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Abstract. The bilateralist approach to logical consequence maintains
that judgments of different qualities should be taken into account in
determining what-follows-from-what. We argue that such an approach
may be actualized by a two-dimensional notion of entailment induced by
semantic structures that also accommodate non-deterministic and par-
tial interpretations, and propose a proof-theoretical apparatus to reason
over bilateralist judgments using symmetrical two-dimensional analytical
Hilbert-style calculi. We also provide a proof-search algorithm for finite
analytic calculi that runs in at most exponential time, in general, and
in polynomial time when only rules having at most one formula in the
succedent are present in the concerned calculus.
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1 Introduction

The conventional approach to bilateralism in logic treats denial as a primitive
judgment, on a par with assertion. One way of allowing these two kinds of judg-
ments to coexist without necessarily allowing them to interfere with one another
is by considering a two-dimensional notion of consequence, in which the validity
of logical statements obtains in terms of preservation of acceptance along one
dimension and of rejection along the other. From a semantical standpoint, as
we will show, this idea may be actualized by the canonical notion of entailment
induced by a BPN

Σ–matrix, a partial non-deterministic logical matrix in which
the latter judgments, or cognitive attitudes, are represented by separate collec-
tions of truth-values. This will, in particular, allow for distinct Tarskian (one-
dimensional, generalized) consequence relations to coinhabit the same logical
structure while keeping their interactions disciplined.

A common practice for incorporating bilateralism into a proof formalism con-
sists in attaching to the underlying formulas a force indicator or signal, say + for
assertion and – for denial [15,22]. For example, the inference –(A → B) � +A
describes a rule in the bilateral axiomatization of classical logic given in [22],
representing the impossibility of, at once, denying A → B while failing to
assert A. In [9], a concurrent approach is offered that consists in working with
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a two-dimensional notion of consequence, allowing for the cognitive attitudes of
acceptance and rejection to act over two separate logical dimensions and tak-
ing their interaction into consideration in determining the meaning of logical
connectives and of the statements involving them. The aforementioned infer-
ence, for instance, would be expressed by the two-dimensional judgment ∅

∅
| A
A→B ,

which is intended to enforce that an agent is not expected to find reasons for
rejecting A → B while failing to find reasons for accepting A. From a seman-
tical standpoint, the latter notion of consequence may be induced by a two-
dimensional logical matrix [7,9], whose associated two-dimensional canonical
entailment relation very naturally embraces bilateralism and involves two possi-
bly distinct collections of distinguished truth-values: the ‘designated’ values and
the ‘anti-designated’ values, respectively equated with acceptance and rejection.

Non-deterministic logical matrices have been extensively investigated in
recent years, and proved useful in the construction of effective semantics for
many families of logics in a systematic and modular way [5,12,12,19]. As in
[6], in the present paper the interpretations of the connectives in a matrix out-
puts (possibly empty) sets of values, instead of a single value. In our study,
we explore an essential feature of (partial) non-deterministic semantics, namely
effectiveness, to provide analytic axiomatizations for a very inclusive class of
finite monadic two-dimensional matrices. The latter consist in matrices whose
underlying linguistic resources are sufficiently expressive so as to uniquely char-
acterize each of the underlying truth-values, in a similar vein as in [10,13]. In
contrast to the multi-dimensional Gentzen-style calculi used in the literature to
axiomatize many-valued logics in the context of bilateralism (and multilateral-
ism) [16], we introduce much simpler two-dimensional symmetrical Hilbert-style
calculi to the same effect and show how they give rise to derivations that do not
conform to the received view that axiomatic proofs consist simply in ‘sequences
of formulas’. In our approach, indeed, extending to the bilateralist case the one-
dimensional tree-derivation mechanism considered in [10,20,23], the inference
rules, instead of manipulating metalinguistic objects, deal only with pairs of
accepted/rejected formulas, and derivations are trees whose nodes come labelled
with such pairs and result from expansions determined by the rules. As we
will show, the analyticity of the axiomatizations that we extract from our two-
dimensional (partial) non-deterministic matrices, using symmetrical rules that
internalize ‘case exhaustion’, allows for bounded proof search, and the design of
a simple recursive decision algorithm that runs in exponential time.

The paper is organized as follows: Sect. 2 introduces the basic concepts and
terminology involved in two-dimensional notions of consequence and in symmet-
rical analytic Hilbert-style calculi. Section 3 presents the general axiomatization
procedure for finite monadic matrices, illustrating it and highlighting its mod-
ularity via the correspondence between refining a matrix and adding rules to
a sound symmetrical two-dimensional calculus. Then, Sect. 4 describes our pro-
posed proof-search algorithm, proves its correctness and investigates its worst-
case exponential asymptotic complexity. In the final remarks, we reflect upon the
obtained results and indicate some directions for future developments. Detailed
proofs of the main results may be found at https://tinyurl.com/21-GMM-Bilat.

https://tinyurl.com/21-GMM-Bilat
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2 Preliminaries

2.1 Languages

A propositional signature Σ is a family {Σk}k∈ω, where each Σk is a collection
of k-ary connectives. Given a denumerable set P := {pi | i ∈ ω} of propositional
variables, the propositional language over Σ generated by P, LΣ(P), is the abso-
lutely free algebra over Σ freely generated by P. The elements of LΣ(P), the
carrier set of the latter algebra, are called formulas and will be indicated below
by capital Roman letters. As usual, whenever there is no risk of confusion, we will
omit braces and unions in collecting sets and formulas, and leave a blank space
in place of ∅. For convenience, given Φ ⊆ LΣ(P), the set of formulas not in Φ will
be denoted by Φc. On any given language, we may define the functions subf and
props, which output, respectively, the subformulas and the propositional vari-
ables occurring in a given formula, and define as well the function size, such that
size(p) := 1 for each p ∈ P, and size( c©(A1, . . . , Ak)) := 1 +

∑k
i=1 size(Ai), for

each k ∈ ω and c© ∈ Σk. Moreover, as usual, endomorphisms on LΣ(P) are called
substitutions, and, given a formula B ∈ LΣ(P) with props(B) ⊆ {pi1 , . . . , pik}, for
some k ∈ ω, we write B(A1, . . . , Ak) for the image of B under a substitution σ
where σ(pij) = Aj, for all 1 ≤ j ≤ k, and where σ(p) = p otherwise; for a set Φ
of one-variable formulas, we let Φ(A) := {B(A) | B ∈ Φ}.

2.2 Two-Dimensional Consequence Relations

Hereupon, we shall call B-statement any 2×2-place tuple of sets of
formulas in a given language. By definition, a collection of B-statements will be
said to constitute a B-consequence relation ·

· | ·· provided that any of the follow-
ing conditions constitutes a sufficient guarantee for the consequence judgment
Φ N
ΦY

|Φ Y

ΦN
to be established:

(O) ΦY ∩ Φ Y	= ∅ or ΦN ∩ Φ N	= ∅

(D)
Ψ N

ΨY
|Ψ

Y

ΨN
and Ψα ⊆ Φα for every α ∈ {Y,N,

Y

, N}

(C)
ΩcS
ΩS

|Ω
c
S

Ω S
for all ΦY ⊆ ΩS ⊆ Φc Yand ΦN ⊆ Ω S⊆ Φc N

(S)
Ψ N

ΨY
|Ψ

Y

ΨN
and Φα = σ(Ψα) for every α ∈ {Y,N,

Y

, N}, for a substitution σ

In the above conditions, ΦY,ΦN,Φ Y,Φ Ndenote arbitrary sets of formulas, that
may intuitively be read as representing, respectively, collections of accepted,
rejected, non-accepted and non-rejected formulas. It is not hard to check that
such definition, employing the properties of (O)verlap, (D)ilution, (C)ut and
(S)ubstitution-invariance, is equivalent to the one found in [9], and it general-
izes the well-known abstract Tarskian one-dimensional account of logical con-
sequence. In addition, a B-consequence relation will be called finitary when a
consequence judgment Φ N

ΦY
|Φ Y

ΦN
always implies that:
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(F)
ΦfN
ΦfY

|Φ
fY

ΦfN
, for some finite Φfα ⊆ Φα, for every α ∈ {Y,N,

Y

, N}

We will denote by ·
·×| ·

· the complement of ·
· | ·· , sometimes called the compatibility

relation associated to ·
· | ·· (cf. [8]). Furthermore, we should note that later on we

will sometimes write Ỹ for

Y

, write ˜Yfor Y, write Ñ for N, and write ˜Nfor N.
A B-consequence relation ·

· | ·· may be said to induce a 2-place relation · �t ·
over Pow(LΣ(P)) by setting ΦY �t Φ Yiff ∅

ΦY
|Φ Y

∅
. This is easily seen to constitute

a generalized (one-dimensional) consequence relation. Another such relation is
induced by setting ΦN �f Φ Niff

Φ N
∅

| ∅

ΦN
. Connected to that, we will say that · �t ·

inhabits the t-aspect of ·
· | ·· , and that · �f · inhabits the f-aspect of ·

· | ·· . These
are but two of many possible aspects of interest of a given B-consequence rela-
tion; in principle, very different Tarskian —and also non-Tarskian!— logics may
coinhabit the same given two-dimensional consequence relation (see [9]).

Finally, a B-consequence ·
· | ·· is said to be decidable when there is some deci-

sion procedure that takes a B-statement with finite component sets as

input, outputs true when Φ N
ΦY

|Φ Y

ΦN
is the case, and outputs false when Φ N

ΦY
×| Φ Y

ΦN
.

2.3 Two-Dimensional Non-deterministic Matrices

A partial non-deterministic B–matrix M over a signature Σ, or simply BPN
Σ–

matrix, is a structure 〈VM ,YM ,NM , ·M 〉 where the set VM is said to contain
truth-values, the sets YM ,NM ⊆ VM are said to contain, respectively, the des-
ignated and the anti-designated truth-values, and, for each k ∈ ω and c© ∈ Σk,
the mapping c©M : (VM )k → Pow(VM ) is the interpretation of c© in M. For
convenience, we define

YM := VM\YM and NM := VM\NM . A BPN
Σ–matrix is

said to be total when ∅ is not in the range of the interpretation of any con-
nective of Σ, deterministic when the range of any interpretation contains only
singletons, also called deterministic images, and fully indeterministic if it allows
for the maximum degree of non-determinism, that is, if c©M (x1, . . . ,xk) = VM

for each k ∈ ω and c© ∈ Σk, and all x1, . . . ,xk ∈ VM .
In the following definitions, M will represent an arbitrary BPN

Σ–matrix.
Given a set of truth-values X ⊆ VM , the sub–BPN

Σ–matrix MX induced by
X is the BPN

Σ–matrix 〈X,YM ∩ X,NM ∩ X, ·MX〉 such that c©MX(x1, . . . ,xk) :=
c©M (x1, . . . ,xk) ∩ X, for all x1, . . . ,xk ∈ X, k ∈ ω and c© ∈ Σk. The set of
all subsets of the values of each non-empty total sub–BPN

Σ–matrix of M will be
denoted by TM , that is,

TM :=
⋃

∅�=X⊆VM

MX total

Pow(X).

Check Example 3 for an illustration of the latter.
We shall call M-valuation any mapping v : LΣ(P) → VM such that

v( c©(A1, . . . , Ak)) ∈ c©M (v(A1), . . . , v(Ak)) for all k ∈ ω, c© ∈ Σk and



Proof Search on Bilateralist Judgments over Non-deterministic Semantics 133

A1, . . . , Ak ∈ LΣ(P). As proved in [6], given a set Φ ⊆ LΣ(P) closed under
subformulas, any mapping f : Φ → VM extends to an M-valuation provided
that f( c©(A1, . . . , Ak)) ∈ c©M (f(A1), . . . , f(Ak)), for every c©(A1, . . . , Ak) ∈ Φ,
and f(Φ) ∈ TM . Notice that if we disregard the latter condition we obtain the
property of effectiveness for total non-deterministic matrices ([2]); as this very
condition holds for all such matrices, by making it explicit in the previous defi-
nition we obtain a generalization of effectiveness that also applies to partial non-
deterministic matrices. Any formula A ∈ LΣ(P) with props(A) = {pi1 , . . . , pik}
may be interpreted on M as a k-ary mapping AM such that AM (x1, . . . ,xk) :=
{v(A) | v is an M-valuation and v(pi1) = x1, . . . , v(pik) = xk}.

The B-entailment relation induced by M is a 2×2-place relation ·
· | ·· M over

LΣ(P) such that:

(B-ent)
Φ N

ΦY
|Φ

Y

ΦN
M iff

there is no M-valuation v such that
v(Φα) ⊆ αM for every α ∈ {Y,N,

Y

, N}
for every ΦY,ΦN,Φ Y,Φ N⊆ LΣ(P). Whenever Φ N

ΦY
|Φ Y

ΦN
M, we say that the B-

statement holds in M. It is straightforward to check that (see [7]):

Proposition 1. The B-entailment relation induced by a BPN
Σ–matrix is a B-con-

sequence relation.

Example 1. Let V4 := {f ,⊥,, t}, Y4 := {, t}, N4 := {, f}, and consider a
signature ΣFDE containing but two binary connectives, ∧ and ∨, and one unary
connective, ¬. Next, define the BPN

ΣFDE–matrix I := 〈V4,Y4,N4, ·I〉 that interprets
the latter connectives according to the following (non-deterministic) truth-tables
(here and below, braces will be omitted from the images of the interpretations):

∧I f ⊥ � t

f f f f f
⊥ f f , ⊥ f f , ⊥
� f f � �
t f f , ⊥ � t, �

∨I f ⊥ � t

f f , � t, ⊥ � t
⊥ t, ⊥ t, ⊥ t t
� � t � t
t t t t t

¬I

f t
⊥ ⊥
� �
t f

The t-aspect of ·
· | ·· I is inhabited by the logic introduced in [3], which incorporates

some principles on how a processor would be expected to deal with information
about an arbitrary set of formulas.

Given two BPN
Σ–matrices M1 and M2, we say that M2 is a refinement of M1

when VM2 ⊆ VM1 and c©M2(x1, . . . ,xk) ⊆ c©M1(x1, . . . ,xk) for each k ∈ ω and
c© ∈ Σk, and for every x1, . . . ,xk ∈ VM2 . Also, we say that ·M2 agrees with ·M1

when both provide the same interpretations for the connectives of Σ. Evidently,
every BPN

Σ–matrix is a refinement of the corresponding fully indeterministic BPN
Σ–

matrix. In the examples that follow, we illustrate a couple of refinements of the
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BPN
Σ–matrix I presented in Example 1, giving rise to (two-dimensional versions

of) other well-known logics.

Example 2. Let E := 〈V4,Y4,N4, ·E〉 be the BPN
ΣFDE–matrix consisting of a refine-

ment of I with interpretations given by the following tables:

∧E f ⊥ � t

f f f f f
⊥ f ⊥ f ⊥
� f f � �
t f ⊥ � t

∨E f ⊥ � t

f f ⊥ � t
⊥ ⊥ ⊥ t t
� � t � t
t t t t t

¬E

f t
⊥ ⊥
� �
t f

One may readily see that these interpretations correspond to the ones of First
Degree Entailment and that this BPN

ΣFDE–matrix corresponds to the logic EB

presented in [7].

Example 3. We may still refine E (and thus I) a little more. Let K :=
〈V4,Y4,N4, ·K〉 be the BPN

ΣFDE–matrix such that ·K agrees with ·E except that
∧K(,⊥) = ∨K(,⊥) = ∧K(⊥,) = ∨K(⊥,) = ∅. Note that TK = {X ⊆
V4 | {,⊥} 	⊆ X}. As shown in [10], Kleene’s strong three-valued logic inhabits
the t-aspect of ·

· | ·· K.

Example 4. Let V5 := {f, F, I, T, t}, Y5 := {T, I, t}, N5 := {T, I, f}, and consider
a signature ΣmCi containing but three binary connectives, ∧, ∨ and ⊃, and two
unary connectives, ¬ and ◦. Inspired by the 5-valued non-deterministic logical
matrix presented in [1] for the logic of formal inconsistency called mCi [21], we
define the BPN

ΣmCi–matrix P := 〈V5,Y5,N5, ·P〉 with the following interpretations:

∧P(x1,x2) :=

{
{f} if either x1 	∈ Y5 or x2 	∈ Y5

{t, I} otherwise

∨P(x1,x2) :=

{
{t, I} if either x1 ∈ Y5 or x2 ∈ Y5

{f} if x1,x2 	∈ Y5

⊃P (x1,x2) :=

{
{t, I} if either x1 	∈ Y5 or x2 ∈ Y5

{f} if x1 ∈ Y5 and x2 	∈ Y5

f F I T t

¬P t,I T t,I F f

f F I T t

◦P T T F T T

We note that the logic mCi inhabits the t-aspect of ·
· | ·· P. It is worth pointing

out that, up to now, no finite Hilbert-style calculus was known to axiomatize
this logic; however, a finite two-dimensional symmetrical Hilbert-style calculus
for mCi results smoothly from the procedure described in the next section.
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Given X,Y ⊆ VM and α ∈ {Y,N}, we say that X and Y are α-separated,
denoted by X#αY, if X⊆ αM and Y⊆ VM\αM , or vice-versa. Given two truth-
values x, y ∈ VM , a single-variable formula S is a monadic separator for x and y

whenever SM (x)#αSM (y), for some α ∈ {Y,N}. The BPN
Σ–matrix M is said to

be monadic when for each pair of distinct truth-values of M there is a monadic
separator for these values.1 We say that a set of single-variable formulas Dx iso-
lates x whenever, for every y 	= x, there exists a monadic separator S ∈ Dx for x
and y. A discriminator for M, then, is a family D := {(

Dx
Y,DxY,Dx

N,Dx
N

)}
x∈VM

such that Dx :=
⋃
αD

x
α isolates x and SM (x) ⊆ αM whenever S ∈ Dx

α. We denote
the set

⋃
x∈VM Dx by D�� and say that D is based on D��.

Example 5. The tables below describe, respectively, a discriminator based on
{p} for any BPN

Σ–matrix of the form 〈V4,Y4,N4, ·〉 (see Examples 1, 2 and 3) and
a discriminator for P based on {p,¬p} (of Example 4):

x Dx
Y DxY Dx

N Dx
N

f ∅ p p ∅

⊥ ∅ p ∅ p
� p ∅ p ∅

t p ∅ ∅ p

x Dx
Y DxY Dx

N Dx
N

f ∅ p p ∅

F ∅ p ∅ p
I p, ¬p ∅ p ∅

T p ¬p p ∅

t p ∅ ∅ p

The following result —which will be instrumental, in particular, within the
soundness proof of the axiomatizations that we will develop later on— shows
that a discriminator is capable of uniquely characterizing each truth-value of
the corresponding BPN

Σ–matrix:

Lemma 1. If M is a monadic BPN
Σ–matrix and D is a discriminator for M,

then, for all A ∈ LΣ(P), x ∈ VM and M-valuation v,

v(A) = x iff v(Dx
α(A)) ⊆ αM and v(Dx

α̃(A)) ⊆ α̃M for every α ∈ {Y,N}.

Proof. Analogous to the proof of Lemma 1 in [10].

2.4 Calculi for Two-Dimensional Statements

We may consider the B-statements themselves as the formal objects whose
provability by a given (Hilbert-style) deductive proof system we will be inter-
ested upon. The B-statements with finite component sets will be hereupon
called B-sequents. A (Set2–Set2) rule schema r :=

ΦY ; ΦN

Φ Y; Φ N
is a B-statement

that, when having its component sets subjected to a substitution σ,
produce a (rule) instance (with schema r), denoted simply by rσ; for each rule

1 Whether monadicity of a BPN
Σ–matrix is decidable is still an open problem.
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instance rσ, the pair (σ(ΦY),σ(ΦN)) is said to be the antecedent and the pair
(σ(Φ Y),σ(Φ N)) is said to be the succedent of rσ. For later reference, we also set
branch(rσ) := |σ(Φ Y) ∪ σ(Φ N)| and size(rσ) :=

∑
α size(σ(Φα)), which extends

to sets of rule instances in the natural way. Notice that our notation for rule
schemas differs from that of B-statements with respect to the positioning of the
sets of formulas. The purpose is to facilitate the development of proofs in tree
form growing downwards from the premises to the conclusion as described in the
sequel. B-statements, in turn, follow the notation for consequence judgements,
which is motivated by the bilattice representation of the four logical values under-
lying a B-consequence relation [9], in addition to the desire of better expressing
the possible interactions between the two dimensions.

A ( Set2–Set2) calculus C is a collection of rule schemas. We shall sometimes
refer to the set of all rule instances of a schema r of C as an inference rule (with

schema r) of C. An inference rule with schema r :=
ΦY ; ΦN

Φ Y; Φ N
is called finitary

whenever Φα is finite for every α ∈ {Y,N,

Y

, N}. A calculus is finitary when each
of its inference rules is finitary.

In order to explain what it means for a B-statement to be
provable—in other words, for its succedent (Φ Y,Φ N) to follow from its antecedent
(ΦY,ΦN)—using the inference rules of a calculus, we will first introduce the
notion of a derivation structured in tree form. A directed rooted tree t is a poset
〈nds(t),�t〉 such that, for every node n ∈ nds(t), the set actst(n) := {n′ | n′ ≺t n}
of the ancestors of n is well-ordered under ≺t, and there is a single minimal
element rt(t), called the root of t. We denote by dctst(n) := {n′ | n ≺t n′} the
set of descendants of t, by chnt(n) the minimal elements of dctst(n) (the children
of n in t), and by lvs(t) the set of maximal elements of �t, the leaves of t. A
rooted tree t is said to be bounded when every branch of t has a leaf. Moreover,
we will call labelled a rooted tree t that comes equipped with a mapping lt :
nds(t) → Pow(LΣ(P))2 ∪ {�}, each node n of t being labelled with lt(n). A node
labelled with � is said to be discontinued. In what follows, labelled bounded
rooted trees will be referred to simply as trees. A tree with a single node labelled
with l ∈ Pow(LΣ(P))2 ∪ {�} will be denoted by sntree(l).

Given a node n labelled with (Φ,Ψ) and given a formula A, we shall use
nAS to refer to a node labelled with (Φ ∪ {A},Ψ) and use nASto refer to a node
labelled with (Φ,Ψ ∪ {A}). We say that a tree t is a C-derivation provided that
for each non-leaf node n of t labelled with (ΨY,ΨN) there is an instance of an

inference rule of C, say rσ =
σ(ΦY) ; σ(ΦN)

σ(Φ Y) ; σ(Φ N)
, that expands n or, equivalently, that

is applicable to the label of n, meaning that σ(Φα) ⊆ Ψα, for every α ∈ {Y,N},
and

– if Φ Y∪ Φ N= ∅, then chnt(n) = {n�} and lt(n�) = �
– otherwise, chnt(n) = {nAS | A ∈ σ(Φ Y)} ∪ {nAS| A ∈ σ(Φ N)}
We should observe that, with our present notation, traditional Hilbert-style
derivations (when only inference rules with a single formula in the succedent
are applied) turn out to be linear trees; for all practical purposes, at any given
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node we may count with all the information from previous nodes in the branch,
and, accordingly, a rule application with a single succedent just adds a new bit
of information to that very branch.

Given a B-statement and a calculus C, a C-derivation t with
lt(rt(t)) = (ΨY,ΨN) is a C-proof of s provided that Ψα ⊆ Φα for every α ∈ {Y,N}
and, for all n ∈ lvs(t) with lt(n) = (Ψ Y,Ψ N), we have Ψα ∩ Φα 	= ∅ for some
α ∈ { Y

, N}. We also say that a node is (Φ Y,Φ N)-closed when the latter condition
holds for such node and we say that t is (Φ Y,Φ N)-closed when all of its leaf nodes
are (Φ Y,Φ N)-closed. When a C-proof exists for the B-statement s, we say that s
is C-provable. The reader is referred to Example 10 in order to see some proofs
of the form we have just described. A calculus C induces a 2×2-place relation
·
· | ·· C over Pow(LΣ(P)) such that Φ N

ΦY
|Φ Y

ΦN
C whenever is C-provable. As

we point out in Proposition 2 below, this provides another realization (compare
with Proposition 1) of a B-consequence relation.

Proposition 2. Given a calculus C, the 2×2-place relation ·
· | ·· C is the smallest

B-consequence containing the rules of C.

Given a collection R of rule instances, we say that a B-statement s is R-
provable whenever there is a proof of s using only rule instances in R. We may

define a 2×2-place relation ·
· | ·· R by setting Φ N

ΦY
|Φ Y

ΦN
R to hold iff is R-

provable. Although not necessarily substitution-invariant, one may readily check
that this relation respects properties (O), (D) and (C).

Given a BPN
Σ–matrix M, we say that a calculus C is sound with respect to M

whenever ·
· | ·· C ⊆ ·

· | ·· M and say that it is complete with respect to M when
the converse inclusion holds. Being sound and complete means that C axioma-
tizes M.

Example 6. Any fully indeterministic BPN
Σ–matrix is axiomatized by the empty

set of rules.

Example 7. We present below a calculus that axiomatizes the BPN
Σ–matrix I intro-

duced in Example 1, resulting from the simplification of the calculus produced
via the recipe described in Definition 1, given further ahead.

p ;

p∨q ; ∨4
1

q ;

p∨q ; ∨4
2

; p,q

; p∨q ∨4
3

; p∨q
; q ∨4

4
; p∨q
; p ∨4

5

p∧q ;

p ; ∧4
1

p∧q ;

q ; ∧4
2

p,q ;

p∧q ; ∧4
3

; q

; p∧q ∧4
4

; p

; p∧q∧4
5

; ¬p
p ; ¬4

1
; p

¬p ; ¬4
2

¬p ;

; p¬4
3

p ;

; ¬p¬4
4

The next example illustrates how adding rules to an axiomatization of a
BPN
Σ–matrix M imposes refinements on M in order to guarantee soundness of

these very rules. Such mechanism is essential to the axiomatization procedure
presented in the next section.
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Example 8. We obtain an axiomatization for E by adding rules p∨q ;

p,q ; ∨4
6 and

; p∧q
; p,q ∧4

6 to the calculus of Example 7. If, in addition, we include the rule
q ; q

p ; pT4

we axiomatize K (see Example 3).
Let us explain the intuition behind this mechanism considering the case of

rule ∧4
6; the other rules will follow the same principle. What rule ∧4

6 enforces is
that any refinement of I with respect to which this rule is sound must disallow
valuations that assign values in {⊥, t} to formulas A and B while assigning
a value in {, f} to A ∧ B, for otherwise such valuation would constitute a
countermodel for that very rule. This is reflected in ∧E (Example 2) by the
absence of the values from the set {, f} in the entries corresponding to the
truth-value assignments in which both inputs belong to {⊥, t}.

Example 9. By the same mechanism used in the previous example, in adding the
rules

;

p ; p⊥E and
p ; p

; E to the axiomatization of E, we force empty outputs on
any truth-table entry whose input involves either ⊥ or . It follows that Classical
Logic inhabits the t-aspect of the resulting BPN

Σ–matrix, hereby called C.

Example 10. In Fig. 1, we offer proofs of , and

, respectively, in the calculi for E, K and C presented in the previ-
ous examples.

Fig. 1. Examples of derivations in tree form. For the sake of a cleaner presentation, we
omit the formulas that are inherited when expanding a node.

We conclude this section by introducing the notion of (generalized) analytic-
ity of a calculus, an important feature for proof-search procedures that is built
in the axiomatizations delivered by the recipe of the next section. Given a B-

statement , let S(s) :=
⋃
α∈{Y,N, Y

, N} subf(Φα) be the collection of

subformulas of s, and SΨ(s) := S(s)∪{σ(A) | A ∈ Ψ,σ : P → S(s)} be the gener-

alized subformulas of s (with respect to Ψ). Define the 2×2-place relation ·
· | ·· S

Ψ

C

over Pow(LΣ(P)) by setting Φ N
ΦY

|Φ Y

ΦN

SΨ

C
iff there is a C-proof t of
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such that lt(nds(t)) ⊆ Pow(SΨ(s))2 ∪ {�}. Such a proof is said to be Ψ-analytic.

We say that C is Ψ-analytic in case Φ N
ΦY

|Φ Y

ΦN
C implies Φ N

ΦY
|Φ Y

ΦN

SΨ

C
. We will denote

by C[s] the set of all rule instances of C resulting from substitutions that only
use formulas in SΨ(s).

3 Axiomatizing Monadic BPN
Σ-matrices

We now describe four collections of rule schemas by which any sufficiently expres-
sive BPN

Σ–matrix M is constrained. Together, these schemas constitute a presenta-
tion of a calculus that will be denoted by CD, where D is a discriminator for M.
The first collection, CD∃ , is intended to exclude all combinations of separators
that do not correspond to truth-values. The second, CDD , sets the combinations
of separators that characterize acceptance apart from those that characterize
non-acceptance, and sets the combinations of separators that characterize rejec-
tion apart from those that characterize non-rejection. The third one, CDΣ , fully
describes, through appropriate refinements, the interpretation of the connectives
of Σ in M. At last, the rules in CDT guarantee that values belong to total sub–
BPN
Σ–matrices of M.

In what follows, given X⊆ VM , we shall use
(
ḊX

Y , ḊX
N

)
to denote a pair of

sets in which ḊX
α , with α ∈ {Y,N}, is obtained by choosing an element of Dx

α for
each x ∈ X. Notice that, when X = ∅, the only possibility is the pair (∅, ∅);
moreover, when Dx

Y ∪ Dx
N = ∅ for some x ∈ X, no such pair exists. The pair(

ḊXY, ḊX
N

)
shall be used analogously.

Definition 1. Let M be a BPN
Σ–matrix, and let D be a discriminator for M. The

calculus CD is presented by way of the following rule schemas:

(CD∃ ) for each X1 ⊆ VM and each possible choices of
(
ḊX0

Y , ḊX0
N

)
and of

(
ḊX1Y, ḊX1

N

)
, with X0 := VM\X1,

Ḋ
X1Y ; Ḋ

X1
N

Ḋ
X0
Y ; Ḋ

X0
N

(CDD) for an arbitrary propositional variable p ∈ P, and for each x ∈ VM ,

Dx
Y(p), p

Y(x) ; Dx
N(p)

DxY(p), pY(x) ; Dx
N(p)

Dx
Y(p) ; Dx

N(p), p N(x)

DxY(p) ; Dx
N(p), pN(x)

where, for α ∈ {Y,N,

Y

, N}, pα : VM → Pow({p}) is such that pα(x) =
{p} iff x ∈ αM .
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(CDΣ) for each k-ary connective c©, each sequence X := (x1, . . . ,xk) of truth-
values of M, each y 	∈ c©MX, and for a sequence (p1, . . . , pk) of distinct
propositional variables,

Θ c©,X,y
Y ; Θ c©,X,y

N

Θ c©,X,yY ; Θ c©,X,y
N

where each Θ c©,X,y
α :=

⋃

1≤i≤k
D

xi
α (pi) ∪ D

y
α( c©(p1, . . . , pk)).

(CDT ) for each X 	∈ TM and an arbitrary family {px}x∈X of distinct propositional
variables,

⋃
x∈XDx

Y(px) ;
⋃

x∈XDx
N(px)

⋃
x∈XDxY(px) ;

⋃
x∈XDx

N(px)
.

Theorem 1. If D is a discriminator for a BPN
Σ–matrix M, then the calculus CD

is sound with respect to M.

Proof. We can show by contradiction that no M-valuation can be a counter-
model for the schemas in each of the groups of schemas of CD. We detail the

case of (CD∃ ). Consider a schema s :=
Ḋ
X1Y ; Ḋ

X1
N

Ḋ
X0
Y ; Ḋ

X0
N

, for some X1 ⊆ VM and some

choice of
(
ḊX0

Y , ḊX0
N

)
and

(
ḊX1Y, ḊX1

N

)
. Suppose that s does not hold in M, with

the valuation v witnessing this fact. We will prove that, given a propositional
variable p, v(p) 	= x, for all x ∈ VM , an absurd. For that purpose, let x ∈ VM .
In case x ∈ X1, there must be a separator S in Dx

α̃, for some α ∈ {Y,N}, such
that v(S(p)) ∈ αM . By Lemma 1, this implies that v(p) 	= x. The reasoning is
similar in case x ∈ X0.

In what follows, denote by SD the mapping SD
��

, which indicates what for-
mulas may appear in a D��-analytic proof. In order to prove completeness and
D��-analyticity of CD with respect to M, we shall make use of Lemma 2 presented
below, which contains four items, each one referring to a group of schemas of CD.
Intuitively, given a B-statement s and assuming that there is no D��-analytic
proof of it in CD, items 1 and 2 give us the resources to define a mapping
f : subf(s) → VM that, by items 3 and 4, can be extended to a countermodel for
s in M.

Lemma 2. For all B-statements s of the form :

1. if Ω
c
S

ΩS
×| Ω

c
S
Ω S

SD

CD∃
, then for all A ∈ subf(s) there is an x ∈ VM such that Dx

α(A) ⊆
Ωβ and Dx

α̃(A) ⊆ Ωcβ, for (α, β) ∈ {(Y,S) , (N, S)};
2. if Ω

c
S

ΩS
×| Ω

c
S
Ω S

SD

CDD
, then for every A ∈ subf(s) and x ∈ VM such that Dx

α(A) ⊆ Ωβ
and Dx

α̃(A) ⊆ Ωcβ, we have x ∈ αM iff A ∈ Ωβ, for (α, β) ∈ {(Y,S) , (N, S)};
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3. if Ω
c
S

ΩS
×| Ω

c
S
Ω S

SD

CDΣ
, then for every c© ∈ Σk, A := c©(A1, . . . , Ak) ∈ subf(s) and

x1, . . . ,xk ∈ VM with D
xi
α (Ai) ⊆ Ωβ and D

xi
α̃ (Ai) ⊆ Ωcβ, for each 1 ≤ i ≤ k

and (α, β) ∈ {(Y,S) , (N, S)}, we have that Dy
α(A) ⊆ Ωβ and D

y
α̃(A) ⊆ Ωcβ for

each (α, β) ∈ {(Y,S) , (N, S)} implies y ∈ c©M (x1, . . . ,xk);

4. if Ω
c
S

ΩS
×| Ω

c
S
Ω S

SD

CDT
, then {x ∈ VM | Dx

α(A) ⊆ Ωβ and Dx
α̃(A) ⊆ Ωcβ,

for each (α, β)∈{(Y,S) , (N, S)} and A∈subf(s)}∈TM .

Proof. The strategy to prove each item is the same: by contraposition, use the
data from the assumptions to compose an instance of a rule schema of the cor-
responding group of rule schemas. We detail below the proof for the third item.
Suppose that there is a connective c© ∈ Σk, a formula A := c©(A1, . . . , Ak) ∈
subf(s), a sequence (x1, . . . ,xk) of truth-values with D

xi
α (Ai) ⊆ Ωβ and D

xi
α̃ (Ai) ⊆

Ωcβ for each 1 ≤ i ≤ k and (α, β) ∈ {(Y,S) , (N, S)}, and some y 	∈ c©M (x1, . . . ,xk)
such that D

y
α(A) ⊆ Ωβ and D

y
α̃(A) ⊆ Ωcβ for each (α, β) ∈ {(Y,S) , (N, S)}. Then

⋃
1≤i≤kD

xi
α (Ai)∪Dy

α(A) ⊆ Ωβ∩SD(s) and
⋃

1≤i≤kD
xi
α̃ (Ai)∪Dy

α̃(A) ⊆ Ωcβ∩SD(s)

for each (α, β) ∈ {(Y,S) , (N, S)}, and thus we have Ω
c
S

ΩS
|Ω

c
S
Ω S

SD

CDΣ
.

Theorem 2. If D is a discriminator for a BPN
Σ–matrix M, then the calculus CD

is complete with respect to M. Furthermore, this calculus is D��–analytic.

Proof. Let be a B-statement and suppose that (a) Φ N
ΦY

×| Φ Y

ΦN

SD

CD
.

Our goal is to build an M-valuation witnessing Φ N
ΦY

×| Φ Y

ΦN
M. From (a), by (C),

we have that (b) there are ΦY ⊆ ΩS ⊆ Φc Yand ΦN ⊆ Ω S⊆ Φc Nsuch that
Ωc

S
ΩS

×| Ω
c
S
Ω S

SD

CD
. Consider then a mapping f : subf(s) → VM with (c) f(A) ∈ αM

iff A ∈ Ωβ, for (α, β) ∈ {(Y,S) , (N, S)}, whose existence is guaranteed by items
(1) and (2) of Lemma 2. Notice that items (3) and (4) of this same lemma
imply, respectively, that f( c©(A1, . . . , Ak)) ∈ c©M (f(A1), . . . , f(Ak)) for every
c©(A1, . . . , Ak) ∈ SD(s), and f(subf(s)) ∈ TM . Hence, f may be extended to
an M-valuation v and, from (b) and (c), we have v(Φα) ⊆ αM for each α ∈
{Y,N,

Y

, N}, so Φ N
ΦY

×| Φ Y

ΦN
M.

The calculi presented so far (Examples 7 and 8) were produced by means of
the axiomatization procedure just described, followed by some simplifications
consisting of removing instances of conditions (O) and (D), and using condition

(C) on pairs of schemas having the forms
ΦY,A ; ΦN

Φ Y ; Φ N
and

ΦY ; ΦN

Φ Y,A ; Φ N
, or the

forms
ΦY ; ΦN

Φ Y; Φ N,A
and

ΦY ; ΦN,A

Φ Y; Φ N
, yielding in either case the schema

ΦY ; ΦN

Φ Y; Φ N
.

By Theorem 2 and the fact that these simplifications preserve analyticity, it
follows that such calculi are analytic. It is also worth mentioning that this same
procedure may be applied to the matrix P in view of its monadicity (see a
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discriminator for it in Example 5), which means that we also obtain a finite
Hilbert-style symmetrical axiomatization for mCi.

4 Proof Search in Two Dimensions

Throughout this section, let be an arbitrary B-sequent, C be
a finite and finitary calculus, and Ψ be a finite set of formulas. Notice that,
whenever C is Ψ-analytic, it is enough to consider the rule instances in C[s] in
order to provide a proof of s in C. Searching for such a proof is clearly a particular
case of finding a proof of s using only candidates in a finite set R of finitary rule
instances. A proof-search algorithm for this more general setting is presented
in Algorithm 1 by means of a function called Expand. The algorithm searches
for a proof by expanding nodes that are not closed or discontinued using only
instances in R that were not used yet in the branch of the node under expansion.
As we shall see in the sequel, the order in which applicable instances are selected
does not affect the result, although for sure smarter choice heuristics may well
improve the performance of the algorithm in particular cases.

Algorithm 1: Proof search over a finite set of finitary rule instances
1 function Expand(F := (ΨY,ΨN), C := (Φ N,Φ Y), R):

Input: antecedents in F, succedents in C and a finite set R of finitary rule
instances

2 t ← sntree(F)
3 if Ψα ∩ Φα̃ �= ∅ for some α ∈ {Y,N} then return t

4 foreach rule instance rσ :=
ΘY ; ΘN

Θ Y; Θ N
∈ R do

5 if Θα̃ ∩Ψα = ∅ and Θα ⊆ Ψα for each α ∈ {Y,N} then
6 if Θ Y∪Θ N= ∅ then return t with a single child sntree(�)
7 foreach α ∈ {Y,N} and A ∈ Θα̃ do
8 t′ ←Expand((ΨY ∪ PY(A),ΨN ∪ PN(A)), C, R\{rσ}), where

Pα(A) is ∅ if A �∈ Θα and {A} otherwise
9 add rt(t′) as a child of rt(t) in t

10 if t′ is not C-closed then return t

11 if t is C-closed then return t

12 return t

The following lemma (verifiable by induction on the size of R) proves the
termination of Expand and its correctness. The subsequent result establishes
the applicability of this algorithm for proof search over Ψ-analytic calculi.

Lemma 3. Let R be a finite set of finitary rule instances. Then the proce-
dure Expand((ΦY,ΦN) , (Φ Y,Φ N) , R) always terminates, returning a tree that
is (Φ Y,Φ N)-closed iff Φ N

ΦY
|Φ Y

ΦN
R .
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Lemma 4. If C is Ψ-analytic, then Expand is a proof-search algorithm for C

and a decision procedure for ·
· | ·· C .

Proof. We know that C[s] provides enough material for a derivation of s to be
produced, since C is Ψ-analytic. Clearly, such set is finite and contains only fini-
tary rule instances, hence the present result is a direct consequence of Lemma 3.

The next results concern the complexity of Algorithm 1. In what follows,
let R be a finite set of finitary rule instances, b := maxrσ∈R branch(rσ), s :=
size({s} ∪ R) and n := |R|. We shall use p(m) to refer to “a polynomial in m”.

Lemma 5. The worst-case running time of Expand((ΦY,ΦN) , (Φ Y,Φ N) , R) is
O(bn + n · p(s)).

Proof. Let T(n, s) be the worst-case running-time of Expand. Note that it
occurs under three conditions: first, Φ N

ΦY
|Φ Y

ΦN
R ; second, the set R needs to be

entirely inspected until an applicable rule instance is found; and third, such an
instance does not have an empty set of succedents. Notice that T(0, s) = c1+p(s)
and, based on the assignments above and after some algebraic manipulations, we
have, for n ≥ 1, T(n, s) ≤ b ·T(n–1, s+p(s))+2n ·p(s). It is then straightforward
to check by induction on n that T(n, s) ∈ O(bn + n · p(s)).

Theorem 3. If C is Ψ-analytic, Expand is a proof-search algorithm for C that
runs in exponential time in general, and in polynomial time if C contains only
rules with at most one formula in the succedent.

Proof. Clearly, the set of all instances of rules of C using only formulas in SΨ(s)
is finite and contains only finitary rule instances, and its size is polynomial in
size(s). The announced result then follows directly from Lemma 5.

The previous result makes the axiomatization procedure presented in Sect. 3
even more attractive, since it delivers a D��–analytic calculus for M, where D��

is a finite set of formulas acting as separators. It follows then that Expand is a
proof-search algorithm for such axiomatization running in at most exponential
time. More than that, Expand outputs a tree with at least one open branch
when the B-sequent s of interest is not provable. From such branch, one may
obtain a partition of SD(s) and, by Proposition 2, define a mapping on subf(s)
that extends to an M-valuation. It follows that the discussed algorithm may
easily be adapted so as to deliver a countermodel when s is unprovable. For
experimenting with the axiomatization procedure and searching for proofs over
the generated calculus, one can make use of the implementation that may be
found at https://github.com/greati/logicantsy. We should also emphasize that,
by Theorem 3 and the axiomatization procedure given in Sect. 3, we have:

Corollary 1. Any finite monadic BPN
Σ–matrix M whose induced axiomatization

contains only rules with at most one succedent is decidable in polynomial time.

https://github.com/greati/logicantsy
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By the above result, then, the B-entailment relation ·
· | ·· I (from Example 1) is

decidable in polynomial time. Consequently, the same also holds for its t-aspect,
which is inhabited by the 4-valued logic introduced in [3].

In addition, it is worth stressing that, although no better in the limiting cases,
the axiomatization provided in Sect. 3 together with the algorithm presented
in this section translate the problem of deciding a B-entailment relation into
a purely symbolic procedure that may perform better than searching for M-
valuations in some cases.

We close with another complexity result concerning the decidability of ·
· | ·· C ,

complementing the one given by the discussed algorithm; it follows by an argu-
ment similar to the one presented for the one-dimensional case in [18].

Theorem 4. If C is Ψ-analytic, then the problem of deciding ·
· | ·· C is in coNP.

5 Conclusion

In this paper, we approached bilateralism by exploring a two-dimensional notion
of consequence, considering the cognitive attitudes of acceptance and rejec-
tion instead of the conventional speech acts of assertion and of denial. Our
intervention has been two-fold: on the semantical front we have employed two-
dimensional (partial) non-deterministic logical matrices, and on proof-theoretical
grounds we have employed two-dimensional symmetrical proof formalisms which
generalize traditional Hilbert-style calculi and their associated unilinear notion
of derivation. As a result, and generalizing [10], we have provided an axiomati-
zation procedure that delivers analytic calculi for a very expressive class of finite
monadic matrices. On what concerns proof development, in spite of well-known
evidence about the p-equivalence between Hilbert-style calculi and Gentzen-style
calculi ([14]), die-hard popular belief concerning their ‘deep inequivalence’ seems
hard to wash away. To counter that belief with facts, we developed for our calculi
a general proof-search algorithm that was secured to run in exponential time.

We highlight that our two-dimensional proof-formalism differs in important
respects from the many-placed sequent calculi used in [4] to axiomatize (one-
dimensional total) non-deterministic matrices (requiring no sufficient expressive-
ness) and in [16] for approaching multilateralism. First, a many-placed sequent
calculus is not Hilbert-style: rules manipulate complex objects whose structures
involve contexts and considerably deviate from the shape of the consequence
relation being captured; our calculi, on the other hand, are contained in their
corresponding B-consequences. Second, when axiomatizing a matrix, the struc-
ture of many-placed sequents grows according to the number of values (n places
for n truth-values); our rule schemas, in turn, remain with four places, and reflect
the complexity of the underlying semantics in the complexity of the formulas
being manipulated. Moreover, the study of many-placed sequents currently con-
templates only one-dimensional consequence relations; extending them to the
two-dimensional case is a line of research worth exploring.

As further future work, we envisage generalizing the two-dimensional notion
of consequence relation by allowing logics over different languages ([17]) —for
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instance, conflating different logics or different fragments of some given logic
of interest— to coinhabit the same logical structure, each one along its own
dimension, while controlling their interaction at the object-language level, taking
advantage of the framework and the results in [18]. This opens the doors for a line
of investigation on whether or to what extent the individual characteristics of
these ingredient logics, such as their decidability status, may be preserved. With
respect to our proof search algorithm, an important research path to be explored
would involve the design of heuristics for smarter choices of rule instances used
to expand nodes during the search, as this may improve the performance of
the algorithm on certain classes of logics. At last, we also expect to extend the
present research so as to cover multidimensional notions of consequence, in order
to provide increasingly general technical and philosophical grounds for the study
of logical pluralism.
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