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The present study shows how any De Morgan algebra may be enriched by a ‘perfection operator’ that
allows one to express the Boolean properties of negation-consistency and negation-determinedness.
The corresponding variety of ‘perfect paradefinite algebras’ (PP-algebras) is shown to be term-equiv-
alent to the variety of involutive Stone algebras, introduced by R. Cignoli and M. Sagastume, and
more recently studied from a logical perspective by M. Figallo and L. Cantú. Such equivalence then
plays an important role in the investigation of the 1-assertional logic and also the order-preserving
logic asssociated to the PP-algebras. The latter logic, which we call≤, happens to be characterisedby a single 6-valued matrix and consists very naturally in a Logic of Formal Inconsistency and Formal
Undeterminedness. The logic ≤ is here axiomatised, by means of an analytic finite Hilbert-style
calculus, and a related axiomatization procedure is presented that covers the logics of other classes
of De Morgan algebras as well as super-Belnap logics enriched by a perfection connective.

1 Introduction

The variety of DeMorgan algebras comprises all bounded distributive lattices equippedwith aDeMorgan
negation, that is, an involutive unary primitive operation ∼ satisfying the well-known De Morgan laws.
Involutive Stone algebras (henceforth referred to as IS-algebras) are De Morgan algebras endowed with a
primitive unary operation ∇ that allows for the definition of a pseudo-complement operator ¬ satisfying
the Stone equation ¬x∨¬¬x ≈ ⊤.

While the order-preserving logic canonically induced by DeMorgan algebras, namely Dunn-Belnap’s
four-valued logic [6], has been extensively studied over the last decades, the logic so induced by IS-
algebras, which we call ≤, has only recently attracted due attention [8, 9]. Some of the most promi-
nent features of ≤ are the facts that it is paradefinite [3] (it is, indeed, at once ∼-paraconsistent and
∼-paracomplete, characteristics actually inherited from Dunn-Belnap logic), ∼-gently explosive and ∼-
gently implosive [22]; in other words, it is a Logic of Formal Inconsistency (LFI) and a Logic of Formal
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2 On Logics of Perfect Paradefinite Algebras

Undeterminedness (LFU). All these features remain rather concealed in the presentation of IS-algebras
in terms of ∇, an operator whose significance and philosophical motivations are at best unclear.1

In contrast, from a logical viewpoint, we note that perfection operators (in the sense of [23]) allow for
the internalization of the very notions of negation-consistency and negation-determinedness at the object-
language level, and logics with such an expressive capability also happen to have been extensively studied
in the last two decades (cf. [5], for example, for the so-called ‘classicality’, ‘restoration’, ‘recapture’,
or ‘recovery’ operators). In order to establish a fruitful dialogue with the logical study of negation,
we propose in the present study an alternative presentation of IS-algebras, in terms of structures that
we shall denominate ‘perfect paradefinite algebras’ (or simply PP-algebras), obtained by replacing ∇
with a primitive perfection operation ◦. The equational characterization we present for PP-algebras will
not only guarantee that the corresponding variety is term-equivalent to the variety of IS-algebras but
also highlight the paradefinite character of the order-preserving logic thereby induced (≤); the latter
will be shown more specifically to constitute a fully self-extensional and non-protoalgebraic member of
the families of logics known as C-systems and D-systems. A procedure for constructing a PP-algebra
using a De Morgan algebra as material is introduced and, akin to ≤, the logic ≤ will be seen to
be characterizable by a single six-element logical matrix. At last, we are also to provide, here, a well-
behaved symmetrical Hilbert-style calculus for the SET-SET logics induced by logical matrices based
on De Morgan algebras enriched with ◦, as well as conventional Hilbert-style calculi for the SET-FMLA
logics induced by logical matrices based on De Morgan algebras with prime filters enriched with ◦ —
and, in particular, an analytical proof system for the logic ≤ itself.

2 Algebraic and logical preliminaries

A propositional signature is a family Σ∶={Σk}k∈!, where each Σk is a collection of k-ary connectives.
A Σ-algebra is a structure A∶=⟨A, ⋅A⟩, where A is a non-empty set called the carrier of A and, for each
© ∈ Σk, ©A ∶ Ak → A is the interpretation of © in A. Given a denumerable set P ⊇ {p,q, r,x,y}, the
absolutely free algebra over Σ freely generated by P , or simply the language over Σ (generated by P ), is
denoted by LΣ(P ), and its members are called Σ-formulas. The collection of all propositional variables
occurring in a formula '∈LΣ(P ) is denoted by props('), and we let props(Φ)∶=⋃

'∈Φ props('), for all
Φ⊆LΣ(P ). Given Σ′ ⊆ Σ (that is, Σ′k ⊆ Σk for all k∈!), the Σ′-reduct of a Σ-algebra A is the Σ′-algebra
over the same carrier ofA that agrees withA on the interpretation of the connectives in Σ′. The collection
of homomorphisms between two Σ-algebras A and B is denoted by Hom(A,B), and the collection of
mappings that are structure-preserving over Σ′ ⊆ Σ is denoted by HomΣ′(A,B). Furthermore, the set of
endomorphisms on A is denoted by End(A) and each one of the members of � ∈ End(LΣ(P )) is called a
substitution. In case p1,… , pn are the only propositional variables ocurring in'∈LΣ(P ), we say that' is
n-ary and denote by'A the n-ary operation onA such that, for all a1,… ,an ∈A,'A(a1,… ,an) = ℎ('), for
an ℎ∈Hom(LΣ(P ),A)with ℎ(pi) = ai for each 1≤ i≤ n. Also, if 1,… , n ∈LΣ(P ), we let'( 1,… , n)
denote the formula 'LΣ(P )( 1,… , n). A Σ-equation is a pair (', ) of Σ-formulas that we will denote by
' ≈  , and a Σ-algebra A is said to satisfy ' ≈  if ℎ(') = ℎ( ) for every ℎ ∈ Hom(LΣ(P ),A). We call
Σ-variety the class of all Σ-algebras that satisfy the same given collection of Σ-equations; an equation is
said to be valid in a given variety if it is satisfied by each algebra in this variety. The variety generated
by a class K of Σ-algebras, denoted by V (K), is the closure of K under homomorphic images, subalgebras

1For the 3-valued case, such a ‘possibility’ operator is known at least since [19], where J. Łukasiewicz notes it has been first
defined during one of his 1921 seminars by a student called Tarski. The lack of a robust modal reading for such an operator,
however, has caused it to have largely fallen by the wayside over the following decades.
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and direct products. We write CngA to refer to the collection of all congruence relations on A, which is
known to form a complete lattice under inclusion.

In what follows, we assume the reader is familiar with basic notations and terminology of lattice
theory [12]. We denote by ΣbL the signature containing but two binary connectives, ∧ and ∨, and two
nullary connectives⊤ and⊥, and by ΣDM the extension of the latter with a unary connective∼. Moreover,
we letΣIS andΣPP be the signatures obtained fromΣDM by adding unary connectives∇ and ◦, respectively.
We provide below the definitions and some examples of De Morgan and of involutive Stone algebras.
Definition 2.1. Given a ΣDM-algebra whose ΣbL-reduct is a bounded distributive lattice, we say that it
constitutes a De Morgan algebra if it satisfies the equations:
(DM1) ∼∼x ≈ x (DM2) ∼(x∧y) ≈ ∼x∨∼y

Example 2.2. Let 4 ∶={t,b,n, f} and let DM4 ∶=⟨4, ⋅DM4
⟩ be the ΣDM-algebra known as the four-

element Dunn-Belnap algebra, whose interpretations for the lattice connectives are those induced by
the Hasse diagram in Figure 1a, and the interpretation for ∼ is such that ∼DM4f ∶= t, ∼DM4t ∶= f and
∼DM4a∶=a, for a∈ {n,b}; as expected, for the nullary connectives, we have ⊤DM4 ∶= t and ⊥DM4 ∶= f .
In Figure 1a, besides depicting the lattice structure of DM4, we also show its subalgebras K3 and B2,
which coincide with the three-element Kleene algebra and the two-element Boolean algebra. These three
algebras are the only subdirectly irreducible De Morgan algebras [4].
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(a) The subdirectly irreducible DeMorgan algebras.
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(b) The subdirectly irreducible IS-algebras.

Figure 1
Definition 2.3. Given a ΣIS-algebra whose ΣDM-reduct is a De Morgan algebra, we say that it constitutes
an involutive Stone algebra (IS-algebra) if it satisfies the equations:
(IS1) ∇⊥ ≈ ⊥ (IS2) x∧∇x ≈ x (IS3) ∇(x∧y) ≈ ∇x∧∇y (IS4) ∼∇x∧∇x ≈ ⊥

Example 2.4. Let 6 ∶=4 ∪{f̂ , t̂} and let IS6 ∶=⟨6, ⋅IS6⟩ be the ΣIS-algebra whose lattice structure is
depicted in Figure 1b and interprets ∼ and ∇ as per the following:

∼IS6a∶=

⎧

⎪

⎨

⎪

⎩

∼DM4a a ∈ 4
f̂ a = t̂
t̂ a = f̂

∇IS6a∶=

{

t̂ a ∈ 6 ⧵{f̂}
f̂ a = f̂

The subalgebras of IS6 exhibited in Figure 1b constitute the only subdirectly irreducible IS-algebras [11].
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We denote by IS the variety of IS-algebras. The next result lists some equations satisfied by IS-
algebras, which will be useful for proving the results in the next section.
Lemma 2.5. The following equations are satisfied by IS-algebras:

x∨∇∼x ≈ ⊤1. x∧∼∇x ≈ ⊥2. ∼∇(x∧∼x)∧∼x ≈ ∼∇x3.

∇∇x ≈ ∇x4. ∇∼∇x ≈ ∼∇x5. ∼∇∼(x∧y) ≈∼∇∼x∧∼∇∼y6.

Proof. Equation 3 may be proved by using the usual DeMorgan algebra equations together with∇x∨x≈
∇x, an equation that is easily derivable from (IS2). All other equations follow fromLemma 3.2 in [9].

Here, a SET-FMLA logic (over Σ) is a consequence relation ⊢ on LΣ(P ) and a SET-SET logic (over
Σ) is a generalised consequence relation ⊳ on LΣ(P ) [17]. We will write Φ ⊲⊳ Ψ when Φ ⊳ Ψ and
Ψ ⊳ Φ. The complement of a given SET-SET logic ⊳ will be denoted by ▸. We say that ⊢′ extends ⊢
when ⊢′ ⊇ ⊢. It is worth recalling that the collection of all extensions of a given logic forms a complete
lattice under inclusion. Given Σ ⊆ Σ′, a logic ⊢′ over Σ′ is a conservative expansion of a logic ⊢ over Σ
when ⊢′ extends ⊢ and, for all Φ∪{ } ⊆ LΣ(P ), we have Φ ⊢′  iff Φ ⊢  . These concepts may be
extended to the SET-SET framework in the obvious way. We say, in addition, that a SET-FMLA Σ-logic ⊢
has a disjunction provided that Φ,'∨ ⊢ � iff Φ,' ⊢ � and Φ, ⊢ � (for ∨ a binary connective in
Σ).

A (logical) Σ-matrix M is a structure ⟨A,D⟩ where A is a Σ-algebra and the members of D ⊆ A
are called designated values. We will write D to refer to A⧵D. Provided that A has a lattice structure
with underlying order ≤, we will often employ the notation ↑a∶={b ∈A ∣ a ≤ b} when specifying sets of
designated values. The mappings in Hom(LΣ(P ),A) are calledM-valuations. Every Σ-matrix induces a
SET-SET logic ⊳M such that Φ⊳M Ψ iff ℎ(Φ)∩D ≠ ∅ or ℎ(Ψ)∩D ≠ ∅ as well as a SET-FMLA logic
⊢M with Φ ⊢M  iff Φ⊳M { }. Given a SET-SET logic ⊳ (resp. a SET-FMLA logic ⊢), if ⊳ ⊆ ⊳M
(resp. ⊢ ⊆ ⊢M), we shall say that M is a model of ⊳ (resp. ⊢), and if the converse also holds we shall
say that M characterises ⊳ (resp. ⊢). The SET-SET (resp. SET-FMLA) logic induced by a class  of
Σ-matrices is given by⋂{⊳M ∣M ∈} (resp.⋂{⊢M∣M ∈}). At a few occasions, below, we shall
prefer to write Log for ⊢.
Example 2.6. TheΣDM-matrix ⟨DM4,↑b⟩ induces the logic known as the four-valued Dunn-Belnap logic,
or First-Degree Entailment (FDE) [6], which we hereby denote by. Extensions of are known as super-
Belnap logics [26].
Example 2.7. Classical Logic, hereby denoted by , is induced by the ΣDM-matrix ⟨B2,{t}⟩.

Given a Σ-matrixM = ⟨A,D⟩, a congruence � ∈ CngA is said to be compatible withM when b ∈D
whenever both a ∈D and a�b, for all a,b ∈ A. We denote by ΩM the Leibniz congruence associated to
M, namely the greatest congruence of A compatible with M. The matrix M∗ = ⟨A∕ΩM,D∕ΩM

⟩ is the
reduced version of M. We say that M is reduced when its Leibniz congruence is the identity relation
on A. It is well known that ⊳M = ⊳M∗ (and thus ⊢M = ⊢M∗) and, since every logic is determined by
a class of matrix models, we have that every logic coincides with the logic determined by its reduced
matrix models. The class of all reduced matrix models for a logic ⊢ is denoted byMat∗(⊢).

Every Σ-variety K such that each A ∈ K has a ⋀-semilattice reduct with top element ⊤ induces a
SET-FMLA order-preserving logic ⊢≤

K according to which  follows from Φ iff (i) Φ = ∅ and  ≈ ⊤ is
valid in K or (ii) there are '1,… ,'n ⊆ Φ (n ≥ 1) such that the equation ⋀i'i ≈

⋀

i'i ∧ is valid in K.
A lattice filter of a ⋀-semilattice A with a top element ⊤ is a subset D ⊆ A with ⊤A ∈ D and closed
under ∧A; moreover, D is a proper lattice filter of A when D ≠ A. If A is a⋁-semilattice, a prime filter
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of A is a proper lattice filter D of A such that a∨ b ∈D iff a ∈D or b ∈D, for all a,b ∈ A. In case each
A ∈ K has a bounded distributive lattice reduct, as all varieties treated in the present work do, it follows
that its order-preserving logic coincides with the logic determined by the class of matrices {⟨A,D⟩ ∣
A ∈ K,D ⊆ A is a non-empty lattice filter of A}. Furthermore, we associate to K the 1-assertional logics
⊳⊤K and ⊢⊤K corresponding respectively to the SET-SET and SET-FMLA logics induced by the class of
Σ-matrices {⟨A,{⊤A}⟩ ∣ A ∈ K}.

Based on [27, 7], we define a symmetrical (Hilbert-style) calculus R as a collection of pairs (Φ,Ψ) ∈
℘LΣ(P ) ×℘LΣ(P ), denoted by Φ

Ψ and called (symmetrical) inference rules, where Φ is the antecedent
and Ψ is the succedent of the said rule. We will adopt the convention of omitting curly braces when
writing sets of formulas and leaving a blank space instead of writing ∅ when presenting inference rules
and statements involving (generalised) consequence relations. We proceed to define what constitutes a
proof in such calculi.

A bounded rooted tree t is a poset ⟨nds(t),≤t⟩ with a single minimal element rt(t), the root of t, such
that, for each node n ∈ nds(t), the set {n′ ∈ nds(t) ∣ n′≤tn} of ancestors of n (or the branch up to n) is
well-ordered under ≤t, and every branch of t has a maximal element (a leaf of t). We may assign a label
lt(n) ∈℘LΣ(P )∪{∗} to each node n of t, in which case t is said to be labelled. Given Ψ ⊆ LΣ(P ), a leaf
n is Ψ-closed in t when lt(n) = ∗ or lt(n)∩Ψ ≠∅. The tree t itself is Ψ-closed when all of its leaves are
Ψ-closed. The immediate successors of a node n with respect to ≤t are called the children of n in t.

Let R be a symmetrical calculus. An R-derivation is a labelled bounded rooted tree such that for every
non-leaf node n of t there exists a rule of inference r = Π

Θ ∈ R and a substitution � such that �(Π) ⊆ lt(n),
and the set of the children of n is either (i) {n' ∣ ' ∈ �(Θ)}, in case Θ ≠ ∅, where n' is a node labelled
with lt(n) ∪{'}, or (ii) a singleton {n∗} with lt(n) = ∗, in case Θ = ∅. We say that Φ ⊳R Ψ whenever
there is a Ψ-closed derivation t such that Φ ⊇ rt(t); such a tree consists in a proof that Ψ follows from Φ
in R. As a matter of simplification when drawing such trees, we usually avoid copying the formulas
inherited from the parent nodes (see Example 2.8 below). The relation ⊳R so defined is a SET-SET logic
and, when ⊳R =⊳M, we say that R axiomatisesM. A rule Φ

Ψ is sound with respect toM whenΦ ⊳M Ψ.
It should be pointed out that such deductive formalism generalises the conventional (SET-FMLA) Hilbert-
style calculi: the latter corresponds to symmetrical calculi whose rules have, each, a finite antecedent and
a singleton as succedent. Given Λ ⊆ LΣ(P ), we write Φ⊳ΛR Ψ whenever there is a proof of Ψ from Φ
using only formulas in Λ. We say that R is Ξ-analytic when, for all Φ,Ψ ⊆ LΣ(P ), whenever Φ ⊳R Ψ,
we have Φ⊳ΥΞR Ψ, with ΥΞ ∶= sub(Φ∪Ψ) ∪ {�(') ∣ ' ∈ Ξ and � ∶ P → sub(Φ∪Ψ)}, which we shall
dub the generalised subformulas of (Φ,Ψ). Intuitively, it means that a proof in R that Ψ follows from Φ
may only use subformulas of Φ∪Ψ or substitution instances of the formulas in Ξ built with those same
subformulas.

A general method is introduced in [7, 21] for obtaining analytic calculi (in the sense of analyticity in-
troduced in the above paragraph) for logics given by a Σ-matrix ⟨A,D⟩whenever a certain expressiveness
requirement (called ‘monadicity’ in [27]) is met: for every a,b ∈ A, there is a single-variable formula S
(a so-called separator) such that SA(a) ∈D and SA(b) ∉D or vice-versa. The next example illustrates a
symmetrical calculus for  generated by this method, as well as some proofs in this calculus.
Example 2.8. The matrix ⟨DM4,↑b⟩ fulfills the above expressiveness requirement, with the following set
of separators:  ∶={p,∼p}. We may therefore apply the method introduced in [21] to obtain for  the
following -analytic axiomatization we call R:

⊤
r1

∼⊤
r2 ∼⊥

r3
⊥
r4

p
∼∼p

r5
∼∼p
p

r6



6 On Logics of Perfect Paradefinite Algebras

p∧ q
p

r7
p∧ q
q

r8
p,q
p∧ q

r9
∼p

∼(p∧ q)
r10

∼q
∼(p∧ q)

r11
∼(p∧ q)
∼p,∼q

r12

p
p∨ q

r13
q

p∨ q
r14

p∨ q
p,q

r15
∼p,∼q
∼(p∨ q)

r16
∼(p∨ q)
∼p

r17
∼(p∨ q)
∼q

r18

Figure 2 illustrates some derivations in R.

∼(p∧ q)

∼p ∼q

∼p∨∼q ∼p∨∼q

r12

r13 r14

∼p∨∼q

∼p ∼q

∼(p∧ q) ∼(p∧ q)

r15

r10 r11

p∨⊥

p ⊥

*

r15

r4

p∨⊥

p,q
r13

Figure 2: Proofs in R witnessing that ∼(p∧ q) ⊲⊳ ∼p∨∼q and p∨⊥ ⊲⊳ p,q.

Let Σ be any signature containing a unary connective ∼. A SET-SET logic ⊳ over Σ is said to be
∼-paraconsistent when we have p,∼p ▸ q, and ∼-paracomplete when we have q ▸ p,∼p, with p,q ∈ P .
Moreover, ⊳ is ∼-gently explosive in case there is a collection ○(p) ⊆ LΣ(P ) of formulas on a single
variable such that, for some '∈LΣ(P ), we have○('),' ▸∅ and○('),∼' ▸∅, and, for all  ∈LΣ(P ),
we have○( ), ,∼ ⊳∅. Dually,⊳ is∼-gently implosive in case there is a collection of formulas☆(p)⊆
LΣ(P ) on a single variable such that, for some ' ∈ LΣ(P ), we have ∅▸ ',☆(') and ∅▸ ∼',☆('),
and, for all  ∈ LΣ(P ), we have ⊳ ∼ , ,☆( ). A SET-SET logic is ∼-paradefinite when it is both ∼-
paraconsistent and ∼-paracomplete; is a logic of formal inconsistency (LFI) when it is ∼-paraconsistent
yet ∼-gently explosive; and is a logic of formal undeterminedness (LFU) when it is ∼-paracomplete yet
∼-gently implosive. Furthermore, if ⊳1 and ⊳2 are logics over Σ1 ⊇ Σ and Σ2 ⊇ Σ respectively, we say
that ⊳1 is a C-system based on ⊳2 with respect to ∼ (or simply a C-system) when it is an LFI that agrees
with ⊳2 on statements involving formulas without ∼, and ○(p) = {◦p}, for ◦ a composite (consistency)
connective in the language of ⊳1. We may dually define the notion of D-system [23].
Example 2.9. By exploiting the fact that n,b ∈ 4 are fixpoints of ∼DM4 , one may easily notice that  is
∼-paraconsistent and ∼-paracomplete (thus ∼-paradefinite).

3 Perfect paradefinite algebras and their logics

We propose in this section to extend De Morgan algebras with a perfection operator ◦, which will allow
us to recover the classical properties of∼-consistency and∼-determinedness. In the sequel, we will prove
that the variety of such algebras is term-equivalent to the variety of IS-algebras.
Definition 3.1. Given a ΣPP-algebra whose ΣDM-reduct is a DeMorgan algebra, we say that it constitutes
a perfect paradefinite algebra (PP-algebra) if it satisfies the equations:
(PP1) ◦◦x ≈ ⊤ (PP2) ◦x ≈ ◦∼x (PP3) ◦⊤ ≈ ⊤ (PP4) ◦x∧(∼x∧x) ≈ ⊥
(PP5) ◦(x∧y) ≈ (◦x∨◦y)∧ (◦x∨∼y)∧ (◦y∨∼x)



Joel Gomes, Vitor Greati, Sérgio Marcelino, João Marcos & Umberto Rivieccio 7

Example 3.2. An example of PP-algebra is PP6 ∶=⟨6, ⋅PP6⟩, the ΣPP-algebra defined as IS6 in Example
2.4, differing only in that, instead of containing an interpretation for ∇, it interprets ◦ as follows:

◦PP6a∶=

{

f̂ a ∈ 6 ⧵{f̂ , t̂}
t̂ a ∈ {f̂ , t̂}

Other examples are the algebras PPi, for 2≤ i≤ 5, the subalgebras of PP6 having, respectively, the same
lattice structures of the algebras ISi exhibited in Figure 1b.

As it occurs with IS-algebras, in the language of PP-algebras we may easily define, by setting
¬x ∶= ◦x∧∼x, a pseudo-complement satisfying the Stone equation. We denote by ℙℙ the variety of
PP-algebras. The following result illustrates some useful equations satisfied by the members of ℙℙ.
Lemma 3.3. Every PP-algebra satisfies:

∼◦x∨(x∨∼x) ≈ ⊤1. ◦x∧∼◦x ≈ ⊥2. ◦x ≈ ◦x∧(x∨∼x)3.

Proof. Notice that 1 is a straightforward consequence of (PP4), and 2 is a consequence of (PP4) using
◦x in place of x and invoking (PP1). Finally, 3 may be easily proved using 1 and 2.

Given ' ∈ LΣIS(P ) (resp. ' ∈ LΣPP(P )), let '◦ ∈ LΣPP(P ) (resp. '∇ ∈ LΣIS(P )) be the result of ap-
plying the definition of ◦ (resp. of ∇) given below, in Theorem 3.4 (resp. Theorem 3.5), over '. Extend
this notion to sets of formulas in the usual way. The subsequent results establish the term-equivalence
between the varieties of involutive Stone algebras and of perfect paradefinite algebras.
Theorem 3.4. LetA∈ IS. Then the ΣPP-algebraA◦ having the same ΣDM-reduct ofA and with ◦A◦ being
the operation induced by ∼∇(x∧∼x) on A is a PP-algebra.
Proof. We must show that A◦ satisfies each of the characteristic equations of PP-algebras:
(PP1) ◦◦x ≈def ∼∇((∼∇(x ∧∼x)) ∧ ∼(∼∇(x ∧∼x))) ≈(IS3) ∼∇∼∇(x ∧∼x) ∨ ∼∇∼∼∇(x ∧∼x) ≈2.5.5

∼∼∇(x ∧ ∼x) ∨ ∼∇∼∼∇(x ∧ ∼x) ≈(DM1) ∇(x ∧ ∼x) ∨ ∼∇∇(x ∧ ∼x) ≈2.5.4 ∇(x ∧ ∼x) ∨ ∼∇(x ∧
∼x) ≈(IS4) ⊤.

(PP2) ◦x ≈def ∼∇(x∧∼x) ≈(DM1) ∼∇(∼∼x∧∼x) ≈def ◦∼x .
(PP3) ◦⊤ ≈def ∼∇(⊤∧∼⊤) ≈ ∼∇(⊤∧⊥) ≈ ∼∇⊥ ≈(IS1) ∼⊥ ≈ ⊤.
(PP4) ◦x∧(∼x∧x) ≈def ∼∇(x∧∼x)∧ (∼x∧x) ≈ (∼∇(x∧∼x)∧∼x)∧x ≈2.5.3 ∼∇x∧x ≈2.5.2 ⊥.
(PP5) ◦(x∧y) ≈def ∼∇((x∧y)∧∼(x∧y)) ≈(IS3) ∼∇(x∧y)∨∼∇∼(x∧y) ≈(IS3) (∼∇x∨∼∇y)∨∼∇∼(x∧

y) ≈2.5.6 (∼∇x∨∼∇y) ∨ (∼∇∼x∧∼∇∼y) ≈ (∼∇x∨∼∇y∨∼∇∼x) ∧ (∼∇x∨∼∇y∨∼∇∼y) ≈2.5.3
(∼∇x∨ (∼∇(y∧∼y) ∧∼y) ∨∼∇∼x) ∧ (∼∇y∨ (∼∇(x∧∼x) ∧∼x) ∨∼∇∼y) ≈(IS3) (∼∇(x∧∼x) ∨
(∼∇(y∧∼y)∧∼y))∧ (∼∇(y∧∼y)∨ (∼∇(x∧∼x)∧∼x)) ≈def (◦x∨(◦y∧¬y))∧ (◦y∨(◦x∧¬x)) ≈
(◦x∨◦y)∧ (◦x∨∼y)∧ (◦y∨∼x).

Theorem 3.5. Let A ∈ ℙℙ. Then the ΣIS-algebra A∇ having the same ΣDM-reduct of A and with ∇A∇

being the operation induced by ∼◦x∨x on A is an IS-algebra.
Proof. We must show that A∇ satisfies each of the characteristic equations of IS-algebras:
(IS1) ∇⊥ ≈def ∼◦⊥∨⊥ ≈ ∼◦⊥ ≈ ∼◦∼⊤ ≈(PP2) ∼◦⊤ ≈(PP3) ∼⊤ ≈ ⊥.
(IS2) By absorption and commutativity of ∨, we have x∧∇x ≈def x∧(∼◦x∨x) ≈ x.
(IS3) ∇(x∧y) ≈def ∼◦(x∧y)∨(x∧y) ≈(PP5) (∼◦x∧∼◦y)∨(∼◦x∧y)∨(∼◦y∧x)∨(x∧y) ≈ (∼◦x∨x)∧

(∼◦y∨y) ≈def ∇x∧∇y.
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(IS4) ∼∇x∧∇x ≈def ∼(∼◦x∨x) ∧ (∼◦x∨x) ≈(DM2) (◦x∧∼x) ∧ (∼◦x∨x) ≈ (◦x∧∼x∧∼◦x) ∨ (◦x∧
∼x∧x) ≈(PP4) (◦x∧∼x∧∼◦x)∨⊥ ≈ ◦x∧∼x∧∼◦x ≈ ◦x∧∼x∧∼◦x∧⊤ ≈(PP1) ◦x∧∼x∧∼◦x∧
◦◦x ≈(PP4) ⊥∧∼x ≈ ⊥.

Theorem 3.6. Given A ∈ IS and B ∈ ℙℙ, we have (A◦)∇ = A and
(

B∇
)◦ = B.

Proof. In order to prove that (A◦)∇ = A, it is enough to show that ∼(∼∇(x∧∼x)) ∨x ≈ ∇x holds in A,
that is, the operation induced by the term ((∇x)◦)∇ coincides with the interpretation of ∇. By the fact
that ∇x∨x ≈ ∇x, we have ∼(∼∇(x∧∼x))∨x ≈(DM1) ∇(x∧∼x)∨x ≈(IS3) (∇x∧∇∼x)∨x ≈ (∇x∨x)∧
(∇∼x∨x) ≈Lemma 2.5.1 (∇x∨x) ∧⊤ ≈ ∇x∨x ≈ ∇x. Similarly, for proving (

B∇
)◦ = B, it is enough to

show that ((◦x)∇)◦ induces an operation that coincides with the interpretation of ◦, which amounts to
proving that ∼(∼◦(x∧∼x)∨ (x∧∼x)) ≈ ◦x holds in B. Then, we have ∼(∼◦(x∧∼x)∨ (x∧∼x)) ≈(DM2)
◦(x∧∼x) ∧ (∼x∨ x) ≈(PP5) (◦x∨ ◦∼x) ∧ (◦x∨ x) ∧ (◦∼x∨∼x) ∧ (∼x∨ x) ≈(PP2) (◦x∨ ◦x) ∧ (◦x∨ x) ∧
(◦x∨∼x)∧ (∼x∨x) ≈ ◦x∧(∼x∨x) ≈Lemma 3.3.3 ◦x.

By inspecting the interpretation induced by the definition of ◦ in terms of ∇ given in Theorem 3.4,
one may easily check the following result.
Proposition 3.7. PPi = IS◦i , for all 2 ≤ i ≤ 6.

From the equivalence just presented and a similar result for IS-algebras [20], we may now conclude
that the variety of PP-algebras is generated by PP6:
Proposition 3.8. ℙℙ = V ({PP6}).

Proposition 3.9. For all Φ∪{ } ⊆ LΣDM(P ), Φ ⊢  iff Φ ⊢⊤PP2  .

Proof. Follows from the clear isomorphism between PP2 and B2.
Let ≤ be the order-preserving logic induced by ℙℙ. We will use the following auxiliary results

together with an analogous result for ≤ [20] to prove that ≤ is characterised by a single 6-valued
logical matrix.
Lemma 3.10. Given A ∈ IS and B ∈ ℙℙ,

1. if ℎ ∈ Hom(LΣIS(P ),A), then ℎ
(

('◦)∇
)

= ℎ(') for all ' ∈ LΣIS(P );
2. if ℎ ∈ Hom(LΣPP(P ),B), then ℎ

((

'∇
)◦) = ℎ(') for all ' ∈ LΣPP(P );

3. if ℎ ∈ Hom(LΣIS(P ),A), then the mapping ℎ◦ ∈ Hom(LΣPP(P ),A◦) such that ℎ◦(p) = ℎ(p) for all
p ∈ P satisfies ℎ◦('◦) = ℎ(') for all ' ∈ LΣIS(P );

4. if ℎ ∈ Hom(LΣPP(P ),B), then the mapping ℎ∇ ∈ Hom(LΣIS(P ),B∇) such that ℎ∇(p) = ℎ(p) for all
p ∈ P satisfies ℎ∇('∇) = ℎ(') for all ' ∈ LΣPP(P ).

Proof. Wewill first discuss the proofs of items 1 and 3, whichmay then be easily adapted, respectively, for
proving items 2 and 4. Both proofs are by structural induction on the set of formulas. Startingwith 1, when
'∈P , the result trivially holds, as propositional variables are not affected by translations. In case'=∇ ,
if ℎ(( ◦)∇) = ℎ( ), we will have ℎ(('◦)∇)) = ℎ(((∇ )◦)∇). From the argument in the proof of Theorem
3.6, we know that ((∇ )◦)∇ and∇ induce the same operation onA, thusℎ(((∇ )◦)∇) =∇(ℎ( )) =ℎ(').
The proof is analogous for the cases of ∧,∨,∼,⊤ and ⊥. Now, for item 3, the base case is again obvious,
and, in case ' = ∇ , we have ℎ◦((∇ )◦) = ℎ◦(∼◦ ◦ ∨ ◦) = ∼A◦◦A

◦ℎ◦( ◦) ∨A◦ ℎ◦( ◦), and, by the
induction hypothesis, the latter is equal to ∼A◦◦A

◦ℎ( ) ∨A◦ ℎ( ); this is the same as ℎ(∇ ) in (A◦)∇,
which coincides with A by Theorem 3.6. The proof is again analogous for ∧,∨,∼,⊤ and ⊥.
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Proposition 3.11. In what follows, let A ∈ ℙℙ. Then,

1. Φ ⊢
⟨A,D⟩  iff Φ∇ ⊢

⟨A∇,D⟩  ∇, where ⟨A,D⟩ is a ΣPP-matrix

2. Φ ⊢  iff Φ∇ ⊢∇  ∇, for = {⟨A,D⟩ ∣ A ∈ ℙℙ}
3. Φ ⊢≤

 iff Φ∇ ⊢≤
 ∇

4. Φ ⊢⊤ℙℙ  iff Φ∇⊢⊤IS 
∇

Proof. We start by proving item 1. From the left to the right, suppose that there is a valuation ℎ ∈
Hom

(

LΣIS(P ),A∇
) such that ℎ(Φ∇) ⊆ D while ℎ( ∇) ∉D. By items 2 and 3 of Lemma 3.10, there is a

valuation ℎ◦ ∈ Hom(LΣPP(P ), (A∇)◦) = Hom(LΣPP(P ),A) such that ℎ◦((Φ∇)◦) = ℎ◦(Φ) and ℎ◦((Φ∇)◦) =
ℎ(Φ∇), thus ℎ◦(Φ) = ℎ(Φ∇) ⊆ D. Similarly, we may conclude that ℎ◦( ) ∉ D, and we are done. The
other direction is similar, but using item 4 of Lemma 3.10. Item 2, above, is a clear consequence of item
1, and items 3 and 4 follow directly from items 1 and 2, respectively.

Theorem 3.12. ≤ = ⊢
⟨PP6,↑b⟩.

Proof. By Proposition 3.11 and the fact that ⊢≤
is characterised by the matrix ⟨IS6,↑ b⟩, we have

Φ ⊢
⟨PP6,↑b⟩  iff Φ∇ ⊢

⟨IS6,↑b⟩  
∇ iff Φ∇ ⊢≤

 ∇ iff Φ ⊢≤
 .

We may explore the term-equivalence just presented to prove other important facts about ≤. For
the definitions of full self-extensionality, protoalgebraizability and algebraizability that appear in the next
result, we refer the reader to [16, Definitions 5.25, 6.1 and 3.11, resp.].
Proposition 3.13. ≤ is fully self-extensional and non-protoalgebraic (hence non-algebraizable).

Proof. Follows from [20, Prop. 4.2], [16, Theorem 7.18, item 4], and the term-equivalence of IS with
ℙℙ given by Theorem 3.6.

Proposition 3.14. ⊢⊤ℙℙ = ⊢
⊤
V (PP3)

= ⊢
⟨PP3,{t̂}⟩.

Proof. It is clear that ⊢⊤ℙℙ ⊆ ⊢⊤V (PP3) ⊆ ⊢⟨PP3,{t̂}⟩. The result then follows because ⊢⊤ℙℙ = ⊢⟨PP3,{t̂}⟩, as
Φ ⊢

⟨PP3,{t̂}⟩  iff Φ∇ ⊢
⟨PP∇3 ,{t̂}⟩

 ∇ (by Proposition 3.10) iff Φ∇ ⊢
⟨IS3,{t̂}⟩  

∇ (because IS3 = PP∇3 ) iff
Φ∇ ⊢⊤IS  

∇ (by [20, Prop. 4.5]) iff Φ ⊢⊤ℙℙ  (by Proposition 3.10).

We now present a recipe for constructing a perfect paradefinite algebra by endowing a De Morgan
algebra with a perfection operator. This is of particular interest for an investigation on LFIs and LFUs
when the De Morgan algebra at hand happens not to be Boolean. We will see in the next section how to
axiomatise logics induced by PP-algebras produced through this recipe, starting from a calculus for the
logic induced by a De Morgan algebra given as input.

Definition 3.15. LetA be a ΣDM-algebra. Given f̂ , t̂ ∉A, we define the ΣPP-algebraA◦ ∶=⟨A∪{f̂ , t̂}, ⋅A◦⟩
by letting
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a∧A◦ b∶=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

a∧A b if a,b ∈ A
t̂ if a = b = t̂
f̂ if a = f̂ or b = f̂
c if {a,b} = {t̂, c} with c ∈ A

a∨A◦ b∶=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

a∨A b if a,b ∈ A
f̂ if a = b = f̂
t̂ if a = t̂ or b = t̂
c if {a,b} = {f̂ , c} with c ∈ A

∼A◦a∶=

⎧

⎪

⎨

⎪

⎩

∼Aa if a ∈ A
f̂ if a = t̂
t̂ if a = f̂

◦A
◦
a∶=

{

t̂ if a = f̂ or a = t̂
f̂ otherwise

⊥A◦ ∶= f̂ ⊤A◦ ∶= t̂

In addition, we define theΣIS-algebraA∇ ∶=⟨A∪{f̂ , t̂}, ⋅A∇⟩ interpreting the connectives inΣDM as above,
while letting ∇A∇a∶= f̂ if a = f̂ and ∇A∇a∶= t̂ otherwise (cf. [20]).
Proposition 3.16. If A is a De Morgan algebra, then A◦ is a PP-algebra.

Example 3.17. Comparing Figure 1a with Figure 1b, we see that IS6, IS5 and IS4 coincide, respectively,
with DM◦

4, K
◦
3 and B◦2.

Given a ΣDM-matrixM∶=⟨A,D⟩, letM◦ ∶=⟨A◦,D∪{t̂}⟩ be the ΣPP-matrix with the underlying (by
Proposition 3.16, perfect paradefinite) algebra A◦ given by Definition 3.15. We denote by M̂◦ the ΣDM-
reduct ofM◦. Given a class of ΣDM-matrices, we let◦ ∶={M◦ ∶M∈} and ̂◦ ∶={M̂◦ ∶M∈
}.
Lemma 3.18. Let M be a reduced model of . Then M ≅

(

M̂◦
)∗

.

Proof. Let M∶=⟨A,D⟩ be a reduced model of . We know from [20, Lemma 4.6] that M ≅
(

M̂∇
)∗,

and clearly M̂∇ and M̂◦ are isomorphic matrices under the identity mapping on A∪ {f̂ , t̂}, and so are
their reductions.
Corollary 3.19. Where M is a reduced model of , we have ⊳M = ⊳M̂◦ and ⊢M = ⊢M̂◦ .

Corollary 3.20. WhereM is a reduced model of, we have that ⊳M◦ is a conservative expansion of ⊳M
and ⊢M◦ is a conservative expansion of ⊢M.

Once ≤ is characterised by the matrix ⟨PP6,↑b⟩, which is obtained from the matrix ⟨DM4,↑b⟩ by
the construction introduced in Definition 3.15, we may then apply Corollary 3.20 and conclude that:
Corollary 3.21. ≤ is a conservative expansion of .

Reduced models of  are also reduced models of extensions of . The next result follows from
Corollary 3.19 and gives a sufficient condition to conclude that two such reduced models define the same
extension of .
Corollary 3.22. LetM1 and M2 be reduced models of . If ⊢M◦

1
= ⊢M◦

2
, then ⊢M1

= ⊢M2
.

Let ⊢ be a super-Belnap logic. Define ⊢◦ as the logic induced by the family {M◦ ∣M ∈Mat∗(⊢)}.
Lemma 3.23. Let ⊢ be a super-Belnap logic. Then ⊢◦ is a conservative expansion of ⊢.

Proof. Let Φ∪{ } ⊆ LΣDM(P ) and suppose that Φ ̸⊢  . Then, there is a reduced model M ∈Mat∗(⊢)
such that Φ⊬M  . By Corollary 3.20, we conclude that Φ⊬M◦  , thus Φ ̸⊢◦  .
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Corollary 3.24. Let ⊢1 and ⊢2 be super-Belnap logics. Then ⊢1 ⊆ ⊢2 iff ⊢◦1 ⊆ ⊢
◦
2.

Proof. From the left to the right, assuming ⊢1 ⊆ ⊢2 gives that Mat∗(⊢2) ⊆Mat∗(⊢1), so (Mat∗(⊢2))◦ ⊆
(Mat∗(⊢1))◦, which clearly entails that ⊢◦1 ⊆ ⊢◦2. Conversely, suppose that ⊢◦1 ⊆ ⊢◦2 and that Φ ⊢1  .
Hence Φ ⊢◦1  , and then Φ ⊢◦2  , which gives Φ ⊢2  by Corollary 3.23.
Corollary 3.25. The map given by ⊢↦ ⊢◦ is an embedding (that is, an injective homomorphism) of the
lattice of super-Belnap logics into the lattice of extensions of ≤. The latter lattice has (at least) the
cardinality of the continuum.

Proof. By Corollary 3.24 and [26, Theorem 4.13].
The next result shows that paradefinite extensions of, when expanded with ◦ in the way we propose,

result in logics which are C-systems and D-systems. This result applies, in particular, to the logic ≤.
Proposition 3.26. Let  be a class of reduced models of  that induces a paradefinite logic. Then the
SET-SET logic induced by◦ is a C-system and a D-system.

Proof. That paradefiniteness is preserved when passing from to◦ follows by Corollary 3.20. As it
is well-known that the positive fragments of  and coincide, by taking ◦ as the consistency connective
and∼◦ as the determinedness connective, wemay straightforwardly use the values f̂ and t̂ to build suitable
valuations for showing that the logic induced by◦ is a C-system and a D-system.
Corollary 3.27. ≤ is a C-system and a D-system.

A unary connective © constitutes a classical negation in a SET-FMLA Σ-logic ⊢ when, for all ', ∈
LΣ(P ), we have that (i): Φ,' ⊢  and Φ,©(') ⊢  imply Φ ⊢  , and (ii): ',©(') ⊢  . In case ⊢ has
a disjunction, we may equivalently replace (i) by (iii): ∅ ⊢ '∨©(') in this characterization. We next
prove that any composite unary connective fails to satisfy both (i) and (iii) in ≤. Since ≤ has a
disjunction, this entails that a classical negation is not definable in this logic.
Proposition 3.28. There is no unary formula'∈LΣPP(P ) such that p,'(p)⊢≤

q and∅ ⊢≤
p∨'(p).

Proof. Let ' ∈ LΣPP(P ) be a unary formula and suppose that p,'(p) ⊢≤
q and ∅ ⊢≤

p ∨ '(p).
Then, since ≤ is an order-preserving logic, we have, for all ℎ ∈ Hom(LΣPP(P ),PP6), that ℎ(p) ∨PP6

'PP6(ℎ(p)) = t̂ (the greatest element of PP6) and ℎ(p) ∧PP6 'PP6(ℎ(p)) = f̂ (the least element of PP6) ,
which is to say that 'PP6(a) is a Boolean complement of a, for every element a of PP6. This is absurd,
since, by the definition of ∧PP6 and ∨PP6 , only t̂ and f̂ have Boolean complements in PP6.

As argued in [23], the ability to recover negation-consistent (resp. negation-determined) reasoning is
the most fundamental feature of LFIs (resp. LFUs). This feature may be expressed in terms of a conve-
nientDerivability Adjustment Theorem (DAT) with respect to Classical Logic, which states, in the present
case, that classical reasoning may be fully recovered as long as premises restoring the lost ‘perfection’
and establishing the ‘classicality’ of a certain set of formulas are available. The result presented below is
a DAT that applies to any super-Belnap logic extended with the perfection operator ◦ considered in this
paper. As a corollary, we will, in particular, have a DAT for the logic ≤.
Theorem 3.29. Let be a class of reduced models of . Then, for all Φ,Ψ ⊆ LΣDM(P ), we have

Φ ⊳ Ψ iff Φ,◦p1,… ,◦pn ⊳◦ Ψ,

with {p1,… , pn} = props(Φ∪Ψ).
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Proof. Let  be a class of reduced models of . Notice that ⟨PP2,{t̂}⟩ is a submatrix of M◦ for all
M◦ ∈◦.

From the left to the right, contrapositively, suppose that Φ,◦p1,… ,◦pn ▸◦ Ψ. Then, there are
M◦ = ⟨A◦,D∪{t̂}⟩ ∈◦ and ℎ ∈ Hom(LΣPP(P ),A◦) such that (a) ℎ(Φ∪{◦p1,… ,◦pn}) ⊆ D∪{t̂} and
(b) ℎ(Ψ) ⊆ D ∪ {f̂}. The interpretation of ◦ given in Definition 3.15 and (a) entail that ℎ(pi) ∈ {f̂ , t̂}
for all 1 ≤ i ≤ n. As PP2 is a subalgebra of A◦, we may define an ℎ′ ∶ {p1,… , pn}→ {f̂ , t̂} by setting
ℎ′(pi) ∶= ℎ(pi); this extends to the full language and, in view of Definition 3.15, agrees with ℎ on the set
Φ∪Ψ. Thus, by (a), ℎ′(Φ) ⊆ {t̂} (as f̂ ∉D), while ℎ′(Ψ) ⊆ {f̂} by (b), meaning thatΦ▸⊤PP2Ψ. Hence, byProposition 3.9, we have Φ ▸ Ψ.

From the right to the left, again contrapositively, assume thatΦ ▸ Ψ. Thus, by Proposition 3.9, we
have Φ ▸⊤PP2

Ψ. Then there is ℎ ∈ Hom(LΣPP(P ),PP2) such that ℎ(Φ) ⊆ {t̂} and ℎ(Ψ) ⊆ {f̂}. Notice that,
if M◦ = ⟨A◦,D∪{t̂}⟩ ∈◦, then we may define ℎ′ ∶ P → A∪{f̂ , t̂} with ℎ′(p) = ℎ(p), for all p ∈ P .
As PP2 is a subalgebra of A◦, ℎ′ extends to the full language and agrees with ℎ. Moreover, as ℎ′(pi) ∈
{f̂ , t̂}, we have, by Definition 3.15, ℎ′(◦pi) = t̂, for all 1 ≤ i ≤ n. Hence ℎ′(Φ∪ {◦p1,… ,◦pn}) ⊆ {t̂},
while ℎ′(Ψ) ⊆ {f̂}. Therefore, Φ,◦p1,… ,◦pn ▸M◦ Ψ for each M◦ ∈◦, and, in particular, we obtain
Φ,◦p1,… ,◦pn ▸◦ Ψ.
Corollary 3.30. For all Φ∪{ } ⊆ LΣDM(P ), we have

Φ ⊢  iff Φ,◦p1,… ,◦pn ⊢≤
 ,

with {p1,… , pn} = props(Φ∪{ }).

Proof. Follows from the facts thatDM4 is reduced [15] and ≤ is determined by the single matrix PP6,
which coincides with DM◦

4.

4 Axiomatising Logics of De Morgan Algebras Enriched with Perfection

In the first part of this section, we provide a general recipe for producing a symmetrical Hilbert-style
calculus for the SET-SET logic determined by any class of ΣDM-matrices expanded with the perfection
operator ◦ according to the mechanism set up in the previous section. Our approach is based on adding
some rules governing ◦ to a given axiomatization of, resulting in what we call a relative axiomatization
of ◦ by the added rules with respect to the SET-SET logic induced by . In the sequel, we will
show, for a particular class of matrices, how to turn the given SET-SET relative axiomatizations into SET-
FMLA axiomatizations, using the fact proved in [27, Theorem 5.37] that a symmetrical calculus R can be
transformed into a SET-FMLA calculus provided that ⊢R has a disjunction. If R axiomatises a class of
ΣDM-matrices, a sufficient condition for the latter property to hold is that all members of  have prime
filters as sets of designated values. For this reason, our result will be focused on providing a SET-FMLA
Hilbert-style axiomatization for logics induced by classes of ΣDM-matrices whose designated values form
prime filters.

4.1 Analyticity-preserving symmetrical calculi

In what follows, if ⊳1 and ⊳2 are SET-SET logics over Σ, we set ⊳1 ≃ ⊳2 iff ⊳1 ∪{(LΣ(P ),∅)} = ⊳2 ∪
{(LΣ(P ),∅)}. It is clear that two logics satisfying this condition induce the same SET-FMLA logic.2 We

2This has been observed by R. Carnap, already in the 1940s [10]. It might seem that extending a logic this way would imply
that a semantics characterising the extended logic would have to provide ‘models for contradictory formulas’. However, such a
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will employ this weaker relation instead of the equality relation to make the results in this section more
general and simpler to prove. The first result below provides a generic recipe for axiomatising the SET-
SET logic determined by the class◦, assuming we have a calculus R that axiomatises the SET-SET logic
determined by ̂◦.
Theorem 4.1. Let be a class of ΣDM-matrices. If ⊳̂◦ ≃ ⊳R , then ⊳◦ = ⊳R∪R◦ , where R◦ consists
of the following inference rules:

◦⊥
r1 ◦⊤

r2 ◦◦p
r3

◦p
◦∼p

r4
◦∼p
◦p

r5
◦p
p,∼p

r6
◦p,p,∼p

r7

◦p
◦(p∧ q), p

r8
◦q

◦(p∧ q), q
r9

◦(p∧ q), q
◦p

r10
◦(p∧ q), p

◦q
r11

◦p,◦q
◦(p∧ q)

r12
◦(p∧ q)
◦p,◦q

r13

◦p,◦q
◦(p∨ q)

r14
◦(p∨ q)
◦p,◦q

r15
◦p,p
◦(p∨ q)

r16
◦q,q
◦(p∨ q)

r17
◦(p∨ q)
◦p,q

r18
◦(p∨ q)
◦q,p

r19

Proof. Checking the soundness of those rules is routine; we provide only a couple of examples. Let v be
anM◦-valuation. The rule r3 is sound inM◦, given that, v(◦') ∈ {f̂ , t̂}, so we have that v(◦◦') = t̂. On
what concerns rule r8, we have that, if v(◦') = t̂, then either (i) v(') = f̂ or (ii) v(') = t̂. Soundness is
obvious in case (ii). In case (i), v('∧ ) = f̂ , so v(◦('∧ )) = t̂.

For completeness, assume Φ ▸R◦
Ψ. Then, by cut for sets, there is a partition ⟨T ,F ⟩ of LΣPP(P ) such

that Φ ⊆ T and Ψ ⊆ F and T ▸R◦
F . Note that (by r3, r6 and r7) for each ', we have either ◦' ∈ T or

∼◦' ∈ T , but never both. In particular, F is never empty. Also, by r6 and r7, if we have ◦' ∈ T , we have
either ' ∈ T or ∼' ∈ T , but never both. Hence, each ' must belong to exactly one of three cases: (a)
∼◦' ∈ T , (b) ◦',' ∈ T or (c) ◦',∼' ∈ T .

Since R⊆ R∪R◦, we also have T▸RF . From the fact that ⊳R ≃ ⊳M̂ and F ≠∅we know that T▸M̂F .
We may therefore pick some M̂-valuation v, for some M ∈, such that v(T ) ⊆ D and v(F ) ∩D = ∅.
Consider now the mapping v′ ∶ LΣPP(P )→M◦ defined by:

v′(') ∶=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

v('i) if ' = '1∧'2 and ∼◦',◦'3−i ∈ T for i ∈ {1,2}
v('i) if ' = '1∨'2 and ∼◦',◦'i ∈ T for i ∈ {1,2}
v(') if ∼◦' ∈ T
t̂ if ◦',' ∈ T
f̂ if ◦',∼' ∈ T

We will check that v′ is anM◦-valuation:
1. v′(◦') = ◦v′('): If (i) ∼◦' ∈ T then, by r3, ◦◦' ∈ T (so v′(◦') = f̂ ). Thus v′(◦') = f̂ = ◦(v′(')).

If (ii) ◦',' ∈ T , then, by r3, ◦◦' ∈ T (so v′(◦') = t̂). So v′(◦') = t̂ = ◦(v′(')). Case (iii) is
analogous to (ii).

2. v′(∼') = ∼v′('): If (i) ∼◦∼' ∈ T , then, by r3 and r7, ◦∼' ∉ T . Then, by r4, ◦' ∉ T . Thus,
by r3 and r6, ∼◦' ∈ T (so v′(') = v(')). So v′(∼') = v(∼') = ∼M(v(')) = ∼(v′(')). If (ii)
◦∼',∼' ∈ T , by r5, ◦' ∈ T (so v′(') = f̂ )). Then v′(∼') = t̂ = ∼(v′(')). Case (iii) is analogous
to (ii).

model, in this case, would be trivial, for it would make all formulas equally true. As argued in [24], this is not the kind of models
that a paraconsistent logician is interested upon. This explains, by the way, why our definition of paraconsistency, presented
towards the end of Section 2, has been formulated in terms of p,∼p ▸ q rather than p,∼p ▸∅.



14 On Logics of Perfect Paradefinite Algebras

3. v′('∧ ) = v′(')∧v′( ): If (i) ∼◦('∧ ) ∈ T , then, by r3 and r7, we have that ◦('∧ ) ∉ T . By
r12, we have that (a) ◦',◦ ∉ T , (b) ◦' ∈ T and ◦ ∉ T or (c) ◦' ∉ T and ◦ ∈ T . So:
(a) By r3 and r6, ∼◦',∼◦ ∈ T (so v′(') = v(') and v′( ) = v( )). So v′('∧ ) = v('∧ ) =

v(')∧M v( ) = v′(')∧v′( ).
(b) By r3 and r6, ∼◦ ∈ T (so v′( ) = v( )). By r8, '∈ T (so v′(') = t̂). Therefore v′('∧ ) =

v( ) = v′( ) = t̂ ∧v′( ) = v′(')∧v′( ).
(c) This case is analogous to the previous one, but now using r9.

If (ii) ◦('∧ ),'∧ ∈ T , then ', ∈ T . By r10 and r11, ◦',◦ ∈ T . (so v′(') = v′( ) = t̂) hence
v′('∧ ) = t̂ = v′(') ∧v′( ). If (iii) ◦('∧ ),∼('∧ ) ∈ T , then either ∼' ∈ T or ∼ ∈ T . By
r13, we have that (a) ◦',◦ ∈ T , (b) ◦' ∈ T and ◦ ∉ T or (c) ◦' ∉ T and ◦ ∈ T . So:
(a) Here, we have that v′(') = f̂ or v′( ) = f̂ . So v′('∧ ) = f̂ = v′(')∧v′( ).
(b) By r11 and r6 ∼' ∈ T (so v′(') = f̂ ). So v′('∧ ) = f̂ = v′(')∧v′( ).
(c) This case is analogous to the previous one, using r10.

4. v′('∨ ) = v′(')∨v′( ): analogous to the case of ∧.
5. v′(⊥) = f̂ and v′(⊤) = t̂: directly from rules r1 and r2.
Given Ξ ⊆ LΣPP(P ), let Ξ◦ ∶= Ξ∪{∼p,◦p,∼◦p}. The theorem below shows that the recipe presented

above preserves analyticity.
Theorem 4.2. Let be a class of ΣDM-matrices. If R is a Ξ-analytic axiomatization of ⊳̂◦ , then R∪R◦
is a Ξ◦-analytic axiomatization of ⊳◦ .

Proof. Let Υ ∶= sub(Φ ∪Ψ) and Λ ∶= ΥΞ◦ . Assume that Φ ▸ΛR∪R◦ Ψ. Then, by cut for sets, there is
a partition ⟨T ,F ⟩ of Λ such that Φ ⊆ T and Ψ ⊆ F and T ▸ΛR∪R◦F . Since R ⊆ R ∪ R◦, we also have
T ▸ΛRF . From the fact that R axiomatises ⊳̂◦ and F ≠∅we know that T▸̂◦F . We may therefore pick
v ∈ HomΣDM(LΣPP(P ),M̂◦), for some M ∈, such that v(T ) ⊆ D and v(F ) ∩D = ∅. Since, for each
' ∈ Υ, we have ∼',◦',∼◦' ∈ Λ, we may use the same construction given in Theorem 4.1 to define a
certain mapping v′ ∶ Υ→M◦. That v′ respects all the connectives follows from the fact that in the proof
of Theorem 4.1 we only used instances of the rules employing formulas present in Λ. This, together with
the fact that Υ is closed under subformulas, implies that v′ is a partial M◦-valuation. Hence, v′ may be
extended to a totalM◦-valuation, witnessing the fact that Φ ▸◦ Ψ, thus concluding the proof.

From Theorem 3.15 and Theorem 4.2, it follows that:
Corollary 4.3. Let  ∶={p,∼p}. The calculus presented in Example 2.8 together with the rules of R◦ is
an ◦-analytic axiomatization of ≤.

As explained in [21], analytic calculi as those we have been discussing are associated to a proof-search
algorithm and an algorithm for searching for countermodels, and consequently to a decision procedure for
its corresponding SET-SET logic. Briefly, if we want to know whether Φ ⊳R Ψ, where R is a Ξ-analytic
symmetrical calculus, obtaining a proof when the answer is positive and a countermodel otherwise, we
may attempt to build a derivation in the following way: start from a single node labelled with Φ and
search for a rule instance of R not used in the same branch with formulas in the set ΥΞ whose premises
are inΦ. If there is one, expand that node by creating a child node labelled withΦ∪{'} for each formula
' in the succedent of the chosen rule instance and repeat this step for each new node. In case it fails in
finding a rule instance for applying to some node, we may conclude that no proof exists, and from each
non-Ψ-closed branch we may extract a countermodel. In case every branch eventually gets Ψ-closed, the
resulting tree is a proof of the desired statement. The next example illustrates how this works.
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∅

◦◦p

◦p ∼◦p

p ∼p

r3

r6

r6

∅

◦◦p

◦p ∼◦p

◦∼p

∼p ∼∼p

p

r3

r6

r4

r6

∅

◦◦p

◦p ∼◦p

p ∼p

◦p∧∼p

r3

r6

r6

Figure 3:
Outputs of the proof-search and of the countermodel-search algorithm induced by our analytic symme-
trical calculus, witnessing that ∅ ⊳R∪R◦ p,∼p,∼◦p; that ∅ ▸R∪R

◦

p,∼◦p and that ∅ ▸R∪R

◦

p,◦p∧∼p.

Example 4.4. The first tree in Figure 3 proves that ∅ ⊳R∪R◦ p,∼p,∼◦p in any Ξ◦-analytic calculus
R∪ R◦ obtained from Theorem 4.1, and may be easily built by the algorithm described above. If we
consider the calculus R given in Example 2.8, the second tree in the same figure shows an output of the
described algorithm when we search for a countermodel witnessing ∅ ▸R∪R

◦

p,∼◦p. In this tree, the

leftmost branch is a non-Ψ-closed branch for which no rule instance based only on subformulas ofΦ∪Ψ
and not used yet in the same branch is available. This implies that, for Θ = {◦◦p,◦p,◦∼p,∼p}, which
are the formulas in the leaf of this non-Ψ-closed branch, we have Θ▸R∪R

◦

ΥΞ◦⧵Θ. As the semantical

counterpart of this calculus is the matrix ⟨PP6,↑b⟩, a valuation v such that v(Θ) ⊆ ↑b necessarily sets
v(p) = f̂ , since {∼p,◦p} ⊆ Θ. A similar situation occurs in the third tree, which constitutes evidence
for ∅ ▸R∪R

◦

p,◦p∧∼p, meaning that the pseudo-complement given by ¬x∶=◦x∧∼x is non-implosive

and, thus, not a classical negation in ≤. (This is not surprising, in view of Proposition 3.28, but it
is worth contrasting this with what happens in many other LFIs [22], in which the latter definition of ¬
does correspond to a classical negation.)

4.2 SET-FMLA Hilbert-style calculi for logics of De Morgan algebras with prime filters

We may extend the recipe given in Theorem 4.1, which delivers a symmetrical Hilbert-style calculus, to
provide a SET-FMLAHilbert-style calculus for the class◦ when itself is axiomatised by a SET-FMLA
Hilbert-style calculus. Before showing how, we will define a collection of such conventional Hilbert-
style inference rules associated to a given collection of symmetrical rules. In what follows, when Φ =
{'1,… ,'n} ⊆ LΣ(P ) (n ≥ 1), let⋁Φ∶=(…('1∨'2)∨…)∨'n. Also, let Φ∨ ∶={'∨ ∣ ' ∈ Φ}.
Definition 4.5. Let R be a symmetrical calculus. Define the set R∨ ∶=

{

p
p∨q ,

p∨q
q∨p ,

p∨(q∨r)
(p∨q)∨r

}

∪
{

r∨ ∣ r ∈ R
}

where r∨ is ∅
'
if r = ∅

'
, Φ∨p0
(
⋁

Ψ)∨p0
if r = Φ

Ψ
, and Φ∨p0

p0
if r = Φ

∅
, where p0 is a propositional variable not

occurring in the rules that belong to R.
The next result states that, when R is the calculus given by Theorem 4.1, the calculus R∨ is the

SET-FMLA Hilbert-style calculus we are looking for.
Theorem 4.6. Let  be a class of ΣDM-matrices whose designated sets are prime filters, and let R be a
SET-FMLA Hilbert-style calculus. If ⊢R = ⊢ = ⊢̂◦ , then ⊢(R∪R◦)∨ = ⊢◦ .
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Proof. If ⊢R = ⊢̂◦ then ⊳R ≃ ⊳̂◦ , so, by Theorem 4.1, we have that ⊳◦ = ⊳R∪R◦ , and thus ⊢◦ =
⊢R∪R◦ . Given that is a class of ΣDM-matrices whose designated sets are prime filters and⊢R =⊢, we
have p ⊢R p∨q, q ⊢R p∨q and p∨q ⊢R p,q. Since ̂◦ preserves the latter inferences, then p ⊢(R∪R◦) p∨q,
q ⊢(R∪R◦) p∨q and p∨q ⊢(R∪R◦) p,q. The latter statements guarantee that ⊢R has a disjunction, so by [27,
Theorem 5.37] we have that ⊢R∪R◦ = ⊢(R∪R◦)∨ . Therefore, ⊢◦ = ⊢(R∪R◦)∨ .
Example 4.7. Consider a SET-FMLA Hilbert calculus that axiomatises ⊢. Since  = ⊢

⟨DM4,↑b⟩ =
⊢ ̂
⟨DM4,↑b⟩◦

(cf. [20]), we obtain a conventional Hilbert-style axiomatization for ≤ = ⊢
⟨DM4,↑b⟩◦ =

⊢
⟨PP6,↑b⟩ by adding to that calculus the R

∨
◦ rules. We illustrate, below, with some of the resulting rules:

◦p∨ r
(p∨∼p)∨ r

r∨6
◦p∨ r,p∨ r,∼p∨ r

r
r∨7

◦p∨ r
(◦(p∧ q)∨p)∨ r

r∨8
◦p∨ r,p∨ r
◦(p∨ q)∨ r

r∨16

In what follows we consider a few extensions of ≤, illustrating how our methods may be used to
axiomatise them. The following result, which is an immediate consequence of Theorem 4.6, shows that
Example 4.7 smoothly generalises to all super-Belnap logics.
Proposition 4.8. Let  be a class of models of  whose designated sets are prime filters. If ⊢ is
axiomatised relative to  by a set R of SET-FMLA rules, then ⊢◦ is also axiomatised by R relative
to ◦.

Let1 and2 be classes of models of , such that ⊢1
= ⊢2

. Then ⊢1
and ⊢2

are axioma-
tised by the same set R of singleton-succedent rules. Hence, ⊢◦

1
= ⊢◦

2
is axiomatised by the set R∨◦defined above. This entails, in particular, that, if a super-Belnap logic ⊢ is finitary, then ⊢◦ (described in

Lemma 3.23) is also finitary. Since the lattice of super-Belnap logics contains continuum many finitary
logics [25, Corollary 8.17], we obtain the following sharpening of Corollary 3.25:
Proposition 4.9. There are continuum many finitary extensions of ≤.

The super-Belnap logics (see [1] for further details) considered below for the sake of illustration are
the Asenjo-Priest Logic of Paradox , the two logics≤ and1 named after S. C. Kleene, and Classical
Logic . The next result establishes that each of these logics can be axiomatised, relative to , by a
combination of the rules given below.

p∧(∼p∨ q)
q

(DS)
(p∧∼p)∨ q

q
(K1)

(p∧∼p)∨ r
q∨∼q∨ r

(K≤) p∨∼p
(EM)

Proposition 4.10. ([1, Theorem 3.4])
(i)  = Log⟨K3,↑n⟩ = +(EM)
(ii) 1 = Log⟨K3,{t}⟩ = +(K1)
(iii) ≤ = Log{⟨K3,↑n⟩,⟨K3,{t}⟩} = +(K≤)
(iv)  = Log⟨B2,{t}⟩ = +(DS)+ (EM)

Theorem 4.11. For logics above ≤ we have the following relative axiomatizations:
(i) Log⟨PP5,↑n⟩ = ◦ = ≤+(EM)
(ii) Log⟨PP5,↑t⟩ =◦

1 = ≤+(1)
(iii) Log{⟨PP5,↑n⟩,⟨PP5,↑t⟩} =◦

≤ = ≤+(K≤)
(iv) Log⟨PP4,↑t⟩ = ◦ = ≤+(DS)+ (EM)

Proof. This follows directly from Proposition 4.8 and Proposition 4.10, taking into account that
⟨B2,{t}⟩◦ = ⟨PP4,↑t⟩, and for x ∈ {t,n}, we have ⟨K3,↑x⟩◦ = ⟨PP5,↑x⟩.
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5 Final remarks

We have seen how to endow with a perfection connective logics characterised by matrices having a De
Morgan algebraic reduct, offering two possible directions: either by appropriately expanding the corre-
sponding matrices or by adding new rules of inference to an existing Hilbert-style axiomatization. In
particular, by so enriching Dunn-Belnap’s 4-valued logic we obtain the 6-valued order-preserving logic
≤, associated with the variety of expanded algebras, which we called ‘perfect paradefinite algebras’
(PP-algebras) and proved to be term-equivalent with the variety of involutive Stone algebras (IS-algebras).
It is worth mentioning that the one-one correspondence between the latter varieties can be used to intro-
duce back-and-forth functors between an algebraic category associated to the variety of IS-algebras and
an algebraic category associated to the variety of PP-algebras defined in the expected way.

By providing a Derivability Adjustment Theorem for ≤ and its extensions, we have also shown
that Boolean reasoning is fully recovered using De Morgan negation and the perfection operator. Notice,
indeed, that adding the equation ◦x ≈ ⊤ to a perfect paradefinite algebra, intuitively stating the well-
behavedness of each of its elements, results, up to a “linguistic adjustment”, in a Boolean algebra.

The equational basis of the variety of PP-algebras studied here was conceived having in mind the
expected term-equivalence with the variety of IS-algebras. A natural path for future work is to drop such
constraint and study DeMorgan algebras (and associated logics) enriched with perfection operators satis-
fying weaker equations. Within such more general algebraic structures and the logics based thereon, and
taking also into account the need to compare ≤ with other C-systems and D-systems in the literature,
one might consider having two distinct negations (not necessarily respecting all De Morgan rules) instead
of just a single negation that is at once paraconsistent and paracomplete, and possibly also two recovery
connectives, as in [13, 18]. Yet another path of investigation would be to consider endowing ≤ with
an implication connective. A promising starting point for that would be to consider the normal and self-
extensional extension of Dunn-Belnap’s logic presented in [2], which, when expanded with the perfection
connective considered in this paper, would lead to an expansion of ≤ that is still self-extensional yet,
now, protoalgebraizable. Similar directions have recently been trodden in [14], but considering involutive
distributive residuated lattices instead of De Morgan algebras.
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