contributions strongly rely on the (well-known) description of the 2-valued clones made by Post, on the
(not sowell-known) axiomatization procedures for 2-valuedmatrices laid out byRautenberg, and onAvron’s non-deterministic
matrices, which have (recently) been used to produce a significant advance on the understanding of the semantics of fibring.

Keywords Combination of logics · Many-valued logics · Clone theory (algebra)

1 Introduction

In what concerns the extensibility of the language of a given
logic by some new connective respecting certain inferential
patterns, one of the main criteria invoked in justifying, grant-
ing intelligibility or acknowledging the legitimacy of such
an extension is the ‘conservativeness restraint.’ According
to such restraint, the addition of a new connective together
with its corresponding characterizing rules should not allow
for novel inferences to arise using exclusively the original
language, involving formulas deprived of such connective.
Arguably, an equally important but much less discussed
criterion involves the possible emergence, through such
extension, of ‘interaction principles’ involving the newly
added connective and other connectives from the original
language extended therewith.

Communicated by C. Noguera.

We thank the anonymous referees for their valuable comments on an
earlier version of this paper.

B João Marcos
jmarcos@dimap.ufrn.br

1 Dep. Mathematics, IST, Universidade de Lisboa,
SQIG–Instituto de Telecomunicações, Lisbon, Portugal

2 Universidade Federal do Rio Grande do Norte, Natal, Brazil

The most common proof formalisms used in the litera-
ture in discussing how rules give meaning to the connectives
they govern, originated from the landmark work of Gentzen
(1934), typically allow for interaction to arise in rather
unexpected ways. For an example, one might recall that
logics containing conjunction and disjunction often have as
algebraic counterparts some variety of lattices or another.
However, the existence of non-distributive lattices does not
seem to be matched in a natural way by logics whose dis-
junction does not distribute over conjunction. Quite to the
contrary, the canonical presentations of the latter connectives
in natural deduction or sequent calculi in general enjoy dis-
tributivity as an artifact that is produced by the very choice
of proof formalisms (cf. Béziau and Coniglio 2011; Hum-
berstone 2015). Excessive interaction might also be held
responsible for ‘collapsing phenomena’ in which two con-
nectives turn out to be indistinguishable when their rules are
put together for the definition of a single logic containing
both connectives. There is, for instance, a well-known debate
in the literature about the presentation of a logic contain-
ing both a classical and an intuitionistic implication (cf. del
Cerro and Herzig 1996). The common arguments according
to which these two implications would necessarily coincide
are, however, based either on the (incorrect) assumption that
the minimal logic that contains two standard implications
enjoys an unrestricted version of the Deduction Metatheo-
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rem, or on some (incidental or artificial) demand for other
meta-properties that are expressed in a Gentzen-style for-
malism (cf. Gabbay 1996;Caleiro andRamos 2007;Coniglio
2007).

The main known mechanisms for combining logics often
differ on how they deal with conservativeness and interac-
tion. Among such combination mechanisms, fibring fares
well on both fronts: Unintended interaction is unlikely to
arise through fibring, and the fibring of two logics contain-
ing no quasi theorems (formulas that follow fromwhatsoever
non-empty set of premises) is always conservative over each
component (cf. Marcelino and Caleiro 2017). Within the
scope of such a combination mechanism, the ideas concern-
ing the addition of a new connective to a given logic can be
made clear and distinct, and the related questions may be
given precise answers. It is worth noting, in particular, that
the smallest logic that conservatively extends both the ‘logic
of conjunction’ and the ‘logic of disjunction’ is not distribu-
tive (cf. Marcelino and Caleiro 2017), and also noting that
the smallest logic that conservatively extends both the logics
of classical implication and of intuitionistic implication does
not actually necessitate the collapse between the latter con-
nectives (cf. Caleiro and Ramos 2007). In fact, the results in
the present paper imply that it is even plausible to have two
non-collapsing copies of classical implication cohabiting the
same logic. In both the above-mentioned examples, and in
many others, the corresponding joint fragments of classical
logic can be recovered by the addition of inference rules cap-
turing the emerging interaction principles.

A neat characterization of fibring is given by way of
Hilbert calculi: The combination of two logics, each one
characterized by a certain set of inference rules, is produced
by the union of these sets of rules. In contrast—and in a
sense precisely for being so frugal on what concerns interac-
tion principles—fibring resisted admitting a straightforward
semantics (see Caleiro et al. 2005; Carnielli et al. 2008 for an
overview). Indeed, among other phenomena to be discussed
in the present contribution, it is worth noting that one could
very well happen to fibre the logics of two connectives with
2-valued semantics and end up giving origin to a logicwith no
finite-valued semantics whatsoever, even if non-determinism
were allowed. Nonetheless, after an important theoretical
advance contributed by Marcelino and Caleiro (2017), we
now know that a semantics for disjoint fibring may be given
through a powerful and elegant technology that makes use
of non-deterministic semantics. This technology is applied
in the present paper to the combination of fragments of clas-
sical logic, as a way of illustrating how rich is the problem
that the new semantics allows solving.

The paper is organized as follows. In Sect. 2, we recall
a number of necessary definitions and facts regarding log-
ics, their semantics and axiomatizations. In particular, we
introduce logical matrices and Nmatrices, as well as some

important properties and operations on them. We put special
emphasis on classical logic and on Post’s characterization of
Boolean clones. We also recall the essential mechanism of
fibring, and we prove some useful results about fibred log-
ics and their derived connectives. Several fundamental facts
about disjoint fibrings of fragments of classical logic and the
characterizations of the resulting logics are then proved in
Sect. 3, along with several illustrative examples. The gen-
eral plan draws to a close, in Sect. 4, by proving the main
announced results concerning the combination of fragments
of classical logic and by a recollection of what has been
accomplished along theway toward attaining the stated goals.
This is followed in Sect. 5 by some pointers to directions for
future research.

2 Preliminaries

This section contains the main definitions, fixes the notation
for the rest of the paper, recalls several important notions and
well-known results, makes some remarks and presents a few
new simple and useful facts.

2.1 Syntax

A propositional signature � is a family {�(k)}k∈N of sets,
where each �(k) contains the k-place connectives of �. To
simplify notation, we express the fact that © ∈ �(k) for
some k ∈ N by simply writing © ∈ �, and we write
�1 ∪ �2 (resp., �1 ∩ �2) to denote the signature � such
that �(k) = �

(k)
1 ∪ �

(k)
2 (resp., �(k) = �

(k)
1 ∩ �

(k)
2 ) for all

k ∈ N. We also write �1 ⊆ �2 when �
(k)
1 ⊆ �

(k)
2 for all

k ∈ N. The signatures�1 and�2 are said to be disjoint when
�1∩�2 = ∅. The language L�(P) is the carrier of the abso-
lutely free �-algebra generated over a given set of sentential
variables P . Elements of L�(P) are called formulas. Given a
formula ϕ ∈ L�(P), we denote by var(ϕ) (resp. sub(ϕ)) the
set of variables (resp. subformulas) of ϕ, recursively defined
as usual; the extension of var and sub from formulas to sets
thereof is defined as one would expect. We say that two
(sets of) formulas share no variables if their underlying sets
of variables are disjoint. If ϕ /∈ P , we say that ϕ is com-
pound, and we denote by head(ϕ) its outermost connective.
As usual, given a 1-place connective ©, we define the pos-
sible nestings of © as ©0 p := p and ©i+1 p := ©(©i p).
When appropriate, given any symbol s, we will use sk to
denote a sequence of k consecutive occurrences of s.

A substitution is a mapping σ : P −→ L�(P), uniquely
extendable into an endomorphism ·σ : L�(P) −→ L�(P).
Given � ⊆ L�(P), we denote by �σ the set {ϕσ : ϕ ∈ �}.
We take a k-place derived connective λp1 . . . pk . ϕ, also
denoted by ϕ(p1, . . . , pk) when convenient, to be a for-

123



Combining fragments of classical logic: When are interaction principles needed?

mula ϕ ∈ L�({p1, . . . , pk}). Given two signatures� and�,
a (homophonic) translation t : � −→ L�(P) is a mapping
that assigns to each k-place connective ξ ∈ � a formula
t(ξ) ∈ L�({p1, . . . , pk}) (understood as a derived k-place
connective λp1 . . . pk . t(ξ)). Such translation extends natu-
rally into a function t : L�(P) −→ L�(P), defined by
setting t(p) := p for p ∈ P , and t(ξ(ψ1, . . . , ψk)) :=
t(ξ)(t(ψ1), . . . , t(ψk)) for ξ ∈ �(k). We use id� : � −→
L�(P) to refer to the identity translation defined by set-
ting id�(©) := ©(p1, . . . , pk) for each k-place connective
© ∈ �. Given disjoint signatures �1 and �2, and transla-
tions t1 : �1 −→ L�1(P) and t2 : �2 −→ L�2(P), we use
t1 ∪ t2 : �1 ∪ �2 −→ L�1∪�2(P) to denote their union.

Given signatures � ⊆ �, let X� := {xϕ : ϕ ∈
L�(P)\P and head(ϕ) /∈ �} be a new set of sentential
variables. Using X� to see as ‘monoliths’ the formulas
from � whose heads are alien to �, we can represent in
L�(P ∪ X�) the �-skeleton of any formula ϕ ∈ L�(P)

by setting skel�(p) := p if p ∈ P , and setting for each
connective © ∈ �(k):

skel�(©(ϕ1, . . . , ϕk))

:=
{
©(skel�(ϕ1), . . . , skel�(ϕk)), if © ∈ �

x©(ϕ1,...,ϕk ), otherwise.

It is handy to note here that sub(skel�(ϕ)) ⊆ skel�(sub(ϕ)).
This implies, given � ⊆ L�(P), that skel�(�) is closed
under subformulas whenever� is closed under subformulas.

2.2 Logics

A logic L is a structure 〈�,�〉, where � is a signature and
� ⊆ 2L�(P) × L�(P) is a substitution-invariant (Tarskian)
consequence relation over L�(P). The set � ⊆ L�(P) is
called an L-theory whenever � is closed under �, that is,
�� := {ϕ : � � ϕ} ⊆ �. We obtain an equivalence relation

�L on sets of formulas of L by defining �,
 ⊆ L�(P)

as (logically) equivalent when �� = 
�. An L-theory ��
is said to be trivial if (�σ )� = L�(P) for every substitution
σ : P −→ L�(P), and otherwise said to be non-trivial.
Two connectives ©1,©2 ∈ �(k) for some k ∈ N are said
to be indistinguishable in a logic L = 〈�,�〉 provided that
ϕ 
�L t(ϕ) for every ϕ ∈ L�(P), where t : � → L�(P) is
the translation that replaces every occurrence of ©1 with ©2,
that is, t(©1) = ©2(p1, . . . , pk) and t(©) = ©(p1, . . . , p j )

for every connective © ∈ �( j)\{©1} and every j ∈ N.
Let ϕ(p1, . . . , pk) be some k-place derived connective. If

ϕ(p1, . . . , pk) � p j for some 1 ≤ j ≤ k, we say that ϕ is
projective on its j th component. Such a derived connective
is called a projection-conjunction if it is logically equiva-
lent to its set of projective components, i.e., if there is some
J ⊆ {1, 2, . . . , k} such that (i) ϕ(p1, . . . , pk) � p j for every

j ∈ J and (ii) {p j : j ∈ J } � ϕ(p1, . . . , pk). In case
ϕ(p1, . . . , pk) � pk+1, we say that ϕ is bottom-like. We will
call ϕ top-like if ∅ � ϕ(p1, . . . , pk). Do note that the latter
is a particular case of projection-conjunction (take J = ∅).
Another particular case of projection-conjunction is given by
the affirmation connectiveλp1. p1. A derived connective that
is neither top-like nor bottom-like will here be called signifi-
cant; if in addition it is not a projection-conjunction, we will
call it very significant. Note that failing to be very significant
means being either bottom-like or a projection-conjunction.
In case p1, . . . , pk � ϕ(p1, . . . , pk), we will say that ϕ is
truth-preserving. Obviously, all projection-conjunctions are
truth-preserving.

2.3 Hilbert calculi

A Hilbert calculus H is a structure 〈�, R〉 where � is a
signature, and R ⊆ 2L�(P) × L�(P) is a set of so-called
inference rules. Given 〈
,ψ〉 ∈ R, we refer to 
 as the set
of premises and to ψ as the conclusion of the rule. When 


is empty, ψ is dubbed an axiom. An inference rule 〈
,ψ〉 ∈
R is often denoted by 


ψ
, or simply by ψ1 ... ψn

ψ
if 
 =

{ψ1, . . . , ψn} is finite, or by ψ
if 
 = ∅.

It is well known that a Hilbert calculus H := 〈�, R〉
induces a logic LH := 〈�,�H 〉 such that, for each � ⊆
L�(P), � �H is the least set that contains � and is closed
under all applications of instances of the inference rules
in R, that is, if 


ψ
∈ R and σ : P −→ L�(P) is such

that 
σ ⊆ � �H , then ψσ ∈ � �H . Such definition of a
logic induced by a Hilbert calculus is meant to capture the
‘schematic character’ of inference rules.

2.4 Logical matrices and Nmatrices

An Nmatrix M over a signature � is a structure 〈V , D, ·M〉
where1 V is a set (of truth-values), D ⊆ V is the set of
designated values and, for each © ∈ �(k), ·M gives the inter-
pretation ©M : V k −→ 2V \{∅} of © in M. We use U to
refer to the set V \D of undesignated values. Henceforth, we
will assume that we are dealing only with non-degenerate
Nmatrices, in the sense that D �= ∅ and U �= ∅. Clearly,
such restriction will only leave out a couple of uninteresting
logics. When D is a singleton, we will say that M is unitary.
The traditional, and deterministic, notion of (logical) matrix
is recovered by considering Nmatrices for which the image
of every tuple of values through ©M is a singleton, in which
case we often drop the braces from the set notation.

A valuation over M is a mapping v : L�(P) −→ V
such that for each © ∈ �(k) we have v(©(ϕ1, . . . , ϕn)) ∈
©M(v(ϕ1), . . . , v(ϕk)). We denote by ValP (M) the set of all

1 〈V , ·M〉 is a multi-algebra, see Grätzer (1962) and Corsini and Leo-
reanu (2009).
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valuations on L�(P) over M. It is often useful to work with
partially defined valuations, i.e., valuations defined only for a
certain subset� of the language. This is perfectly usual when
dealing with logical matrices, as one only needs to define the
value of the sentential variables in var(�), for then the corre-
sponding valuation extends uniquely to the full language. In
Nmatrices, the sameeffect canbe achievedbydefining avalu-
ation for a set of formulas� that is closed under subformulas,
and demanding that it respects the interpretation of connec-
tives, that is, v(©(ϕ1, . . . , ϕn)) ∈ ©M(v(ϕ1), . . . , v(ϕn)) for
every compound formula ©(ϕ1, . . . , ϕn) ∈ �. Such a partial
valuation, which we dub a �-partial valuation, can always
be extended to a valuation over the full language (cf. Avron
2009).

As usual, we say that a valuation v over M satisfies a
formula ϕ (resp. a set of formulas �) if v(ϕ) ∈ D (resp.
v(�) ⊆ D). We say that � �M ϕ if every valuation over
M that satisfies � also satisfies ϕ. It is well known that
LM := 〈�,�M〉 induces a logic, andwe call it the logic char-
acterized byM. IfM is a finiteNmatrix (i.e., its underlying set
of truth-values is finite), then LM is said to be finitely Nval-
ued, or k-Nvalued if M has exactly k truth-values; when M

is a finite logical matrix, then LM is said more simply to be
finitely valued, or k-valued. A logicL is said to be (determin-
istically)many-valued ifL = LM for some logical matrixM

(cf. Marcos 2009).
Given the schematic character of inference rules inHilbert

calculi, we will say about a valuation v that it respects an
inference rule 


ψ
if, for every substitution σ : P −→ L�(P),

we have that v(
σ ) ⊆ D implies v(ψσ ) ∈ D.
Consider the signature � such that �(k) = {©} and

�( j) = ∅ for j �= k. We will denote by © the logic
induced, equivalently, by the matrix M


© := 〈{0, 1}, {1}, ·〉

where ©(a1, . . . , ak) = 1 for all a1, . . . , ak ∈ {0, 1}, or
by the Hilbert calculus with the single axiom ©(p1,...,pk )

, and
we will denote by⊥⊥© the logic induced, equivalently, by the
matrix M

⊥⊥
© := 〈{0, 1}, {1}, ·⊥⊥〉 where ©⊥⊥(a1, . . . , ak) = 0

for all a1, . . . , ak ∈ {0, 1}, or by the Hilbert calculus with
the single rule ©(p1,...,pk )

pk+1
. It is easy to see that in the for-

mer case the k-place connective © is a top-like connective
and that in the latter case it is a bottom-like connective. In
addition, by ⊥⊥© we will denote the logic of an unrestrained
connective induced, equivalently, by the 2-valued Nmatrix
M

⊥⊥
© := 〈{0, 1}, {1}, ·⊥⊥〉 where ©⊥⊥(a1, . . . , ak) = {0, 1} for

all a1, . . . , ak ∈ {0, 1}, or by the Hilbert calculus with the
empty set of rules.

2.5 Some useful operations on (N)matrices

Let �,� be signatures, t : � −→ L�(P) be a translation,
and M := 〈V , D, ·M〉 be a logical matrix over �. Then, we
may say that M induces an interpretation ξM : V k −→ V
under t to each connective ξ ∈ �, defined in the case of a k-

place connective by setting ξM(a1, . . . , ak) := v(t(ξ))where
v is any valuation such that v(pi ) = ai for 1 ≤ i ≤ k. We
denote by M

t the matrix over � with the same truth-values
and designated values as M, where each ξ ∈ � receives its
interpretation induced under t. It is clear that ValP (Mt) =
{v ◦ t : v ∈ ValP (M)}.

Let κ ∈ N ∪ {ω}, with κ > 1. An Nmatrix M :=
〈V , D, ·M〉 over � is said to be κ-saturated if for any sets
�,
 ⊆ L�(P) with |
| ≤ κ , if � ��M ψ for each ψ ∈ 
,
then there exists a valuation v over M such that v(�) ⊆ D
and v(
) ⊆ U .We say thatM is saturated if it isω-saturated
(more generally, we might talk about κ-saturation, where κ

is the cardinality of the underlying language). Note that in a
saturated NmatrixM everyLM-theory is precisely character-
ized by a valuation, that is, for every LM-theory � there is a
valuation v over M such that � = {ϕ ∈ L�(P) : v(ϕ) ∈ D}.
Clearly, if M is κ-saturated, then so is M

t.
The n-power of M is the Nmatrix M

n := 〈V n, Dn, ·n〉
where, for each k-place connective © ∈ �, we have
©n(α1, . . . , αk) = {α ∈ V n : πi (α) ∈ ©M(πi (α1), . . . , πi

(αk)) for 1 ≤ i ≤ n}, where each πi : V n −→ V denotes
the corresponding i th projection. Note that ValP (Mn) =
ValP (M)n , that is, a valuation onM

n is just an n-tuple of val-
uations on M. FromMarcelino and Caleiro (2017), we know
thatMn is n-saturated andLM = LMn , for every NmatrixM.
Given a translation t : � −→ L�(P), it is straightforward
to see that (Mt)n = (Mn)t for every n ∈ N ∪ {ω}, n > 1.

Let �1 and �2 be disjoint signatures. Given Nmatrices
M1 := 〈V1, D1, ·M1〉 over �1 and M2 := 〈V2, D2, ·M2〉
over �2, their strict product M1�M2 is the Nmatrix over
�1∪�2 defined by 〈V12, D12, ·�〉where V12 = (D1×D2)∪
(U1 × U2), D12 = D1 × D2, and for each k-place © ∈
�1 ∪ �2,

©�((a1, b1), . . . , (ak, bk))

:=
{{(a, b) ∈ V12 : a ∈ ©M1(a1, . . . , ak)}, if © ∈ �1

{(a, b) ∈ V12 : b ∈ ©M2(b1 . . . , bk)}, if © ∈ �2

Note that a valuation v over M1�M2 has two projections
π1(v) and π2(v) which (under the obvious restrictions to
L�1(P) and L�2(P)) are valuations over M1 and M2. We
know from Marcelino and Caleiro (2017) that M1�M2 is
saturated when both M1 and M2 are saturated.

The following lemma is very useful in practice, as it tells
us how to build in a component-wise manner valuations in
an Nmatrix obtained by strict product. Recall that given a
�-Nmatrix M, if v is a �-partial valuation over M with � ⊆
L�(P), and we are given a sentential variable p /∈ var(�),
then vmayalways be extended to a (�∪{p})-partial valuation
v′ by assigning v′(p) = a for any truth-value a in the set
of truth-values, chosen to be designated, or undesignated, if
desired.
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Lemma 2.1 Let �1 and �2 be disjoint signatures, let M1 be
a �1-Nmatrix and let M2 be a �2-Nmatrix. Further, let � ⊆
L�1∪�2(P) be closed under subformulas and take v1 as a
skel�1(�)-partial valuation over M1, and v2 as a skel�2(�)-
partial valuation over M2.

If the following compatibility condition holds:

v1(skel�1(ϕ)) ∈ D1 iff v2(skel�2(ϕ)) ∈ D2 for allϕ ∈ �,

then setting v(ϕ) = (v1(skel�1(ϕ)), v2(skel�2(ϕ))), for ϕ ∈
�, defines a �-partial valuation over M1�M2.

Proof The compatibility condition guarantees that for each
ϕ ∈ � the pair (v1(skel�1(ϕ)), v2(skel�2(ϕ))) is a truth-
value of M1�M2. One just needs to check that the interpre-
tation of connectives is respected. Assume, without loss of
generality, that ϕ = ©(ϕ1, . . . , ϕn) ∈ � with © ∈ �1. Since
v1 is a skel�1(�)-partial valuation over M1, we know that
v1(skel�1(ϕ)) ∈ ©̃(v1(skel�1(ϕ1)), . . . , v1(skel�1(ϕn))).
Therefore,

v(ϕ) = (v1(skel�1(ϕ)), v2(skel�2(ϕ)))

∈ ©̃((v1(skel�1(ϕ1)), v2(skel�2(ϕ1))), . . . ,

(v1(skel�1(ϕn)), v2(skel�2(ϕn))))

= ©̃(v(ϕ1), . . . , v(ϕn)).

��

Hereupon, the �-partial valuation v built as in the proof of
the above lemma will be denoted by v1�v2.

Take a valuation v over M1�M2. If we understand now
π1(v) and π2(v) as transformed into functions πi (v) :
L�i (P ∪ Xi ) −→ Vi in the obvious way, then it is
clear that they are compatible in the above sense and
that v = π1(v)�π2(v). In other words, ValP (M1�M2) =
{v1�v2 : v1 ∈ ValP∪X�1

(M1) is compatible with v2 ∈
ValP∪X�2

(M2)}.

2.6 Classical logic

Classical logic, in any desired signature �, is 2-valued. We
shall denote by 2� the matrix 〈{0, 1}, {1}, ·2〉 where ©2 =
©̃ : {0, 1}k −→ {0, 1} is the Boolean function associated
with each k-place Boolean connective © ∈ �.

The most common Boolean connectives, namely  and
⊥ (0-place), ¬ (1-place), ∧,∨ and (2-place), have their
interpretations given through the following tables.

̃
1

⊥̃
0

¬̃
0 1
1 0

∧̃ 0 1
0 0 0
1 0 1

∨̃ 0 1
0 0 1
1 1 1˜ 0 1

0 1 1
1 0 1

Valuations over 2� are dubbed bivaluations. We use B� =
L2� to denote the�-fragment of classical logic and use�B�

to denote the associated consequence relation.
Hilbert calculi for the corresponding one-connective frag-

ments of classical logic are well known, or may be systemat-
ically obtained from sections 2 and 3 of Rautenberg (1981).
Possible axiomatizations for the above-mentioned connec-
tives are listed below:

[B] 
[B⊥] ⊥

p

[B¬] p
¬¬p

¬¬p
p

p ¬p
q

[B∧] p∧q
p

p∧q
q

p q
p∧q

[B∨] p
p∨q

p∨p
p

p∨q
q∨p

p∨(q∨r)
(p∨q)∨r

[B ] p (q p) (p (q r)) ((p q) (p r))

((p q) p) p
p p q

q

Other useful classical connectives may be derived from
these, e.g., via a translation t as below:

t( ) := λp1 p2.¬(p2 p1)
t( ) := λp1 p2. (p1 p2) ∧ (p2 p1)
t(+) := λp1 p2.¬(p1 p2)
t(+3) := λp1 p2 p3. p1 + (p2 + p3)
t(if) := λp1 p2 p3. (p1 p2) ∧ (¬p1 p3)
t(T k

0 ) := λp1 . . . pk ., for k ≥ 0
t(T k

k ) := λp1 . . . pk . p1 ∧ · · · ∧ pk , for k > 0
t(T k

n ) := λp1 . . . pk . (p1 ∧ T k−1
n−1 (p2, . . . , pk))

∨T k−1
n (p2, . . . , pk), for 0 < n < k

The Boolean interpretation induced under t(©) ∈ L�(P)

can be immediately obtained from the interpretation of the
Boolean connectives in � as explained in Sect. 2.4, namely
2© := 2t

� . Of course, such connectives may be taken as
primitive in some fragments of classical logic. The purpose
here is just to introduce a general mechanism to produce
their interpretations. Note that T k

n , with 0 ≤ n ≤ k, rep-
resents the so-called k-place threshold connective such that
T̃ k
n (a1, . . . , ak) = 1 precisely when n ≤ |{i ∈ {1, . . . , k} :

ai = 1}|. Axiomatizations for all the corresponding one-
connective fragments, or in general for fragments with
several connectives, are not always straightforward but may
be systematically obtained using the techniques from Raut-
enberg (1981).
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Given a signature � of Boolean connectives, we say that
a logic L = 〈�,�〉 is subclassical whenever � � �2� .

Remark 2.2 Clearly,  is a top-like connective, though not
all top-like connectives ought to be 0-place. In the classi-
cal setting, a k-place connective © is top-like precisely in
case ©̃(a1, . . . , ak) = 1 for all a1, . . . , ak ∈ {0, 1}, i.e.,
©̃ = T̃ k

0 . It follows that BT k
0

= T k
0
for all k ∈ N. Anal-

ogously, ⊥ is a bottom-like connective, but again not all
bottom-like connectives ought to be 0-place. In the classi-
cal setting, a k-place connective © is bottom-like precisely
in case ©̃(a1, . . . , ak) = 0 for all a1, . . . , ak ∈ {0, 1}. It
follows that B© = ⊥⊥© when © is bottom-like. Apart from
⊥ and from the projection-conjunctions , ∧ and T k

k for
k ∈ N, all other Boolean connectives listed above are very
significant. �

Remark 2.3 Classical negation ¬ is the only very signifi-
cant 1-place Boolean connective. There is only one other
significant 1-place Boolean connective, the affirmation con-

nective, interpreted by setting λ̃p1. p1(a) = a for a ∈ {0, 1},
but it is of course a projection-conjunction. Further, if © is
any k-place very significant Boolean connective and J ⊆
{1, . . . , k} is the set of indices of its projective components,
then |J | < k. In that case, of course, ©(p1, . . . , pk) ��B©

©(p1, . . . , pk)σ where σ(pi ) = pi if i ∈ J , and σ(pi ) = qi
if i /∈ J . Note also that any truth-preserving k-place Boolean

connective © is such that ©̃(1
k
) = 1. �

Next we state and prove a simple yet quite useful result:

Lemma 2.4 The logic of a non-top-like k-place Boolean con-
nective © with k > 0 expresses some 1-place non-top-like
compound derived connective θ . Furthermore, all possible
nestings of θ are distinct and none is top-like.

Proof Let α denote the 1-place derived connective induced
by the formula ©(pk). If α is not top-like, we are done with
θ = α. Otherwise, given that © is not top-like, there must
be some bivaluation v such that v(©(p1, . . . , pk)) = 0. Set
I := {i : v(pi ) = 1}, and define the substitution σ by set-
ting σ(pi ) := α(p) if i ∈ I , and σ(pi ) := p otherwise.
Let β denote the new 1-place derived connective induced
by (©(p1, . . . , pk))σ . Choosing a bivaluation v′ such that
v′(p) = 0, we immediately conclude that v′(β(p)) =
v(©(p1, . . . , pk)) = 0, and thus, θ = β is not top-like.

As θ is compound, we obtain that θn(p) �= θm(p) for
n �= m. Clearly, θ0(p) = p is not top-like. When n > 0,
if θ is bottom-like, then θn(p) is always bottom-like; if θ

defines affirmation, then each θn(p) is also an affirmation
connective; and if θ defines negation, then θn(p) alternates
between affirmation and negation. In all these cases, it is clear
that ��B© θn(p). ��

To illustrate the construction in the proof of the above
result, consider first Boolean disjunction. The connective ∨
is not top-like, and α(p) := p ∨ p is also not. Consider
now Boolean implication. The connective is also not top-
like. However, α(p) := p p is top-like. Still, β(p) :=
(p p) p is not top-like.

We shall call C�
2 the collection of all non-0-place Boolean

functions compositionally derived (i.e., closed under compo-
sitions and projections) over �, as interpreted through 2� .
In the literature on Universal Algebra (Burris and Sankap-
panavar 1981), C�

2 is known as the clone of operations
definable by all derived connectives allowed by the signa-
ture �. We denote simply by C2 the clone of all non-0-place
Boolean functions. A set � of Boolean connectives is said
to be functionally complete precisely when C�

2 = C2.

Remark 2.5 Emil Post’s characterization of functional com-
pleteness for classical logic (Post 1941; Lau 2006) is very
informative. First, it tells us that there are exactly five max-
imal functionally incomplete clones (i.e., coatoms in Post’s
lattice), namely P0 := C∨

2 , P1 := C∧
2 , A := C ⊥

2 ,

M := C∧∨⊥
2 , and D := CT 3

2 ¬
2 .

The obvious projection functions λp1 . . . pk . pn , for 1 ≤
n ≤ k and k ∈ N, form the minimal clone C∅

2 , contained
in all the others. The Boolean top-like connectives form the
clone UP1 := C

2 . An analysis of Post’s lattice also reveals
that there are a number of clones which are maximal with
respect to, i.e., functionally incomplete clones that become
functionally complete by the mere addition of  (or actually
anyother connective fromUP1). In terms of Post’s lattice, the
clones whose join with UP1 result in C2 are D, T ∞

0 := C2
and T n+1

0 := CT n+2
n+1

2 for n ∈ N. It is worth noting that
T 1
0 = P0.
Further detailed analysis of Post’s lattice also tells us that

every clone C�
2 that contains the Boolean interpretation of

some very significant connective (i.e., such that C�
2 � C∧⊥

2 )
must contain the Boolean function associated with at least
one of the connectives of the following list [L0]: T n+2

n+1

(for n ∈ N), T n+4
2 (for n ∈ N), ¬, , , , +, +3,

if, λp1 p2 p3. p1 ∨ (p2 ∧ p3), λp1 p2 p3. p1 ∨ (p2 + p3),
λp1 p2 p3. p1 ∧ (p2 ∨ p3), λp1 p2 p3. p1 ∧ (p2 p3). �

What follows is an alternative characterization of very
significant Boolean connectives:

Proposition 2.6 Let� be a signature. The matrix 2� is satu-
rated if andonly ifC�

2 contains no very significant connective.

Proof Let � denote �B�
. Clearly, 2� is saturated when-

ever � contains no very significant connective. Indeed, it
is straightforward to show by induction on the structure of
formulas that, because no connective in� is very significant,
a non-trivial theory �� is always precisely characterized by
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a bivaluation v such that v(p) = 1 if � � p, and v(p) = 0
if � �� p, for every p ∈ P .

Now, suppose that © ∈ � is a k-place very significant
connective with j < k projective components. We assume
without loss of generality that the indices of the projective
components of © are the first ones. Let s = k − j . Given the
present assumptions, and in view of Rem. 2.3, given distinct
sentential variables p1, . . . , p j , q1, . . . , qs, r1, . . . , rs ∈ P ,
we have:

(a) ©(p1, . . . , p j , q1, . . . , qs) � pi for 1 ≤ i ≤ j
(b) ©(p1, . . . , p j , q1, . . . , qs) �� qi for 1 ≤ i ≤ s
(c) ©(p1, . . . , p j , q1, . . . , qs) �� ©(p1, . . . , p j , r1, . . . , rs)
(d) ©(p1, . . . , p j , q1, . . . , qs) �� ri for 1 ≤ i ≤ s

If 2� were saturated, then, from (a)–(d), and taking
into account the theory {©(p1, . . . , p j , q1, . . . , qs)}�,
there would exist a bivaluation v over 2� according to
which v(©(p1, . . . , p j , q1, . . . , qs)) = v(pi ) = 1 for 1 ≤
i ≤ j , and simultaneously v(©(p1, . . . , p j , r1, . . . , rs)) =
v(qi ) = v(ri ) = 0 for 1 ≤ i ≤ s. But
then 1 = v(©(p1, . . . , p j , q1, . . . , qs)) = ©̃(v(p1),

. . . , v(p j ), v(q1), . . . , v(qs)) = ©̃(1
j
, 0

s
) = ©̃

(v(p1), . . . , v(p j ), v(r1), . . . , v(rs)) = v(©(p1, . . . , p j ,

r1, . . . , rs)) = 0, which is a contradiction. ��

2.7 Cancelation, tabularity, determinedness

Let L := 〈�,�〉 be a logic. We say that L enjoys the cance-
lation property if � ∪ (

⋃
i∈I 
i ) � ϕ implies that � � ϕ for

all
⋃

i∈I 
i ∪�∪{ϕ} ⊆ L�(P) such that the following con-
ditions hold: (i) � ∪ {ϕ} shares no variables with

⋃
i∈I 
i ,

(ii) 
i shares no variables with 
 j , for every i �= j ∈ I ,
and (iii) 
�

i is non-trivial for every i ∈ I . It is easy to
check that any logic defined by a logical matrix (for instance,
classical logic) enjoys the cancelation property. A very inter-
esting result fromShoesmith andSmiley (1971) andWójcicki
(1974) shows that this property is also a necessary condition
formany-valuedness: a logicL enjoys cancelation if and only
if L = LM for some matrix M.

The logic L is called locally tabular if its associated
relation of logical equivalence 
�L partitions the language
L�({p1, . . . , pk}), freely generated by the signature � over
a finite set of sentential variables, into a finite number of
equivalence classes. It is clear that every logic B� is locally
tabular—that constitutes in fact the theoretical underpinning
of the classical truth-tabular decision procedure. In addition,
it is known (for a discussion on this topic see Caleiro et al.
(2018)) that a logic that fails to be locally tabular cannot be
finitely valued. Do note, however, that a logic may well fail
to be locally tabular and yet be finitely Nvalued.

Let k ∈ N. The logic L is said to be k-determined if, for
all � ∪ {ϕ} ⊆ L�(P), whenever � �� ϕ there is a substitu-
tion σ : P −→ {p1, . . . , pk} such that �σ �� ϕσ . It follows
fromCaleiro et al. (2018) that any k-Nvalued logicmust be k-
determined, and consequently, that if k-determinedness fails
for all k ∈ N, for a given logic, then this logic cannot be
finitely Nvalued.

2.8 Fibred logics

Let L1 := 〈�1,�1〉 and L2 := 〈�2,�2〉 be two logics.
The fibring of L1 and L2 is the smallest logic L1 • L2 :=
〈�12,�12〉 with �12 = �1 ∪ �2 that extends both L1 and
L2, i.e., such that �1 ∪ �2 ⊆ �12. When the underlying
signatures are disjoint, the fibring is said to be disjoint. All
the phenomena we study in the present paper are instances
of disjoint fibring. Note that, by definition, fibring is com-
mutative and associative, that is, L1 • L2 = L2 • L1 and
L1 • (L2 • L3) = (L1 • L2) • L3 for any given logic L3.

Given connectives ©1 ∈ �
(k)
1 and ©2 ∈ �

(k)
2 for some

k ∈ N, in case ©1 and ©2 happen to be indistinguishable in
L1 •L2 we shall say that ©1,©2 are collapsed by fibring L1

and L2.
Given Hilbert calculi H1 := 〈�1, R1〉 and H2 :=

〈�2, R2〉, then L1 • L2 = LH1•H2 , where H1 • H2 :=
〈�12, R1 ∪ R2〉. Clearly, besides joining the given signatures,
which allows for the construction of so-called mixed formu-
las, the fibring of the calculi also allows ‘mixed reasoning,’
where rules coming from one logic are used in dealing with
formulas coming from the other logic.

The next lemma deals with the semantics of the logic
obtained by requiring new inference rules to hold in the logic
induced by a given Nmatrix. The first part highlights the role
of the notion of saturation, as whenever R contains a non-
axiomatic rule, then the saturation proviso is fundamental
(for an illustration of that, check Ex. 3.19).

Lemma 2.7 Let M be an Nmatrix over � andH := 〈�, R〉
be a Hilbert calculus. Sufficient conditions for the logic
L = LM • LH to be characterized by {v ∈ ValP (M) :
v respects each 


ψ
∈ R} are secured when either:

(a) M is saturated, or
(b) R contains only axioms.

Proof Both cases are fairly simple. Let L := 〈�,�〉.

(a) As �M ⊆ �, every L-theory � is also an LM-theory.
Thus, since M is saturated, there exists v ∈ ValP (M)

such that Tv := � = {ϕ : v(ϕ) ∈ D}. Of course, given
that � is an L-theory, it follows that v respects the rules
in R. Conversely, just observe that Tv is always an LM-
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theory when v ∈ ValP (M), but Tv is also an L-theory
when v respects the rules in R.

(b) Let Ax = {ψσ :
ψ

∈ R and σ : P −→ L�(P)}.
Observe that � � ϕ if and only if � ∪ Ax �M ϕ. The
result follows simplybynoting thatv respects the axioms
in R if and only if v(Ax) ⊆ D. ��

Remark 2.8 A semantics for disjoint fibring may be pro-
vided through a combo of the operations for strict product
and saturation. Assuming �1 and �2 to be disjoint, and
given Nmatrices M1 over �1 and M2 over �2, we know
from Marcelino and Caleiro (2017) that LM1 • LM2 =
LM

ω
1 � M

ω
2
. Furthermore, as Mi is known to be saturated, one

can directly use Mi rather than M
ω
i , in the latter recipe. �

Let L := 〈�,�〉 be a logic, and © /∈ � be any k-place
connective. The logic resulting from adding © to L as a new
unrestrained (resp., top-like / bottom-like) connective is sim-
ply L • ⊥⊥© (resp., L • © / L • ⊥⊥©).

Proposition 2.9 Given an Nmatrix M := 〈V , D, ·∗〉 over �

and a k-place © /∈ �:

(a) LM • ⊥⊥© is characterized by the Nmatrix M�M
⊥⊥
© iso-

morphic to the extension ofMwith©�(a1, . . . , ak) = V
for all a1, . . . , ak ∈ V ;

(b) LM • © is characterized by the Nmatrix M�M

© iso-

morphic to the extension ofMwith©�(a1, . . . , ak) = D
for all a1, . . . , ak ∈ V ;

(c) LM • ⊥⊥© is characterized by the Nmatrix M�M
⊥⊥
© iso-

morphic to the extension of M with ©�(a1, . . . , ak) =
U = V \D for all a1, . . . , ak ∈ V , provided that M is
saturated, or simply 2-saturated if k = 0.

Proof First note that M
⊥⊥
© is saturated.

Let �+ := � ∪ {©} and fix � ∪ {ϕ} ⊆ L�+(P).

(a) Let LM • ⊥⊥© := 〈�+,�⊥⊥〉. It is easy to see that � �⊥⊥
ϕ if and only skel�(�) �M skel�(ϕ). Soundness and
completeness follow by observing thatValP (M�M

⊥⊥
© ) =

{v ◦ skel� : v ∈ ValP∪X� (M)}.
(b) LetLM•© := 〈�+,�〉. It is easy to see that� � ϕ

if and only � ∪ {ψ ∈ L�+(P) : head(ψ) = ©} �⊥⊥ ϕ.
Soundness and completeness follow by observing that
ValP (M�M


© ) = {v ∈ ValP (M�M

⊥⊥
© ) : v(ψ) ∈

D for all ψ ∈ L�+(P) with head(ψ) = ©}.
(c) LetLM•⊥⊥© := 〈�+,�⊥⊥〉. It is easy to see that� �⊥⊥ ϕ

if and only � �⊥⊥ ϕ or � �⊥⊥ ψ for some ψ ∈ L�+(P)

with head(ψ) = ©. Soundness follows by observing
that ValP (M�M

⊥⊥
© ) = {v ∈ ValP (M�M

⊥⊥
© ) : v(ψ) ∈

U for all ψ ∈ L�+(P) with head(ψ) = ©}.
For completeness, if � ��⊥⊥ ϕ, then � ��⊥⊥ ϕ and
� ��⊥⊥ ψ for any ψ with head(ψ) = ©. As both M

and M
⊥⊥
© are saturated, we know that M�M

⊥⊥
© is satu-

rated, and thus there is v ∈ ValP (M�M
⊥⊥
© ) such that

v(�) ⊆ D, v(ϕ) ∈ U and v(ψ) ∈ U for every ψ with
head(ψ) = ©. In view of this last fact, we see that
v ∈ ValP (M�M

⊥⊥
© ).

When k = 0, there is exactly one formula whose
head is © so, if � ��⊥⊥ ϕ then � ��⊥⊥ ϕ and
� ��⊥⊥ ©, or equivalently, skel�(�) ��M skel�(ϕ) and
skel�(�) ��M x©. SinceM is assumed to be 2-saturated,
there is v ∈ ValP∪X� (M) such that v(skel�(�)) ⊆ D,
v(skel�(ϕ)) ∈ U and v(x©) ∈ U . Thus, the valuation
v ◦ skel� ∈ ValP (M�M

⊥⊥
© ) is such that (v ◦ skel�)(�) ⊆

D, (v ◦ skel�)(ϕ) ∈ U and (v ◦ skel�)(©) ∈ U . We
conclude that v ◦ skel� ∈ ValP (M�M

⊥⊥
© ). ��

2.9 Translations and fibring

We close these prolegomenawith some technical results con-
cerning the relationship between the disjoint fibring of logics
induced by given logical matrices, and the disjoint fibring of
the logics obtained by some translations/abbreviations over
those matrices. The intricacies of these results are essen-
tial for understanding how careful one needs to be when
transferring examples or counterexamples to or from a com-
bination of logics involving connectives that are defined
by abbreviation. From this point on, we assume fixed sig-
natures �1, �2, �1, �2 with �1 disjoint from �2 and �1

disjoint from �2, and translations t1 : �1 −→ �1 and
t2 : �2 −→ �2. We shall write � for �1 ∪ �2, � for
�1 ∪ �2 and t for t1 ∪ t2. We also fix saturated matrices M1

and M2 over the signatures �1 and �2. In case we are given
non-saturated matrices M1 or M2, we can always consider
instead M

ω
1 or M

ω
2 . Let 〈�,�〉 represent LM1 • LM2 and

〈�,�t〉 represent L
M

t1
1

• L
M

t2
2
. Recall that LM1 • LM2 is

characterized by M1�M2 and that L
M

t1
1

• L
M

t2
2
is character-

ized by M
t1
1 �M

t2
2 , as M

t1
1 and M

t2
2 are both saturated (see

Sect. 2.5).

Proposition 2.10 For every � ∪ {ϕ} ⊆ L�(P), if � �t ϕ,
then t(�) � t(ϕ).

Proof The result follows from the fact that {v ◦ t : v ∈
ValP (M1�M2)} ⊆ ValP (M

t1
1 �M

t2
2 ). To see this, note that if

v ∈ ValP (M1�M2), thenv◦t = (π1(v)�π2(v))◦t = (π1(v)◦
t+1 )�(π2(v) ◦ t+2 ) where, for i ∈ {1, 2}, we are considering
t+i : L�i (P ∪ X�i ) −→ L�i (P ∪ X�i ) as an extension of
ti : L�i (P) −→ L�i (P) defined as follows: t+i (p) := p for
p ∈ P , t+i (ξ(ψ1, . . . , ψk)) := ti (ξ)(t+i (ψ1), . . . , t

+
i (ψk))

for ξ ∈ �(k), and t+i (xϕ) := skel�i (t(ϕ)) for xϕ ∈ X�i .
Because π1(v) and π2(v) are compatible, it is routine to
check that (π1(v)◦t+1 ) ∈ ValP∪X�1

(M
t1
1 ) and (π2(v)◦t+2 ) ∈

ValP∪X�2
(M

t2
2 ) are also compatible, and therefore, v ◦ t ∈

ValP (M
t1
1 �M

t2
2 ). ��
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Note that the converse of the above statement is in general not
true, and we may have t(�) � t(ϕ), while � ��t ϕ. When this
happens, it must be because {v ◦ t : v ∈ ValP (M1�M2)} �

ValP (M
t1
1 �M

t2
2 ). Let © be a binary Boolean connective, ⊥1

and ⊥2 be two 0-place bottom-like connectives and consider
B© • B⊥1⊥2 . Now let t1 := id©, t2(⊥1) = t2(⊥2) := ⊥,
and t := t1 ∪ t2. Clearly, 2⊥1⊥2 = 2t2⊥ is saturated. Every
valuation v over 2ω

©�2⊥ is such that v(t(⊥1)) = v(t(⊥2)),
but it is not the case that v′(⊥1) = v′(⊥2) for valuations
v′ over 2ω

©�2⊥1⊥2 . Hence, {v ◦ t : v ∈ ValP (2ω
©�2⊥)} �

ValP ((2ω
©)t1�2t2⊥).

At any rate, one may still secure the converse of the pre-
vious proposition under certain particular circumstances:

Proposition 2.11 The following assumptions give sufficient
conditions for concluding that � �t ϕ if and only if t(�) �
t(ϕ), for every � ∪ {ϕ} ⊆ L�(P):

(a) t is injective, or
(b)  is the only connective in �2, M1 is unitary and M2 =

2, or
(c) ⊥ is the only connective in �2 = �2, t2 = id�2 , and

M2 = 2⊥.

Proof In each case, we prove that ValP (M
t1
1 �M

t2
2 ) ⊆ {v ◦ t :

v ∈ ValP (M1�M2)}. Let v′ ∈ ValP (M
t1
1 �M

t2
2 ).

(a) For i, j ∈ {1, 2}, i �= j , consider valuations vi ∈
ValP∪X�i

(Mi ) defined, by mutual recursion, as fol-
lows: vi (p) := πi (v

′)(p), vi (xt(ψ)) := πi (v
′)(xψ),

and vi (xϕ) is chosen compatibly with v j (skel� j (ϕ)) for
ϕ /∈ t(L�(P)). Note that the injectivity of t is essential
to guarantee that vi (xt(ψ)) = πi (v

′)(xψ) is well defined.
(b) Note that X�1 = {x}. Consider a valuation v1 ∈

ValP∪X�1
(M1) defined by setting v1(p) := π1(v

′)(p),
and v1(x) being assigned a designated value in the
only possible way, and a valuation v2 ∈ ValP∪X�2

(2)

defined by setting v2(p) := π2(v
′)(p), and let the value

of v2(xϕ) be chosen compatibly with v1(skel�1(ϕ)).
Note that the unitariness of M1 is fundamental to the
construction ofv1,whereas the fact thatM2 = 2 makes
compatible choices unique when constructing v2.

(c) Note that X�1 = {x⊥}. Consider the valuation v1 ∈
ValP∪X�1

(M1) defined by setting v1(p) := π1(v
′)(p)

and v1(x⊥) := π1(v
′)(x⊥), and the valuation v2 ∈

ValP∪X�2
(2⊥) defined by setting v2(p) := π2(v

′)(p)
and by letting the value of v2(xϕ) be chosen compatibly
with v1(skel�1(ϕ)). Note again that M2 = 2⊥ makes
compatible choices unique when constructing v2.

In each case, it is routine to check that v1 and v2 defined in
this manner are compatible and that v′ = (v1�v2) ◦ t. This

implies that if t(�) � t(ϕ), then � �t ϕ. The result then
follows from Prop. 2.10. ��

Under the applicability conditions of the previous proposi-
tion, or in generalwhenever� �t ϕ if andonly if t(�) � t(ϕ),
we have the following interesting consequences:

Proposition 2.12 Assume that � �t ϕ if and only if t(�) �
t(ϕ), for every � ∪ {ϕ} ⊆ L�(P). Then, the following prop-
erties hold:

– if LM1 • LM2 = LM for some matrix M over � then
L

M
t1
1

• L
M

t2
2

= LMt , and

– if LM1 •LM2 is k-determined then so is LM
t1
1

•L
M

t2
2
for

k ∈ N.

Proof For the first property, note that Val(Mt) = {v ◦ t :
v ∈ Val(M)} by definition, and therefore ValP (M

t1
1 �M

t2
2 ) ⊆

{v ◦ t : v ∈ ValP (M1�M2)} which, as in Prop. 2.11, implies
that L

M
t1
1

• L
M

t2
2

= LMt .

For the second, we show that k-determinedness is pre-
served by t. Indeed, from � ��t ϕ we obtain t(�) �� t(ϕ).
Assuming that LM1 • LM2 is k-determined, we obtain that
there is σ : P −→ {p1, . . . , pk} such that t(�)σ �� t(ϕ)σ .
As σ only swaps variables, and t is the identity over vari-
ables, we conclude that they commute, i.e., t(ψ)σ = t(ψσ )

for every ψ ∈ L�(P). Therefore, t(�σ ) �� t(ϕσ ), and so
�σ ��t ϕσ . Thus L

M
t1
1

• L
M

t2
2
is also k-determined. ��

3 Fibring disjoint fragments of classical logic

In this section, we shall establish the general results about
combining Boolean connectives and, in general, fragments
of classical logic.

3.1 Adding top-like connectives

We start with the simplest cases where merging two frag-
ments yields the corresponding joint fragment of classical
logic, namely when all the connectives from one of the given
fragments are top-like.

Proposition 3.1 If the signatures �1 and �2 are disjoint and
C�2
2 ⊆ C

2 , then B�1 • B�2 = B�1∪�2 .

Proof Consider a 0-place top-like connective  such that
 /∈ �1 (if  ∈ �1 we pick a syntactically different copy).
We obtain that B�1 • B = B�1∪{}, as a simple corollary
of Prop. 2.9. Just note that because B�1 is characterized by
2�1 , and B =  and M

 = 2, we have that B�1•B is
characterized by 2�1�2. Further, it is immediate to see that
2�1�2 is isomorphic to2�1∪{}. SinceB�1 is characterized
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by the unitary matrix 2�1 and B = L2 , we are under
the applicability conditions of Prop. 2.11(b). Let t be the
translation that sends every connective of�2 to. Hence, as
B�1•B is characterized by thematrix2�1∪{}, we conclude
by Prop. 2.12 that B�1 • B�2 is characterized by 2

id�1∪t
�1∪{} =

2�1∪�2 , and therefore, B�1 • B�2 = B�1∪�2 . ��
Example 3.2 (Coimplication and top). Consider adding clas-
sical coimplication to top, that is, fibring the logicsB
and B. Recall from Sect. 2.6 the semantics and axiomati-
zation of B. Coimplication is characterized by the 2-valued
matrix 2 where:

˜ 0 1
0 0 1
1 0 0

We shall not explicitly provide here a Hilbert calculus
for B . The methods in Rautenberg (1981) would allow
one to obtain such a calculus, but the general procedure is
tedious and we leave it to the interested reader. We note that
2 is not saturated: Note, for instance, that p �� q p
and p �� q, but no bivaluation can set, at the same time,
v(p) = 1 and v(q p) = v(q) = 0. However, in this case,
we can rely on Prop. 2.9, or more generally on Prop. 3.1,
to conclude that B • B = B  is characterized by the
matrix 2 �2 = 2 . This is, of course, a very special
case, also because { ,} forms a functionally complete set
of classical connectives (in fact, it is functionally complete
in a stronger sense, as it also allows for the standard defi-
nition of the 0-place Boolean operations—see Section 3.14
of Humberstone (2011)). �

3.2 When none of the connectives is very significant

Another casewhere fibring yields the corresponding classical
fragment comes about when all the connectives involved fail
to be very significant.

Proposition 3.3 If the signatures �1 and�2 are disjoint and
C�1
2 , C�2

2 ⊆ C∧⊥
2 , then B�1 • B�2 = B�1∪�2 .

Proof Weknow fromProp. 2.6 that2�1 and2�2 are saturated,
since the connectives are not very significant. Hence, it fol-
lows from the results mentioned in Rem. 2.8 that B�1 • B�2

is characterized by 2�1�2�2. To conclude, just observe that
2�1�2�2 is isomorphic to 2�1∪�2 . ��

In particular, this implies that if we merge the axiomati-
zations of two projection-conjunctions with the same arity,
we obtain a logic in which these connectives collapse.

Example 3.4 (Two copies of conjunction). We will now con-
sider two syntactically distinct copies, say ∧ and &, of
conjunction, that is, we will combine through fibring two

copies of the conjunction-only fragment of classical logic,
B∧ andB&. Semantically, they are characterized by thematri-
ces 2∧ and 2& with &̃ := ∧̃ defined as in Sect. 2.6. A Hilbert
calculus for B& is a simple translated copy of the one pro-
vided for B& in [B∧], mutatis mutandis.

By Prop. 2.6, both 2-valued matrices are saturated since
conjunctions are not very significant. Indeed, as � �B∧ ϕ

precisely when var(ϕ) ⊆ var(�), a non-trivial theory ��B∧
is characterized by the bivaluation v such that v(p) = 1 if
p ∈ var(�), and v(p) = 0 if p /∈ var(�).

In view of Rem. 2.2 and the resultsmentioned in Rem. 2.8,
or more generally in view of Prop. 3.3, it is clear that B∧ •
B& is characterized by 2∧�2&, which is again 2-valued and
where (up to isomorphism) ©̃� = ©̃ for © ∈ {∧,&}. Clearly,
this means that the two conjunctions collapse and that B∧ •
B& = B∧&. Consequently, a complete calculus for B∧& is
obtained by just merging the calculi for the components. �

3.3 Non-finitely valued combinations

Wenowstart to establish the negative cases, that is, to identify
the situationswhen the fibring of classical connectives results
in a logic that is subclassical.

Proposition 3.5 The fibring B©1 • B©2 of the logic of a very
significant Boolean connective ©1 and the logic of a non-
top-like Boolean connective ©2 distinct from ⊥ fails to be
locally tabular, and therefore, B©1 • B©2 � B©1©2 .

Proof In order to show that B©1 • B©2 is not locally tabular,
we shall build an infinite collection {ϕt }t∈N of formulas in
L©1©2(P), using only finitely many distinct sentential vari-
ables, and then show them to be pairwise non-equivalent.

Let us first focus on©1. Recall thatB©1 is characterized by
the saturated matrix 2ω

©1
. Let ©1 be a k-place very significant

connectivewith j < k projective indices.We assumewithout
loss of generality that the projective indices of©1 correspond
to its first j arguments. Let s = k − j . As in the proof of
Prop. 2.6, we have:

(a) ©1(p1, . . . , p j , x1, . . . , xs) �1 pi for 1 ≤ i ≤ j ;
(b) ©1(p1, . . . , p j , x1, . . . , xs) ��1 xi for 1 ≤ i ≤ s;
(c) ©1(p1, . . . , p j , x1, . . . , xs) ��1 ©1(p1, . . . , p j , y1, . . . , ys);
(d) ©1(p1, . . . , p j , x1, . . . , xs) ��1 yi for 1 ≤ i ≤ s.

From (a)–(d), taking into consideration the theory
{©1(p1, . . . , p j , x1, . . . , xs)}�1 , we may conclude that there
is a valuation v1 over 2ω

©1
such that v1(©1(p1, . . . , p j ,

x1, . . . , xs)) = v1(pi ) = N for 1 ≤ i ≤ j , v1(xi ) �= N

and v1(yi ) �= N for 1 ≤ i ≤ s, and v1(©1(p1, . . . , p j ,

y1, . . . , ys)) �= N.
Next, on what concerns ©2, recall from Rem. 2.2 that a

non-top-like Boolean connective distinct from ⊥ cannot be
0-place. Hence, according to Lemma 2.4, we can fix a non-
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top-like compound 1-place θ ∈ L©2({p}). Further, we know
from the latter lemma that:

(e) ��2 θn(p) for every n ∈ N.

As B©2 is characterized by the saturated matrix 2ω
©2
, from

(e), considering the theory ∅
�2 we conclude that there exists

a valuation v2 over 2ω
©2

such that v2(θ
n(p)) �= N for every

n ∈ N.
Let us finally consider the following formulas on j + 1

sentential variables:

ϕt := ©1(p1, . . . , p j , θ
1+ts(p), . . . , θ (t+1)s(p)), for t ∈ N

In these formulas, we sequentially deploy s distinct nestings
of θ on the sentential variable p, in the positions correspond-
ing to non-projective components of ©1.

Take t1 �= t2. We will show that ϕt1
�ϕt2 fails to
hold, taking advantage of the completeness of the satu-
rated Nmatrix 2ω

©1
�2ω

©2
for B©1 • B©2. For that purpose,

consider � := {ϕt1 , ϕt2} ∪ {θ i+t1s, θ i+t2s : 1 ≤ i ≤ s},
and let x1, . . . , xs, y1, . . . , ys be the sentential variables in
X�1 such that xi := xθ i+t1s (p) = skel�1(θ

i+t1s(p)) and

yi := xθ i+t2s (p) = skel�1(θ
i+t2s(p)) for 1 ≤ i ≤ s.

As the mapping v1 is not defined for p nor for the spe-
cial sentential variables xψ , for ψ ∈ sub({θ i+t1s, θ i+t2s :
1 ≤ i ≤ s})\{p}, but these variables also do not occur in
skel�1(�), we can extend v1 to a skel�1(sub(�))-partial val-
uation v′

1 such that v
′
1(p) and each v′

1(xψ) are assigned des-
ignated values, respectively, if and only if v2(p) and v2(ψ)

are assigned designated values.
Similarly, v2 is not defined for p1, . . . , p j nor for

xϕt1
, xϕt2

, and these variables do not occur in skel�2(�), so
we can extend v2 to a skel�2(sub(�))-partial valuation v′

2
such that v′

2(pi ), for each 1 ≤ i ≤ j , and v′
2(xϕt1

), v′
2(xϕt2

)

are chosen to be compatible, respectively, with v1(pi ) and
v1(ϕt1), v1(ϕt2).

It is clear that v′
1 and v′

2 satisfy the compatibility require-
ment of Lemma 2.1, and therefore, the �-partial valuation
v′
1�v

′
2 over 2ω

©1
�2ω

©2
does the job. As it is clear that B©1 •

B©2 ⊆ B©1©2 , and also that B©1©2 is locally tabular, we
conclude that B©1 • B©2 � B©1©2 . ��

We conclude from the above, in contrast to what happens
with conjunction (Ex. 3.4), that when we merge the axiom-
atizations of two copies of a very significant connective, we
obtain a logic where these two copies do not collapse.

Example 3.6 (Two copies of disjunction). This time let us
consider two syntactically distinct copies, say∨ and ||, of dis-
junction, that is, let us fibre two copies of the disjunction-only
fragment of classical logic, B∨ and B||. For an illustration
of the construction in the proof of Prop. 3.5 in the case of

B∨•B||, note that the formulas θ1(p)∨θ2(p), θ3(p)∨θ4(p),
θ5(p)∨θ6(p), . . . , where θ(p) = p||p, are all pairwise non-
equivalent.

Semantically, the above-mentioned logics are character-
ized by the matrices 2∨ and 2|| with |̃| := ∨̃ defined as in
Sect. 2.6. A Hilbert calculus for B|| is a simple translated
copy of the one provided in [B∨]. Again, it is easy to see
that the 2-valued matrices are not saturated. For instance,
p ∨ q ��B∨ p and p ∨ q ��B∨ q, but no bivaluation can set
v(p ∨ q) = 1 and at the same time v(p) = v(q) = 0.

It follows from the results mentioned in Rem. 2.8 that
B∨•B|| is characterized by the strict product of the saturations
2ω∨,2ω|| , the non-denumerably large Nmatrix defined (up to
isomorphism) by 2ω∨�2ω|| = 〈V , {(N, N)}, ·�〉 where:

V := {(X ,Y ) : X ,Y ⊆ N and X = N iff Y = N}
(X1,Y1)∨̃�(X2,Y2) :
=

{
{(N, N)}, if X1 ∪ X2 = N

{(X1 ∪ X2,Y ) : Y � N}, if X1 ∪ X2 �= N

(X1,Y1)̃||�(X2,Y2) :
=

{
{(N, N)}, if Y1 ∪ Y2 = N

{(X ,Y1 ∪ Y2) : X � N}, if Y1 ∪ Y2 �= N

This is not unexpected, as classical disjunction is a very
significant connective, and therefore B∨ •B|| is known to be
non-finitely valued, as a consequence of Prop. 3.5. Thus,B∨•
B|| is strictly weaker than B∨ ||, and the two disjunctions do
not collapse—for instance, the mixed consequence assertion
p ∨ q � p || q fails to hold in B∨ • B||. The latter logic
cannot even be said to be finitely Nvalued, as we can indeed
show that it fails to be k-determined for any k ∈ N (recall
Sect. 2.7). To see this, consider:

�k := {pi ∨ p j : 1 ≤ i < j ≤ k + 1}, and
ϕk :=

∨
1≤i≤k+1

q || (pi ∨ q).

It is clear that for every σ : P −→ {p1, . . . , pk} we have
that σ(pi ) = σ(p j ) for some 1 ≤ i < j ≤ k+1. Hence, it is
straightforward to conclude in this case that (i)�σ

k � σ(pi )∨
σ(p j ), (ii) σ(pi ) ∨ σ(p j ) � σ(pi ), (iii) σ(pi ) � (pi ∨ q)σ ,
and (iv) (pi ∨ q)σ � ϕσ

k , and from these, it immediately
follows that �σ

k � ϕσ
k . Now, to show that �k �� ϕk , just

consider a valuation v on 2ω∨�2ω|| such that:

v(q) = (N\{1, . . . , k + 1}, ∅),

v(pi ) = v(pi ∨ q) = (N\{i}, ∅), for 1 ≤ i ≤ k + 1,

v(pi ∨ p j ) = (N, N), for 1 ≤ i < j ≤ k + 1,

v(q || (pi ∨ q)) = (∅, ∅), for 1 ≤ i ≤ k + 1,

v(
∨

0≤i≤�

q || (pi ∨ q)) = (∅, ∅), for � ≤ k + 1.
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The merged axiomatization for B∨ • B|| is built as usual.
More interestingly, after Rautenberg (1981), note that a com-
plete Hilbert calculus for B∨|| may be obtained more simply
by adding the following interaction rules to the Hilbert cal-
culus given to ∨ in [B∨]:

p∨ (q ∨ r)
p∨ (q || r)

p∨ (q || r)
p∨ (q ∨ r)

All the translated rules for the disjunction || are easily deriv-
able from the latter mentioned rules.

Note that what we said about merging two copies of the
Boolean disjunction applies mutatis mutandis to the case of
two copies of the Boolean implication. The reason is that
classical implication is known to express classical disjunc-
tion, e.g., via a translation t(∨) = λp1 p2. (p1 p2) p2.

�
Anequally interestingnon-collapsing example is provided

by merging the axiomatizations of two copies of classical
negation:

Example 3.7 (Two copies of negation). We will now com-
bine B¬ and B∼ through fibring, where ¬ and ∼ are two
syntactically distinct copies of classical negation. Semanti-
cally, they are characterized by the matrices 2¬ and 2∼ with
∼̃ := ¬̃ as defined in Sect. 2.6. A Hilbert calculus for B∼ is
a simple translated copy of the one provided in [B¬].

It is easy to see now that the 2-valued classical matrices
are not saturated. For instance, ��B¬ p and ��B¬ ¬p, but no
bivaluation can fail to satisfy both non-theorems simultane-
ously, that is, setting v(p) = v(¬p) = 0 is impossible.

In any case, it follows from the results mentioned in
Rem. 2.8 that B¬ • B∼ is characterized by 2ω¬�2ω∼, a non-
denumerably large Nmatrix. This is not too bad, as classical
negation is a very significant connective, and therefore,
B¬ •B∼ is not finitely valued, as a consequence of Prop. 3.5.
Thus,B¬ •B∼ is strictly weaker thanB¬∼, and the two nega-
tions do not collapse—for instance, the mixed consequence
assertion ¬p � ∼p fails to hold in B¬ • B∼.

A further interesting fact about this particular example is
that B©, for © ∈ {¬,∼}, turns out to have an alternative
semantic characterization by way of the 3-valued determin-
istic matrix M

3
© := 〈{0, 1

2 , 1}, {1}, ©̃3〉 where:
©̃3

0 1
1
2

1
2

1 0

What is more, this 3-valued matrix is saturated. Indeed, since
� �B¬ ¬iϕ iff � �B¬ ϕ for i even, or if � �B¬ ¬ϕ for i
odd, a non-trivial theory ��B¬ is precisely characterized by
the valuation v such that v(p) = 1 if p ∈ ��B¬ , v(p) = 0 if
¬p ∈ ��B¬ , and v(p) = 1

2 if p /∈ ��B¬ and ¬p /∈ ��B¬ .

Now, in view of the facts mentioned in Rem. 2.8,
it follows that B¬ • B∼ is also semantically character-
ized by the 5-valued Nmatrix defined by M

3¬�M
3∼ =

〈{(0, 0), (0, 1
2 ), (

1
2 , 0), (

1
2 ,

1
2 ), (1, 1)}, {(1, 1)},̃ ·5〉 where:

¬̃5 ∼̃5

(0, 0) {(1, 1)} {(1, 1)}
(0, 1

2 ) {(1, 1)} {(0, 1
2 ), (

1
2 ,

1
2 )}

( 12 , 0) {( 12 , 0), ( 12 , 1
2 )} {(1, 1)}

( 12 ,
1
2 ) {( 12 , 0), ( 12 , 1

2 )} {(0, 1
2 ), (

1
2 ,

1
2 )}

(1, 1) {(0, 0), (0, 1
2 )} {(0, 0), ( 12 , 0)}

On the one hand, an axiomatization forB¬•B∼ is obtained by
merging the calculi for the components. On the other hand,
a complete calculus for B¬∼ may be obtained by adding
to the mentioned axiomatization for B¬ • B∼ the following
interaction rules:

¬p
∼p

∼p
¬p

Completeness of the resulting calculus may easily be con-
firmed with the help of Lemma 2.7(a). It is indeed straight-
forward to see that the valuations on M

3¬�M
3∼ respecting the

two above-mentioned interaction rules cannot use the values
(0, 1

2 ) and ( 12 , 0). Purging the 5-valued Nmatrix from these
values, we obtain a (deterministic!) Nmatrix that is isomor-
phic to M

3
© on both components. �

Proposition 3.5 also happens to be informativewhenwe com-
bine distinct connectives:

Example 3.8 (Conjunction and disjunction).Wewill now add
classical conjunction ∧ to classical disjunction ∨, that is, we
will combine through fibring the logics B∧ and B∨. Recall
from Sect. 2.6 the semantics and axiomatizations of the latter
logics.Wehave seen inEx. 3.4 andEx. 3.6 that2∧ is saturated
but 2∨ is not. From the results mentioned in Rem. 2.8, it
follows that B∧ • B∨ is characterized by the strict product
of 2∧ and 2ω∨, the non-denumerable Nmatrix defined (up to
isomorphism) by 2∧�2ω∨ = 〈2N, {N},̃ ·�〉 where:

X∧̃�Y :=
{

{N}, if X = Y = N

{Z : Z � N}, if X ∩ Y �= N

X∨̃�Y := X ∪ Y

Given that classical disjunction is a very significant con-
nective, and that classical conjunction is not top-like, as a
consequence of Prop. 3.5 we have that the fibred logic is not
finitely valued. We actually also know from Marcelino and
Caleiro (2017) that this logic is not finitely Nvalued. Clearly,
B∧ • B∨ is subclassical and, for instance, p ∨ (q ∧ r) ��
(p ∨ q) ∧ (p ∨ r).

An axiomatization for B∧ •B∨ may be obtained as usual.
More interestingly, after Rautenberg (1981), a complete cal-
culus for B∧∨ may be obtained by simply adding three
interaction rules to the calculus of disjunction, namely:
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p∨q p∨r
p∨(q∧r)

p∨(q∧r)
p∨q

p∨(q∧r)
p∨r

All the rules of conjunction are derivable from the latter men-
tioned rules. �

We finish illustrating Prop.3.5 with a combination of two
classical connectives that results functionally complete:

Example 3.9 (Disjunction and negation). We now consider
adding classical disjunction ∨ to classical negation ¬, that
is, fibring the logics B∨ and B¬. Recall from Sect. 2.6 the
corresponding semantics and axiomatizations of the latter.
We have seen in Ex. 3.6 and 3.7 that neither 2∨ nor 2¬ are
saturated. However, we can consider the 3-valued saturated
matrix M

3¬ instead of 2¬. Again, it follows from the results
mentioned in Rem. 2.8 that B∨ • B¬ is characterized by the
non-denumerable Nmatrix 2ω∨�M

3¬ = 〈V , {(N, 1)},̃ ·�〉. We
leave the details of the verification to the interested reader. As
classical disjunction is very significant and classical negation
is not top-like, Prop. 3.5 implies that the combined logic
is not finitely valued. We have further shown in Marcelino
and Caleiro (2017) that this logic is not finitely Nvalued. Of
course, B∨ •B¬ is subclassical and, for instance, �� p∨ ¬p.

The merged axiomatization for B∨ • B¬ is obtained as
usual. More interestingly, again after Rautenberg (1981), a
complete calculus forB∨¬ may be obtained by simply adding
the following four interaction rules to the calculus of disjunc-
tion:

p∨¬p
p∨q

p∨¬¬q
p∨¬¬q
p∨q

p∨q p∨¬q
p

The rules of negation are derivable from these.
The present example has the additional interest that {∨,¬}

forms a functionally complete set of classical connectives,
and we obtain thus from the above an axiomatization of full
classical logic. �

3.4 Adding the connective⊥
At this point, we are just left with the problem of categorizing
combinations involving the 0-place connective ⊥. We start
by showing that all disjoint fibrings of a fragment of classical
logic with ⊥ are 4-Nvalued:

Proposition 3.10 If ⊥ /∈ � then B� • B⊥ is 4-Nvalued.

Proof This is a simple corollary of Prop. 2.9. Note that B� is
characterized by the matrix 2� , and B⊥ = ⊥⊥⊥ is character-
ized by the matrix M

⊥⊥⊥ = 2⊥. As ⊥ is a 0-place connective,
we need no more than 2-saturation. Hence, B� •B⊥ is char-
acterized by the 4-valued Nmatrix 22

��2⊥. ��
Example 3.11 (Coimplication and bottom). Recall coimpli-
cation from Sect. 2.6. When fibring B and B⊥, we
make use of the general recipe in Prop. 3.10, which shows
that B • B⊥ is characterized by the 4-valued Nmatrix
22 �2⊥ := 〈{0, 1}2, {(1, 1)},̃ ·�〉 where:

˜� (0, 0) (0, 1) (1, 0) (1, 1)
(0, 0) (0, 0) (0, 1) (1, 0) (1, 1)
(0, 1) (0, 0) (0, 0) (1, 0) (1, 0)
(1, 0) (0, 0) (0, 1) (0, 0) (0, 1)
(1, 1) (0, 0) (0, 0) (0, 0) (0, 0)

⊥̃�

(0, 0), (0, 1), (1, 0)

Note that the non-determinism is again concentrated on ⊥.
Furthermore, the combined logic B • B⊥ fails the can-
celation property: ⊥ q, p � ⊥ p yet p �� ⊥ p. So,
B •B⊥ is not many-valued, and it is therefore subclassical.

A complete calculus for B ⊥ may be obtained by adding
to a calculus for B the single interaction rule:

p
⊥ p

Completeness of the resulting calculus may be confirmed
usingLemma2.7(a).However, note that Lemma2.7 demands
the original Nmatrix M to be saturated in order to guaran-
tee that the restriction that its proof promotes on the set of
valuations gives a complete semantics for any strengthening
of LM. Hence, as the matrix of coimplication is not satu-
rated,we cannot consider22 �2⊥. However, from the results
mentioned in Rem. 2.8, we can consider 2ω �2⊥ knowing
that the underlying matrix is saturated and also character-
izes B • B⊥. We thus have that 2ω �2⊥ = 〈2N, {N},̃ ·�〉
with X˜�Y = X ∩ Y and ⊥̃� = 2N\{N}. To conclude the
argument, it is enough to show that for every valuation over
2ω �2⊥ that respects the above interaction rule there is a
valuation over a Boolean matrix that satisfies the same for-
mulas. For that effect, there are two cases to analyze. Clearly,
every v that fails to satisfy all formulas in the language,
that is, such that v(ψ) �= N for every ψ ∈ L ⊥(P), triv-
ially respects the interaction rule p

⊥ p and corresponds to
the valuation over 2 ⊥ that sends every sentential variable
to 0. If instead v(ψ) = N for some ψ ∈ L ⊥(P), then
v(⊥ ψ) = v(ψ) ∩ v(⊥) = N implies v(⊥) = ∅. Hence,
v is also a valuation over 2ω ⊥. �

It is worth noting that in some cases the disjoint fibring
of the logic of some Boolean connectives with ⊥ admits a
semantics that is simpler than the 4-valued Nmatrix obtained
above.

Proposition 3.12 If ⊥ /∈ � and every connective in � is
truth-preserving, thenB� • B⊥ has a 4-valued characteristic
logical matrix.

Proof We know from Prop. 3.10 that B� • B⊥ is char-
acterized by the 4-valued Nmatrix 22

��2⊥. We will show
that B� • B⊥ is equivalently characterized by the 4-valued
matrix M

4
�∪{⊥} := 〈{0, 1}2, {(1, 1)},̂ ·4 〉 where ©̂4 := ©̃2

for © ∈ � (we take ©̃2 as the interpretation of © in 22
�) and
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⊥̂4 := (1, 0). The argument we use here is a specialization
of the one used in the proof of Prop. 2.9.

Let B� • B⊥ = B� • ⊥⊥⊥ := 〈� ∪ {⊥},�⊥⊥〉, and recall
from Prop. 2.9 thatB� • ⊥⊥⊥ is characterized by the Nmatrix
2��M

⊥⊥⊥ . Let 〈� ∪ {⊥},�⊥⊥〉 refer to B� • ⊥⊥⊥. For � ∪
{ϕ} ⊆ L�∪{⊥}(P), note that � �⊥⊥ ϕ if and only if � �⊥⊥ ϕ

or � �⊥⊥ ⊥ (as B⊥ is axiomatized by the single rule ⊥
p ).

Soundness follows by observing that ValP (M4
�∪{⊥}) = {v ∈

ValP (22
��2⊥) : v(⊥) = (1, 0)}.

Further, note that ValP (22
��2⊥) = ValP (22

��M
⊥⊥⊥ ) =

{v ∈ ValP (22
��M

⊥⊥⊥ ) : v(⊥) �= (1, 1)}, and there-
fore, ValP (M4

�∪{⊥}) = {v ∈ ValP (22
��M

⊥⊥⊥ ) : v(⊥) =
(1, 0)} = {v′ ◦ skel� : v′ ∈ ValP∪X� (22

�) and v′(x⊥)

= (1, 0)} = {(v′
1 ◦ skel�, v′

2 ◦ skel�) : v′
1, v

′
2 ∈

ValP∪X� (2�) and v′
1(x⊥) = 1 and v′

2(x⊥) = 0} =
{(v1, v2) : v1, v2 ∈ ValP∪X� (2��M

⊥⊥⊥ ) and v1(⊥) =
1 and v2(⊥) = 0}.

As for completeness, if � ��⊥⊥ ϕ, then � ��⊥⊥ ϕ and � ��⊥⊥
⊥. Hence, there exist valuations w1, w2 ∈ ValP (2��M

⊥⊥⊥ )

such that w1(�) = w2(�) ⊆ {1} and w1(ϕ) = w2(⊥) =
0. Additionally, note that, as the connectives in � are all
assumed to be truth-preserving, then v′

� ∈ ValP∪X� (2�)

where v′
�(ψ) = 1 for every ψ ∈ L�(P ∪ X�). Consider

v� = v′
� ◦ skel� ∈ ValP (2��M

⊥⊥⊥ ).
Now, for each α ∈ L�(P), let

v(α) :=
{

(v�(α),w1(α)), if w1(⊥) = 0

(w1(α),w2(α)), if w1(⊥) = 1
.

In either case, v ∈ ValP (22
��2⊥), v(�) ⊆ {(1, 1)}, v(ϕ) �=

(1, 1) and v(⊥) = (1, 0). Precisely because v(⊥) = (1, 0),
we conclude that v ∈ ValP (M4

�∪{⊥}). ��
Example 3.13 (Implication and bottom). Recall implica-
tion, , from Sect. 2.6, and observe that it is a truth-
preserving connective. When fibring B and B⊥, in view
of truth-preservation, by Prop. 3.12, we know that B •
B⊥ is characterized by the 4-valued matrix M

4 ⊥ :=
〈{0, 1}2, {(1, 1)},̂ ·4〉 where ̂4 := ˜2 (as in 22 ) and

⊥̂4 := (1, 0), that is:

̂4 (0, 0) (0, 1) (1, 0) (1, 1)
(0, 0) (1, 1) (1, 1) (1, 1) (1, 1)
(0, 1) (1, 0) (1, 1) (1, 0) (1, 1)
(1, 0) (0, 1) (0, 1) (1, 1) (1, 1)
(1, 1) (0, 0) (0, 1) (1, 0) (1, 1)

⊥̂4

(1, 0)

Further, in B • B⊥ we have �� ⊥ p, and so this logic
is strictly weaker than B ⊥. A complete calculus for B ⊥
may be obtained by simply adding to the calculus of B the
single interaction axiom:

⊥ p

The usual rule for ⊥ is easily derivable. Completeness
of the resulting calculus may be easily confirmed using
Lemma 2.7(b). Indeed, note that there are two kinds of val-
uations over M

4 ⊥ that respect the axiom ⊥ p: either

v(⊥) = (0, 0), in which case it is also a valuation over 22 ⊥,
or v(⊥) = (1, 0) (resp. v(⊥) = (0, 1)), in which case the
only possible values for the other formulas are (1, 0) or (1, 1)
(resp. (0, 1) or (1, 1)). So, π2(v) (resp. π1(v)) is a valuation
over 2 ⊥ satisfying the same formulas as v. �

The semantic characterizations provided by Prop. 3.10
and Prop. 3.12 may still be further improved in the very par-
ticular, and perhaps surprising, case where all the Boolean
connectives in � are expressible as derived connectives with
the sole use of bi-implication.

Proposition 3.14 If ⊥ /∈ � and C�
2 ⊆ C2 then B� • B⊥ =

B�∪{⊥}.

Proof First, we prove that B  • B⊥ = B ⊥. Since
and  are truth-preserving, we know from Prop. 3.12

that B  • B⊥ is characterized by the 4-valued matrix
M

4 ⊥ := 〈{0, 1}2, {(1, 1)},̂ ·4 〉 where ̂4 := ˜2 and
̂4 := ̃2 = (1, 1) (thus extending22 ) and ⊥̂4 := (1, 0).
We will show that B  • B⊥ is equivalently characterized
by 2 ⊥.

Consider the bijection h : {0, 1}2 −→ {0, 1}2 such that
h(1, a) = (a, a) and h(0, a) = (1 − a, a) for a ∈ {0, 1}.
It is straightforward to check that h establishes an iso-
morphism between M

4 ⊥ and 22 ⊥. Indeed, first note
that h() = h(1, 1) = (1, 1) = ̃2, and h(⊥̂4) =
h(1, 0) = (0, 0) = ⊥̃2. To see that h((a1, b1)̂4(a2, b2)) =
h(a1, b1)˜2h(a2, b2) note that ̂4 = ˜2 is commuta-
tive and analyze the possible cases: (i) h((1, 1)˜2(a, b)) =
h(a, b) = (1, 1)˜2h(a, b) = h(1, 1)˜2h(a, b); (ii)
h((a, b)˜2(a, b)) = h(1, 1) = h(a, b)˜2h(a, b); and
(iii) if (a1, b1), (a2, b2) are two distinct undesignated val-
ues and (a3, b3) is the other undesignated value, then
h((a1, b1)˜2(a2, b2)) = h(a3, b3) = h(a1, b1)˜2h(a2, b2).
This shows that B  • B⊥ is equivalently characterized
by 22 ⊥, and thus also by 2 ⊥.

Finally, consider t1 : L�(P) −→ L (P) such that

2� = 2t1  and t2 := id⊥. We are thus under applica-
bility conditions of Prop. 2.11(c) and Prop. 2.12, and from
2�∪{⊥} = 2t1∪t2⊥ we conclude that B�• B⊥ = B�∪{⊥}. ��

The next example illustrates a rather special—and perhaps
unexpected—situation: the Boolean logic of bi-implication
and ⊥ coincides with the fibring of the corresponding one-
connective fragments. This fact applies also if we replace
bi-implication with the connective +3 which is expressible
using by setting λp1 p2 p3. p1 (p2 p3). These results
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are to be contrasted, in the light of Prop. 3.18 below, with the
fibring of ⊥ with any connective in the list [L1]: T n+2

n+1 (for

n ∈ N), T n+4
2 (for n ∈ N), ¬, , , +, if, λp1 p2 p3. p1 ∨

(p2∧ p3),λp1 p2 p3. p1∨(p2+ p3),λp1 p2 p3. p1∧(p2∨ p3),
λp1 p2 p3. p1 ∧ (p2 p3). Note that [L1] contains all the
connectives in [L0] except and +3.

Example 3.15 (Bi-implication and bottom). We consider
combining B and B⊥. It follows from Prop. 3.14 that
B • B⊥ = B ⊥. Thus, the fibred logic is 2-valued and
is characterized by the matrix 2 ⊥.

A complete calculus forB ⊥ may be obtained by simply
merging calculi for the components (a calculus for B may
be found in Rautenberg (1981, p. 332). �

The following example provides further illustration on
Prop. 3.5 and highlights the role of the condition concerning
the nullarity of bottom in Prop. 3.14.

Example 3.16 (Bi-implication and 1-place bottom). Let the
connective ⊥1 be a 1-place bottom-like connective. This
time we consider combining B with the logic B⊥1 of ⊥1,
characterized by the Boolean matrix 2⊥1 , which is known
to be saturated by Prop. 2.6. As B is not saturated,
we consider instead 2ω . It follows from the results men-
tioned in Rem. 2.8 that B • B⊥1 is characterized by the
non-denumerable Nmatrix 2ω �2⊥1 = 〈2N, {N},̃ ·�〉 where
X˜�Y := (X ∪ Y ) ∩ (Y ∪ X) and ⊥̃1

�(X) := {Y : Y �= N}.
As ⊥1 is a non-top-like Boolean connective distinct from

the 0-place connective ⊥, and is very significant, by
Prop. 3.5 we know that B • B⊥1 is not characterized by
a finite matrix. Furthermore, we claim that B • B⊥1 is
not even finitely Nvalued. We will show indeed that it is
not k-determined. Let ψi := ⊥1(pi ), for 1 ≤ i ≤ k + 1,
and � := {(ψi ψ j ) ψ� : i �= j, i �= �, j �= �, 1 ≤
i, j, � ≤ k + 1}. We have that � �� pk+2. However, given
σ : P −→ {p1, . . . , pk}, it follows by the pigeonhole prin-
ciple that there must be some i �= j such that ψσ

i = ψσ
j , and

so �σ � ψ�. As ψ� is bottom-like, i.e., ψ� � p, we obtain
�σ � σ(pk+2). Hence, B • B⊥1 is strictly weaker than
B ⊥1 .

A complete calculus for B ⊥1 may be obtained by sim-
ply adding to a calculus for B •B⊥1 the single interaction
axiom ⊥1(p) ⊥1(q)

. Completeness follows byLemma 2.7(b)
and the fact that A˜�B takes a designated value if and only
if A = B, therefore every ⊥1-headed formula must have
the same value, and the functions that swap some undes-
ignated points with ∅ are isomorphisms between 2ω �2⊥1

and 2ω
⊥1 . We abstain from presenting here further details

as they are in fact very similar to the argument presented to
the same effect in Ex. 3.15. �

In contrast to the above, the following example shows that
the situation changes if we simultaneously add two 0-place

bottoms, in which case a subclassical logic is obtained. We
will consider the connective+3, but the same argumentwould
apply to the connective .

Example 3.17 (+3 and two bottoms). Let ⊥1 and ⊥2 be
two 0-place bottoms. We consider merging B+3 and the
logic of these two bottom-like connectives, B⊥1⊥2 , charac-
terized by 2⊥1⊥2 . Clearly, 2⊥1⊥2 is still saturated in view of
Prop. 2.6. Following the same recipe as in the case of a single
bottom in Prop. 2.9 (but now with 3-saturation), we imme-
diately conclude that B • B⊥1⊥2 is characterized by the
Nmatrix 23

+3
�2⊥1⊥2 . Choosing v over 23

+3
�2⊥1⊥2 such that

v(p) := (0, 1, 1), v(⊥1) := (1, 0, 0) and v(⊥2) := (0, 0, 0),
we have that v(+3(p,⊥1,⊥2)) = (1, 1, 1). Hence, themixed
consequence assertion +3(p,⊥1,⊥2) � p fails to hold in the
fibred logic, and so B+3 • B⊥1⊥2 �= B+3⊥1⊥2

.
An axiomatization for B+3 may be found in Rautenberg

(1981, p. 331) and B⊥1⊥2 is axiomatized simply by the rules
⊥1
p and ⊥2

p . A complete calculus forB+3⊥1⊥2
maybe obtained

by just adding to a calculus forB+3•B⊥1⊥2 the two interaction

rules +3(⊥1,p,q)

+3(⊥2,p,q)
and +3(⊥2,p,q)

+3(⊥1,p,q)
. �

We see that the Boolean connectives definable by bi-
implication still result in a two-valued classical logic when
combined with ⊥. This can never be the case with other con-
nectives, as we show below. We shall prove that the result
of adding ⊥ to a logic expressing any connective from [L1]
(or equivalently a connective from [L0] that does not belong
to C2 ) fails to yield the corresponding fragment of classical
logic.

Proposition 3.18 If ⊥ /∈ � and ©̃ ∈ C�
2 for © in [L1] then

B� • B⊥ � B�∪{⊥}.

Proof Consider the list of connectives [L2]: ∨, T 3
2 ,¬,+,

λp1 p2 p3. p1 ∧ (p2 ∨ p3). Observe that [L2] is a sublist of
[L1]. First, we prove that B© • B⊥ � B©⊥ for © in [L2].
Note that ∨ = T 2

1 . In all cases, we shall take advantage of
Prop. 3.10, which shows that B© •B⊥ is characterized by the
4-valued Nmatrix 22

©�2⊥.

– If © = ∨, then ⊥ ∨ p � p holds classically but
fails to hold in B∨ • B⊥, as shown by a valuation v ∈
ValP (22∨�2⊥) with v(⊥) = (0, 1) and v(p) = (1, 0) �=
(1, 1), which is such that v(⊥ ∨ p) = (0, 1)∨̃2(1, 0) =
(1, 1).

– If © = T 3
2 , then T 3

2 (⊥, p, q) � p holds classically
but fails to hold in BT 3

2
• B⊥, as shown by a valua-

tion v ∈ ValP (22
T 3
2
�2⊥) with v(⊥) = (0, 1), v(p) =

(1, 0) �= (1, 1) and v(q) = (1, 1), which is such that

v(T 3
2 (⊥, p, q)) = ˜(T 3

2 )2((0, 1), (1, 0), (1, 1)) = (1, 1).
– If © = ¬, then � ¬⊥ holds classically but fails to hold
in B¬ • B⊥, as shown by a valuation v ∈ ValP (22¬�2⊥)
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with v(⊥) = (0, 1), for which necessarily v(¬⊥) =
¬̃2(0, 1) = (1, 0) �= (1, 1).

– If © = +, then ⊥ + p � p holds classically but
fails to hold in B+ • B⊥, as shown by a valuation
v ∈ ValP (22+�2⊥) with v(⊥) = (0, 1) and v(p) =
(1, 0) �= (1, 1), for which necessarily v(⊥ + p) =
(0, 1)+̃2(1, 0) = (1, 1).

– If © = λp1 p2 p3. p1 ∧ (p2 ∨ p3), then p ∧ (⊥ ∨ q) � q
holds classically but fails to hold in B© • B⊥, as shown
by a valuation v ∈ ValP (22

©�2⊥) with v(⊥) = (0, 1),
v(p) = (1, 1) and v(q) = (1, 0) �= (1, 1), for which
necessarily v(p∧(⊥∨q)) = (1, 1)∧̃2((0, 1)∨̃2(1, 0)) =
(1, 1)∧̃2(1, 1) = (1, 1).

As it is clear that B© • B⊥ ⊆ B©⊥, in all cases considered
above, we conclude that B©•B⊥ � B©⊥, for © a connective
from the restricted list [L2].

We now note that each of the other connectives in [L1]
expresses some connective from [L2] (actually, in all cases,
either ∨ or �� := λp1 p2 p3. p1 ∧ (p2 ∨ p3) may be seen to
be a derived connective).

– If © = T n+2
n+1 with n ≥ 2 then �� is expressed by

λp1 p2 p3. T
n+2
n+1 (p1n, p2, p3).

– If © = T n+4
2 with n ∈ N then ∨ is expressed by

λp1 p2. T
n+4
2 (p12, p2n+2).

– If © = then ∨ is expressed by λp1 p2. (p1
p2) p2.

– If © = then �� is expressed by λp1 p2 p3. (p3
(p2 p1)) p1.

– If © = if, then ∨ is expressed by λp1 p2. if(p1, p1, p2).
– If © = λp1 p2 p3. p1 ∨ (p2 ∧ p3), then ∨ is expressed by

λp1 p2. p1 ∨ (p2 ∧ p2).
– If © = λp1 p2 p3. p1 ∨ (p2 + p3), then ∨ is expressed by

λp1 p2. p1 ∨ (p1 + p2).
– If © = λp1 p2 p3. p1 ∧ (p2 p3), then �� is expressed

by λp1 p2 p3. p1 ∧ ((p1 ∧ (p2 p3)) p3).

This means that if ©̃ ∈ C�
2 for some connective in the list

[L1] given in the statement, then the same is true also for one
of the five connectives in the smaller list [L2]. Thus, we can
assume without loss of generality that © is in [L2]. Let t©
be such that 2© = 2t©

� . We are thus under the applicability
conditions of Prop. 2.11(c) and Prop. 2.12 with t = t©∪ id⊥.
Hence, from B© • B⊥ �= B2©⊥ and 2©⊥ = 2t

�∪{⊥}, we
conclude that B� • B⊥ �= B2�⊥ . ��

The following example illustrates, together with Ex. 3.11
and Ex. 3.13, the variety of behaviors that may arise from
adding a 0-place bottom to the logic of a single classical
connective, as described by Prop. 3.18:

Example 3.19 (Negation and bottom). We now consider fib-
ring the logics B¬ and B⊥ of classical negation and bottom.
Recall from Ex. 3.7 that 2¬ is not saturated, but we can
consider instead the 3-valued saturated matrix M

3¬. Note
also that M

⊥⊥⊥ = 2⊥, and from Prop. 2.9, it follows that
B¬•B⊥ is characterized by the 3-valued NmatrixM

3¬�2⊥ =
〈{0, 1

2 , 1}, {1},̃ ·�〉 with ¬̃� := ¬̃3 and ⊥̃� := {0, 1
2 }.

To see that B¬ •B⊥ is not deterministically many-valued
we point out the fact that¬⊥ � ¬⊥ but �� ¬⊥, which implies
the failure of the cancelation property. It follows, of course,
thatB¬•B⊥ is strictlyweaker thanB¬⊥. A complete calculus
for B¬⊥ may be obtained by adding to the calculus of B¬ a
single interaction axiom, namely:

¬⊥
Completeness of the resulting calculus may easily be con-
firmed using Lemma 2.7(b). Indeed, we know from Prop. 2.9
that 22¬�2⊥ also defines the same logic. Clearly, any v

that validates the above interaction axiom ¬⊥ is such that
v(⊥) = (0, 0); therefore, v is actually a valuation over 22¬⊥.�

4 Putting it all together

4.1 Characterizing the Boolean combinations

Building on Prop. 3.1, Prop. 3.3, Prop. 3.5, Prop. 3.14 and
Prop. 3.18, from the previous subsections, we are finally able
to identify, in the next theorem, the precise conditions for
the recovery of a fragment of classical logic by fibring dis-
joint classical components. The facts about Boolean clones
highlighted in Rem. 2.5 turn out to be essential in proving
the result, which takes indeed full advantage of the fact that
every very significant connective expresses some connective
in [L0].
Theorem 4.1 If the signatures �1 and �2 are disjoint, then
B�1 • B�2 = B�1∪�2 if and only if either:

(a) C�i
2 ⊆ C

2 for some i ∈ {1, 2}, or
(b) C�1

2 , C�2
2 ⊆ C∧⊥

2 , or

(c) C�i
2 ⊆ C2 and ⊥ ∈ � j is the only non-top-like connec-

tive in � j , for i �= j with i, j ∈ {1, 2}.

Proof If (a) is the case, then B�1 • B�2 = B�1∪�2 follows
from Prop. 3.1. If (b) is the case, then B�1 • B�2 = B�1∪�2

follows from Prop. 3.3. If (c) is the case, then assumewithout
loss of generality that i = 1 and j = 2. First observe that
B�2 = B�2\{⊥}•B⊥, and alsoB(�1∪�2)\{⊥} = B�1•B�2\{⊥},
both facts being justified by Prop. 3.1 as C�2\{⊥}

2 ⊆ C
2 .

Thus, B�1•B�2 = B�1• (B�2\{⊥} • B⊥) = (B�1•B�2\{⊥})•
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B⊥ = B(�1∪�2)\{⊥} • B⊥ = B�1∪�2 , this last step being a

consequence of Prop. 3.14 since C
2 ⊆ C2 , and therefore

C(�1∪�2)\{⊥}
2 ⊆ C2 .
Conversely, assume thatB�1•B�2 = B�1∪�2 and that nei-

ther (a) nor (b) are the case. Thismeans that one of the logics,
say B�1 , expresses a very significant connective, while the
other logic, B�2 , expresses some non-top-like connective ©.
From Prop. 3.5 and Prop. 2.10, it follows that © = ⊥. Thus,
it follows from Prop. 3.18 (and Rem. 2.5) and Prop. 2.10
that C�1

2 ⊆ C2 . However, Ex. 3.17 and Prop. 2.10 show
that there cannot be two syntactically distinct 0-place bot-
tom connectives, since λp1 p2 p3. p1 + p2 + p3 is expressed
by every very significant connective in C2 . Hence, we con-
clude that ⊥ ∈ �2 is the only non-top-like connective in �2.

��
The following result formulates the precise conditions

under which full classical logic may be recovered by fibring
disjoint fragments of it. Again we take advantage of Post’s
lattice, highlighted in Rem. 2.5, namely using the identifica-
tion of the Boolean clones which are maximal with respect
to .

Corollary 4.2 Let �1 and �2 be disjoint signatures such that
C�1
2 , C�2

2 �= C2 but C�1∪�2
2 = C2. Then,B�1•B�2 = B�1∪�2

if and only if C�i
2 ∈ {D, T ∞

0 } ∪ {T n+1
0 : n ∈ N} and C� j

2 =
UP1, for i �= j with i, j ∈ {1, 2}.
Proof If B�1 • B�2 = B�1∪�2 , then one of the cases into
which Thm. 4.1 is divided must apply. However, cases (b)
and (c) are not possible because in those cases wewould have
C�1∪�2
2 �= C2. Thus, (a) must be the case, and C�i

2 ⊆ C
2 ,

and actually C�i
2 = C

2 = UP1 simply because the other

possibility would be C�i
2 = C∅

2 (the only clone properly

contained in C
2 is C∅

2 ). Hence, C� j
2 ∈ {D, T ∞

0 } ∪ {T n+1
0 :

n ∈ N}, as these are precisely the clones which are maximal
with respect to UP1 (see Rem. 2.5). ��

4.2 Summing it up

In Sect. 3 we have analyzed several examples of com-
binations of classical connectives produced through fib-
ring (namely, by merging the corresponding axiomatiza-
tions), including their characterizations through (logical)
(N)matrices, as well as the interaction principles needed for
the corresponding fragment of classical logic to be recovered.
It is worth taking a more abstract look at these examples and
the results that structure them.

A first batch of examples that was considered concerned
the cohabitation, in the same logic, of two copies of the
same Boolean connective. Already there one can find all
sorts of interesting phenomena arising. As shown, the addi-
tion (through fibring) to the logic of classical conjunction

of another copy of classical conjunction, with the same
behavior, makes these connectives collapse into one another
(B∧ •B& = B∧&, Ex. 3.4). On the other hand, the analogous
collapse does not occur if we combine, say, two copies of
negation (B¬•B∼ �= B¬∼, Ex. 3.7), or two copies of disjunc-
tion (B∨ • B|| �= B∨||, Ex. 3.6). As we have pointed out, the
fibring of two copies of the logic of classical negation does
not have a finite-valued characterization, yet is 5-Nvalued,
and the fibring of two copies of the logic of classical dis-
junction does not even have a finite-valued non-deterministic
semantics.

Another batch of examples we have entertained involved
the combination of two distinct Boolean connectives. Again,
if such combination is produced via fibring, aiming at a com-
mon minimal conservative extension of the logics of the
connectives given as input, several different phenomena may
be observed. In most interesting cases (such as conjunction
plus disjunction B∧ • B∨ �= B∧∨, Ex. 3.8), the combined
logic turns out to be subclassical and not characterizable by
a finite-valued Nmatrix, and this is also the case in situa-
tions (such as disjunction plus negation: B∨ • B¬ �= B∨¬,
Ex. 3.9) in which one could have expected the resulting logic
to be functionally complete. However, there are cases (such
as coimplication plus top: B • B = B , Ex. 3.2) in
which one actually does obtain full classical logic without
the need to impose any sort of additional interaction princi-
ples involving the two connectives being combined.

A particular class of examples that deserved separate
attention above involved the combination of the logic of some
standard classical connectives with the logic of bottom-like
connectives. To a bystander unaware of the results in the
present paper, the semantic behavior observed in this last
batch of examples might seem erratic. For instance, while
combining the logics of negation and of bottom gives rise to
a 3-Nvalued logic (B¬ •B⊥ �= B¬⊥, Ex. 3.19), and combin-
ing the logics of complication and of bottom gives rise to a
4-Nvalued logic (B •B⊥ �= B ⊥, Ex. 3.11), adding a bot-
tom to the logic of implication results in a deterministically
4-valued logic (B • B⊥ �= B ⊥, Ex. 3.13). Other curi-
ous examples include the addition of a bottom to the logic of
bi-implication, which outputs the corresponding fragment of
classical logic without the addition of interaction principles
(B • B⊥ = B ⊥, Ex. 3.15), and the alternative addition
of a 1-place bottom-like connective to the same logic of bi-
implication (B • B⊥1 �= B ⊥1 , Ex. 3.16), which results
subclassical, instead. We have also considered an example in
which the logic of a ternary odd counter (a ternary connective
that is true iff exactly one or three of its arguments is true)
is fibred with the logic containing two copies of the classical
bottom, and the resulting logic turned out to be 8-Nvalued
(B+3 • B⊥1⊥2 �= B+3⊥1⊥2

, Ex. 3.17).
The above-mentioned seemingly capricious diet of exam-

ples was employed both in motivating and in illustrating the
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results obtained in the present paper. Substantially advanc-
ing beyond the results of the investigation done at our earlier
paper (Caleiro et al. 2017), we have in the preceding subsec-
tion at last identified, in Thm. 4.1 and Cor. 4.2, the precise
conditions for the recovery of a fragment of classical logic
(for any arbitrary signature, with a 2-valued interpretation
in terms of logical matrices) through the fibring of disjoint
Boolean components. It is worth mentioning, nonetheless,
that some intermediate results obtained while establishing
the foundations for these main results have helped in identi-
fying some sufficient conditions for a logic (not) to be finitely
valued (Prop. 3.5), and in several cases, we directly showed
that our illustrations had (or did not have) a non-deterministic
finite-valued characterization.

5 What lies ahead

In this paper, we have fully uncovered the conditions under
which merging the Hilbert calculi of disjoint fragments of
classical logic still leads to a fragment of classical logic,
or potentially to full classical logic, without the need to
introduce further inference rules regulating the interaction
between the connectives from each of the fragments. It comes
as no surprise that this is an extremely rare event, but there
are a few non-trivial and perhaps unexpected exceptions,
fully identified at Thm. 4.1 and Cor. 4.2. The proofs of these
results,whichwebelieve to be entirely novel, rely in an essen-
tial way on the ingenious classification of two-valued clones
by Post (1941). Analogous results for fragments of other
important logics are thus expected to be far from straightfor-
ward. It is worth noting that as a by-product of Prop. 3.3 and
Prop. 3.5, we have also fully characterized the circumstances
under which collapses of classical connectives are produced
via fibring, namely, when we are dealing with two copies of
a Boolean connective that is not very significant.

Some of the results and the general techniques used in
this paper are, nonetheless, applicable well beyond classi-
cal logic. Overall, the present investigation may be seen as
an application of the recent semantic characterization of dis-
joint fibring in Marcelino and Caleiro (2017), which uses in
a fundamental way the advantages of the non-deterministic
environment permitted by Nmatrices. The myriad of inter-
esting subclassical logics that are obtained in all the cases
in which the combination of classical fragments fails to be
classical, as illustrated in most of the examples, are an imme-
diate by-product of this semantic technology and that allow
the results hereby obtained to extend in a non-trivial way the
preliminary results in Caleiro et al. (2017).

A more comprehensive understanding of fibred logics,
even beyond the disjoint case, is an obvious avenue for future
research. But several other narrower alleys have been opened
by the work reported in this paper. For a start, despite having

done so for all the examples analyzed, we have not been able
to obtain a general categorization of the cases when the logic
combining two fragments of classical logic fails to be finitely
valued yet still happens to be finitely Nvalued. It seems that a
deeper understanding of finite–Nvaluedness is still lacking,
parallel to the results of Caleiro et al. (2018) with respect to
finite-valuedness. We have also not managed to prove in a
systematic way the completeness of the calculi obtained by
the addition of new interaction rules directly from the Nma-
trices characterizing the fibring of the underlying fragments
of classical logic (note that the resulting calculi are known
to be complete, as a result of the techniques introduced by
Rautenberg in his notable paper (Rautenberg 1981)). We left
these completeness proofs open in a few of the examples, as
the notion of a valuation respecting an inference rule turns
out to be less innocent than it might seem. In order to sys-
tematically tackle this problem, it seems that one should try
to employ the technique of ‘rexpansions,’ from Avron and
Zohar (2017), which advocates first expanding the Nmatrix
at hand in order to be able to split conflicting behaviors in the
evaluation of connectives, that may then be simply refined
(purged from an undesired value) when one needs to impose
an additional rule on it. The completeness proofswe included
in our examples are basic instances of the rexpansion tech-
nique. Another, more general but related, path to pursue is
targeting a deeper understanding of the algebraic properties
of Nmatrices. A good example of the perplexities brought
about by such a seemingly innocent extension of the notion of
logical matrix concerns the definition of derived connectives
by abbreviation, which amounts to a straightforward matter
for operations on matrices but which brings unsuspected dif-
ficulties in Nmatrices.2 In particular, a better understanding
of more general applicability conditions for our Prop. 2.11
can very well depend on such a fundamental study of Nma-
trices. Finally, it is important to get a better grip on the role
of saturation in the process of fibring logics, and its inter-
play with strict products of Nmatrices. As we have seen, it is
sometimes sufficient to require k-saturation for finite k; we
believe though that othermilder forms of saturationmay play
a key role in obtaining simpler (in particular, denumerable)
semantics for combined logics.

In closing, it is worth noting that the essential role
played by the saturation requirement in order to explain the
semantics of the combined logics seems to suggest that the

2 The problem is that, while it is true that any logical matrix M and
any translation t : � −→ L�(P) allow one to interpret unambiguously
any derived connective, so that ValP (Mt) = {v ◦ t : v ∈ ValP (M)}, the
latter equality is not true, in general, ifM is an Nmatrix. For an example
of that, suppose the 1-place derived connective ∼ ∈ � is introduced
through t as λp1. p1 ⊥, where is the Boolean implication and ⊥
is an unrestrained 0-place connective. In that case, the induced Nmatrix
M

t would take ∼Mt = {0, 1}, while the original Nmatrix M can only
allow ∼M to be affirmation connective or the negation connective.
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emergence of interaction principles is connected with a lack
of expressiveness of the standard Tarskian framework for the
study of logics (as hinted also in Coniglio (2007)) and that
the outcome of the present investigation would be entirely
different if we were to adopt multiple-conclusion logics,
after Shoesmith and Smiley (1978).
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