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Abstract
The standard notion of formal theory, in logic, is in general biased exclusively towards
assertion: it commonly refers only to collections of assertions that any agent who
accepts the generating axioms of the theory should also be committed to accept. In
reviewing the main abstract approaches to the study of logical consequence, we point
out why this notion of theory is unsatisfactory at multiple levels, and introduce a novel
notion of theory that attacks the shortcomings of the received notion by allowing one
to take both assertions and denials on a par. This novel notion of theory is based on a
bilateralist approach to consequence operators, whichwe hereby introduce, andwhose
main properties we investigate in the present paper.

Keywords Logical consequence · Bilateralism · The notion of theory · Assertions
and denials

1 Towards a widened notion of theory

When thinking of a logical theory as some collection of judgments closed under a given
notion of consequence, it is often useful to adopt the proof-theoretic frame ofmind and
think of a collection of axioms and rules togetherwith the theorems thatmay be derived
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from them, or else to put the glasses of the formal semanticist and look at the collection
of sentences entailed from the initially given collection. A general abstract approach
underlying both proof theory and formal semantics, though,may be undertaken byway
of the theory of consequence operators. In the standard approach promoted by Alfred
Tarski, a theory is nothing but a fixed point of a certain given consequence operator:
in the usual case, one talks about a collection of asserted sentences that contains all
other assertions that may be thought of as ‘following from’ that very collection; dually,
one might also talk about of a collection of denied sentences that contains all other
denials that follow from it.

If one takes for granted that a denial consists simply in the complement of an
assertion, as much of the literature on Logic would seem to do (notice though that
this was already put into question as early as in Curry 1963), the local reading of
the rule of modus ponens as constraining one to assert B whenever one commits
oneself to asserting both A-implies-B and A would be equivalent to reading that
very rule in the form of modus tollens, constraining one to denying A whenever one
commits to asserting A-implies-Bwhile denying B. Further, if the proof of an assertion
amounts to globally recognizing its validity, it would seem wrong to understand the
counterproof of a denial as a recognition of its invalidity; the latter, and dual, attitude
would rather amount to a recognition that a denial corresponds to an unsatisfiable
judgment. Assuming that unsatisfiability is the complement of validity would however
consist in disposing of what would arguably constitute the most interesting class of
logical sentences, namely that of contingencies: indeed, only the contingent sentences
are really ‘informative’ for the logician, in the sense that they alwaysmake a difference
in terms of therewith associated states of affairs (viz. models), when added to either
side of an inferential statement.

Thinking about assertions and denials both as first-class citizens in the activity of
analyzing inferences, by considering theories that are presented bywayof both kinds of
judgments, not only allows the above mentioned unexpected asymmetries to be fixed,
but it actually gives one the opportunity to construct strictlymore expressive inferential
statements than one would be able to construct using only one of the judgments of
asserting or of denying. Here goes, by way of an informal example, a theory that
has no finite assertion-based presentation, but that does have a finite presentation in
terms of a denial-based presentation. Consider a set L of sentences represented by
the natural numbers and an extra sentence H . Suppose that a formal semantics for
the underlying logic takes H to be false only if n is true for every natural number n,
and makes no further assumptions. From the inferential viewpoint, as we shall see,
this corresponds to committing to the consecutions written as ∅ � {n, H}, for every
n ∈ N (the comma on the right-hand side of the consequence relation symbol � could
of course be eliminated in the presence of a disjunction in the underlying object-
language). Where �1, �0 ⊆ L, let’s say that (�1, �0) presents a theory in which the
sentences in �1 are taken as asserted and those of �0 are taken as denied. Then, as the
reader will be able to check by himself after the next couple of sections of the present
paper, for every finite � � N the ‘closure’ of the purely assertion-based presentation
(�, ∅) is the theory (�, ∅) itself; on the other hand, the infinite theory (N, {H}) is the
closure of the purely denial-based finite presentation (∅, {H}).
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The latter example properly fits within the enterprise of investigating abstract con-
sequence relations in terms of a framework often called ‘Set × Set consequence’,
‘symmetric[al] consequence’ or ‘generalized consequence’ (cf. Shoesmith and Smi-
ley 1978; Gabbay 1981; Segerberg 1982; Dunn and Hardegree 2001; Zygmunt 1984;
Humberstone 2011, 2012, and others), and contrasts with the traditional framework
known as ‘Set × Fmla consequence’, which allows formultiple premises and focuses
on a single conclusion at any given time. For very natural reasons, as we shall see, the
investigation of logical theories containing both assertions and denials, in the present
paper, will be based on the above mentioned generalized notion of consequence.

We start Sect. 2 of the present paper by stating the properties of a somewhat intuitive
notion of ‘compatibility relation’ among sets of sentences, taking next the general-
ized notion of consequence relation (that we call ‘S-consequence relation’) to be
its complement and the Tarskian-inspired notion of consequence relation (that we
call ‘T-consequence relation’) to impose a structural restriction on S-consequence.
We rephrase then the T-consequence relations in terms of ‘T-consequence operators’,
define the space of all theories associated to T-consequence, and consider some of
the numerous possible T-consequence counterparts of a given S-consequence relation.
This section also recalls the meaning of the property of ‘finitariness’ (of which the
so-called ‘compactness property’ constitutes the semantic rendering), as applied to
the above mentioned notions. The role of the latter property will be taken into account
in later sections.

Section 3 clarifies how compatibility relations are connected, among other things, to
purelymeta-theoretical formulations of the fundamental logical principles of Excluded
Middle and Non-Contradiction. In this section we recall and discuss the Galois
connections that may be established between formal semantics and the notions of
compatibility and consequence, and we highlight the well-known problem concern-
ing the failure of ‘absoluteness’, according to which there is in general no one-to-one
correspondence between T-consequence relations and the therewith associated collec-
tions of bivaluations. Together with some other illustrations provided in this section
(e.g., the example of a non-finitary S-consequence relation that induces a finitary T-
consequence relation), the latter expressive shortcoming is used tomotivate our present
quest for an adequate generalization of consequence operators and an adequate notion
of theory that fits the bill in the study of S-consequence relations.

In Sect. 4 we investigate more deeply the class of T-consequence relations and
operators that could be associated to the same given S-consequence relation. To put
it in deductive terms, the main idea here is to consider theories presented in terms of
both axioms and anti-axioms, and to allow one to ask for their associated theorems
and anti-theorems: namely, for a given S-consequence relation�, for each fixed set �0
of background denied assumptions we show how to define a T-consequence operator
CD:�0� , and for each fixed set �1 of background asserted assumptions we show how to

define a T-consequence operator CA:�1� . The latter consequence relations are then used
to explain the behavior of our novel bilateralist notion of S-consequence operator,
according to which the S-closure C2(�1, �0) of the pair (�1, �0) is given by the
‘theory-pair’ (CD:�0� (�1), CA:�1� (�0)). One should observe, in particular, how each
component of the latter notion has its own associated context of judgment: one is to
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talk accordingly about the theorems that are concluded ‘modulo a set of denials’, and
about the anti-theorems that are concluded ‘modulo a set of assertions’.

To the best of our knowledge, all other extant notions of theory-pair proposed in
the literature are based on partitions of the whole set of sentences into those that are
asserted and those that are denied. This corresponds in fact to (consistent and) com-
plete, or maximal theories, and an appropriate adequate semantics may be associated
to the latter, for any given logic. However, as we argue in this paper, there is no realis-
tic reason why theories should be so ‘fully informative’: in general theories need not
divide all sentences into those belonging to the class of theorems and those belonging
to the class of anti-theorems. At last, in Sect. 5, we proceed to show how the above
mentioned notion of S-closure may accordingly be used to provide a novel notion
of theory (as a fixed point of C2) that takes both assertions and denials on an equal
footing, and that allows us to investigate the associated spaces of theories. We finish
the paper by generalizing a well-known result that identifies the property of the space
of theories that corresponds to finitariness of consequence.

1.1 Historical digression

The terminology introduced by Tarski (1930)—and used in fact by most of the subse-
quent Polish literature on the study of logical calculi—for the fixed points of a given
closure operator C was that of deductive system or, frequently and more specifically,
(closed) C-system. Much later on (cf. Wójcicki 1998), logical theories were to be
identified with collections of said deductive systems that happened to be closed under
substitutions (cf. Łos and Suszko 1958). Tarski’s initial aim was that of studying in
abstract the fundamental properties and underlying concepts of Hilbert’s axiomatic
method in metamathematics (to which Tarski referred as ‘the methodology of the
deductive sciences’). Such abstract—and axiomatic—approach to consequence aimed
thus at generalizing the concrete approach to the (proof-theoretical) formalization of
mathematical theories based on collections of inference rules of a certain format, the
closure underwhichwould suffice to turn a given collection of assertions into the theory
thereby induced. Some time later, however, Tarski claimed that there was a mismatch
between the proof-theoretical approach and the ‘common concept of consequence’
(cf. Tarski 1936), namely, the one that was to be captured by ‘scientific semantics’—a
programme inspired by Carnap’s early model theory. Accordingly, Tarski explicitly
formulated then the truth-preserving concept of consequence which is the one nowa-
days canonically associated with T-consequence relations. It is worth noting that no
connection was established at the time between sets of (object-level) axioms and
classes of models; general results concerning the adequacy of the semantical notion
of consequence to the abstract notion of consequence were unheard of in this early
period.

We also note, as an aside, that the now standard notion of ‘T-consequence’ is not the
one that was originally entertained in Tarski (1930), for Tarski always took finitariness
for granted, as an integral part of his axiomatization of consequence operators. Non-
finitary consequence operators, indeed, were to become the standard only much later
(cf. Łos and Suszko 1958). A similar misattribution that persists in the literature
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concerns the notion of ‘S-consequence’, which was not entertained by Scott (1974),
where a structural restriction on the cardinality of the consecutions was imposed to the
effect that, once more, only finitary logics happened to be considered. The study of
(non-finitary) generalized consequence relations, in the sense invoked here in talking
about ‘S-consequence’, properly started with Shoesmith and Smiley (1978).

2 Capturing the notion of logical consequence

Let L be a non-empty set of sentences. We will assume that the judgments of assertion
and denial are primitive in our metalanguage, and in what follows we will intuitively
think of the consecution (�1,�0) as a meta-logical expression concerning the ‘com-
patibility’ of certain judgments, namely, the assertion of all sentences in �1 ⊆ L and
the denial of all sentences in �0 ⊆ L. Building on that idea, a (canonical logical)
compatibility relation (on L) will be here defined as any relation � on ℘(L) × ℘(L)

satisfying, for every �,�′, �,�′,� ⊆ L:

(CM0) if �′ ∪ � � � ∪ �′, then � � �

(CM1) if � � �, then � ∩ � = ∅

(CM1) if � � �, then there is some �′ ⊆ � such that �′ ∪ � � � ∪ (�\�′)

The reading of (CM0) is immediate: in any state of affairs in which a certain set of
sentences �1 = �′ ∪ � is asserted while a certain set of sentences �0 = � ∪ �′ is
denied, one may in particular say that all subsets of�1 are asserted and that all subsets
of�0 are denied. Furthermore, on the one hand, taking� = � = {A}, property (CM1)
says that the sentence A may not be simultaneously asserted and denied; on the other
hand, taking� = {A}, property (CM2) says that the sentence Amust be either asserted
or denied (in a contextwhere the sentences in� are asserted and those in� are denied).
One might say thus that (CM1) provides a meta-logical formulation of the ‘Principle
of Non-Contradiction’, and disallows for glutty states of affairs in which a sentence is
simultaneously asserted and denied: In any given (consistent) state of affairs, asserting
a given sentence A should not be compatible with denying it. Dually, one might say
that (CM2) provides a meta-logical formulation of the ‘Principle of ExcludedMiddle’,
and disallows for gappy states of affairs in which a sentence is neither asserted nor
denied: In no state of affairs can a sentence A fail to be either asserted or denied.

The complement � of a compatibility relation � on ℘(L) × ℘(L) will here be
called an S-consequence relation (onL). It should be clear that it satisfies the following
properties, for every �,�′, �,�′,� ⊆ L:

(CRS0) if � � �, then �′ ∪ � � � ∪ �′
(CRS1) if � ∩ � �= ∅, then � � �

(CRS2) if �′ ∪ � � � ∪ (�\�′) for every �′ ⊆ �, then � � �

Examples of S-consequence relations abound in the literature, but many logicians
seem still not to be so familiar with them—or even resist to themwithout justifications
based on anything but misunderstandings about what they mean and how they behave
at the meta-logical level.
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If one constrains an S-consequence relation into a relation on℘(L)×L, one will be
said to define a T-consequence relation (on L). Note that a T-consequence relation �
satisfies the following properties, for every �,�′,� ⊆ L and every A ∈ L:

(CRT0) if � � A, then �′ ∪ � � A
(CRT1) if A ∈ �, then � � A
(CRT2) if � ∪ � � A and � � δ for every δ ∈ �, then � � A

In what follows, whenever we need to disambiguate between the symbols for S-con-
sequence and for T-consequence, we shall write, respectively, �S and �T. For a se-
mantically-inspired analogy, one might think of the opposition between the notions
of ‘compatibility’ and ‘consequence’ as reflecting the (dual) opposition between the
notions of ‘satisfiability’ and ‘validity’.

An alternative way of describing T-consequence relations may be procured by way
of a generalization of Kuratowski’s axioms on topological closure, namely by omit-
ting the axioms according to which C(∅) = ∅ and C(� ∪ �′) = C(�) ∪ C(�′).
A consequence operator (on L) is a closure operator on the partially ordered struc-
ture 〈℘(L),⊆〉, that is, a mapping C : ℘(L) −→ ℘(L) that satisfies, for every
�,� ⊆ L:

(COT0) C(�) ⊆ C(� ∪ �)

(COT1) � ⊆ C(�)

(COT2) C(C(�)) ⊆ C(�)

Indeed, a T-consequence relation � on L induces a consequence operator C� on L
by simply setting C�(�) = {A ∈ L : � � A}, and a consequence operator C on L
induces a T-consequence relation�C on L by setting� �C A iff A ∈ C(�). Choosing
to work with T-consequence relations or with consequence operators is often just a
matter of convenience, given that �C�= � and C�C = C. It is well known that the set
of all T-consequence operators on L equipped with the inclusion ordering constitutes
a complete lattice, to which we shall refer as COLT(L).

Given a consequence operator C on L, it is clear from (COT1) and (COT2) that any
set of sentences of the form C(�) is a fixpoint for C. Consider in what follows a T-
consequence relation�T onL and a set� ⊆ Lofaxioms.We callC�T(�) the�T-theory
axiomatized by �. The elements of C�T(�) are dubbed its theorems. We may think of
a �T-theory as the collection of assertions that any agent who accepts the generating
axioms of the theory should also be committed to accept. A set of sentences� is called
�T-consistent if C�T(�) �= L. We will use Th(�T) = {C�T(�) : � ⊆ L} to refer to
the space of all �T-theories. It is well known that Th(�T) equipped with the inclusion
ordering constitutes a complete lattice. One of our main aims in the present paper is
to propose a notion of theory that is appropriate for S-consequence relations, taking
both assertions and denials on an equal footing, and study the corresponding spaces
of ‘�S-theories’.

An S-consequence relation �S on L induces an assertion-based T-consequence
relation �T

�S on L by setting � �T
�S A iff � �S {A}, that is, �T

�S consists in the

restriction of �S to a singleton on the right-hand side. Clearly, such �T
�S induces

a corresponding space of theories, as explained above. As it should be expected, a
T-consequence relation might have several S-consequence ‘counterparts’. This phe-
nomenon will be discussed in more detail in the next section. We will see there, in
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particular, that a minimum such counterpart always exists, but a maximum counter-
part might not exist. It is worth exploring the symmetry of the logical compatibility
relation by observing that an S-consequence relation �S on L also induces a denial-
based T-consequence relation �S�T on L by setting � �S�T A iff {A} �S �. The
above mentioned assertion-based and denial-based T-consequence relations may be
taken as representing two different ‘aspects’ of the given S-consequence relation that
induces them; it should be noted anyhow that the latter relation contains much more
information, and it is not possible in general to recover it solely from these two specific
aspects.

The next property to be considered is intended to guarantee that the compatibility of
certain collections of judgments may be transferred from the (finite) local level to the
(unrestrained) global level. A logical compatibility relation � on L is called finitary
if it satisfies the following property, for every �,� ⊆ L:

(CMF) if �′ � �′ for every finite �′ ⊆ � and �′ ⊆ �, then � � �

The diverse practical incarnations of this property often turn out to be equivalent
to the Axiom of Choice. Translated into the contexts of S-consequence relations, T-
consequence relations, and consequence operators, respectively, finitariness may be
expressed by the following statements:

(CRSF) if � � �, then �′ � �′ for some finite �′ ⊆ � and �′ ⊆ �

(CRTF) if � � A, then �′ � A for some finite �′ ⊆ �

(COTF) C(�) ⊆ ⋃
finite �⊆� C(�)

In the concrete study of logics, finitariness is a very common property, enjoyed for
instance by any logic axiomatized by finitary means or characterized by finite-valued
matrices. It is straightforward to check that the T-consequence relation �C is fini-
tary if and only if the consequence operator C is finitary. Furthermore, for finitary
consequence relations the properties (CM2), (CRS2) and (CRT2) may clearly be sim-
plified into the corresponding formulations in which the therein mentioned set � is a
singleton.

It is not hard to check that the collection of all compatibility relations onL equipped
with the standard inclusion ordering constitutes a complete lattice, to which we shall
refer as CML(L). Obviously, the collection of all S-consequence relations on L also
constitutes a complete lattice under inclusion, and the same may actually be said also
about the collection of all T-consequence relations on L. In what follows, whenever
we need to disambiguate between the two lattices of consequence relations, we will
refer to the former as CRLS(L) and refer to the latter as CRLT(L). Notice, in addition,
that the collections of finitary consequence relations on a given set of sentences also
form lattices under inclusion.

3 Interlude on (bi)valuations

One way of actualizing the intuition that compatibility relations deal indeed with
assertions and denials is by way of (bi)valuation semantics. Let a (bi)valuation on L
be a relation ν on L × {0, 1}. We shall use 1ν to refer to the asserting aspect of ν,
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namely the set {A ∈ L : (A, 1) ∈ ν}, and use its complement 0ν to refer to the denying
aspect of ν, namely the set {A ∈ L : (A, 0) ∈ ν}. A valuation ν on L is said to
determine a binary relation Rν on℘(L) defined by setting� Rν � to hold iff� ⊆ 1ν

and � ⊆ 0ν . It should be clear that such Rν always satisfies the property (CM0),
that Rν satisfies the property (CM1) iff ν is functional (a.k.a. right-unique), and that
Rν satisfies the property (CM2) iff ν is surjective (a.k.a. right-total). Accordingly, we
shall call canonical valuation on L any total function ν : L −→ {0, 1}, and define
a canonical semantics on L to be a collection of canonical valuations on L. In case
we are dealing with a canonical valuation ν, we will accordingly write �ν rather
than Rν . As usual, by {0, 1}L we denote the set of all canonical valuations on L.
The collection ℘({0, 1}L) of all canonical semantics on L equipped with the standard
inclusion ordering constitutes a complete lattice, to which we shall refer as SML(L). A
canonical semantics V ⊆ {0, 1}L is said to determine a compatibility relation �V :=⋃

ν ∈V �ν on L. Obviously, the complement of such compatibility relations constitute
S-consequence relations, and so we may also say that any canonical valuation or
semantics determines the associated S-consequence and T-consequence relations �S

V
and �T

V. It is easy to check that �T
�S

V
= �T

V , for any canonical semantics V, that

is, the T-consequence relation determined by V coincides with the T-consequence
relation induced by the S-consequence relation determined by V. In addition, given
a compatibility relation � on ℘(L) and a canonical valuation ν on L, we shall say
that ν respects � if�ν ⊆ �; given a consequence relation� on ℘(L) and a canonical
valuation ν on L, we shall say that ν respects � if� ⊆ �ν . We shall denote byVR the
‘respectful’ semantics defined by the collection of all canonical valuations on L that
respect R, where R denotes either a compatibility relation or a consequence relation.

It is worth noting that the above mappings that associate to each canonical seman-
tics V a compatibility relation �V determined by it and that associate to each
compability relation� a respectful canonical semanticsV� define amonotone Galois
connection between the lattice CML(L) of all compatibility relations on L and the lat-
tice SML(L) of all canonical semantics on L, that is, �V ⊆ � iff V ⊆ V�, for
every � ∈ CML(L) and every V ∈ SML(L). Analogously, an antitone Galois con-
nection is defined between CRL(L) and SML(L), that is, � ⊆ �V iff V ⊆ V�, for
every � ∈ CRL(L) and every V ∈ SML(L). From this it immediately follows that:
(G1) V ⊆ VRV , for R ∈ {�,�}; (G2) �V� ⊆ �; (G3) � ⊆ �V� . Furthermore,
given that any consequence relation is determined by the collection of all canonical
valuations that respect it—in other words, given that the latter collection of canon-
ical valuations constitutes a complete semantics for the corresponding consequence
relation—, the converse of (G3) also holds good; the converse of (G2) is seen to hold
good, of course, as a corollary to that.

The property corresponding to the converse of (G1) is called absoluteness, and it
constitutes the analogue, for a logical theory, of the model-theoretic notion of ‘cat-
egoricity’. When it holds good, it guarantees that every compatibility/consequence
relation is associated to a unique canonical semantics. Consider the various partic-
ular formulations for absoluteness, namely: (G1�) V ⊇ V�V ; (G1

S
�) V ⊇ V�S

V
;

and (G1T�) V ⊇ V�T
V
. On the one hand, it is easy to see that (G1�) always holds

good. Indeed, suppose that the canonical valuation ν respects�V, that is, suppose that
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�ν ⊆ �V. Given that obviously 1ν �ν 0ν , we conclude that 1ν �ν	 0ν for some
ν	 ∈ V. This means that ν	(A) = ν(A) for every A ∈ L, and so ν ∈ V. On the other
hand, there is an essential difference in behavior between T-consequence relations and
S-consequence relations on what concerns absoluteness, namely: (G1S�) always holds
good, as a corollary to (G1�), yet (G1T�) in general fails. As a matter of fact, it is
not hard to identify the reason for the failure of (G1T�). Where {νk}k∈K is a family of
canonical valuations on L, define its conjunctive combination as the canonical valu-
ation

[⋂
k∈K νk

]
such that

[⋂
k∈K νk

]
(A) = 1 if νk(A) = 1 for every k ∈ K , and[⋂

k∈K νk
]
(A) = 0 otherwise. Note first that 1[

⋂
k∈K νk] = ⋂

k∈K 1νk . Next, for every

T-consequence relation �T, note that the semantics V�T is closed under conjunctive
combinations. Indeed, given {νk}k∈K ⊆ V�T , and assuming that � �T A and that
� ⊆ 1[

⋂
k∈K νk], it follows that � ⊆ 1νk and hence A ∈ 1νk for every k ∈ K . Thus,

A ∈ ⋂
k∈K 1νk = 1[

⋂
k∈K νk], and we conclude that

[⋂
k∈K νk

] ∈ V�T . Nonetheless,
it should be clear that not every semantics V is closed under conjunctive combina-
tions,1 and any witness to such phenomenon will constitute an actual counterexample
to (G1T�). As a matter of fact, all counterexamples have this exact form: If one lets
V∩ denote the least superset of V that is closed under conjunctive combinations, one
may prove that V�T

V
= V∩. To see that, notice that every v ∈ V�T

V
is an intersection

of canonical valuations in V: For each A /∈ 1v one may say that 1v �v A and so
there exists vA ∈ V such that 1v �vA A, that is, 1v ⊆ 1vA and A /∈ 1vA ; clearly,
v = ⋂

A /∈1v
vA.

The absoluteness of compatibility relations and of S-consequence relations guar-
antees that CML(L) and CRLS(L) inherit from SML(L) the structure of a complete
Boolean algebra (under the obvious inclusion ordering). In contrast, the complete lat-
tice CRLT(L) fails absoluteness and in fact fails to be distributive, in general. Failing
absoluteness, a T-consequence relation may happen to be determined by two distinct
semantics. All that we can guarantee is that �T

V = �T
V′ if and only if V∩ = V′∩. How-

ever, if V∩ = V′∩ yet V �= V′, then we still have �S
V �= �S

V′ in spite of �T
V = �T

V′ .
This means that an assertion-based T-consequence relation �T may boast distinct
S-consequence relations as its ‘counterparts’, namely, there will in general exist2 rela-
tions �S

1 �= �S
2 such that �T

�S
1

= �T
�S

2
(an analogous observation may be formulated,

of course, concerning denial-based T-consequence relations and their multiple pos-
sible ‘counterparts’ in terms of S-consequence). That phenomenon suggests that one
should associate to S-consequence relations a space of theories that has a richer struc-
ture than the space of theories of the T-consequence relations induced by the former
relations. Studying the spaces of ‘�S-theories’ is indeed one of our main goals in the
present paper.

Delving a bit deeper, we may note that a T-consequence relation �T always has
a minimum (generalized) counterpart �S

�T[min] characterized by setting (�,�) ∈
1 Consider for instance a set of sentences L = {p, q}, and a semantics containing only two canonical
valuations, νp and νq , such that νx (y) = 1 iff x = y. (This sort of problems related to the failure of
absoluteness has been discussed as early as in Carnap (1943).)
2 For a straightforward class of examples (cf. Marcos 2007), let ν�� denote the the ‘dadaistic’ valuation
on L such that 1ν�� = L, consider a semantics V such that ν�� /∈ V, and let V	 := V ∪ {ν��}. Then
�T
V = �T

V	 , and L �S
V ∅, while L �V	 ∅.
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�S
�T [min] iff � �T A for some A ∈ �. It is easy to see that �S

�T [min] corre-

sponds to the largest possible set of canonical valuations that respect �T, that is,
�S

�T [min] = �S
V�T

. To that effect it suffices to check that � �S
V∩ � if and only

if � �T
V A for some A ∈ �. In contrast, a maximum generalized counterpart for

a T-consequence relation � may not exist. Indeed, in general, there may not exist a
minimal set of canonical valuations V such that V∩ = Val(�T). Such a minimal set
of canonical valuations, and the corresponding maximum (generalized) counterpart
�S

�T [max] for a given T-consequence relation�T may be shown to exist, in particular,

whenever�T happens to be finitary. Indeed, in this case one may use the Lindenbaum-
Asser lemma : When it exists, the minimal set of canonical valuations corresponds
precisely to the so-called relatively maximal theories of �T, that is, it consists in the
set of all canonical valuations ν such that 1ν ∈ Th(�T) and such that A ∈ C�T(�) for
some sentence A /∈ 1ν and for every � such that 1ν � �. Given a canonical semantics
V ⊆ {0, 1}L, and using CV to denote C�T

V
, it is easy to see that:

CV(�) =
⋂

ν ∈V such that 1ν ⊇�

1ν . (	)

For a simple illustration involving S-consequence, consider first the T-consequence
relation �T

CPL of classical propositional logic, determined by the set of all Boolean
valuations. On the one hand, its maximum counterpart consists precisely in the S-
consequence relation �S

CPL determined by the set of all Boolean valuations; on the
other hand, its minimum counterpart, determined by the closure for conjunctive com-
binations of the set of all Boolean valuations, seems to be of much lesser interest.
In particular, when we consider the disjunction connective, ∨, we see that the conse-
cution ({A ∨ B}, {A, B}) belongs to the maximum counterpart of �T

CPL , intuitively
saying thus that one cannot simultaneously deny both sentences A and B without also
denying the sentence A∨ B, but it clearly does not belong to the minimum counterpart
of �T

CPL . On what concerns maximum counterparts, considering now in more detail
the implication connective,→, let P be a denumerable set of variables and let L be the
least set with P ⊆ L and such that if A, B ∈ L then A → B ∈ L. The maximum coun-
terpart in this language of the classical T-consequence relation is the S-consequence
relation �V where ν(A → B) = 0 if and only if ν(A) = 1 and ν(B) = 0, for every
A, B ∈ L and every ν ∈ V ; it is indeed not difficult to check that it actually consists
in the least consequence relation �S such that:

{A, A → B} �S {B} and {B} �S {A → B} and ∅ �S {A, A → B}.
While the first of the latter three statements, which concerns the consecution ({A, A →
B}, {B}), intuitively says that one cannot simultaneously assert A and deny B while
also asserting A → B, the second statement says that one cannot assert B while
denying A → B, and the third one says that one cannot deny Awhile also denying A →
B. So, according to what we wrote at the beginning of the present section, when
assertion is represented by the truth-value 1 and denial is represented by the truth-
value 0, the three statements above obviously describe, as expected, the well-known
truth-function for classical implication.
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For an interesting non-classical illustration, is worth noting that if one considers
instead the consequence relation�T

I PL of intuitionistic propositional logic, it is known
that its maximum counterpart is determined by the bivaluations defined through the
usualKripke (topological) semantics, while its minimum counterpart is determined by
the valuations defined through the so-called Beth interpretation (check Gabbay 1981,
ch. 2 and 3).

Our final case study in this section aims at reinforcing the importance of looking for
an adequate notion of consequence operator and an adequate notion of theory to deal
with S-consequence relations; it involves a simple non-finitary S-consequence relation
that induces a finitary assertion-based T-consequence relation. Take L = N ∪ {∃},
let ν∃ be the canonical valuation such that 1ν∃ = {∃}, and consider �S

V determined
by V = {0, 1}L\{ν∃}. It is not difficult to check that �S

V is the least consequence
relation� such that {∃} � N; note that such� is not finitary, because {∃} � 
 for each
finite
 ⊆ N (one may check that the latter consecution holds good by considering the
canonical valuation ν
 ∈ V such that 1ν
 = {∃}∪(N\
)). However, the consequence
relation �T

�S
V
is finitary (and actually constitutes the minimal T-consequence relation

definable on L); indeed, � �T
�S

V
A if and only if A ∈ �, for every � ∪ {A} ⊆ L (and

this is confirmed by noticing that ν∃ ∈ V∩, namely because ν∃ = ⋂
n ∈N v{n}). Do

note, by the way, that the consecution {∃} � N has a clear ‘denial-based reading’,
namely: ν(∃) = 0 whenever ν(N) = {0}.

A well-known result about consequence relations (cf. Theorem 1.3.5 of Wójcicki
1998) states that a T-consequence relation� is finitary precisely when Th(�) is closed
under ultraproducts. We will explore this topic in more detail later, in Sect. 5, on
what concerns S-consequence and the associated notion of theory-pair that we will
introduce there. One may already observe, nonetheless, that the last illustration above
shows that the mentioned result does not carry over to S-consequence relations by
considering only the space Th(�T

�S) of induced�T-theories, given that the latter space
is closed under ultraproducts, in spite of the fact that the associated S-consequence
relation�S, is non-finitary. With its bias towards assertion, we see that T-consequence
relations can only furnish thus a partial—though sometimes convenient—view of the
more generous logical phenomenon captured by the more symmetrical notion of S-
consequence, which allows for a more balanced take on assertion and denial.

4 Generalizing consequence operators

In this section we will take action concerning the shortcomings of T-consequence
pointed out in Sect. 3 and investigate a definition of consequence operator that prop-
erly fits the more symmetric notion of consequence relation given by S-consequence
which arises as a natural dual to the notion of logical compatibility explored in Sect. 2.
We want to be able thus to account for a notion of logical theory that is simultaneously
based both on a set of primitively asserted sentences and on a set of primitively denied
sentences. Recall from Sect. 2 that the received notion of consequence operator, satis-
fying properties (COT0), (COT1) and (COT2), was closely associated to T-consequence:
in fact, the lattices CRLT(L) and COLT(L) are dually isomorphic. On our quest to find
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a notion of consequence operator naturally associated to S-consequence, it will be
convenient from now on to distinguish among two types of consequence operators,
the former one that we will henceforth rechristen ‘T-consequence operator’, and a
novel one that will be referred to below as C2 and will be dubbed an ‘S-consequence
operator’.

Consider in what follows an S-consequence relation �S on L and let �1, �0 ⊆ L
be distinguished sets of sentences of L, respectively taken as axioms and anti-axioms
of a certain logical theory. Fixed in the background any set � of sentences taken by
assumption to be denied, let CD:�

�S (�1) denote the set containing every sentence A ∈ L

such that �1 �S � ∪ {A}; fixed in the background any set � of sentences taken
by assumption to be asserted, let CA:�

�S (�0) denote the set containing every sentence

A ∈ L such that {A} ∪ � �S �0. The elements of CD:�
�S (�1) might be thought of as

the sentences that one is committed to assert once the sentences in �1 are all asserted,
in the context of the denial of all the sentences in �; or informally as the theorems
of the theory axiomatized by �1 modulo the denied sentences of �. Analogously, the
elements of CA:�

�S (�0) might be thought of as the sentences that one is committed to
deny once the sentences in �0 are all denied, in the context of the assertion of all
the sentences in �; or informally as the anti-theorems of the theory anti-axiomatized
by �0 modulo the asserted sentences of�. When the background context of judgment
contains neither sentences to be taken by assumption as asserted nor sentences to
be taken by assumption as denied, it should be clear, in particular, that CD:∅

�S and

CA:∅
�S describe, respectively, the assertion-based and the denial-based T-consequence

operators associated to �S, introduced in Sect. 2.
From now on, for every � ⊆ L, we will use � to refer to L\�. Moreover, we will

write (�1, �0) ⊆ (�′
1, �

′
0) instead of both �1 ⊆ �′

1 and �0 ⊆ �′
0, and given a family

{(�i , �i )}i∈I ⊆ ℘(L) × ℘(L) of consecutions, we will write
⋂

i∈I (�i , �i ) instead
of (

⋂
i∈I �i ,

⋂
i∈I �i ). The following result collects some fundamental properties

of the operators associated to a given S-consequence relation according to the above
definitions:

Proposition 4.1 Let �S be an S-consequence relation on L, and let �,� ⊆ L. Then,
we have:

(1) CD:�
�S and CA:�

�S are T-consequence operators on L .

(2) If � ⊆ �′ then CD:�
�S ⊆ CD:�′

�S , and if � ⊆ �′ then CA:�
�S ⊆ CA:�′

�S .

(3) For each� ⊆ L, either bothCD:�
�S (�) = � andCA:�

�S (�) = � , or elseCD:�
�S (�) =

CA:�
�S (�) = L .

(4) CD:�
�S (�) = ⋂

� ⊆L such that (�,�) ⊇ (�,�) CD:�
�S (�) and CA:�

�S (�)

= ⋂
� ⊆L such that (�,�) ⊇ (�,�) CA:�

�S (�) .

(5) If CA:�
�S (�) = �′, then CD:�

�S = CD:�′
�S , and if CD:�

�S (�) = �′, then CA:�
�S = CA:�′

�S .

(6) If CD:�
�S (�) ∩ CA:�

�S (�) �= ∅, then CD:�
�S (�) = CA:�

�S (�) = L .

Proof We prove each of the listed properties, in turn:

(1) We show that CD:�
�S is a T-consequence operator. The proof for CA:�

�S is analogous.
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(COT0) If �1 ⊆ �′
1 and �1 �S � ∪ {A}, then �′

1 �S � ∪ {A} follows from (CRS0),
thus CD:�

�S (�1) ⊆ CD:�
�S (�′

1).

(COT1) If A ∈ �1 then �1 �S � ∪ {A} follows from (CRS1), for any � ⊆ L, and
thus A ∈ CD:�

�S (�1).

(COT2) Let T1 := CD:�
�S (�1), and suppose A ∈ CD:�

�S (T1). We want to show that

A ∈ T1. By assumption, we have that T1 �S � ∪ {A}. By definition, it is
also the case that�1 �S �∪{B} for each B ∈ T1. Take an arbitrary� ⊆ L.
If either�1∩� �= ∅ or�∩� �= ∅ or A ∈ �, then�∪�1 �S �∪{A}∪�

follows from (CRS2). If, on the contrary, �1 ∩ � = ∅ and � ∩ � = ∅ and
A /∈ �, then either T1 ⊆ � and so � ∪ �1 �S � ∪ {A} ∪ � follows by
(CRS0) from T1 �S � ∪ {A}, or there exists a B ∈ T1 such that B ∈ � and
so � ∪ �1 �S � ∪ {A} ∪ � follows by (CRS0) from �1 �S � ∪ {B}. Thus,
using (CRS2) with � = L, we may conclude that �1 �S � ∪ {A}, and so
A ∈ CD:�

�S (�1) = T1.

(2) If � ⊆ �′ and �1 �S A, �, then �1 � A, �′ follows from (CRS0). The proof of
the other assertion is analogous.

(3) Let � ⊆ L. If � �S � then � �S � ∪ {A} and {A} ∪ � �S � for every A ∈ L,
using (CRS0), so CD:�

�S (�) = CA:�
�S (�) = L. Otherwise, let � � �, where �

denotes the complement of �S. This would immediately imply, in particular, that
� � � ∪ {A} for every A ∈ �. This means that � ∩ CD:�

�S (�) = ∅. But we also

know that � ⊆ CD:�
�S (�), in view of (COT1), proved in item (1) above. It thus

follows that CD:�
�S (�) = �. A similar argument may be used to show that in such

a situation we also have CA:�
�S (�) = �.

(4) We prove the first assertion; the second one is proved analogously. On the one
hand, it should be clear that CD:�

�S (�) ⊆ ⋂
� ⊆L such that (�,�) ⊇ (�,�) CD:�

�S (�).

Indeed, for any � ⊆ L such that (�,�) ⊆ (�,�) we conclude from items (1)
and (2) above that CD:�

�S (�) ⊆ CD:�
�S (�). For the converse inclusion, suppose that

(�,�) ⊆ (�,�) implies A ∈ CD:�
�S (�), and consider an arbitrary � ⊆ L. So, in

casewe do have (�,�) ⊆ (�,�), it obviously follows that�∪� �S �∪{A}∪�.
Otherwise, it must the case that �∩� �= ∅ or � ∩� �= ∅, and in either situation
(CRS1) gives us � ∪ � �S � ∪ {A} ∪ �. We may now invoke (CRS2) to conclude
that � �S � ∪ {A}, that is, A ∈ CD:�

�S (�).
(5) Again, we check the first assertion in detail; the second one is analogous. Half of

the proof is straightforward: Given that � ⊆ CA:�
�S (�) = �′, in view of item (1)

above, we conclude from item (2) above that CD:�
�S (�) ⊆ CD:�′

�S . For the converse

inclusion, in view of item (4) above, we need to show that if [a] A ∈ CD:�
�S (�)

whenever (�, CA:�
�S (�)) ⊆ (�,�), then [b] A ∈ CD:�

�S (�) whenever (�,�) ⊆
(�,�). So, assume [a] and let � ⊆ L be such that (�,�) ⊆ (�,�). From
the item (3) above we know that either [c] CA:�

�S (�) = � or [d] CA:�
�S (�) = L.

In case [c], given that (�,�) ⊆ (�,�) we know from items (1) and (2) that
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CA:�
�S (�) ⊆ CA:�

�S (�) = �, and from [a] we conclude that A ∈ CD:�
�S (�). In case

[d], it is clear that A ∈ CD:�
�S (�) = L.

(6) Let�′ := CD:�
�S (�) and�′ := CA:�

�S (�).We are assuming that�′∩�′ �= ∅. Using

items (1), (5) and (4) abovewemay infer that�′ = CD:�
�S (�) = CD:�

�S (CD:�
�S (�)) =

CD:�′
�S (�′) = ⋂

� ⊆L such that (�,�) ⊇ (�′,�′) CD:�
�S (�). Given the assumption that

�′ ∩ �′ �= ∅, we see that in the latter chain of equalities we are talking about the
intersection of an empty family of elements of ℘(L), from what we conclude that
�′ = L. The proof that �′ = L is analogous.

��
The above result shows that there is in fact a plethora of T-consequence operators

that could be associated to a single given S-consequence relation, and such operators
may be collectively organized into a rich structure, being in particular monotonic
with respect to the underlying contextual background of assumptions constituted by
certain primitively asserted/denied sentences. In reading the above properties, it is
worth noting that the mentioned operators are completely determined by CD:�

�S (�) and

CA:�
�S (�), for � ⊆ L. The properties also suggest that the sets of axioms and anti-

axioms that originate consistent ‘generalized theories’ manage to separate in between
theorems and anti-theorems, as further discussed in Sect. 5. Before building upon these
properties, though, in proposing a full generalization of T-consequence operators, we
shall also analyze the situation concerning finitariness.

Proposition 4.2 Let �S be an S-consequence relation on L. Then, �S is finitary if and
only if the following two properties hold for every �,� ⊆ L:

[A] CD:�
�S and CA:�

�S are finitary

[B] CD:�
�S = ⋃

finite �	⊆� CD:�	

�S and CA:�
�S = ⋃

finite �	⊆� CA:�	

�S

Proof First, assume that �S is finitary. We prove that [A′] CD:�
�S is finitary and [B′]

CD:�
�S = ⋃

finite �	⊆� CD:�	

�S ; the proofs of the other halves of {[A]} and {[B]} are

analogous. Take �1 ∪ {A} ⊆ L and suppose A ∈ CD:�
�S (�1), that is, �1 �S � ∪ {A}.

As �S is finitary, there must exist finite sets �	
1 ⊆ �1 and �	 ⊆ � such that �	

1 �S

�	∪{A}. This means that A ∈ CD:�	

�S (�	
1). But we also know from Proposition 4.1(1)–

(2) that CD:�	

�S (�	
1) ⊆ CD:�

�S (�	
1) and CD:�	

�S (�	
1) ⊆ CD:�	

�S (�1), and we reach thereby
the envisaged conclusions.

Assume now that [A] and [B] both hold good, and take �,� ⊆ L such that
� �S �. If � ∪ � is finite we are done. Otherwise, either � or � is infinite, and
hence non-empty. In case � �= ∅, let A ∈ �. Clearly, we have {A} ∪ � �S � and so
A ∈ CA:�

�S (�). Using [A] and [B], we see that there must exist finite sets �	 ⊆ � and

�	 ⊆ � such that A ∈ CA:�	

�S (�	). Therefore, we have {A} ∪ �	 �S �	. The case
where � �= ∅ is checked analogously. ��

It should be clear, in view of the latter result, that finitariness of S-consequencemust
bewitnessed both from the viewpoint of axioms/anti-axioms and from the viewpoint of
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background asserted/denied assumptions. This observation will be made particularly
relevant later on, in Proposition 4.5.

Taking advantage of the previous results, we may say that each S-consequence
relation� ⊆ ℘(L)×℘(L) induces a certain operatorC2� : ℘(L)×℘(L) −→ ℘(L)×
℘(L) by setting C2� (�,�) := (

CD:�
� (�) , CA:�

� (�)
)
. The following properties are

now immediate to check:

Proposition 4.3 Let � be an S-consequence relation on L, and let �,� ⊆ L. Then,
we have:

(1) C2� is a closure operator on the partially ordered structure 〈℘(L) × ℘(L),⊆〉.
(2) C2�(�,�) = ⋂

� ⊆L such that (�,�) ⊇ (�,�) C2�(�,�).

(3) Either C2�(�,�) = (�,�) or C2�(�,�) = (L,L).

Proof Concerning item (1), note that properties (COT0) and (COT1) follow fromPropo-
sition 4.1(1) and property (COT2) follows from Proposition 4.1(5). Item (2) follows
from Proposition 4.1(4), and item (3) follows from Proposition 4.1(3). ��

The above properties suggest the following abstract ‘bilateralist’ definition,
simultaneously generalizing the purely assertion-based and the purely denial-based
T-consequence operators associated to a given S-consequence relation. An S-
consequence operator on L is defined as a mapping C2 : ℘(L) × ℘(L) −→
℘(L) × ℘(L) that satisfies, for every �0, �1,�0,�1 ⊆ L:

(COS0) C2(�1, �0) ⊆ C2(�1 ∪ �1, �0 ∪ �0)

(COS1) (�1, �0) ⊆ C2(�1, �0)

(COS2) C2(C2(�1, �0)) ⊆ C2(�1, �0)

(COS3) C2(�1, �0) ⊇ ⋂
� ⊆L such that (�,�) ⊇ (�1,�2)

C2�(�,�)

Properties (COS0), (COS1) and (COS2) are precisely those required to make C2
a closure operator on 〈℘(L) × ℘(L),⊆〉. They are clearly not sufficient, though, to
capture the intimate dependencies between the thereby involved assertions and denials.
As it so happens, such dependencies are fully captured by property (COS3). The latter
property is so strong, however, that a simpler (though somewhat less familiar-looking)
characterization of S-consequence operators is now available:

Proposition 4.4 The mapping C2 : ℘(L) × ℘(L) −→ ℘(L) × ℘(L) is an S-
consequence operator on L if and only if the following properties both hold:

(V) either C2(�,�) = (�,�) or C2(�,�) = (L,L), for every � ⊆ L
(T) C2(�1, �0) = ⋂

� ⊆L such that
(�,�) ⊇ (�1,�0) and C2(�,�) �= (L,L)

(�,�), for every �0, �1 ⊆ L

Proof Let C2 be an S-consequence operator. In order to establish property (V), let
(�1, �0) := C2(�,�) and assume (�1, �0) �= (�,�), for some � ⊆ L. By (COS1),
we conclude that (�,�) � (�1, �0). Thus, either there exists some A ∈ �1\�, and
so A ∈ � ⊆ �0, or else there exists some A ∈ �0\�, and so A ∈ � ⊆ �1. In both
cases we see that �1 ∩�0 �= ∅. Hence, from (COS3) we know that (�1, �0) ⊇ (L,L),
for (�1, �0) contains the intersection of an empty family of elements of℘(L)×℘(L),
and from this it follows that �0 = �1 = L. Now, concerning property (T), note
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in particular that (COS3) guarantees its right-to-left inclusion, in view of (V) and
the fact that (�1, �0) ∩ (L,L) = (�1, �0). For the converse inclusion, note that if
there is some � ⊆ L such that (�1, �0) ⊆ (�,�) then (COS0) guarantees that
C2(�1, �0) ⊆ C2(�,�). Further knowing that C2(�,�) �= (L,L), we may now
use (V) to conclude that C2(�,�) = (�,�). Therefore, C2(�1, �0) ⊆ (�,�), and
property (T) follows.

Conversely, assume now that C2 satisfies (V) and (T). Since (�1, �0) ⊆ (�1 ∪
�′
1, �0 ∪ �′

0) it is clear that (�1 ∪ �′
1, �0 ∪ �′

0) ⊆ (�,�) implies (�1, �0) ⊆ (�,�).
Property (T) then guarantees that C2(�1, �0) ⊆ C2(�1 ∪ �′

1, �0 ∪ �′
0), and property

(COS0) thus holds. Note that (COS1) follows easily from (T) since the intersection is
over pairs (�,�) with (�1, �0) ⊆ (�,�). Concerning property (COS2), and using
(T) again, it suffices to note that if (�,�) ⊆ (�,�) then (COS0) and (V) tell us
that C2(�1, �0) ⊆ C2(�,�) = (�,�). Finally, property (COS3) follows directly
from (T), given that (�1, �0) ∩ (L,L) = (�1, �0) and that property (V) states that if
C2(�,�) �= (L,L) then C2(�,�) = (�,�). ��

It is worth noticing that (COS2) had no role to play in proving the first part of the
latter result. Indeed, we have just checked in the course of the full proof of that result
that (COS2) follows from (COS0), (COS1) and (COS3); as a matter of fact, we have
only included it in the definition of S-consequence operators for the sake of producing
a more familiar-looking definition—one that would be more easily comparable to the
earlier, and standard, definition of T-consequence operators.

As one would surely expect, an S-consequence operator C2 will be called finitary
when it satisfies the following property, for every �0, �1 ⊆ L:

(COSF) C2(�1, �0) ⊆ ⋃
finite �	

1⊆�1
finite �	

0⊆�0

C2(�	
1, �

	
0).

Proposition 4.5 An S-consequence relation � is finitary if and only if C2� is finitary.

Proof The result is immediate from the definition of the S-consequence operator C2�
induced by �, and by property (COSF), if we observe that properties [A] and [B]
of Proposition 4.2 are jointly equivalent to requiring for all �1, �0 ⊆ L that both

CD:�0� (�1) ⊆ ⋃
finite �	

1⊆�1
finite �	

0⊆�0

CD:�	
0� (�	

1) and CA:�1� (�0) ⊆ ⋃
finite �	

1⊆�1
finite �	

0⊆�0

CA:�	
1� (�	

0). ��

We shall end the present section by showing that the newly introduced S-conse-
quence operators are closely associated to S-consequence relations, in precisely the
same way as it was known to happen with T-consequence. To that effect, we will say
that an S-consequence operator C2 induces a certain binary relation �C2 on ℘(L) by
setting � �C2 � iff C2(�,�) = (L,L).

Proposition 4.6 Let C2 be an S-consequence operator, and � be an S-consequence
relation, both on L. We have that:

(1) �C2 is an S-consequence relation on L.
(2) �C2�= � and C2�C2 = C2.
(3) �C2 is finitary if and only if C2 is finitary.
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Proof We prove each of the above statemens, in turn:

(1) Concerning (CRS0), given � �C2 � we have C2(�,�) = (L,L) and from that
we conclude using (COS0) that C2(� ∪ �′, � ∪ �′) = (L,L), and so �′ ∪
� �C2 � ∪ �′. As for property (CRS1), if � ∩ � �= ∅, then by invoking (T)
with the intersection of an empty family of elements of ℘(L) we conclude that
C2(�,�) = (L,L), and so � �C2 �. Finally, concerning (CRS2), suppose that
� ∪ � �C2 � ∪ �, that is, C2(� ∪ �,� ∪ �) = (L,L), for every � ⊆ L.
In that case, given (�,�) ⊆ (L,L) the said hypothesis amounts more simply to
C2(�,�) = (L,L). But then (T) immediately gives us C2(�,�) = (L,L), that
is, � �C2 �.

(2) We prove first that �C2�= �. Note that � �C2� � iff C2�(�,�) = (L,L),
by definition of the S-consequence relation induced by the S-consequence oper-
ator C2�, and recall that C2� (�,�) = (

CD:�
� (�), CA:�

� (�)
)
, by definition

of the S-consequence operator induced by the S-consequence relation �. Thus,
� �C2� � iffCD:�

� (�) = L = CA:�
� (�) iff [a] both� � �∪{A} and {A}∪� � �

for every A ∈ L. On the one hand, taking � = {A} in (CRS2), we may conclude
from [a] that � � �. On the other hand, from � � � we may obtain [a] by using
(CRS0).
We show next that C2�C2 = C2. Unravelling the definitions, we may say that
C2�C2(�,�) = (T1, T0), where T1 := {A ∈ L : C2(�,� ∪ {A}) = (L,L)} and
T0 := {A ∈ L : C2(� ∪ {A}, �) = (L,L)}. In view of (T) and (V), it would
suffice to prove that C2(�,� ∪ {A}) = (L,L) if and only if A ∈ � follows from
assuming both (�,�) ⊆ (�,�) and C2(�,�) �= (L,L), for any given � ⊆ L,
as well as to prove an analogous result concerning C2(� ∪ {A}, �) = (L,L) and
A ∈ �. We shall check in detail just the first stated equivalence. Assume first that
[b] (�,�) ⊆ (�,�) and [c] C2(�,�) �= (L,L), for an arbitrary � ⊆ L, and
suppose that [d] C2(�,� ∪ {A}) = (L,L). From [d] and [b], it follows from (T)
that A /∈ �, on the pain of contradicting [c], and so we conclude that A ∈ �. Next,
suppose that C2(�,� ∪ {A}) �= (L,L). From (T) we may then conclude that [e]
C2(�,�) �= (L,L) for some � ⊆ L such that [f] (�,� ∪ {A}) ⊆ (�,�). But
from [f] it follows that both [g] (�,�) ⊆ (�,�) and [h] A ∈ � are the case.
Note that [h] means that A /∈ �, in spite of both [e] and [g] being the case.

(3) This follows from Proposition 4.5, using the fact that C2�C2 = C2, proved in item
(2).

��
The above result makes it evident that, in a precise sense, choosing to work

with S-consequence relations or with S-consequence operators is just a matter of
convenience—we have just seen that there is a dual isomorphism between the lattice
CRLS(L) of S-consequence relations on L and the lattice COLS(L) defined by the set of
all S-consequence operators on L equipped with the inclusion ordering, generalizing
the already mentioned corresponding well-known result concerning T-consequence;
we have also seen that the result carries over to the finitary case. Incidentally, insofar
as convenience is involved, in the next section we will see that the newly introduced
notion of S-consequence operator allows one in fact to entertain a generalized notion
of ‘theory’ that manages to treat denials on a par with assertions.
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5 Generalizing the spaces of theories

As mentioned in Sect. 2, the standard space of all theories of a given T-consequence
relation �T has the structure of a complete lattice under inclusion. It allows one to
study the connections between different sets of axioms, or hypotheses, added on top
of a given logic, and the corresponding collections of theorems thereby generated, or
whereby concluded. This is fully adequate, we admit, as long as one is interested, say,
in seeing how the acceptance of certain judgments commit an agent to accepting other
judgments (or, dually, in seeing how the rejection of certain judgments leads an agent to
rejecting other judgments). In the present paper, though, we are interested in analyzing
the behavior of theories containing both assertions and denials. We want to impose no
preference on acceptance over rejection, nor vice-versa, and want to consider instead
theories that allow an agent to take either attitude with respect to given judgments, that
is, theories that allow an agent to assert some sentences while simultaneously denying
other sentences. As we shall argue and illustrate, such a setting demonstrably conveys
a greater expressive power for defining and reasoning about theories.

Given an S-consequence relation� onL, a set�1 ⊆ L of axioms and a set�0 ⊆ L of
anti-axioms, we call C2�(�1, �0) the �-theory-pair axiomatized by (�1, �0). Where
(T1, T0) := C2�(�1, �0), we call the elements of T1 the theorems and call the elements
of T0 the anti-theorems of the given �-theory-pair. We say that the pair (�1, �0) is
�-consistent if C2�(�1, �0) �= (L,L), and �-inconsistent otherwise.

Lemma 5.1 Let� be an S-consequence relation on L and let (T1, T0) be the�-theory-
pair axiomatized by (�1, �0) ∈ ℘(L)×℘(L). The following properties are equivalent:

[a] (�1, �0) is �-inconsistent
[b] T1 ∩ T0 �= ∅

[c] �1 � �0

Proof [a] implies [b]: If (�1, �0) is �-inconsistent then T1 = T0 = L = T0 ∩ T1.
To round off, just recall that we always assume L to be non-empty. [b] implies [c]: If
A ∈ T0 ∩ T1 then we have both �1 � �0 ∪{A} and {A}∪�1 � �0. Given an arbitrary
� ⊆ L, note that (�1, �0) � (�,�) implies � ∪ �1 � �0 ∪ �, in view of (CRS1),
while (�1, �0) ⊆ (�,�) implies � ∪ �1 � �0 ∪ � by case analysis over A ∈ � and
A /∈ �, in view of (CRS0). So, by using (CRS2) we conclude that �1 � �0. [c] implies
[a]: If �1 � �0 then (CRS0) guarantees that �1 � �0 ∪ {A} and {A} ∪ �1 � �0 for
each A ∈ L. Thus T1 = T0 = L and (�1, �0) is �-inconsistent. ��

For a given S-consequence relation � we will use ThS(�) := {C2�(�1, �0) :
�0, �1 ⊆ L} to refer to the space of all �-theory-pairs. As C2� is a closure operator,
it follows that ThS(�) equipped with the component-wise inclusion ordering consti-
tutes a complete lattice, appropriately generalizing thus the situation forT-consequence
relations and thereby associated T-consequence operators. The phenomena illustrated
in Sect. 3 according to which T-consequence relations in general fail absoluteness
and also may in general be associated to several distinct S-consequence relations have
indicated that the traditional study of T-consequence falls short in providing a full
understanding of S-consequence. In contrast, it is clear that �-theory-pairs provide a
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full-fledged generalization of the notion of theory for T-consequence. Indeed, given
an S-consequence relation �S on L, the first component of the pair C2�S(�1, ∅)

amounts precisely to the assertion-based theory C�T
�S

(�1), while the second compo-

nent contains all anti-theorems that follow according to �S in the context of taking �1
as background asserted assumptions; the situation is entirely dual with respect to
C2�S(∅, �0), the denial-based theory C

�S�T(�0) that constitutes its second compo-
nent and its corresponding first component consisting of anti-theorems that follow
according to �S in the context of taking �0 as background denied assumptions. Note
that�-theory-pairs can go much beyond these particular cases, however, as they allow
one to deal with theorems and anti-theorems that result from simultaneously taking
both sets of axioms and anti-axioms as non-empty.

It is worth looking at theory-pairs in the light of the semantic results of Sect. 3.
Given a canonical semantics V ⊆ {0, 1}L, let’s use C2V to denote C2�V . For any
� ⊆ L, we have that C2V(�,�) �= (L,L) if and only if � �V � if and only if
(�,�) = (1ν,0ν) for some ν ∈ V. Consequently, also generalizing the traditional
setting, we have:

C2V(�1, �0) =
⋂

ν ∈V such that (1ν ,0ν ) ⊇ (�1,�0)

(1ν,0ν). (		)

It should be clear that the pairs (1ν,0ν)with ν ∈ V are not only fixed points of C2, but
they actually constitute precisely the maximal theory-pairs of ThS(�V), in the sense
that they are �V-consistent but their only proper extension is the inconsistent pair
(L,L). Note also that here the absoluteness of S-consequence has the effect of making
ThS(�V) unique, for here each valuation has a ‘countermodelling’ role to play.

Recall that the standard notion of theory as a ‘closed set of sentences’ is deeply
connected to a closure operator � in the following sense: the fixed points of the
closure operator C� identify precisely the sets of sentences that contain all of its T-
consequences, that is, if there is some � ∈ ℘(L) such that T = C�(�), then T � A
iff A ∈ T , in view of (CRT2) and (CRT1). This is now easily seen to generalize to our
novel bilateralist notion of closure:

Proposition 5.2 Let �S be an S-consequence relation. If there is some (�1, �0) ∈
℘(L) × ℘(L) such that (T1, T0) = C2�S(�1, �0), then: [a] T1 � T0 ∪ {A} iff A ∈ T1
and [b] {A} ∪ T1 � T0 iff A ∈ T0.

Proof Recall from Sect. 4 that C2�S (�1, �0) :=
(
CD:�0

�S (�1) , CA:�1
�S (�0)

)
. Thus,

given that T1 is taken here as the set CD:�0
�S (�1), we may invoke Proposition 4.1(1)

to conclude that T1 = CD:T0
�S (T1), which means precisely that A ∈ T1 if and only if

T1 � T0 ∪ {A}, as stated in item [a]. The proof of item [b] is analogous. ��
The latter result fully supports the intuition that led us to upgrade the view of a theory
as a closed set of a ‘unilateralist’ closure operator, which has a bias exclusively towards
assertion (or, dually, exclusively towards denial), into a more generous framework in
which we look for closed set-pairs (pairs of sentences that satisfy items [a] and [b] in
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the statement of the above proposition) to fit our generalized notion of closure, which
takes both assertions and denials equally into consideration. It is worth indeed pointing
out that, as in the case of T-consequence, the bilateralist S-consequence operators are
uniquely determined by their associated spaces of theories.

We shall now briefly revisit the first specific illustration from Sect. 3, that of the
S-consequence relation for the implication-only fragment of classical propositional
logic, to show how the present notion of theory-pair provides a framework for the
study of consequence that is strictly more expressive than the received one-sided stan-
dard notion of theory. Let �S be the mentioned S-consequence relation and �T

�S be
the thereby induced T-consequence relation. Let q ∈ P be a propositional variable,
and consider the �-theory-pair (T1, T0) := C2�S(∅, {q}). Using the above charac-
terization of C2V, it is clear that such �-theory-pair is semantically characterized by
takingV as the set of all Boolean valuations ν such that ν(q) = 0. Hence, it follows in
particular that T1 = C�T({q → A : A ∈ L}). The present theoretical framework for
S-consequence has, in this case, two clear advantages. First, note that it still allows one
to obtain T0 as the set of all sentences evaluated to 0 by all Boolean valuations ν ∈ V
such that ν(q) = 0. Second, we claim that T1 simply cannot be finitely axiomatized as
a �T-theory (recall that negation is not expressible in the implication-only fragment
of classical propositional logic), that is, for every finite
 ⊆ Lwe have C�T(
) �= T1.
To see this, given a finite 
 ⊆ L take any variable r �= q in P such that r does not
occur in the sentences in 
; let ν be the canonical bivaluation such that ν(r) = 0 and
ν(p) = 1 if p �= r ; then, it is immediate to see that 
 ⊆ 1v yet ν(q → r) = 0.

We will close this section with a result that further reinforces the adequacy of our
present novel notion of theory-pair for S-consequence relations. As we have seen in
the final illustration of Sect. 3, it may happen that the T-consequence relation �T

�S

is finitary even when the S-consequence relation that induces it is not finitary. It is
well-known (cf. Theorem 1.3.5 of Wójcicki 1998) however, that a T-consequence
relation is finitary precisely when its space of theories is ‘closed under ultraproducts’.
This suggests that T-consequence fails somehow in capturing all the nuances of S-
consequence. Nonetheless, we can now show that the mentioned result concerning
closure under ultrafilters may be generalized in a very natural way with the help of
�S-theory-pairs.

For immediate subsequent use, we briefly recall a couple of standard definitions
and facts (cf., e.g., Chang and Keisler 1973). Given a set I , an ultrafilter on I is a
set U ⊆ ℘(I ) satisfying the following conditions: (U1) ∅ /∈ U ; (U2) if X ∈ U and
X ⊆ Y then Y ∈ U ; (U3) if X ,Y ∈ U then X ∩ Y ∈ U ; (U4) if X ⊆ I , then either
X ∈ U or I\X ∈ U . Further,W ⊆ ℘(I ) is said to enjoy the finite intersection property
if every finite subset {X1, . . . , Xn} ⊆ W is such that X1 ∩ · · · ∩ Xn �= ∅. It is useful
to bear in mind that the Ultrafilter Lemma states that for every W ⊆ ℘(I ) with the
finite intersection property there exists an ultrafilter U such that W ⊆ U . Finally, the
ultraproduct ×U (T ) of a family T := {(�i , �i )}i∈I ⊆ ℘(L) × ℘(L) modulo an
ultrafilter U on I is the pair (�U , �U ) with �U = {A ∈ L : {i ∈ I : A ∈ �i } ∈
U} and �U = {A ∈ L : {i ∈ I : A ∈ �i } ∈ U}.
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Lemma 5.3 Let � be an S-consequence relation on L, let T := {(�i , �i )}i∈I ⊆
℘(L) × ℘(L), and let U be an ultrafilter on I . If (�i , �i ) is �-consistent for each
i ∈ I then×U (T ) is �-consistent.

Proof Suppose that ×U (T ) is �-inconsistent, that is, (�U ,�U ) = (L,L). Take
A ∈ L. Thismeans that {i ∈ I : A ∈ �i } ∈ U and {i ∈ I : A ∈ �i } ∈ U , and therefore
also {i ∈ I : A ∈ �i and A ∈ �i } = {i ∈ I : A ∈ �i } ∩ {i ∈ I : A ∈ �i } ∈ U and
hence {i ∈ I : A ∈ �i and A ∈ �i } �= ∅. Thus, �i ∩ �i �= ∅ for some i ∈ I and,
by Lemma 5.1, (�i , �i ) is �-inconsistent. ��

Proposition 5.4 Let � be an S-consequence relation on L. Then, � is finitary if and
only if ThS(�) is closed under ultraproducts.

Proof Assume that � is a finitary S-consequence relation. Let U be an ultrafilter on I ,
and consider a family T := {(Xi ,Yi )}i∈I ⊆ ThS(�), that is, for each i ∈ I , assume
that there exist �i , �i ⊆ L such that Xi = CD:�i� (�i ) and Yi = CA:�i� (�i ). To show
that (�U , �U ) := ×U (T ) is in ThS(�), we have to find �,� ⊆ L such that �U =
CD:�

� (�) and �U = CA:�
� (�). The obvious candidate for playing the role of such

pair (�,�) is (�U , �U ) itself, and we claim indeed that the ultraproduct (�U , �U ) is
a closed set-pair of�. Let A ∈ L and supposefirst that�U � �U∪{A}.As� is finitary,
there exist finite sets �	 := {B1, . . . , Bn} ⊆ �U and �	 := {C1, . . . ,Cm} ⊆ �U
such that �	 � �	 ∪ {A}, for some n,m ∈ N. Set IBk := {i ∈ I : Bk ∈ �i }, for
1 ≤ k ≤ n, and set ICk := {i ∈ I : Ck ∈ �i }, for 1 ≤ k ≤ m. By the definitions
of �U and �U it is clear that IBk ∈ U , for 1 ≤ k ≤ n, and ICk ∈ U , for 1 ≤ k ≤ m.
Setting ID := IB1 ∩ · · · ∩ IBn ∩ IC1 ∩ · · · ∩ ICm , by (U3) we may conclude that
ID ∈ U . Let i ∈ ID . This amounts to assuming �	 ⊆ Xi and �	 ⊆ Yi . So, in view of
�	 � �	 ∪ {A} we may use (CRS0) to conclude that Xi � Yi ∪ {A}. We may then use
Proposition 5.2[a] to conclude that A ∈ Xi . It follows that ID ⊆ {i ∈ I : A ∈ Xi },
which implies by (U2) that {i ∈ I : A ∈ Xi } ∈ U , and so we see that A ∈ �U . The
proof that {A} ∪ �U � �U implies A ∈ �U is analogous.

Conversely, assume now that ThS(�) is closed under ultraproducts, consider arbi-
trary �,� ⊆ L, and suppose �	 � �	 for all finite �	 ⊆ � and �	 ⊆ �. Set
I := {(�	,�	) : finite �	 ⊆ �,finite �	 ⊆ �} and set W := {•i : i ∈ I },
where •i := {J ⊆ I : i ∈ J }. As a finite union of finite sets is still finite, it
is straightforward to see that W enjoys the finite intersection property, and thus,
by the Ultrafilter Lemma, there exists an ultrafilter U on I that contains W . Con-
sider now the family T := {(�i , �i )}i∈I , where (�i , �i ) := C2�(i) for each
i ∈ I . Note that each such (�i , �i ) is a �-consistent theory-pair, by hypothesis.
By assumption, the ultraproduct (�U , �U ) := ×U (T ) is in ThS(�), and is �-
consistent as a consequence of Lemma 5.3. Hence, Lemma 5.1 implies that�U � �U .
We claim that (�,�) ⊆ (�U , �U ). Indeed, if A ∈ � then •({A}, ∅) ∈ U , so
•({A}, ∅) ⊆ {i ∈ I : A ∈ �i } and by (U2) it follows that {i ∈ I : A ∈ �i } ∈ U ,
from which we conclude that A ∈ �U ; the proof that � ⊆ �U is analogous. Using
(CM0), we conclude then from (�,�) ⊆ (�U , �U ) that � � �. ��
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6 What should follow?

David Hilbert once defended the axiomatic method as essential in providing a “defini-
tive presentation and complete logical assurance of the content of our knowledge”
(cf. Hilbert 1900). Nowadays, axiomatically presented theories are commonplace,
both in Mathematics and in Science. Logics, in particular, have often been presented
through consequence relations induced by sets of axioms. For that purpose, nonethe-
less, sets of anti-axioms could equally be used, though perhaps the force of habit has
made such alternative approach much less prevalent. While it is true that classical
logic and intuitionistic logic disagree on what should count as theorems, they agree
on what should count as anti-theorems (for an anti-axiomatization of classical propo-
sitional logic, see Morgan 1973). As long as one delves further into non-classical
territory, however, situations in which anti-theorems play a more important role than
theorems start to look just as natural. The novel notion of a theory-pair explored in
the present paper is flexible enough to allow for the study of logics from either per-
spective, and even from both perspectives at once. For a further natural step, from the
model-theoretic viewpoint, it would seem worth pursuing more investigations in the
line of Badia and Marcos (2018), concerning the characterization “in purely mathe-
matical terms”—in the sense of Tarski (1952)—of classes of structures presented not
only in terms of collections of equations or of equality-free positive literals but also
classes of structures whose presentations include negative literals, which happen to
be accommodated equally well within our present approach to consequence.

From the proof-theoretic viewpoint, it is usual to consider sets of sentences
endowed with an algebraic structure and to demand the underlying notion of con-
sequence to be ‘substitution-invariant’, that is, to assume that � � � implies
σ(�) � σ(�) for any endomorphism σ on L. Semantically, in order to properly
cope with substitution-invariance, one often considers richer interpretation structures
such as ‘logical matrices’, as in Czelakowski (1983) and Zygmunt (1984), rather than
bivaluations. Such an enrichment would not really bring added complexity to the
hereby proposed notion of space of theories for S-consequence relations. It is worth
pointing out, at any rate, that the consequence operators CD:�

�S or CA:�
�S are not necessar-

ily substitution-invariant even when �S is, in view of the fixed background assertions
or denials. Deductively, the richer structure of S-consequence relations is no longer
compatible with the modest design that is characteristic of Hilbert-style calculi. Sev-
eral alternatives are at hand, though, including of course Gentzen-like sequent calculi,
but a simpler adequate possibility is just to consider a generalization of Hilbert-style
calculi whose rules contain sets of premises and sets of conclusions, as in Shoesmith
and Smiley (1978) and Marcelino and Caleiro (2019).

As we have pointed out above, exactly like the space of theories associated to
a given T-consequence relation, the space of theory-pairs associated to a given S-
consequence relation also forms a complete lattice—as expected, meets are given by
(component-wise) intersections of theory-pairs, and joins correspond to the closure of
(component-wise) unions of theory-pairs. We believe it would be interesting to inves-
tigate the distributivity of these lattices of theories, namely by looking for sufficient
conditions such as the existence of appropriate disjunction connectives in the case of T-
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consequence (cf.Martin and Pollard 1996).We expect such a study to further enlighten
the dissimilarities between S-consequence and T-consequence, well patent in the fact
that the lattice of all S-consequence relations is always distributive, whereas that is
not the case for the lattice of all T-consequence relations (cf. §1.17 of Humberstone
2011). In the same spirit, many other aspects of the spaces of theory-pairs would seem
worth investigating. We have for instance shown that finitary S-consequence relations
correspond precisely to those relations whose spaces of theory-pairs are closed under
ultraproducts, generalizing the well-known result for finitary T-consequence relations;
given that the latter are also known to correspond to those relations whose spaces of
theories are ‘inductive’, i.e. those that contain the union of upward directed families
(cf. §1.3.3 and 1.3.5 of Wójcicki 1998), it would of course be only natural to look for
a generalization of such inductiveness condition in the context of S-consequence.

Finally, it is worth emphasizing that the present investigation has all been done from
the perspective of the smoothest possible generalization of the received (Tarskian-
inspired) notion of consequence. As soon as one entertains the possibility of a notion
of compatibility that allows either for gappy or for glutty reasoning, the corresponding
notion of theory and the associated space of theories will have to be suitably adapted.
A general framework allowing for non-Tarskian notions of consequence that are char-
acterized by non-canonical valuations referring to more than two logical values is set
up in Blasio et al. (2017). Extending our present foray into the land of theories towards
covering many-dimensional notions of entailment looks like a natural plan of attack
for the future.
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