
UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE

DEPARTAMENTO DE INFORMÁTICA E MATEMÁTICA APLICADA (DIMAP)
PROGRAMA DE PÓS-GRADUAĆÃO EM SISTEMAS E COMPUTAĆÃO

Proof of laws from the operational semantics of
Circus

Samuel Lincoln Magalhães Barrocas

Orientador: Prof. Dr. Marcel Vinícius Medeiros Oliveira

Technical Report

Natal, RN, July 2017

Contents

Contents i

A Circus Denotational Semantics 1

B Proofs of rules of the Operational Semantics of Circus 3
B.1 Proving the Soundness of a rule . 3
B.2 Auxiliary Definitions, Lemmas, Theorems and Laws 10

B.2.1 Auxiliary Definitions . 10
B.2.2 Auxiliary Lemmas . 20
B.2.3 Auxiliary Theorems . 33
B.2.4 Auxiliary Laws . 46

Refinement Laws . 46
Cavalcanti and Woodcock’s Laws 50
Other Laws . 53

B.3 Proof of Soundness for rules . 57
B.3.1 Assignment . 57
B.3.2 Prefixing* . 58
B.3.3 Variable Block . 60
B.3.4 Sequence . 63
B.3.5 Internal Choice* . 66
B.3.6 Guard . 67
B.3.7 External Choice* . 68
B.3.8 Parallelism* . 73
B.3.9 Hiding . 81
B.3.10 Recursion . 85
B.3.11 Call . 85
B.3.12 Iterated Actions . 85
B.3.13 If-Guarded Command . 87
B.3.14 Z Schema . 88

i

B.3.15 Specification Statements . 89
B.3.16 Basic Process . 94
B.3.17 Compound Process . 97
B.3.18 Hide Process . 102
B.3.19 Rename Process . 104
B.3.20 Call Process . 106
B.3.21 Iterated Process . 107

Bibliography 108

Appendix A

Circus Denotational Semantics

On this annex, we will show some used Denotational Semantics laws of Circus. All
these laws were extracted from [6].

Definition A.1. *Variable Block Denotational Definition:
var x : T • A = ∃ x, x’ : T . A

Proof The law was created on document [6].. 2

Definition A.2. *Prefixing Denotational Definition
l→ Skip = R (true ` doC (l, C) ∧ vars’ = vars)

Where

• l is a communication
• doC is defined on B.32
• v is the set of variables of the state space (not including either ok, wait, ref or tr)

The definition was created on [6].

Definition A.3. *Skip Denotational Definition:
Skip = R(true ` tr’ = tr ∧ ¬ wait’ ∧ v’ = v)

The definition was created on [6].

Definition A.4. *Assignment Denotational Definition:
x := e = R (true ` x’ = e ∧ u’ = u ∧ ¬ wait’)

Where u = v - {x}. The definition was created on [6].

APPENDIX A. CIRCUS DENOTATIONAL SEMANTICS 2

Definition A.5. *If-Guarded Command Denotational Definition:
if [] i • gi→ Ai fi = R ((

∨
i • gi) ∧ (

∧
i • gi⇒¬ Ai

f
f) `

∨
i • (gi ∧ Ai

t
f))

The definition lies on [6].

Definition A.6. *Specification Statement Denotational Definition:
w : [pre, post] = R(pre ` post ∧ ¬ wait′ ∧ tr′ = tr ∧ u′ = u)

The definition lies on [6].

Appendix B

Proofs of rules of the Operational
Semantics of Circus

On this appendix we will show the proofs of Soundness of the rules of the Operational
Semantics of Circus we developed for this thesis. The rules were proved sound with
respect to the Denotational Semantics of Circus, that is the theory of Circus in the Unifying
Theories of Programming.

Each proof can be of a lemma, a theorem, a law or a rule from the Operational Seman-
tics of Circus. Each proof has a sequence of sub-goals, that are intermediate expressions
that compose the proof, and tactics, that transform a sub-goal on another sub-goal. The
format of each proof is shown as follows:

Sub-goal 1
Op [Tactic]
...
Op [Tactic]
Sub-goal n

Each tactic is highlighted in bold, and each operator Op can be either ”=”, ”⇒” or
”v”. When the tactic uses either a theorem, a lemma, a rule or a definition, it will indicate
what theorem, lemma, rule or definition it is and having an hyperlink to it.

B.1 Proving the Soundness of a rule

To prove that a rule of the Operational Semantics of Circus is sound with respect to
the Denotational Semantics of Circus (the theory of Circus on the Unifying Theories of
Programming) means that the transition from the rule is a predicate that is true. We will

B.1. PROVING THE SOUNDNESS OF A RULE 4

exemplify a proof of Soundness for the rule of the Guard construct. The rule for Guard
construct was created by [3] and proved correct on this PhD thesis (see table B.1). The
rule is shown as follows:

c (s ; g)
(c | s |= g & A) τ−→ (c ∧ (s ; g) | s |= A)

Thus, what we want is to show that the silent transition

(c | s |= g & A) τ−→ (c ∧ (s ; g) | s |= A)

is a predicate that is true. The factors that above the line, c and s; g, are provisos of
the proof: a proviso is an expression that is assumed true for the proof. So, the rule
assumes that c is true and that s; g is true.

Before proving the expression above, we will create a theorem and prove it: it is called
Refinement Equal Sides:

Theorem - Refinement Equal Sides:

EXPR v EXPR

Proof:

EXPR v EXPR

(The expression we want to prove is the one above. A refinement expression

E1 v E2 equals [E2 ⇒ E1], where the brackets mean universal quantification on the

free-variables of the expression:)

= [EXPR⇒ EXPR]

(Now we apply a Predicate Calculus: an implication expression consists on a disjunction

(”or” operator) between the negation of the left side and the right side:)

= [¬ EXPR ∨ EXPR]
= [true]
= true

B.1. PROVING THE SOUNDNESS OF A RULE 5

We start our proof with the first sub-goal, which is the expression itself:

Proof:

(c | s |= g & A) τ−→ (c ∧ (s ; g) | s |= A)

(As we saw from the definitions of Silent and Labelled Transition (see ?? and ??), a

transition on the Operational Semantics is, in fact, a predicate expression on the UTP. So,

the first tactic that we will apply on the proof is to transform the operational representation

of the transition into its denotational predicate expression, resulting on the predicate shown

below)

= ∀ w . (c ∧ c ∧ (s ; g))⇒ ((Lift (s) ; g & A) v (Lift (s) ; A))

(Our second tactic deals with the presence of variable w being universally quantified.

When we prove that a given predicate is true, we prove that it is true for all possible values

of its variables. So, during a proof, the whole expression is quantified, including w. So we

can abstract the occurrence of w:)

= (c ∧ c ∧ (s ; g))⇒ ((Lift (s) ; g & A) v (Lift (s) ; A))

(We have, as an assumption, that c is true. So, our tactic now is to replace all occurrences

of c by true)

= (true ∧ true ∧ (s ; g))⇒ ((Lift (s) ; g & A) v (Lift (s) ; A))

(Our tactic now is to apply a predicate calculus such that true ∧ P equals P)

= (true ∧ (s ; g))⇒ ((Lift (s) ; g & A) v (Lift (s) ; A))

(We apply, again, the same tactic: true ∧ P equals P)

= ((s ; g))⇒ ((Lift (s) ; g & A) v (Lift (s) ; A))

(We now divide the proof in two parts: one in which we prove the above expression

is true for g being true, and the other in which we prove that the above expression is true
for g being false. If we prove that, for both cases, the above expression is true, then it is

true for any value of g)

Part 1 - for g = true:

B.1. PROVING THE SOUNDNESS OF A RULE 6

(s ; g)⇒ ((Lift (s) ; g & A) v (Lift (s) ; A)))

(We simply replace g by true)

= (s ; true)⇒ ((Lift (s) ; true & A v (Lift (s) ; A))

(This tactic now transforms expression true & A into A using a theorem called True

Guard, that says that g & A = A. This theorem lies on [6])

= (s ; true)⇒ ((Lift (s) ; A) v (Lift (s) ; A)

= (s ; true)⇒ ((Lift (s) ; A) v (Lift (s) ; A))

(Now we apply the theorem we have proved correct: Refinement Equal Sides)

= (s ; true)⇒ true

(We apply now Predicate Calculus: when the consequent of an implication is true, then the

whole expression is true:)

= true

Part 2 - for g = false:

(s ; g)⇒ ((Lift (s) ; g & A) v (Lift (s) ; A)))

(We simply replace g by false)

= (s ; false)⇒ ((Lift (s) ; false & A) v (Lift (s) ; A))

(We remove w from the expression using a similar strategy from Part 1:)

= (s ; false)⇒ ((Lift (s) ; false & A) v (Lift (s) ; A))

(There is a theorem, on [4], that says that s; false equals false. So we make the re-

placement:)

= false⇒ ((Lift (s) ; false & A) v (Lift (s) ; A))

(By Predicate Calculus, if we have false on the antecedent of an implication, then the

whole expression is true)

= true

B.1. PROVING THE SOUNDNESS OF A RULE 7

The proof for rule of Guard is shown at 11.
Beyond the proofs of soundness that we have made for the rules of Circus (some of

which created by ourselves), we also encompass, on this document, previous results on the
soundness of the Operational Semantics of Woodcock’s Operational Semantics. We will
show a summary of rules.

B.1. PROVING THE SOUNDNESS OF A RULE 8

Rule (CML/Circus Actions) Created by Proved by

Assignment (Woodcock et al 2013) (Woodcock et al 2013)

Input (Prefixing) (Woodcock et al 2013) (Woodcock et al 2013)

Output (Prefixing) (Woodcock et al 2013) (Woodcock et al 2013)

Variable Block Begin (Woodcock et al 2013) Samuel Barrocas

Variable Block Visible (Woodcock et al 2013) Samuel Barrocas

Variable Block End (Woodcock et al 2013) Samuel Barrocas

Sequence Progress (Woodcock et al 2013) Samuel Barrocas

Sequence End (Woodcock et al 2013) Samuel Barrocas

Internal Choice Left (Woodcock et al 2013) (Woodcock et al 2013)

Internal Choice Right (Woodcock et al 2013) (Woodcock et al 2013)

Guard (Woodcock et al 2013) Samuel Barrocas

External Choice Begin (Woodcock et al 2013) (Woodcock et al 2013)

External Choice End (Woodcock et al 2013) (Woodcock et al 2013)

External Choice Skip (Woodcock et al 2013) (Woodcock et al 2013)

Ext. Choice Silent Left (Woodcock et al 2013) Samuel Barrocas

Ext. Choice Silent Right (Woodcock et al 2013) Samuel Barrocas

Parallel Begin (Woodcock et al 2013) (Woodcock et al 2013)
1Parallel Ind. Left (PIL) (Woodcock et al 2013) Samuel Barrocas

2Parallel Indep. Right (Woodcock et al 2013) Samuel Barrocas

Parallel Synchronised (Woodcock et al 2013) Samuel Barrocas

Parallel End (Woodcock et al 2013) (Woodcock et al 2013)

Hiding Internal (Woodcock et al 2013) Samuel Barrocas

Hiding Visible (Woodcock et al 2013) Samuel Barrocas

Hiding Skip Samuel Barrocas Samuel Barrocas

Recursion (Woodcock et al 2013) Samuel Barrocas

If-Guarded-Command Samuel Barrocas Samuel Barrocas

Call Action No Params Samuel Barrocas Samuel Barrocas

Call Action W/Params Samuel Barrocas Samuel Barrocas

Rename Action Samuel Barrocas Samuel Barrocas

Alphabetised Par. Act. Samuel Barrocas Not proved (future work)

Parameter Action Call Samuel Barrocas Samuel Barrocas

Iterated Actions Samuel Barrocas Samuel Barrocas

Parameter Action Samuel Barrocas Samuel Barrocas

Specification Statement Samuel Barrocas Samuel Barrocas

Schema Action Samuel Barrocas3 Samuel Barrocas

B.1. PROVING THE SOUNDNESS OF A RULE 9

Circus process Created by Proved by

Basic Process Begin Samuel Barrocas4 Samuel Barrocas

Basic Process Reduction Samuel Barrocas Samuel Barrocas

Hiding Advance Samuel Barrocas Samuel Barrocas

Hiding Basic Process Samuel Barrocas Samuel Barrocas

Rename Advance Samuel Barrocas Samuel Barrocas

Rename Basic Process Samuel Barrocas Samuel Barrocas

Compound Process Left Samuel Barrocas Samuel Barrocas

Compound Process Right Samuel Barrocas Samuel Barrocas

Call process with normal parameters Samuel Barrocas Samuel Barrocas

Call process with indexed parameters Samuel Barrocas Samuel Barrocas

Call process with generic parameters Samuel Barrocas Samuel Barrocas

Iterated Processes Samuel Barrocas Samuel Barrocas

1 and 2: in the case of Parallel Independent Left and Parallel Independent Right,
(Woodcock et al 2013) created a section to prove the soundness of these rules, but did not
prove it; 3: this rule was adapted from [1] and proved correct on this PhD thesis;

B.2. AUXILIARY DEFINITIONS, LEMMAS, THEOREMS AND LAWS 10

B.2 Auxiliary Definitions, Lemmas, Theorems and Laws

This appendix shows all definitions, lemmas, theorems and laws used on (or created
by) this document. Those marked with a * consist on definitions that were created or
quoted by other authors (quoted after each definition). Those without * were created on
this document. We will begin showing Auxiliary Definitions.

B.2.1 Auxiliary Definitions

Definition B.1. getAssignments is an auxiliary function (created for this document) that
calculates the sequence of assignments of a node whose program text is a process.
When the parameter of getAssignments is a Circus action Act, it returns the assignments s

of the node whose program text is Act:

(c1 | s1 |= A1) a−→ (c2 | s2 |= A2)
getAssignments (A1) = s1 ∧ getAssignments (A2) = s2

For Example:

(true | { } |= a→ STOP) a−→ (true | { } |= STOP)
getAssignments (a→ STOP) = { }

When the parameter is a Circus process, getAssignments has the following definition:

• getAssignments (begin state ST = [decl | inv] • Act end) = getAssignments (Act)
• getAssignments (Call) = getAssignments (Content(Call))
• getAssignments (P1 bop P2) = getAssignments (P1) ∧ getAssignments (P2), where

bop is a binary operator (either an external choice, internal choice, interleaving,
parallelism and etc)
• getAssignments (P \ CS) = getAssignments (P)
• getAssignments (P [RenamingPairs]) = getAssignments (P)
• getAssignments (ITOP Decl • P) = getAssignments (IteratedExpansion (P, Decl,

ITOP))
• getAssignments (P [N+]) = getAssignments (GenericContent (P, [N+]))

B.2. AUXILIARY DEFINITIONS, LEMMAS, THEOREMS AND LAWS 11

Definition B.2. *pre is an unary function that calculates the precondition of a given Z
Schema. This calculation is performed by guaranteeing that there is a future state and by
hiding the output variables of the schema (those that have a ”!” after their names on the
definition of the schema):

pre Schema = ∃State’ . Schema \ Outputs

This definition lies on [9].

Definition B.3. IteratedExpansion is a function that unfolds an iterated operator applied
to an action or to a process. It has three parameters: the first parameter is the process itself,
the second is the declaration of the variables used to iterate the process (or the action), and
the third is a flag indicating what is the operator applied to the iteration. The type of the
iterating variables must be finite, or infinite with range previously specified. For Example:

IteratedExpansion (a.x→ Skip, x : {0, 1, 2, 3}, EXTCHOICE) =
a.0→ Skip 2 a.1→ Skip 2 a.2→ Skip 2 a.3→ Skip

Definition B.4. Body is a function that unfolds the body of a call action. For Example:

processP =̂ begin
A =̂ a → Skip

• A

end

Body (A) = a→ Skip.

Body can also be used for processes. For Example:

Body (P) =

begin
A =̂ a →Skip
• A

end

B.2. AUXILIARY DEFINITIONS, LEMMAS, THEOREMS AND LAWS 12

Definition B.5. IndexedContent works as Body, but is applied to processes with indexed
parameters.
process P =̂ begin • request?x→ response!x→ Skip end
process Q =̂ x : {0, 1} � P
IndexedContent (Q, [0]) = Q b 0 c
= begin • request 0.0?x→ response 0.0!0→ Skip end

Definition B.6. ParamContent works as Body, but is applied to processes with normal
parameters. For Example:

processP =̂ x : N; y : N • begin
• a.x.y → Skip

end

ParamContent (P, [1, 2]) = begin • a.1.2→ Skip end

Definition B.7. GenericContent works as Content, but is applied to processes with
generic parameters. GenericContent (P, [N+]) takes process P and a list of generic types
[N+] as parameters. For Example:

channel [C] singleevent : C
process P [T] =̂ begin • singleevent [T]?x→ Skip end
process Inst =̂ P [N]

On the specification above,

GenericContent (P, [N]) =
begin • singleevent [N]?x→ Skip end

B.2. AUXILIARY DEFINITIONS, LEMMAS, THEOREMS AND LAWS 13

Definition B.8. A = Body (A), provided that A is a call.

Definition B.8 says that any call action A equals its body. Given:

processP =̂ begin
A =̂ a → Skip

• A

end

The call action A equals a→ Skip, which is Body (A) (def. B.4). Thus, A = Body (A).

Definition B.9. A (N+) = ParamContent (A, [N+]), provided that A is a parameterised
call.

Definition B.9 says that any parameterised call action A equals its body having the
parameters replaced by their call expressions. Given:

processP =̂ begin
A =̂ x : N • a.x → Skip

• A(0)
end

The call action A (0) equals a.0→ Skip, which is ParamContent (A, [0]) (def. B.6). Thus,
A (0) = ParamContent (A, [0]).

Definition B.10. A b N+ c = IndexedContent (A, [N+]), provided that A is an indexed call.
Given:

processP =̂ begin
A =̂ x : N • a.x → Skip

• Ab0c
end

The indexed call action A b 0 c equals a 0.0→ Skip, which is IndexedContent (A, [0])
(def. B.5). Thus, A b 0 c = IndexedContent (A, [0]).

B.2. AUXILIARY DEFINITIONS, LEMMAS, THEOREMS AND LAWS 14

Definition B.11. P [N+] = GenericContent (P, [N+]), provided that P is a call. Given the
example on B.7,

P [N] = begin • singleevent [N]?x→ Skip end,

which is GenericContent (P, [N]). Thus, P [N] equals GenericContent (P, [N]).

Definition B.12. *UsedC is a function that gets a Circus action as parameter and returns a
set of channels that are used within that action. For Example:
UsedC (µ X • (turnOn→ X) u (turnOff→ X)) = {turnOn, turnOff}

This definition was created on [6].

Definition B.13. *initials is a function that gets a Circus action as parameter and returns
a set of events that are initially offered by the action. For Example:
initials (turnOn→ Skip) = {turnOn}
initials (turnOn→ Skip 2 turnOff→ Skip) = {turnOn, turnOff}

This definition was created on [6].

Definition B.14. *Refinement Definition:
P v Q = [Q⇒ P] = ∀ v : FREEV . Q⇒ P

On the expression above, the FREEV set represents the set of free (non-quantified) vari-
ables on the expression between brackets. The brackets mean universal quantification on
the free-variables.

The definition above lies on [4, 6]

Definition B.15. *Reactive Skip
IIrea = (¬ ok ∧ tr ≤ tr’) ∨ (ok’ ∧ tr’ = tr ∧ wait’ = wait ∧ ref’ = ref ∧ v’ = v)

This definition was quoted from [6].

B.2. AUXILIARY DEFINITIONS, LEMMAS, THEOREMS AND LAWS 15

Definition B.16. *State Assignment
A Configuration State assignment is defined on [3] as a total function that maps the

programming variables in the alphabet to (possibly loose) constants. That leads us to the
formula

(x := c) = (x’ = c ∧ v’ = v),

where c is a (possibly loose) constant (the value of c is determined as an expression
that appears on the constraint of the configuration). The v’ = v factor (v is the set of all
non-used variables by the assignment) comes from the fact that the function is total, and
all the variables on the state space that were not used by the assignment (including the
observational variables ok, tr, wait and ref) must have their values mapped to their current
values. A consequence of this description is that another possible definition is

(x := c) = x’ = c ∧ wait’ = wait ∧ ok’ = ok ∧ tr’ = tr ∧ ref’ = ref ∧ nalocalvars’ =
nalocalvars,

Where nalocalvars is the set of all program (non-observational) variables (except x, because
x lies on the assignment) of the state space. We can generalise the definition above for any
assignment s using a factor f such that, for example, if

s = (x, y := 0, 1)

then f = f (α, α′) = (x’ = 0 ∧ y’ = 1).

So, for any Configuration State Assignment s,

s = s (α, α′) = f ∧ wait’ = wait ∧ ok’ = ok ∧ tr’ = tr ∧ ref’ = ref ∧ nalocalvars’ =
nalocalvars.

Definition B.17. *Reactive Design Assignment
v :=RD e = Lift (v := e) ; Skip

This definition was created on [3].

B.2. AUXILIARY DEFINITIONS, LEMMAS, THEOREMS AND LAWS 16

Definition B.18. *Conditional
P C b B Q = (b ∧ P) ∨ (¬ b ∧ Q)

This definition was quoted from document [8].

Definition B.19. *R1
R1 (P) = P ∧ tr ≤ tr’

This definition lies on documents [3, 6].

Definition B.20. *R2
R2 (P (tr, tr’)) = P (〈〉, tr’ - tr) = P [〈〉, (tr’ - tr) / tr , tr’]

This definition lies on document [6]..

Definition B.21. *R3
R3 (P) = IIrea C wait B P

This definition lies on documents [3, 6]. The Conditional operator is defined on B.18
and IIrea (Reactive Skip) is defined on B.15.

Definition B.22. *R
R (P) = R1 ◦ R2 ◦ R3 (P)

This definition lies on document [6]..

Definition B.23. *Design
P ` Q = (P ∧ ok)⇒ (Q ∧ ok’)

This definition lies on document [6, 8].

Definition B.24. *Lift
Lift (s) = R1 ◦ R3 (true ` s ∧ tr’ = tr ∧ ¬ wait’)

This definition is original from the document [3]. All definitions, lemmas, theorems,
laws and rules from CML can be used for Circus [5].

B.2. AUXILIARY DEFINITIONS, LEMMAS, THEOREMS AND LAWS 17

Definition B.25. *Silent Transition:
(c1 | s1 |= A1) τ−→ (c2 | s2 |= A2)
=
∀ w . c1 ∧ c2⇒ Lift (s1) ; A1 v Lift (s2) ; A2

This definition is original from the document [3]. All definitions, lemmas, theorems,
laws and rules from CML can be used for Circus [5].

Definition B.26. *Labelled Transition:
(c1 | s1 |= A1) l−→ (c2 | s2 |= A2)
=
∀ w . c1 ∧ c2⇒ Lift (s1) ; A1 v (Lift (s2) ; l→ A2) 2 (Lift (s1) ; A1)
This definition is original from the document [3]. All definitions, lemmas, theorems, laws
and rules from CML can be used for Circus [5].

Definition B.27. Syntactic Transition (for processes):
(c1 |= P1) (c2 |= P2)
=
∀ w . c1 ∧ c2⇒(

(Lift (getAssignments(P1)) ; P1 v Lift (getAssignments(P2)); P2)

∧ Lift (getAssignments(P1)) = Lift (getAssignments(P2))

)

(c1 |= P1) (c2 | s |= BasicProc)
=
∀ w . c1 ∧ c2⇒(

((Lift(getAssignments(P1)); P1 v Lift(s); BasicProc))

∧ Lift(getAssignments(P1)) = Lift(s)

)

The definition of the getAssignments function is on B.1.

The definition of Syntactic Transition B.27 was created on this document.

Definitions B.25, B.26 and B.27 define advances on the program. These advances are
refinements between Circus denotational expressions: when these refinement expressions
are proved correct with respect to the theory of Circus on the Unifying Theories of Pro-
gramming (UTP), it means that the advances of the program whose definitions are these
refinement expressions are correct and satisfy the theory.

B.2. AUXILIARY DEFINITIONS, LEMMAS, THEOREMS AND LAWS 18

Definition B.28. *let [3]
let x • A = A

This definition is original from the document [3]. All definitions, lemmas, theorems,
laws and rules from CML can be used for Circus [5].

Definition B.29. *loc [3]
loc s • P = Lift (s) ; P

This definition is original from the document [3]. All definitions, lemmas, theorems,
laws and rules from CML can be used for Circus [5].

Definition B.30. *Extra Choice
A1 � A2 = A1 2 A2

This definition is original from the document [3]. All definitions, lemmas, theorems,
laws and rules from CML can be used for Circus [5]. The Extra Choice symbol (�) appears
on the rules of External Choice on the Operational Semantics of [3] as ”[+]”.

Definition B.31. Extra Statement
V : [Pre, Post] = V [:] [Pre, Post]

This definition was created on this thesis. The role of this definition is to represent the
intermediate state between the initial state of the Specification Statement (the one in which
the Program Text equals V : [Pre, Post]) and an intermediate state where precondition Pre
is a factor on the constraint of the final state (the one in which the Program Text equals V
[:] [Pre, Post]). This behaviour lies on Attached Rule 30.

B.2. AUXILIARY DEFINITIONS, LEMMAS, THEOREMS AND LAWS 19

Definition B.32. *doC
doC (l, C) = (tr’ = tr ∧ (l, C) /∈ ref’ C wait’ B tr’ = tr a 〈(l, C)〉)

Where

• l is a channel;
• C is a communication;
• 〈(l, C)〉 is a trace that is concatenated to tr;

This function is used on the Denotational definition of the prefixing operator.

The definition was created on [6].

Definition B.33. A ; B = ∃v0 . A [v, v0] ∧ B [v0, v’]

The above definition was made on [4] and is referenced on [6].

Definition B.34. *UTP Variable Declaration
(var x); P = ∃ x . P

The definition was created on [8].

Definition B.35. *Substitution:
A b

c = A [b / ok’][c / wait]

The definition lies on [6]. It is referenced on the denotational definition of other
constructs of Circus, like If-Guarded Command A.5. When Substitution is referenced, it
has factors as A f

f and A t
f . On these cases, f means false and t means true.

Definition B.36. *Disjunction Reactive Designs:
R (P1 ` Q1) ∨ R (P2 ` Q2) = R (P1 ∧ P2 ` P1 ∨ P2)

The definition lies on [7].

Definition B.37. *External Choice Denotational Definition:
A1 2 A2 = R ((¬ A1

f
f ∧ ¬ A2

f
f) ` ((A1

t
f ∧ A2

t
f) C tr’ = tr ∧ wait’ B (A1

t
f ∨ A2

t
f)))

The definition lies on [6].

Definition B.38. *CSP1:
CSP1 (P) = P ∨ (¬ ok ∧ tr ≤ tr’)

The definition lies on [6].

B.2. AUXILIARY DEFINITIONS, LEMMAS, THEOREMS AND LAWS 20

Definition B.39. *CSP2:
CSP2 (P) = P ; ((ok⇒ ok’) ∧ tr’ = tr ∧ wait’ = wait ∧ ref’ = ref ∧ v’ = v)

The definition lies on [6].

Definition B.40. *CSP3:
CSP3 (P) = Skip ; P

The definition lies on [6].

B.2.2 Auxiliary Lemmas

Lemma B.1. Refinement Healthiness Conditions
(IIrea C wait B X) (〈〉, tr’ - tr)

v (IIrea C wait B false) (〈〉, tr’ - tr)

Proof
For wait = true

((IIrea) (〈〉, tr’ - tr)

v (IIrea) (〈〉, tr’ - tr))

= [Refinement Equal Sides 1]
true
For wait = false

X (〈〉, tr’ - tr)

v (false) (〈〉, tr’ - tr)

= [Predicate Calculus]
X (〈〉, tr’ - tr) v false

= [Refinement Definition B.14 and Predicate Calculus]
true 2

Lemma B.2. Refinement Healthiness Conditions with R1

R(X) v R(false)

Proof:

R(X) v R(false)

= [Definitions of R1 B.19, R2 B.20 and R3 B.21]
(tr ≤ tr′ ∧ (IIrea C wait B X)(〈〉, tr′ − tr))

B.2. AUXILIARY DEFINITIONS, LEMMAS, THEOREMS AND LAWS 21

v (tr ≤ tr′ ∧ (IIrea C wait B false)(〈〉, tr′ − tr))

= [Refinement Healthiness Conditions B.1 and Refinement Monotonic 6]
true

Lemma B.3. Expanded Reactive Design Refined by Reactive Ok Negation (R((¬ Ap ∧
ok) ⇒ (Ap ∧ ok′)) v R(¬ ok))

Proof:

For ok = true :

(R((¬ Ap ∧ true) ⇒ (Ap ∧ ok′)) v R(¬ true))

[Predicate Calculus]
(R((¬ Ap ∧ true) ⇒ (Ap ∧ ok′)) v R(false))

[Refinement Healthiness Condition with R1 B.2]
true

For ok = false :

(R((¬ Ap ∧ false) ⇒ (Ap ∧ ok′)) v R(¬ false))

= [Predicate Calculus]
(R(false ⇒ (Ap ∧ ok′)) v R(true))

= [Predicate Calculus]
(R(true) v R(true))

= [Refinement Equal Sides 1]
true

Lemma B.4. Refinement Implication For Substitution Equivalence (A v A 2 B) ⇒
(A v B),

provided that A f
f = A t

f and B f
f = B t

f

Proof:

Be Ap = Ap f
f = Ap t

f , and Bp = Bp f
f = Bp t

f

B.2. AUXILIARY DEFINITIONS, LEMMAS, THEOREMS AND LAWS 22

(A v A 2 B) ⇒ (A v B)

= [External Choice Denotational Definition B.37 + Assumption]
(R(¬ Ap ` Ap) v R((¬ Ap ∧ ¬ Bp) ` ((Ap ∧ Bp) C tr′ = tr ∧ wait′ B (Ap ∨ Bp))))

⇒
(R(¬ Ap ` Ap) v R(¬ Bp ` Bp))

For Bp = true :

(R(¬ Ap ` Ap)v R((¬ Ap ∧ ¬ true) ` ((Ap ∧ true)C tr′ = tr ∧ wait′ B (Ap ∨ true))))

⇒
(R(¬ Ap ` Ap) v R(¬ true ` true))

= [Predicate Calculus]
(R(¬ Ap ` Ap) v R(false ` (Ap C tr′ = tr ∧ wait′ B true)))

⇒
(R(¬ Ap ` Ap) v R(false ` true))

= [Predicate Calculus]
(R(¬ Ap ` Ap) v R(false ` (Ap C tr′ = tr ∧ wait′ B true)))

⇒
(R(¬ Ap ` Ap) v R(false))

= [Refinement Healthiness Condition with R1 B.2]
(R(¬ Ap ` Ap) v R(false ` (Ap C tr′ = tr ∧ wait′ B true)))

⇒
true

= [Predicate Calculus]
true

For Bp = false :

(R(¬ Ap ` Ap)v R((¬ Ap∧ ¬ false) ` ((Ap ∧ false)C tr′ = tr ∧ wait′ B (Ap ∨ false))))

⇒
(R(¬ Ap ` Ap) v R(¬ false ` false))

= [Predicate Calculus]
(R(¬ Ap ` Ap) v R((¬ Ap∧¬ false) ` ((Ap ∧ false)C tr′ = tr ∧ wait′ B (Ap ∨ false))))

⇒
(R(¬ Ap ` Ap) v R(¬ false ` false))

B.2. AUXILIARY DEFINITIONS, LEMMAS, THEOREMS AND LAWS 23

= [Predicate Calculus]
(R(¬ Ap ` Ap) v R((¬ Ap ∧ true) ` ((Ap ∧ false)C tr′ = tr ∧ wait′ B (Ap ∨ false)))

⇒
(R(¬ Ap ` Ap) v R(true ` false)

= [Predicate Calculus]
(R(¬ Ap ` Ap) v R(¬ Ap ` (false C tr′ = tr ∧ wait′ B Ap)))

⇒
(R(¬ Ap ` Ap) v R(true ` false))

= [Definition of Conditional B.18 + Predicate Calculus]
(R(¬ Ap ` Ap) v R(¬ Ap ` (¬ (tr′ = tr ∧ wait′) ∧ Ap)))

⇒
(R(¬ Ap ` Ap) v R(true ` false))

= [Design Definition B.23]
(R(¬ Ap ` Ap) v R(¬ Ap ` (¬ (tr′ = tr ∧ wait′) ∧ Ap)))

⇒
(R((¬ Ap ∧ ok) ⇒ (Ap ∧ ok′)) v R(¬ ok))

= [Expanded Reactive Design Refined by Reactive Ok Negation B.3]
(R(¬ Ap ` Ap) v R(¬ Ap ` (¬ (tr′ = tr ∧ wait′) ∧ Ap)))

⇒
true

= [Predicate Calculus]
true

Lemma B.5. Lift Substitution Equivalence
(Lift(s)) f

f = (Lift(s)) t
f

Proof:

(Lift(s)) f
f

= [Definition of Lift B.24]
(R1 ◦ R3(true ` s ∧ tr′ = tr ∧ ¬ wait′)) f

f

= [Definitions of R1 B.19 and R3 B.21]
(tr ≤ tr′ ∧ (IIreaCwaitB (true ` s ∧ tr′ = tr ∧ ¬ wait′))) f

f

= [Substitution B.35]
tr ≤ tr′ ∧ (IIrea

f
f C falseB (true ` s ∧ tr′ = tr ∧ ¬ wait′))

= [Definition of Conditional B.18 and Predicate Calculus]
tr ≤ tr′ ∧ (true ` s ∧ tr′ = tr ∧ ¬ wait′)

B.2. AUXILIARY DEFINITIONS, LEMMAS, THEOREMS AND LAWS 24

= [Definition of Conditional B.18 and Predicate Calculus]
tr ≤ tr′ ∧ (IIrea

t
f C falseB (true ` s ∧ tr′ = tr ∧ ¬ wait′))

= [Substitution B.35]
tr ≤ tr′ ∧ (IIreaCwaitB (true ` s ∧ tr′ = tr ∧ ¬ wait′)) t

f

= [Definitions of R1 B.19 and R3 B.21]
(R1 ◦ R3(true ` s ∧ tr′ = tr ∧ ¬ wait′)) t

f

= [Definition of Lift B.24]
(Lift(s)) t

f

Lemma B.6. Healthy True Refinement: ∀ x . R (true) v R(x)

Proof
∀ x . R (true) v R(x)

= [Quantifier ∀ x can be omitted]
R (true) v R(x)

For x = true:

(R (true) v R(true))

= [Refinement Equal Sides 1]
true

For x = false:

(R (true) v R(false))

= [Definitions of R1 B.19, R2 B.20 and R3 B.21]
tr ≤ tr’ ∧ (IIrea C wait B true) (〈〉, tr’ - tr)

v tr ≤ tr’ ∧ (IIrea C wait B false) (〈〉, tr’ - tr)

= [Ref. Conjunctive Monotonic B.13 and Ref. Healthiness Conditions B.1]
true

Lemma B.7. Design of Assignment R2:

(true ` x’ = w0 ∧ v’ = v ∧ tr’ = tr ∧ ¬ wait’) is R2

Proof
true ` x’ = w0 ∧ v’ = v ∧ tr’ = tr ∧ ¬ wait’
= [Expression does not contain tr’ neither tr]
true ` x’ = w0 ∧ v’ = v ∧ tr’ = tr ∧ ¬ wait’ [〈〉 , tr’ - tr / tr , tr’]
= [Predicate Calculus]

B.2. AUXILIARY DEFINITIONS, LEMMAS, THEOREMS AND LAWS 25

true ` x’ = w0 ∧ v’ = v ∧ tr’ = tr ∧ ¬ wait’ (〈〉, tr’ - tr)
= [Definition of R2 B.20]
R2 (true ` x’ = w0 ∧ v’ = v ∧ tr’ = tr ∧ ¬ wait’)
2

Lemma B.8. (Lift (var x ; x := w0) ; A)⇒ (var x : T • A),

provided that

• w0 : T

Proof
(Lift (var x ; x := w0) ; A)

= [Lift CSP4 B.2.26]
(Lift (var x ; x := w0) ; Skip ; A)

= [Definition of Lift B.24]
(R1 ◦ R3 (true ` var x ; x := w0 ∧ tr’ = tr ∧ ¬ wait’) ; Skip ; A)

= [Design of Assignment R2 B.7]
(R1 ◦ R3 ◦ R2 (true ` var x ; x := w0 ∧ tr’ = tr ∧ ¬ wait’) ; Skip ; A)

= [R2 and R3 Composition Commutative B.2.49]
(R1 ◦ R2 ◦ R3 (true ` var x ; x := w0 ∧ tr’ = tr ∧ ¬ wait’) ; Skip ; A)

= [Definition of R B.22]
(R (true ` var x ; x := w0 ∧ tr’ = tr ∧ ¬ wait’) ; Skip ; A)

= [State Assignment B.16]
(R (true ` var x ; x’ = w0 ∧ v’ = v ∧ tr’ = tr ∧ ¬ wait’) ; Skip ; A)

= [UTP Variable Declaration B.34]
(R (true ` ∃ x . x’ = w0 ∧ v’ = v ∧ tr’ = tr ∧ ¬ wait’) ; Skip ; A)

= [Assumption w0 : T]
(R (true ` ∃ x . x’ = w0 ∧ w0 : T ∧ v’ = v ∧ tr’ = tr ∧ ¬ wait’) ; Skip ; A)

= [Predicate Calculus: x’ = w0 ∧ w0 : T⇒ x : T]
(R (true ` ∃ x . x’ = w0 ∧ w0 : T ∧ x : T ∧ v’ = v ∧ tr’ = tr ∧ ¬ wait’) ; Skip ; A)

⇒ [Predicate Calculus: x’ = w0 ∧ w0 : T ∧ x : T⇒ ∃ x, x’ : T]
(R (true ` ∃ x, x’ : T . x’ = w0 ∧ w0 : T ∧ x : T ∧ v’ = v ∧ tr’ = tr ∧ ¬ wait’) ; Skip ; A)

= [Predicate Calculus: x, x’ and w0 do not occur on R]
∃ x, x’ . x’ = w0 ∧ w0 : T ∧ x : T ∧ (R (true ` v’ = v ∧ tr’ = tr ∧ ¬ wait’) ; Skip ; A)

⇒ [Predicate Calculus: removing x’ = w0, w0 : T and x : T weakens the expression]
∃ x, x’ : T. (R (true ` v’ = v ∧ tr’ = tr ∧ ¬ wait’) ; Skip ; A)

= [Skip denotational definition A.3]

B.2. AUXILIARY DEFINITIONS, LEMMAS, THEOREMS AND LAWS 26

∃ x, x’ : T. (Skip ; Skip ; A)

= [Theorem B.2.2 twice]
∃ x, x’ : T . A

= [Variable Block Denotational Definition A.1]
(var x : T • A) 2

Lemma B.9.
(c1 |= P1 OP P2) (c2 |= P3 OP P2) =

c1 ∧ c2 ⇒
(Lift (gA(P1)) ∧ Lift (gA(P2)) ; P1 OP P2

v (Lift (gA(P1)) ∧ Lift (gA(P2)) ; P3 OP P2))

provided that

Lift (gA (P1)) = Lift (gA (P3))

Proof:
To reduce verbose, we create the abbreviation gA(s) such that

gA(s) = getAssignments(s)

LHS

=

(c1 |= P1 OP P2) (c2 |= P3 OP P2)

= [Definition of Syntactic Transition B.27]
∀ w .c1 ∧ c2 ⇒ ((Lift (gA(P1 OP P2)) ; P1 OP P2 v Lift (gA(P3 OP P2)) ; P3 OP P2))

∧ Lift (gA(P1 OP P2)) = Lift (gA(P3 OP P2))


= [w is universally quantified, so we abstract it]
c1 ∧ c2 ⇒ ((Lift (gA(P1 OP P2)) ; P1 OP P2 v Lift (gA(P3 OP P2)) ; P3 OP P2))

∧ Lift (gA(P1 OP P2)) = Lift (gA(P3 OP P2))


= [Definition of getAssignments B.1 (4x) for binary Operator OP]
c1 ∧ c2 ⇒ ((Lift (gA(P1) ∧ gA(P2)) ; P1 OP P2 v Lift (gA(P3) ∧ gA(P2)) ; P3 OP P2))

∧ Lift (gA(P1) ∧ gA(P2)) = Lift (gA(P3) ∧ gA(P2))



B.2. AUXILIARY DEFINITIONS, LEMMAS, THEOREMS AND LAWS 27

= [Lift And B.2.48]
c1 ∧ c2 ⇒ ((Lift (gA(P1) ∧ gA(P2)) ; P1 OP P2 v Lift (gA(P3) ∧ gA(P2)) ; P3 OP P2))

∧ Lift (gA(P1)) ∧ Lift (gA(P2)) = Lift (gA(P3)) ∧ Lift (gA(P2))


= [Assumption]
c1 ∧ c2 ⇒ ((Lift (gA(P1) ∧ gA(P2)) ; P1 OP P2 v Lift (gA(P3) ∧ gA(P2)) ; P3 OP P2))

∧ Lift (gA(P3)) ∧ Lift (gA(P2)) = Lift (gA(P3)) ∧ Lift (gA(P2))


= [Predicate Calculus: (P = P) = true]
c1 ∧ c2 ⇒ ((Lift (gA(P1) ∧ gA(P2)) ; P1 OP P2 v Lift (gA(P3) ∧ gA(P2)) ; P3 OP P2))

∧ true


= [Predicate Calculus]
c1 ∧ c2 ⇒(

((Lift (gA(P1) ∧ gA(P2)) ; P1 OP P2 v Lift (gA(P3) ∧ gA(P2)) ; P3 OP P2))
)

= [Lift And B.2.48]
c1 ∧ c2 ⇒
(Lift (gA(P1)) ∧ Lift (gA(P2)) ; P1 OP P2 v (Lift (gA(P3)) ∧ Lift (gA(P2)) ; P3 OP P2))

= [Assumption]
c1 ∧ c2 ⇒
(Lift (gA(P1)) ∧ Lift (gA(P2)) ; P1 OP P2 v (Lift (gA(P1)) ∧ Lift (gA(P2)) ; P3 OP P2))

=

RHS

Lemma B.10. (c1 |= P1 OP P2) (c2 |= P1 OPP3) =

c1 ∧ c2 ⇒(
(Lift (gA(P1)) ∧ Lift (gA(P2)) ; P1 OP P2 v (Lift (gA(P1)) ∧ Lift (gA(P2)) ; P1 OPP3))

)
provided that Lift (gA (P2)) = Lift (gA (P3))

Proof:
To reduce verbose, we create the abbreviation gA(s) such that

gA(s) = getAssignments(s)

B.2. AUXILIARY DEFINITIONS, LEMMAS, THEOREMS AND LAWS 28

LHS

=

(c1 |= P1 OP P2) (c2 |= P1 OPP3)

= [Definition of Syntactic Transition B.27]
∀ w .c1 ∧ c2 ⇒(

((Lift (gA(P1 OP P2)) ; P1 OP P2 v Lift (gA(P1 OPP3)) ; P1 OPP3))

∧ Lift (gA(P1 OP P2)) = Lift (gA(P1 OPP3))

)
= [w is universally quantified, so we abstract it]
c1 ∧ c2 ⇒(

((Lift (gA(P1 OP P2)) ; P1 OP P2 v Lift (gA(P1 OPP3)) ; P1 OPP3))

∧ Lift (gA(P1 OP P2)) = Lift (gA(P1 OPP3))

)
= [Definition of getAssignments B.1]
c1 ∧ c2 ⇒(

((Lift (gA(P1) ∧ gA(P2)) ; P1 OP P2 v Lift (gA(P1) ∧ gA(P3)) ; P1 OPP3))

∧ Lift (gA(P1) ∧ gA(P2)) = Lift (gA(P1) ∧ gA(P3))

)
= [Lift And B.2.48]
c1 ∧ c2 ⇒(

((Lift (gA(P1) ∧ gA(P2)) ; P1 OP P2 v Lift (gA(P1) ∧ gA(P3)) ; P1 OPP3))

∧ Lift (gA(P1)) ∧ Lift (gA(P2)) = Lift (gA(P1)) ∧ Lift (gA(P3))

)
= [Assumption]
c1 ∧ c2 ⇒(

((Lift (gA(P1) ∧ gA(P2)) ; P1 OP P2 v Lift (gA(P1) ∧ gA(P3)) ; P1 OPP3))

∧ Lift (gA(P1)) ∧ Lift (gA(P3)) = Lift (gA(P1)) ∧ Lift (gA(P3))

)
= [Predicate Calculus: (P = P) = true]
c1 ∧ c2 ⇒(

((Lift (gA(P1) ∧ gA(P2)) ; P1 OP P2 v Lift (gA(P1) ∧ gA(P3)) ; P1 OPP3))

∧ true

)
= [Predicate Calculus: (P ∧ true) = P]
c1 ∧ c2 ⇒(

((Lift (gA(P1) ∧ gA(P2)) ; P1 OP P2 v Lift (gA(P1) ∧ gA(P3)) ; P1 OPP3))
)

= [Lift And B.2.48]
c1 ∧ c2 ⇒(

(Lift (gA(P1)) ∧ Lift (gA(P2)) ; P1 OP P2 v (Lift (gA(P1)) ∧ Lift (gA(P3)) ; P1 OPP3))
)

= [Assumption]
c1 ∧ c2 ⇒

B.2. AUXILIARY DEFINITIONS, LEMMAS, THEOREMS AND LAWS 29

(
(Lift (gA(P1)) ∧ Lift (gA(P2)) ; P1 OP P2 v (Lift (gA(P1)) ∧ Lift (gA(P2)) ; P1 OPP3))

)
=

RHS

Lemma B.11. true v X

Proof
true v X

= [X⇒ true]

= [true] = true

2

Lemma B.12. if (pred1)→ A1 [] ... [] (predn)→ An fi v A1

provided that

• pred1

Proof:

if (pred1)→ A1 [] ... [] (predn)→ An fi v A1

= [If-Guarded Command Denotational Definition A.5]
R (

(pred1 ∨ ... ∨ predn)

∧ (pred1⇒¬ A1
f
f ∧ ... ∧ predn⇒¬ An

f
f) ` ((pred1 ∧ A1

t
f) ∨ ... ∨ (predn ∧ An

t
f)

)) v A1

= [Assumption pred1]
(R (

(true ∨ ... ∨ predn)

∧ (true⇒¬ A1
f
f ∧ ... ∧ predn⇒¬ An

f
f) ` ((true ∧ A1

t
f) ∨ ... ∨ (predn ∧ An

t
f)

))) v A1

= [Predicate Calculus]
(R (

true

∧ (true⇒¬ A1
f
f ∧ ... ∧ predn⇒¬ An

f
f) ` ((true ∧ A1

t
f) ∨ ... ∨ (predn ∧ An

t
f)

))) v A1

= [Predicate Calculus]

B.2. AUXILIARY DEFINITIONS, LEMMAS, THEOREMS AND LAWS 30

(R ((true⇒¬ A1
f
f ∧ ... ∧ predn⇒¬ An

f
f) ` ((true ∧ A1

t
f) ∨ ... ∨ (predn ∧ An

t
f)

))) v A1

= [Predicate Calculus]
(R ((¬ A1

f
f ∧ ... ∧ predn⇒¬ An

f
f) ` (A1

t
f ∨ ... ∨ (predn ∧ An

t
f)

))) v A1

= [Disjunction Reactive Designs B.36]
(R (¬ A1

f
f ` A1

t
f) ∨ R (¬ (pred2⇒ A2

f
f) ` (pred2 ∧ A2

t
f)) ... ∨ R (¬ (pred2⇒ A2

f
f) `

(pred2 ∧ A2
t
f))

) v A1

= [Refinement Definition B.14] A1⇒(
R(¬ A1

f
f ` A1

t
f) ∨ R(¬ (pred2⇒ A2

f
f) ` (pred2 ∧ A2

t
f)) ∨ ...

∨ R(¬ (predn⇒ An
f
f) ` (predn ∧ An

t
f))

) 
= [CSP process as a Self-Reactive Design 12, having, from theorem 13, that it can be
applied to Circus Actions] A1⇒(

A1 ∨ R(¬ (pred2⇒ A2
f
f) ` (pred2 ∧ A2

t
f)) ∨ ...

∨ R(¬ (predn⇒ An
f
f) ` (predn ∧ An

t
f))

) 
= [Predicate Calculus] ¬ A1 ∨(

A1 ∨ R(¬ (pred2⇒ A2
f
f) ` (pred2 ∧ A2

t
f)) ∨ ...

∨ R(¬ (predn⇒ An
f
f) ` (predn ∧ An

t
f))

) 
= [Predicate Calculus] ¬ A1 ∨ A1 ∨(

R(¬ (pred2⇒ A2
f
f) ` (pred2 ∧ A2

t
f)) ∨ ...

∨ R(¬ (predn⇒ An
f
f) ` (predn ∧ An

t
f))

) 
= [Predicate Calculus] true ∨(

R(¬ (pred2⇒ A2
f
f) ` (pred2 ∧ A2

t
f)) ∨ ...

∨ R(¬ (predn⇒ An
f
f) ` (predn ∧ An

t
f))

) 
= [Predicate Calculus]
[true]

= [Predicate Calculus]
true

Lemma B.13. Refinement Conjunctive Monotonic
(P ∧ F v Q ∧ F)

B.2. AUXILIARY DEFINITIONS, LEMMAS, THEOREMS AND LAWS 31

provided that (P v Q)

Proof:
For F = true:

(P ∧ true v Q ∧ true)

= [Predicate Calculus]
(P v Q)

= [Assumption]
true

For F = false:

(P ∧ false v Q ∧ false)

= [Predicate Calculus]
(false v false)

= [Refinement Definition B.14]
[(false⇒ false)]

= [Predicate Calculus]
true

Lemma B.14. Design Trace R2 (true ` s ∧ tr’ = tr0 ∧ ¬ wait’) is R2

Proof:
(true ` s ∧ tr’ = tr0 ∧ ¬ wait’)

= [Sequence Property]
(true ` s ∧ tr’ - tr0 = 〈〉 ∧ ¬ wait’)

= [Definition of R2 B.20]
R2 (true ` s ∧ tr’ = tr0 ∧ ¬ wait’)

Lemma B.15. *Existential Quantifier Shifted Inside R:
∃ x . R (P) = R (∃ x . P),

provided that x is neither tr nor wait

This theorem lies on [7].

B.2. AUXILIARY DEFINITIONS, LEMMAS, THEOREMS AND LAWS 32

Lemma B.16. Existential Quantifier Distributed Throughout Design:
∃ x . (true ` Post) = (true ` (∃ x . Post)),

provided that x is neither ok or ok’.

Proof:

∃ x . (true ` Post)

[Definition of Design B.23]
∃ x . ((true ∧ ok)⇒ (Post ∧ ok’))

[Predicate Calculus]
∃ x . (ok⇒ (Post ∧ ok’))

[Predicate Calculus]
∃ x . (¬ ok ∨ (Post ∧ ok’))

[Predicate Calculus]
(∃ x . ¬ ok) ∨ (∃ x . Post ∧ ok’)

[Predicate Calculus]
(∃ x . ¬ (true ∧ ok)) ∨ (∃ x . Post ∧ ok’)

[Predicate Calculus]
(¬ ∀ x . (true ∧ ok)) ∨ (∃ x . Post ∧ ok’)

[Predicate Calculus]
(∀ x . (true ∧ ok))⇒ (∃ x . Post ∧ ok’)

[Predicate Calculus]
(∀ x . (true ∧ ok))⇒ (∃ x . Post ∧ ok’)

[Predicate Calculus]
((true ∧ ∀ x . ok))⇒ (∃ x . Post ∧ ok’)

[Assumption]
((true ∧ ok))⇒ (∃ x . Post ∧ ok’)

[Assumption]
((true ∧ ok))⇒ ((∃ x . Post) ∧ ok’)

[Definition of Design B.23]
true ` (∃ x . Post)

Lemma B.17. Labelled Transition Implication
(c1 | s1 |= A1)

d∗w1−−−→ (c3 | s3 |= A3)

=

B.2. AUXILIARY DEFINITIONS, LEMMAS, THEOREMS AND LAWS 33

∀ w. (Lift (s1); A1) v ∀ w. (Lift (s3); d∗w1→ A3)

Proof:

(c1 | s1 |= A1)
d∗w1−−−→ (c3 | s3 |= A3)

= [Definition of Labelled Transition B.26]
∀ w. c1 ∧ c3⇒ (Lift (s1); A1) v (Lift (s3); d∗w1→ A3) 2 (Lift (s1); A1)

= [External Choice Refinement Implication 15]
∀ w. c1 ∧ c3⇒ (Lift (s1); A1) v (Lift (s3); d∗w1→ A3)

B.2.3 Auxiliary Theorems

Theorem 1. Refinement Equal Sides:

A v A

Proof
A v A
= [Definition of Refinement]
[A⇒ A]

= [Predicate Calculus]
[¬ A ∨ A]

= [Predicate Calculus]
[true]
= [Predicate Calculus]
true
2

Theorem 2.

Silent Transition between equivalent nodes:

(c | s |= A) τ−→ (c | s |= A)

Proof
(c | s |= A) τ−→ (c | s |= A)
= [Definition of Silent Transition, B.25]
∀ w . c ∧ c⇒ ((Lift (s) ; A v Lift (s) ; A)
= [Refinement Equal Sides 1]
∀ w. c ∧ c⇒ true

B.2. AUXILIARY DEFINITIONS, LEMMAS, THEOREMS AND LAWS 34

= [(P⇒ true) = true]
∀ w. true
=
true
2

Theorem 3.
Sigma Equal:

(c |= P) (c |= P)

Proof (c |= P) (c |= P)
= [Definition of Sigma Transition]
∀w.c ∧ c⇒(

(Lift(getAssignments(P)); Pv Lift(getAssignments(P)); P)

∧ Lift(getAssignments(P)) = Lift(getAssignments(P))

)
= [Refinement Equal Sides (2x) 1]
∀ w . c ∧ c⇒ (true ∧ true)
= [Predicate Calculus]
∀ w. c ∧ c⇒ true
= [Predicate Calculus]
true 2

Theorem 4.
Sigma Equal Basic Process:

(c |= P) (c | s |= B)

provided that P = B

Proof
(c |= P) (c | s |= B)
= [Definition of Syntactic Transition B.27]
∀w.c ∧ c⇒(

(Lift(getAssignments(P)); Pv Lift(s); B)

∧ Lift(getAssignments(P)) = Lift(s)

)
= [Assumption P = B]
∀w.c ∧ c⇒(

(Lift(getAssignments(B)); Bv Lift(s); B)

∧ Lift(getAssignments(B)) = Lift(s)

)
= [Definition of getAssignments B.1]

B.2. AUXILIARY DEFINITIONS, LEMMAS, THEOREMS AND LAWS 35

∀w.c ∧ c⇒(
(Lift(s); Bv Lift(s); B)

∧ Lift(s) = Lift(s)

)
= [Predicate Calculus]
∀w.c ∧ c⇒(

(Lift(s); Bv Lift(s); B)

∧ true

)
= [Refinement Equal Sides 1]
∀w.c ∧ c⇒(

true

∧ true

)
= [Predicate Calculus]
true 2

Theorem 5.

*S Sequence False:

s ; false = false

This theorem is quoted on [4].

Theorem 6.

*Monotonicity of Action Refinement:
A1 ; A2 v B1 ; B2 provided A1 v B1 and A2 v B2

Proof The proof lies on the document [7].
2

Theorem 7.
Lift Shift:
l→ Lift (s) ; A = Lift (s) ; l→ A

provided that

• ok = ok’

Where FV (l) are the free variables of l, and LHS (s) returns the left variables of the

sequence s of assignments. We use Theorem 11 to assume that all Lifted assignments (e.g.

Lift (s)) are Circus actions.

B.2. AUXILIARY DEFINITIONS, LEMMAS, THEOREMS AND LAWS 36

Proof
l→ Lift (s) ; A
= [Prefixing Sequence B.2.5, having, from theorem 11, that Lift (s) is a Circus action]
l→ Skip ; Lift (s) ; A
= [Definition of Lift (B.24)]
l→ Skip ; (R1 ◦ R3 (true ` s ∧ tr’ = tr ∧ ¬ wait’)) ; A
= [Sequence Denotational Definition B.33 and Prefixing Denotational Definition A.2
(where v0 is a set that contains all observational variables in an intermediate state
(ok0, wait0, ref0, tr0 and so on))]

∃v0.

(
R(true ` doC(l,C) ∧ vars0 = vars)

∧ (R1 ◦ R3(true ` s(α0,α′) ∧ tr′ = tr0 ∧ ¬ wait′))

)
; A

= [Definition of doC B.32]

∃v0.

 R

 true `

 tr0 = tr ∧ (l,C) /∈ ref 0
Cwait0B
tr0 = tra 〈(l,C)〉

 ∧ vars0 = vars


∧ (R1 ◦ R3(true ` s(α0,α′) ∧ tr′ = tr0 ∧ ¬ wait′))

 ; A

= [Design Trace R2 B.14]

∃v0.

 R

 true `

 tr0 = tr ∧ (l,C) /∈ ref 0
Cwait0B
tr0 = tra 〈(l,C)〉

 ∧ vars0 = vars


∧ (R(true ` s(α0,α′) ∧ tr′ = tr0 ∧ ¬ wait′))

 ; A

= [State Assignment B.16]

∃v0.



R

 true `

 tr0 = tr ∧ (l,C) /∈ ref 0
Cwait0B
tr0 = tra 〈(l,C)〉

 ∧ vars0 = vars



∧

 R

 true `


f (α0,α′) ∧ wait′ = wait0
∧ ok′ = ok0 ∧ tr′ = tr0 ∧ ref ′ = ref 0
∧ nalocalvars′ = nalocalvars0
∧ tr′ = tr0 ∧ ¬ wait′






; A

= [Closure Conjunctive R B.2.42]

B.2. AUXILIARY DEFINITIONS, LEMMAS, THEOREMS AND LAWS 37

∃v0.


R



 true `

 tr0 = tr ∧ (l,C) /∈ ref 0
Cwait0B
tr0 = tra 〈(l,C)〉

 ∧ vars0 = vars



∧

 true `


f (α0,α′) ∧ wait′ = wait0
∧ ok′ = ok0 ∧ tr′ = tr0
∧ ref ′ = ref 0
∧ nalocalvars′ = nalocalvars0
∧ tr′ = tr0 ∧ ¬ wait′








; A

= [Designs And True B.2.46]

∃v0.


R


true `



 tr0 = tr ∧ (l,C) /∈ ref 0
Cwait0B
tr0 = tra 〈(l,C)〉

 ∧ vars0 = vars

∧ f (α0,α′) ∧ wait′ = wait0
∧ ok′ = ok0 ∧ tr′ = tr0
∧ ref ′ = ref 0
∧ nalocalvars′ = nalocalvars0
∧ tr′ = tr0 ∧ ¬ wait′






; A

= [Predicate Calculus: rearranging the order of the and operands and parenthesis]

∃v0.


R


true `



f (α0,α′) ∧ tr0 = tr ∧ (l,C) /∈ ref 0
Cwait0B
tr0 = tra 〈(l,C)〉

 ∧ vars0 = vars

∧ (wait′ = wait0) ∧ ¬ wait′

∧ (ref ′ = ref 0) ∧ (nalocalvars′ = nalocalvars0)
∧ (tr′ = tr0)
∧ (tr′ = tr0)
∧ ok′ = ok0






; A

= [Existential Quantifier Shifted Inside R B.15]

R


∃v0.


true `



f (α0,α′) ∧ tr0 = tr ∧ (l,C) /∈ ref 0
Cwait0B
tr0 = tra 〈(l,C)〉

 ∧ vars0 = vars

∧ (wait′ = wait0) ∧ ¬ wait0
∧ (ref ′ = ref 0) ∧ (nalocalvars′ = nalocalvars0)
∧ (tr′ = tr0) ∧ (tr′ = tr0)
∧ ok′ = ok0






; A

= [Existential Quantifier Distributed Throughout Design B.16]

B.2. AUXILIARY DEFINITIONS, LEMMAS, THEOREMS AND LAWS 38

R


true ` ∃v0.



f (α0,α′) ∧ tr0 = tr ∧ (l,C) /∈ ref 0
Cwait0B
tr0 = tra 〈(l,C)〉

 ∧ vars0 = vars

∧ (wait′ = wait0) ∧ ¬ wait0
∧ (ref ′ = ref 0) ∧ (nalocalvars′ = nalocalvars0)
∧ (tr′ = tr0) ∧ (tr′ = tr0)
∧ ok′ = ok0




; A

= [Predicate Calculus: One-point-rule]

R


true ` ∃v0.



f (α0,α′) ∧ tr0 = tr ∧ (l,C) /∈ ref 0
Cwait0B
tr0 = tra 〈(l,C)〉

 ∧ vars0 = vars

∧ (wait′ = wait0) ∧ ¬ wait0
∧ (ref ′ = ref 0) ∧ (nalocalvars′ = nalocalvars0)
∧ (tr′ = tr0) ∧ (tr′ = tr0)
∧ ok′ = ok0




; A

= [Predicate Calculus: replacing ¬ wait0]

R


true ` ∃v0.



f (α0,α′) ∧ tr0 = tr ∧ (l,C) /∈ ref 0
Cwait0B
tr0 = tra 〈(l,C)〉

 ∧ vars0 = vars

∧ (wait′ = wait0)
∧ (ref ′ = ref 0) ∧ (nalocalvars′ = nalocalvars0)
∧ (tr′ = tr0) ∧ (tr′ = tr0)
∧ ok′ = ok0 ∧ ¬ wait0




; A

= [Predicate Calculus: One-point-rule (inserting wait = wait0)]

R


true ` ∃v0.



f (α0,α′) ∧ wait = wait0 ∧ tr0 = tr ∧ (l,C) /∈ ref 0
Cwait0B
tr0 = tra 〈(l,C)〉

 ∧ vars0 = vars

∧ (ref ′ = ref 0) ∧ (nalocalvars′ = nalocalvars0)
∧ (tr′ = tr0) ∧ (tr′ = tr0)
∧ ok′ = ok0 ∧ ¬ wait0




; A

= [Predicate Calculus: One-point-rule (replacing wait0 by wait’ on the conditional)]

B.2. AUXILIARY DEFINITIONS, LEMMAS, THEOREMS AND LAWS 39

R

 true ` ∃v0.


f (α0,α′) ∧ wait = wait0 ∧
((tr0 = tr ∧ (l,C) /∈ ref 0Cwait′B tr0 = tra 〈(l,C)〉) ∧ vars0 = vars)

∧ (ref ′ = ref 0) ∧ (nalocalvars′ = nalocalvars0)
∧ (tr′ = tr0) ∧ (tr′ = tr0)
∧ ok′ = ok0 ∧ ¬ wait0



 ; A

= [Predicate Calculus: One-point-rule (inserting ref = ref0)]

R

 true ` ∃v0.


f (α0,α′) ∧ wait = wait0 ∧ ref = ref 0 ∧
((tr0 = tr ∧ (l,C) /∈ ref 0Cwait′B tr0 = tra 〈(l,C)〉) ∧ vars0 = vars)

∧ (nalocalvars′ = nalocalvars0)
∧ (tr′ = tr0) ∧ (tr′ = tr0)
∧ ok′ = ok0 ∧ ¬ wait0



 ; A

= [Predicate Calculus: One-point-rule (replacing /∈ ref 0 by /∈ ref ′)]

R

 true ` ∃v0.


f (α0,α′) ∧ wait = wait0 ∧ ref = ref 0 ∧
((tr0 = tr ∧ (l,C) /∈ ref ′Cwait′B tr0 = tra 〈(l,C)〉) ∧ vars0 = vars)

∧ (nalocalvars′ = nalocalvars0)
∧ (tr′ = tr0) ∧ (tr′ = tr0)
∧ ok′ = ok0 ∧ ¬ wait0



 ; A

= [Predicate Calculus: And Idempotence (tr’ = tr0) and commutative]

R

 true ` ∃v0.


f (α0,α′) ∧ wait = wait0 ∧ ref = ref 0 ∧
((tr0 = tr ∧ (l,C) /∈ ref ′Cwait′B tr0 = tra 〈(l,C)〉) ∧ vars0 = vars)

∧ (tr′ = tr0)
∧ (nalocalvars′ = nalocalvars0)
∧ ok′ = ok0 ∧ ¬ wait0



 ; A

= [Predicate Calculus: One-point-rule (inserting tr = tr0)]

R

 true ` ∃v0.


f (α0,α′) ∧ wait = wait0 ∧ ref = ref 0 ∧ tr = tr0 ∧
((tr0 = tr ∧ (l,C) /∈ ref ′Cwait′B tr0 = tra 〈(l,C)〉) ∧ vars0 = vars)

∧ (tr′ = tr0)
(nalocalvars′ = nalocalvars0)
∧ ok′ = ok0 ∧ ¬ wait0



 ; A

= [Predicate Calculus: One-point-rule (removing tr’ = tr0)]

R

 true ` ∃v0.


f (α0,α′) ∧ wait = wait0 ∧ ref = ref 0 ∧ tr = tr0 ∧
((tr0 = tr ∧ (l,C) /∈ ref ′Cwait′B tr0 = tra 〈(l,C)〉) ∧ vars0 = vars)

∧ (nalocalvars′ = nalocalvars0)
∧ ok′ = ok0 ∧ ¬ wait0


 ; A

= [By the def. of Prefixing Denotational Definition A.2, vars0 = vars includes all local
variables (some of which are the assignments of nalocalvars), so nalocalvars ⊆ vars.
Thus, vars0 = vars can be rewritten as f (α, α0) ∧ nalocalvars0 = nalocalvars, such

B.2. AUXILIARY DEFINITIONS, LEMMAS, THEOREMS AND LAWS 40

that f (α, α0) does not change its values]

R

 true ` ∃v0.


f (α0,α′) ∧ wait = wait0 ∧ ref = ref 0 ∧ tr = tr0 ∧(

(tr′ = tr ∧ (l,C) /∈ ref ′Cwait′B tr′ = tra 〈(l,C)〉)
∧ f (α,α0) ∧ nalocalvars0 = nalocalvars

)
∧ (nalocalvars′ = nalocalvars0)
∧ ok′ = ok0 ∧ ¬ wait0



 ; A

= [Predicate Calculus: f (α0,α′) and f (α,α0) side by side]

R

 true ` ∃v0.


f (α0,α′) ∧ f (α,α0) ∧ wait = wait0 ∧ ref = ref 0 ∧ tr = tr0 ∧(

(tr′ = tr ∧ (l,C) /∈ ref ′Cwait′B tr′ = tra 〈(l,C)〉)
∧ nalocalvars0 = nalocalvars

)
∧ (nalocalvars′ = nalocalvars0)
∧ ok′ = ok0 ∧ ¬ wait0



 ; A

= [Predicate Calculus: switching the positions of nalocalvars0 = nalocalvars and nalo-
calvars’ = nalocalvars0]

R

 true ` ∃v0.


f (α0,α′) ∧ f (α,α0) ∧ wait = wait0 ∧ ref = ref 0 ∧ tr = tr0 ∧(

(tr′ = tr ∧ (l,C) /∈ ref ′Cwait′B tr′ = tra 〈(l,C)〉)
∧ (nalocalvars′ = nalocalvars0)

)
∧ nalocalvars0 = nalocalvars

∧ ok′ = ok0 ∧ ¬ wait0



 ; A

= [Assumption: ok = ok’]

R

 true ` ∃v0.


f (α0,α′) ∧ f (α,α0) ∧ wait = wait0 ∧ ref = ref 0 ∧ tr = tr0 ∧(

(tr′ = tr ∧ (l,C) /∈ ref ′Cwait′B tr′ = tra 〈(l,C)〉)
∧ (nalocalvars′ = nalocalvars0)

)
∧ nalocalvars0 = nalocalvars ∧ ok = ok0 ∧ ¬ wait0


 ; A

= [Predicate Calculus: placing nalocalvars0 = nalocalvars ∧ ok = ok0 ∧ ¬ wait0
above]

R

 true ` ∃v0.


nalocalvars0 = nalocalvars ∧ ok = ok0 ∧ ¬ wait0 ∧
f (α0,α′) ∧ f (α,α0) ∧ wait = wait0 ∧ ref = ref 0 ∧ tr = tr0 ∧(

(tr′ = tr ∧ (l,C) /∈ ref ′Cwait′B tr′ = tra 〈(l,C)〉)
∧ (nalocalvars′ = nalocalvars0)

)

 ; A

= [Predicate Calculus: rearranging some factors]

R


true ` ∃v0.



f (α,α0)
∧ ok = ok0 ∧ wait = wait0 ∧ ref = ref 0
∧ nalocalvars0 = nalocalvars ∧ tr0 = tr ∧ ¬ wait0
∧ f (α0,α′) ∧(

(tr′ = tr ∧ (l,C) /∈ ref ′Cwait′B tr′ = tra 〈(l,C)〉)
∧ (nalocalvars′ = nalocalvars0)

)




; A

B.2. AUXILIARY DEFINITIONS, LEMMAS, THEOREMS AND LAWS 41

= [Existential Quantifier Distributed Throughout Design B.16]

R


∃v0.true `



f (α,α0)
∧ ok = ok0 ∧ wait = wait0 ∧ ref = ref 0
∧ nalocalvars0 = nalocalvars ∧ tr0 = tr ∧ ¬ wait0
∧ f (α0,α′) ∧(

(tr′ = tr ∧ (l,C) /∈ ref ′Cwait′B tr′ = tra 〈(l,C)〉)
∧ (nalocalvars′ = nalocalvars0)

)




; A

= [Existential Quantifier Shifted Inside R (reverse) B.15]

∃v0.R


true `



f (α,α0)
∧ ok = ok0 ∧ wait = wait0 ∧ ref = ref 0
∧ nalocalvars0 = nalocalvars ∧ tr0 = tr ∧ ¬ wait0
∧ f (α0,α′) ∧(

(tr′ = tr ∧ (l,C) /∈ ref ′Cwait′B tr′ = tra 〈(l,C)〉)
∧ (nalocalvars′ = nalocalvars0)

)




; A

= [Designs And True B.2.46]

∃v0.R



true `

 f (α,α0)
∧ ok = ok0 ∧ wait = wait0 ∧ ref = ref 0
∧ nalocalvars0 = nalocalvars ∧ tr = tr0 ∧ ¬ wait0


∧ true `

 ∧ f (α0,α′) ∧(
(tr′ = tr ∧ (l,C) /∈ ref ′Cwait′B tr′ = tra 〈(l,C)〉)
∧ (nalocalvars′ = nalocalvars0)

) 


; A

= [State Assignment B.16]

∃v0.R


true `

(
s(α,α0) ∧ tr = tr0 ∧ ¬ wait0

)
∧ true `

 f (α0,α′) ∧(
(tr′ = tr ∧ (l,C) /∈ ref ′Cwait′B tr′ = tra 〈(l,C)〉)
∧ (nalocalvars′ = nalocalvars0)

) 
 ; A

= [Closure Conjunctive R B.2.42]

∃v0.


R
(

true `
(

s(α,α0) ∧ tr = tr0 ∧ ¬ wait0
))

∧ R

 true `

 f (α0,α′) ∧(
(tr′ = tr ∧ (l,C) /∈ ref ′Cwait′B tr′ = tra 〈(l,C)〉)
∧ (nalocalvars′ = nalocalvars0)

) 

 ; A

= [Predicate Calculus: repositioning nalocalvars’ = nalocalvars0]

∃v0.


R
(

true `
(

s(α,α0) ∧ tr = tr0 ∧ ¬ wait0
))

∧ R

(
true `

(
(tr′ = tr ∧ (l,C) /∈ ref ′Cwait′B tr′ = tra 〈(l,C)〉)
∧ f (α0,α′) ∧ (nalocalvars′ = nalocalvars0)

))  ; A

= [On the denotational definition of Prefixing A.2, f (α0, α′) ∧ nalocalvars’ = nalocal-
vars0 is vars’ = vars0]

B.2. AUXILIARY DEFINITIONS, LEMMAS, THEOREMS AND LAWS 42

∃v0.


R
(

true `
(

s(α,α0) ∧ tr = tr0 ∧ ¬ wait0
))

∧ R

(
true `

(
(tr′ = tr ∧ (l,C) /∈ ref ′Cwait′B tr′ = tra 〈(l,C)〉)
∧ vars′ = vars0

))  ; A

= [Definition of Lift B.24]

∃v0.

 Lift(s)(α,α0)

∧ R

(
true `

(
(tr′ = tr ∧ (l,C) /∈ ref ′Cwait′B tr′ = tra 〈(l,C)〉)
∧ vars′ = vars0

))  ; A

= [Definition of doC B.32]

∃v0.

(
(Lift(s))(α,α0)
∧ (l→ Skip)(α0,α′)

)
; A

= [Sequence Denotational Definition B.33]
Lift (s) ; l→ Skip
2

Theorem 8. Parallel Prefixed Loc:

(loc s1 • A1) |[x1 | CS | x2]| (loc s2 • A2)

v
l→ ((loc s3 • A3) |[x1 | CS | x2]| (loc s2 • A2))

provided that

Lift (s1) ; A1 v Lift (s3) ; l→ A3 2 Lift (s1) ; A1 [Assumption 1]
(assumption 1 is the right side of the denotational definition of labelled transition

(c1 | s1 |= A1) l−→ (c3 | s3 |= A3))

initials (Lift (s2) ; A2) ⊆ CS [Assumption 2]
(assumption 2 indicates that we require that the initial events being offered by Lift (s2) ;

A2 lie on channel set CS)

CS ∩ usedC (Lift (s3); A3) = /0 [Assumption 3]
(assumption 3 demands that no channel used on Lift (s3); A3 can lie on channel set CS)

wrtV (Lift (s3); A3) ∩ usedV (Lift (s2) ; A2) = /0 [Assumption 4]
(assumption 4 demands that no variables that are used by action Lift (s2) ; A2 can be

written)

Lift (s2) ; A2 is divergence free [Assumption 5]
(assumption 5 is self-explanatory)

ok = ok’ [Assumption 6]
(assumption 6 demands that either (1) if the program has started than it has finished, or (2)

if the program did not start then it did not finish)

B.2. AUXILIARY DEFINITIONS, LEMMAS, THEOREMS AND LAWS 43

Proof
Before starting to prove, we will derive a new assumption from the provided assumption:
[Assumption 1] Lift (s1); A1 v Lift (s3); l→ A3 2 Lift (s1); A1
⇒ [External Choice Refinement Implication 15]
[Assumption ppl] Lift (s1) ; A1 v Lift (s3) ; l→ A3

We also assume Theorem 11 on the proof to assure that Lift (s1), Lift (s2) and Lift
(s3) are Circus actions. We will add an explanation of each tactic and sub-goal, envisaging
explaining this proof. Now we will start proving:
((loc s1 • A1) |[x1 | CS | x2]| (loc s2 • A2))
= [Definition of loc B.29]
(We will apply the definitions of loc in order to convert them to Lift expressions. Lift

expressions allow the application of the lemmas and theorems used throughtout the proof)

((Lift (s1) ; A1) |[x1 | CS | x2]| (Lift (s2) ; A2))
v [Assumption ppl with Parallelism Refinement Monotonic B.2.21]
(application of assumption ppl and Monotonicity of Refinement for Parallelism allow

refining the expression to an expression that has l→ A3, linking the left expression to the

right expression)

((Lift (s3) ; l→ A3) |[x1 | CS | x2]| (Lift (s2) ; A2))
= [Lift Shift (having Assumption 6) 7]
(Lift Shift has an important role on this proof, as it allows swapping the positions from Lift

(s3) and l on the prefixing (→) operator. This is important because the right expression of

the refinement we want to prove has l before expression loc s3 • A3)

((l→ Lift (s3) ; A3) |[x1 | CS | x2]| (Lift (s2) ; A2))
= [Prefixing Sequence theorem: B.2.5]
(now we transform l→ Lift (s3) into l→ Skip ; Lift (s3), in order to allow the application

of Parallel Composition Sequence Step)

((l→ Skip ; Lift (s3) ; A3) |[x1 | CS | x2]| (Lift (s2) ; A2))
= [Parallel Composition Sequence Step (having assumptions 2 to 5) B.2.3]
(the role of this step is to take l outside the left branch, making it a prefix not only from the

left branch of the parallel composition, but also from the whole parallel composition)

l→ ((Lift (s3) ; A3) |[x1 | CS | x2]| (Lift (s2) ; A2))
= [Definition of loc B.29]
(now we apply again the definition of loc in order to reach the right expression of the

refinement)

l→ ((loc s3 • A3) |[x1 | CS | x2]| (loc s2 • A2))

B.2. AUXILIARY DEFINITIONS, LEMMAS, THEOREMS AND LAWS 44

2

Theorem 9. Parallel Independent Refinement:

(loc s1 • A1) |[x1 | CS | x2]| (loc s2 • A2) v (loc s3 • A3) |[x1 | CS | x2]| (loc s2 • A2)

provided that

• Lift (s1) ; A1 v Lift (s3) ; A3

In order to prove, we use Theorem 11 to assume that all Lift (si) are Circus actions.
Proof(

(locs1•A1) |[x1 | CS | x2]| (locs2•A2)
v (locs3•A3) |[x1 | CS | x2]| (locs2•A2)

)
= [Definition of loc B.29](

(Lift(s1); A1) |[x1 | CS | x2]| (Lift(s2); A2)
v (Lift(s3); A3) |[x1 | CS | x2]| (Lift(s2); A2)

)
= [Assumption, Ref. Eq. Sides 1 and Refinement Monotonic 6]
true

2

Theorem 10. Lifted Assignment is a Circus Assignment Command:

Lift (x := c) = (x := c)

Proof
Lift (x := c)
= [Definition of Lift B.24]
R1 ◦ R3 (true ` x := c ∧ tr’ = tr ∧ ¬ wait’)
= [Replacing tr’ = tr by tr’ - tr = 〈 〉]
R1 ◦ R3 (true ` x := c ∧ tr’ - tr = 〈 〉 ∧ ¬ wait’)
= [The expression is also R2. If it is R1 and R3, it is R]
R (true ` x := c ∧ tr’ - tr = 〈 〉 ∧ ¬ wait’)
= [State Assignment B.16]
R (true ` x’ = c ∧ u’ = u ∧ tr’ - tr = 〈 〉 ∧ ¬ wait’)
= [Assignment Denotational Definition A.4]
x := c 2

Theorem 11. Lifted Sequence of Assignments is a Circus Assignment Command:

Lift (s) = s

provided that

B.2. AUXILIARY DEFINITIONS, LEMMAS, THEOREMS AND LAWS 45

• s is a sequence of state assignments (B.16) of the type (x1 := c1; ...; xn := cn);

Proof
Lift (s)
= [Assumption]
Lift (x1 := c1; ...; xn := cn)
= [Lift Composition B.2.27]
Lift (x1 := c1); ...; Lift (xn := cn)
= [Lifted Assignment is a Circus Assignment Command 10 (n times)]
x1 := c1; ...; xn := cn

= [Assumption]
s
2

Theorem 12. *CSP process as a Self-Reactive Design:

A = R ((¬ Af
f) ` (At

f)), provided that A is a CSP process (CSP1, CSP2 and CSP3-healthy)

This theorem lies on [6].

Theorem 13. *Circus Action CSP1-CSP2-CSP3-Healthy:
Every Circus action is CSP1 B.38, CSP2 B.39 and CSP3 B.40 Healthy.

This theorem lies on [6].

Theorem 14.

*Monotonicity of Refinement on External Choice:

A1 2 A2 v B1 2 B2 provided A1 v B1 and A2 v B2

Proof The proof lies on the document [7].
2

Theorem 15.

External Choice Refinement Implication
((Lift (s1) ; A1) v (Lift (s2) ; l→ A2) 2 (Lift (s1) ; A1))

⇒
((Lift (s1) ; A1) v (Lift (s2) ; l→ A2))

B.2. AUXILIARY DEFINITIONS, LEMMAS, THEOREMS AND LAWS 46

provided that A1 = l→ A2

Proof
((Lift (s1) ; A1) v (Lift (s2) ; l→ A2) 2 (Lift (s1) ; A1))
[Assumption]
((Lift (s1) ; A1) v (Lift (s2) ; A1) 2 (Lift (s1) ; A1))
⇒ [Refinement Implication For Subst.Equiv. B.4 (having Lift Subst. Equiv. B.5 both
for Lift (s1) and Lift (s2)) + Monotonicity of Refinement for Ext.Choice 14)]
((Lift (s1) ; A1) v (Lift (s2) ; A1)
= [Assumption]
((Lift (s1) ; A1) v (Lift (s2) ; l→ A2)
2

Theorem 16. Hidden Event Sequenced by Skip:

((l→ Skip) \ {l}) = Skip

Proof
The proof lies on [6]. 2

B.2.4 Auxiliary Laws

On this appendix, we will list all denotational laws that were used throughtout this
document (all refinement laws that were used from the Denotational Semantics of Cir-

cus [6] (refinement laws), laws concerning the denotational theory of the CML Operational
Semantics we have lifted, based on [3], and laws that we created and proved correct).

Refinement Laws

Law B.2.1. (*) Skip = V : [g, true]

The above law is shown on [6].

Law B.2.2. (*) Skip ; A = A

Proof The proof lies on the document [6].
2

B.2. AUXILIARY DEFINITIONS, LEMMAS, THEOREMS AND LAWS 47

Law B.2.3. *Parallel Composition Sequence Step:

(A1 ; A2) |[ns1 {| cs |} ns2]| A3 = A1 ; (A2 |[ns1 {| cs |} ns2]| A3)

provided that

• initials (A3) ⊆ cs

• cs ∩ usedC (A1) = /0

• wrtV (A1) ∩ usedV (A3) = /0

• A3 is divergence-free

Function usedV (Act) is defined at [6] and returns the set of variables that are used by
action Act. Function usedC is defined on B.12. Function wrtV (Act) is defined at [6] and
returns the set of variables that are written by action Act.
Proof The proof lies on the document [6].
2

Law B.2.4. *True Guard: true & A = A

Proof The proof lies on the document [6]
2

Law B.2.5. *Prefixing Sequence: a→ B = a→ Skip ; B

The proof lies on the document [6]

Law B.2.6.

*Compound Actions Commutative (Except for Sequence):
A1 BOP A2 = A2 BOP A1

provided that BOP ∈ { |[{| cs |}]|, |||, 2, u, }

For Parallel Compositions with name-sets, the name-sets are also commuted:

A1 |[ns1 {| cs |} ns2]| A2 = A2 |[ns2 {| cs |} ns1]| A1

Proof There is a version of this law for each compound operator that is commutative, all
of which are referenced on document [6]..

2

Law B.2.7.

B.2. AUXILIARY DEFINITIONS, LEMMAS, THEOREMS AND LAWS 48

*Communication Parallelism Distribution:

c→ (A1 |[{| CS |}]| A2) = ((c→ A1) |[{| CS |}]| (c→ A2))

provided that { c } ∈ CS

Proof The law is referenced on document [6].

2

Law B.2.8. *Hiding Identity:

A \ CS = A

provided CS ∩ UsedC (A) = /0

Proof The law is referenced on document [6]. 2

Law B.2.9. *Hiding Monotonic:

P1 \ S v P2 \ S

provided P1 v P2

Proof The law is referenced on document [6]. 2

Law B.2.10. *Hiding External Choice Distributive:

(A1 2 A2) \ cs = (A1 \ cs) 2 (A2 \ cs)

provided (initials (A1) ∪ initials (A2)) ∩ cs = /0

Proof The law is referenced on document [6]. 2

Law B.2.11. *External Choice Sequence Distributive:

((A1 ; B) 2 (A2 ; B)) = ((A1 2 A2) ; B))

Proof The law is referenced on document [6]. 2

Law B.2.12. *Hiding Sequence Distributive:

(A1 ; A2) \ cs = (A1 \ cs) ; (A2 \ cs)

Proof The law is referenced on document [6]. 2

Law B.2.13. *Variable Block Extension:

A1 ; (var x : T • A2) ; A3 = (var x : T • A1 ; A2 ; A3)

provided x /∈ FV (A1) ∪ FV (A3)

B.2. AUXILIARY DEFINITIONS, LEMMAS, THEOREMS AND LAWS 49

Proof The law is referenced on document [6]. 2

Law B.2.14. *Variable Block Extension (A):
A1 ; (var x : T • A2) = (var x : T • A1 ; A2)

provided x /∈ FV (A1)

Proof The law is referenced on document [6]. 2

Law B.2.15. *Circus Basic Process to Circus action:

begin state [decl | pred] PPars • A end =̂ var decl • A

Proof The law is referenced on document [6]. 2

Lemma B.18. (*) STOP 2 A = A

Proof The proof lies on [6]. 2

Law B.2.16. *Sequence, External and Internal Choice Process to Basic Process:

For op ∈ { ; , 2, u }
P op Q = begin state State =̂

P.State ∧ Q.State

P.PPar ∧Ξ Q.State

Q.PPar ∧Ξ P.State

• P.Act op Q.Act

end

Proof The law is referenced on document [6]. 2

Law B.2.17. *Parallel and Interleave Processes to Basic Process:

For op = |[CS]|
P |[cs]| Q = begin state State =̂

P.State ∧ Q.State

P.PPar ∧Ξ Q.State

Q.PPar ∧Ξ P.State

• P.Act |[α(P.State) | cs | α(Q.State)]| Q.Act

end

Proof The law is referenced on document [6]. 2

Law B.2.18. *Rename Basic Process to Basic Process with Rename Main Action:

(begin PARS • A end) [a1, ... an := b1, ..., bn]

= (begin PARS • A [a1, ... an := b1, ..., bn] end)

B.2. AUXILIARY DEFINITIONS, LEMMAS, THEOREMS AND LAWS 50

Proof The proof lies on [6] 2

Law B.2.19. (*) begin PPars • A end \ CS = begin PPars • (A \ CS) end

The law is referenced on document [6].

Law B.2.20.

*Internal Choice Refinement Monotonic:

A1 u A2 v B1 u B2 provided A1 v B1 and A2 v B2

Proof Proof lies on document [6]. 2

Law B.2.21.

*Parallelism Refinement Monotonic:

A1 |[CS]| A2 v B1 |[CS]| B2 provided A1 v B1 and A2 v B2

Proof Proof lies on document [6]. 2

Law B.2.22.

*External Choice Refinement Monotonic:

A1 2 A2 v B1 2 B2 provided A1 v B1 and A2 v B2

Proof Proof lies on document [6]. 2

Law B.2.23. R2 Conjunction Not Mentioning Trace p ∧ R2 (P) = R2 (p ∧ P), provided

that p does not mention tr and tr’

The proof lies on the documents [6].

Cavalcanti and Woodcock’s Laws

Law B.2.24. *External Choice Idempotence:

(P 2 P) = P

Proof The proof lies on the document [3]

2

Law B.2.25. *Refinement of Non-Determinism:

A u B v A

B.2. AUXILIARY DEFINITIONS, LEMMAS, THEOREMS AND LAWS 51

Proof The proof lies on document [3]

2

Law B.2.26. *Lift is CSP4: Lift (v := e) ; Skip = Lift (v := e)

Proof The proof lies on the document [3]. All definitions, lemmas, theorems, laws and
rules from CML can be used for Circus [5].
2

Law B.2.27. *Lift Composition: Lift (s ; v := w1) = Lift (s) ; Lift (v := w1)

Proof The proof lies on the document [3]
2

Law B.2.28. *Lift External Choice: Lift(s) ; (P 2 Q) = (Lift(s) ; P) 2 (Lift(s) ; Q)

Proof The proof lies on the document [3]
2

Law B.2.29.

*Lift Left Unit: Lift (s) ; Lift (t) = Lift (t)

Proof The proof lies on the document [3]
2

Law B.2.30. *Lift Leading Substitution:

Lift (s) ; P = Lift (s) ; P [e / w1], provided that (s ; (w1 = e))

Proof The proof lies on the document [3]
2

Law B.2.31. (*) Lift (s) ; Lift (v := e) = Lift (s) ; v :=RD e

Proof The proof lies on the document [3]
2

Law B.2.32.

*Substitution:

Lift (v := w) [e / w] = Lift (v := e)

B.2. AUXILIARY DEFINITIONS, LEMMAS, THEOREMS AND LAWS 52

Proof The proof lies on the document [3]

2

Law B.2.33. (*) Lift (var x := w1) = var x ; Lift (x := w1)

Proof The proof lies on document [3]

2

Law B.2.34. *Reactive Design Assignment Declaration:

var x ; x :=RD w = var x :=RD w

Proof The proof lies on document [3]

2

Law B.2.35. (*) varRD x :=RD w ; P = P (w ∨ x)

Proof The proof lies on document [3]

2

Law B.2.36. *Input Absorption:

Lift(s) ; d?x : T→ A = (Lift(s) ; d.w→ A [w / x]) 2 (Lift(s) ; d?x : T→ A)

Proof The proof lies on document [3]
2

Law B.2.37. *Parallel Distributivity:

Lift (s) ; (P |[x1 | cs | x2]| Q) = (Lift(s) ; P) |[x1 | cs | x2]| (Lift(s) ; Q)

Proof The proof lies on document [3]
2

Law B.2.38. *Lift Semi-Idempotence:

s ; (s | x1)+x2 = s

Proof The proof lies on document [3]
2

Law B.2.39. *Lift Merge:

Lift (s1) |[x1 | cs | x2]| Lift (s2) = Lift ((s1 | x1) ∧ (s2 | x2))

B.2. AUXILIARY DEFINITIONS, LEMMAS, THEOREMS AND LAWS 53

Proof The law is referenced on document [3] 2

Law B.2.40. *Closure Conjunctive R1 R1 (P ∧ Q) = P ∧ Q, provided that P and Q are R1

Law B.2.41. *Closure Conjunctive R3 R3 (P ∧ Q) = P ∧ Q, provided that P and Q are R3

This law was proved on [2].

Law B.2.42. *Closure Conjunctive R R (P ∧ Q) = P ∧ Q, provided that P and Q are R

This law was proved on [2].

Law B.2.43. *Closure Disjunctive R2 R2 (P ∨ Q) = P ∨ Q, provided that P and Q are R2

This law was proved on [2].

Other Laws
On this sub-section we show laws that we created and proved correct.

Law B.2.44. Parallel Composition Prefixing Step:

(a→ A2) |[ns1 {| cs |} ns2]| A3 = a→ (A2 |[ns1 {| cs |} ns2]| A3)

provided that

initials (A3) ⊆ cs

cs ∩ {a} = /0

wrtV ({a}) ∩ usedV (A3) = /0

A3 is divergence-free

Proof
(a→ A2) |[ns1 {| cs |} ns2]| A3
= [Prefixing Sequence theorem: B.2.5]
((a→ Skip) ; A2) |[ns1 {| cs |} ns2]| A3
= [Parallel Composition Sequence Step B.2.3 and Assumptions]
true
2

B.2. AUXILIARY DEFINITIONS, LEMMAS, THEOREMS AND LAWS 54

Law B.2.45. Lifted Assignment Sequenced by end x
Lift (s ; end x) = Lift (s) ; Lift (end x)

Proof
Lift (s ; end x)
= [Definition of Lift B.24]
R1 ◦ R3 (true ` s ; end x ∧ tr’ = tr ∧ ¬ wait’)
= [Definition of Sequence B.33]
R1 ◦ R3 (true ` (∃ v0 . s (α, α 0) ∧ end x (α 0, α ’)) ∧ tr’ = tr ∧ ¬ wait’)
= [Predicate Calculus: all variables on v0 are free on R1 and R3]
∃ v0 . R1 ◦ R3 (true ` (s (α, α0) ∧ end x (α0, α’)) ∧ tr’ = tr ∧ ¬ wait’)
= [Predicate Calculus]
∃v0 . R1 ◦ R3 (true ` s (α, α0) ∧ tr’ = tr ∧ ¬ wait’ ∧ end x (α0, α’) ∧ tr’ = tr ∧ ¬ wait’)
= [Designs And True B.2.46]
∃ v0 .
R1 ◦ R3 (true ` s (α, α0) ∧ tr’ = tr ∧ ¬ wait’)
∧ R1 ◦ R3 (true ` end x (α0, α’) ∧ tr’ = tr ∧ ¬ wait’)
= [Definition of Lift B.24]
∃ v0 . Lift (s) ∧ Lift (end x)
= [Definition of Sequence B.33, having, from theorem 11 that Lift (s) is a Circus
action]
Lift (s) ; Lift (end x)
2

Law B.2.46. Designs And True:

(true ` Q1 ∧ Q2) = (true ` Q1) ∧ (true ` Q2)

Proof true ` Q1 ∧ Q2
= [Predicate Calculus]
true ∧ ok⇒ (Q1 ∧ Q2 ∧ ok’)
= [Predicate Calculus]
ok⇒ (Q1 ∧ Q2 ∧ ok’)
= [Predicate Calculus]
(¬ok) ∨ (Q1 ∧ Q2 ∧ ok’)
= [Predicate Calculus]
(¬ok ∨ Q1) ∧ (¬ok ∨ Q2) ∧ (¬ok ∨ ok’)
= [Predicate Calculus]
((¬ok ∨ Q1) ∧ (¬ok ∨ ok’)) ∧ ((¬ok ∨ Q2) ∧ (¬ok ∨ ok’))

B.2. AUXILIARY DEFINITIONS, LEMMAS, THEOREMS AND LAWS 55

= [Predicate Calculus]
(¬ok ∨ (Q1 ∧ ok’)) ∧ (¬ok ∨ (Q2 ∧ ok’))
= [Predicate Calculus]
(ok⇒ Q1 ∧ ok’) ∧ (ok⇒ Q2 ∧ ok’)
= [Predicate Calculus]
(true ∧ ok⇒ Q1 ∧ ok’) ∧ (true ∧ ok⇒ Q2 ∧ ok’)
= [Predicate Calculus]
(true ` Q1) ∧ (true ` Q2)
2

Law B.2.47. P C b B (Q ∧ R) = (P C b B Q) ∧ (P C b B R)

Proof P C b B (Q ∧ R)
= [Definition of Conditional]
(b ∧ P) ∨ (¬ b ∧ Q ∧ R)
= [Predicate Calculus]
((b ∧ P) ∨ (¬ b ∧ Q ∧ ¬ b ∧ R))
= [Predicate Calculus]
((b ∧ P) ∨ (¬ b ∧ Q)) ∧ ((b ∧ P) ∨ (¬ b ∧ R))
= [Definition of Conditional]
(P C b B Q) ∧ (P C b B R)
2

Law B.2.48. Lift And:

Lift (S ∧ P) = Lift (S) ∧ Lift (P)

Proof LHS
= Lift (S ∧ P)
= [Definition of Lift (B.24)]
R1 (R3 (true ` S ∧ P ∧ tr’ = tr ∧ ¬ wait’))
= [Predicate Calculus]
R1 (R3 (true ` S ∧ tr’ = tr ∧ ¬ wait’ ∧ P ∧ tr’ = tr ∧ ¬ wait’))
= [Predicate Calculus]
R1 (R3 (true ` (S ∧ tr’ = tr ∧ ¬ wait’) ∧ (P ∧ tr’ = tr ∧ ¬ wait’)))
= [Designs And True B.2.46]
R1 ◦ R3 ((true ` (S ∧ tr’ = tr ∧ ¬ wait’)) ∧ (true ` (P ∧ tr’ = tr ∧ ¬ wait’)))
= [Closure Conjunctive R1 (B.2.40) and Closure Conjunctive R3 (B.2.41)]
R1 ◦ R3 (true ` (S ∧ tr’ = tr ∧ ¬ wait’)) ∧ R1 ◦ R3 (true ` (P ∧ tr’ = tr ∧ ¬ wait’))

B.2. AUXILIARY DEFINITIONS, LEMMAS, THEOREMS AND LAWS 56

= [Definition of Lift (B.24)]
Lift (S) ∧ Lift (P)
= RHS 2

Law B.2.49. R2 and R3 Composition Commutative:

R2 ◦ R3 (P) = R3 ◦ R2 (P)

Proof
R2 ◦ R3 (P)
= [Definition of R3 B.21]
R2 (IIrea C wait B P)
= [Definition of Conditional B.18]
R2 ((wait ∧ IIrea) ∨ ((¬ wait) ∧ P))
= [Disjunctive Closure R2 B.2.43]
R2 (wait ∧ IIrea) ∨ R2 ((¬ wait) ∧ P)
= [R2 Conjunctive Not Mentioning Trace B.2.23 (having that wait and ¬ wait do not
mention tr and tr’)]
(wait ∧ R2 (IIrea)) ∨ ((¬ wait) ∧ R2 (P))
= [Definition of Conditional B.18]
(R2 (IIrea)) C wait B (R2 (P))
= [Definition of R3 B.21]
R3 ◦ R2 (P)
2

B.3. PROOF OF SOUNDNESS FOR RULES 57

B.3 Proof of Soundness for rules

B.3.1 Assignment

Attached Rule 1.

Assignment:
c (s ; (w0 = e))

(c | s |= v := e) τ−→ (c ∧ (s ; (w0 = e)) | s ; v := w0 |= Skip)

The proof, on document [3], consists on proving that the LHS of the refinement expres-
sion equals the RHS.

Proof
RHS
=
Lift (s ; v := w0) ; Skip
= [Law LiftCSP4 B.2.26]
Lift (s ; v := w0)
= [Law Lift Composition B.2.27]
Lift (s) ; Lift (v := w0)
= [Law Lift Leading Substitution B.2.30]
Lift (s) ; Lift (v := w0) [e/w0]
= [Law Substitution B.2.32]
Lift (s) ; Lift (v := e)
= [Reactive Design Assignment B.17]
Lift (s) ; v :=RD e
=
LHS 2

B.3. PROOF OF SOUNDNESS FOR RULES 58

B.3.2 Prefixing*

Attached Rule 2.

Input*:

c T 6= /0 x /∈ α(s)

(c | s |= d?x:T→ A)
d.w0−−→ (c ∧ w0 ∈ T | s ; var x := w0 |= let x • A)

Proof
(c | s |= d?x:T→ A)

d.w0−−→ (c ∧ w0 ∈ T | s ; var x := w0 |= let x • A)
= [Definition B.26]
∀ w . c ∧ w0 : T⇒(

Lift(s); d?x: T→ A v (Lift(s; var x := w0); d.1→ let x • A) 2 (Lift(s); d?x: T→ A)
)

On Deliverable [3], the proof consists on proving that the RHS (Right-Hand Side) equals
the LHS (Left-Hand Side):

RHS
=
(Lift(s; var x := w0); d.1→ let x • A) 2 (Lift(s); d?x: T→ A)
= [Lemma B.28]
(Lift (s ; var x := w0) ; d.w0→ A) 2 (Lift(s) ; d?x : T→ A)
= [Law Lift Composition B.2.27]
(Lift(s); Lift(var x := w0); d.w0→ A) 2 (Lift(s); d?x : T→ A)
= [Law Lift Var B.2.33](

(Lift(s); varx; Lift(x := w0); d.w0→ A)2 (Lift(s); d?x : T→ A)
)

= [Reactive Design Assignment B.17]
(Lift(s); var x; x :=RD w0; d.w0→ A) 2 (Lift(s); d?x : T→ A)
= [Reactive Design Declaration B.2.34]
(Lift(s); var x :=RD w0; d.w0→ A) 2 (Lift(s); d?x : T→ A)
= [Reactive Design Declaration Elimination B.2.35]
(Lift(s); (d.w0→ A) (w0/x)) 2 (Lift(s) ; d?x : T→ A)
= [Substitution B.2.32]
(Lift(s); d.w0→ A(w0/x)) 2 (Lift(s); d?x : T→ A)
= [Input Absorption B.2.36]
(Lift(s) ; d?x : T→ A)

B.3. PROOF OF SOUNDNESS FOR RULES 59

=
LHS 2

Attached Rule 3.

Output*:

c s ; (w0 = e)

(c | s |= d!e→ A)
d.w0−−→ (c ∧ s ; (w0 = e) | s |= A)

Proof
(c | s |= d!e→ A)

d.w0−−→ (c ∧ s ; (w0 = e) | s |= A)
= [Definition B.26]
∀ w . c ∧ (c ∧ s ; (w0 = e))⇒(
Lift (s) ; d.e→ A v (Lift (s) ; d.w0→ A) 2 (Lift (s) ; d.e→ A)

)
= [Lift Leading Substitution B.2.30] and assumption (s ; (w0 = e))
∀ w . c ∧ (c ∧ s ; (w0 = e))⇒(
Lift (s) ; d.e→ A v (Lift (s) ; (d.w0→ A) [e / w0]) 2 (Lift (s) ; d.e→ A)

)
= [Substitution B.2.32] and assumption (s ; (w0 = e))
∀ w . c ∧ (c ∧ s ; (w0 = e))⇒(
Lift (s) ; d.e→ A v (Lift (s) ; d.e→ A [e / w0]) 2 (Lift (s) ; d.e→ A)

)
= [Substitution B.2.32] and w0 does not occur in A
∀ w . c ∧ (c ∧ s ; (w0 = e))⇒(
Lift (s) ; d.e→ A v (Lift (s) ; d.e→ A) 2 (Lift (s) ; d.e→ A)

)
= [External Choice Idempotence B.2.24]
∀ w . c ∧ (c ∧ s ; (w0 = e))⇒

(
Lift (s) ; d.e→ A v Lift (s) ; d.e→ A

)
= [Refinement Equal Sides 1]
∀ w . c ∧ (c ∧ s ; (w0 = e))⇒ true
= [Predicate Calculus]
∀ w . true
= true 2

B.3. PROOF OF SOUNDNESS FOR RULES 60

B.3.3 Variable Block

All laws for Variable Block (Variable Block Begin, Variable Block Visible and Variable
Block End) were proved by Barrocas, on this Thesis.

Attached Rule 4.

Variable Block Begin:

(c | s |= var x : T • A) τ−→ (c ∧ w0 ∈ T | s ; var x := w0 |= let x • A)

Proof
(c | s |= var x : T • A) τ−→ (c ∧ w0 ∈ T | s ; var x := w0 |= let x • A)
= [Definition of Silent Transition B.25]
∀w . (c ∧ c ∧ w0 : T)⇒ (Lift (s) ; var x : T • A) v (Lift (s ; var x := w0) ; let x • A)
= [w is universally quantified, so we abstract it]
(c ∧ c ∧ w0 : T)⇒ (Lift (s) ; var x : T • A) v (Lift (s ; var x := w0) ; let x • A)
= [Lift Composition B.2.27]
(c ∧ c ∧ w0 : T)⇒ (Lift (s) ; var x : T • A) v (Lift (s) ; Lift (var x := w0) ; let x • A)
= [Lift Left Unit B.2.29]
(c ∧ c ∧ w0 : T)⇒ (var x : T • A) v (Lift (var x := w0) ; let x • A)
= [(x := e) = (var x ; x := e)]
(c ∧ c ∧ w0 : T)⇒ (var x : T • A) v (Lift (var x; x := w0) ; let x • A)
= [Let definition B.28]
(c ∧ c ∧ w0 : T)⇒ (var x : T • A) v (Lift (var x; x := w0) ; A)
= [Refinement Definition B.14]
(c ∧ c ∧ w0 : T)⇒ [(Lift (var x; x := w0) ; A)⇒ (var x : T • A)]
= [Lemma B.8 and assms (w0 : T)]
(c ∧ c ∧ w0 : T)⇒ [true]
= [Predicate Calculus]
(c ∧ c ∧ w0 : T)⇒ true
= [Predicate Calculus]
true
2

Attached Rule 5.

Variable Block Visible:

(c1 | s1 |= A1) l−→ (c2 | s2 |= A2)

(c1 | s1 |= let x • A1) l−→ (c2 | s2 |= let x • A2)

B.3. PROOF OF SOUNDNESS FOR RULES 61

Proof
(c1 | s1 |= let x • A1) l−→ (c2 | s2 |= let x • A2)
= [Definition of let B.28]
(c1 | s1 |= A1) l−→ (c2 | s2 |= let x • A2)
= [Definition of let B.28]
(c1 | s1 |= A1) l−→ (c2 | s2 |= A2)
= [Assumption (c1 | s1 |= A1) l−→ (c2 | s2 |= A2)]
true
2

Attached Rule 6.

Variable Block End:

c

(c | s |= let x • Skip) l−→ (c | s ; end x |= Skip)

Proof
∀ w .(c ∧ c) ⇒ (Lift (s) ; let x • Skip) v (Lift (s ; end x) ; Skip)

= [w is universally quantified, so we abstract it]
(c ∧ c) ⇒ (Lift (s) ; let x • Skip) v (Lift (s ; end x) ; Skip)

= [Assumption c]
(Lift (s) ; let x • Skip) v (Lift (s ; end x) ; Skip)

= [Definition of let [B.28]]
(Lift (s) ; Skip) v (Lift (s ; end x) ; Skip)

= [Lifted Assignment Sequenced by end x B.2.45]
(Lift (s) ; Skip) v (Lift (s) ; Lift (end x) ; Skip)

As Sequence is monotonic with respect to refinement and Lift (s) is refined by it-
self, if we prove that Skipv (Lift (end x) ; Skip), we also prove the above expression:
Skip v (Lift (end x) ; Skip)

= [Sequence Denotational Definition B.33]
Skip v ∃ v0 .(Lift (end x) [v, v0] ∧ Skip [v0, v′])

= [end x definition]
Skipv ∃v0.(Lift(true ∧ ∃x′)[v,v0] ∧ Skip[v0,v′])
= [Lift Definition B.24 and true ∧ ∃ x’ is R2]
Skipv ∃v0.(R(true ` true ∧ ∃x0.tr0 = tr ∧ ¬ wait0) ∧ Skip[v0,v′])
= [Skip Denotational Definition]

B.3. PROOF OF SOUNDNESS FOR RULES 62

Skipv

∃v0.

(
R(true ` true ∧ ∃x0.tr0 = tr ∧ ¬ wait0)
∧ (R(true ` tr′ = tr0 ∧ ¬ wait′ ∧ v′ = v0))

)
= [Predicate Calculus]
Skipv

∃ v0 .

(
R(true ` true ∧ tr0 = tr ∧ ¬ wait0)
∧ (R(true ` tr′ = tr0 ∧ ¬ wait′ ∧ v′ = v0))

)
= [Skip definition]
R(true ` tr′ = tr ∧ ¬ wait′ ∧ v′ = v) v

∃ v0 .

(
R(true ` true ∧ tr0 = tr ∧ ¬ wait0)
∧ (R(true ` tr′ = tr0 ∧ ¬ wait′ ∧ v′ = v0))

)
= [Designs And True B.2.46 and Predicate Calculus]
R(true ` tr′ = tr ∧ ¬ wait′ ∧ v′ = v) v
∃ v0 .

(
R(true ` tr′ = tr ∧ ¬ wait0 ∧ ¬ wait′ ∧ v′ = v0)

)
= [Predicate Calculus]
R(true ` tr′ = tr ∧ ¬ wait′ ∧ v′ = v) v
∃ v .

(
R(true ` tr′ = tr ∧ ¬ wait0 ∧ ¬ wait′ ∧ v′ = v)

)
= [Factor ¬ wait0 makes the right side stronger than the left side, thus it is a refine-
ment]
= true
2

B.3. PROOF OF SOUNDNESS FOR RULES 63

B.3.4 Sequence

Attached Rule 7.

Sequence Progress:

(c1 | s1 |= A1) l−→ (c2 | s2 |= A2)

(c1 | s1 |= A1 ; B) l−→ (c2 | s2 |= A2 ; B)

Proof

We will divide the proof in two cases, both of which have c1 and c2 being true. In
the case that some of them is false, the antecedent of the implication is false, what makes
the expression directly true.

Case 1 : l = τ and c1 and c2 are true

The assumption

(c1 | s1 |= A1) l−→ (c2 | s2 |= A2)

equals (by the definition of Silent Transition B.25)

∀ w . c1 ∧ c2⇒ Lift (s1) ; A1 v Lift (s2) ; A2

Abstracting w, as it is universally quantified, we have

c1 ∧ c2⇒ Lift (s1) ; A1 v Lift (s2) ; A2

Having c1 and c2 being true, by predicate calculus, we have:

[Derived Assumption]: Lift (s1) ; A1 v Lift (s2) ; A2

Now we start proving:

(c1 | s1 |= A1 ; B) τ−→ (c2 | s2 |= A2 ; B)
= [Definition B.25, of τ transition]
∀ w . c1 ∧ c2⇒ Lift (s1) ; A1 ; B v Lift (s2) ; A2 ; B

B.3. PROOF OF SOUNDNESS FOR RULES 64

= [w is universally quantified, so we abstract it]
c1 ∧ c2⇒ Lift (s1) ; A1 ; B v Lift (s2) ; A2 ; B
= [Derived Assumption with Monotonicity of Refinement (6) lead us to: Lift (s1) ; A1

; B v Lift (s2) ; A2 ; B]
= true

Case 2 : l is not silent (6= τ) and c1 and c2 are true
The assumption

(c1 | s1 |= A1) l−→ (c2 | s2 |= A2)

equals (by the definition of Labelled Transition B.26)

∀ w . c1 ∧ c2⇒ Lift (s1) ; A1 v (Lift (s2) ; c.w1→ A2) 2 (Lift (s1) ; A1)
= [w is universally quantified, so we abstract it]
c1 ∧ c2⇒ Lift (s1) ; A1 v (Lift (s2) ; c.w1→ A2) 2 (Lift (s1) ; A1)

Having c1 and c2 being true, by predicate calculus, we have:

∀ w . Lift (s1) ; A1 v (Lift (s2) ; c.w1→ A2) 2 (Lift (s1) ; A1)

and this lead us to

[Derived Assumption 2]:
Lift (s1) ; A1 v (Lift (s2) ; c.w1→ A2) 2 (Lift (s1) ; A1)

Expression to prove:
(c1 | s1 |= A1 ; B) l−→ (c2 | s2 |= A2 ; B) =
∀ w . c1 ∧ c2⇒ (Lift (s1) ; A1 ; B) v (Lift (s2) ; c.w1→ A2 ; B) 2 (Lift (s1) ; A1 ; B)
= [w is universally quantified, so we abstract it]
c1 ∧ c2⇒ (Lift (s1) ; A1 ; B) v (Lift (s2) ; c.w1→ A2 ; B) 2 (Lift (s1) ; A1 ; B)
= [External Choice/Sequence Distributive B.2.11]
c1 ∧ c2⇒ (Lift (s1) ; A1 ; B) v ((Lift (s2) ; c.w1→ A2) 2 (Lift (s1) ; A1) ; B)
= [Derived Assumption 2 with Monotonicity of Refinement (6) lead us to: (Lift (s1) ;
A1 ; B) v (Lift (s2) ; c.w1→ A2 ; B) 2 (Lift (s1) ; A1 ; B)]
c1 ∧ c2⇒ true

B.3. PROOF OF SOUNDNESS FOR RULES 65

= [(P⇒ true) = true]
= true

2

Attached Rule 8.

Sequence End:

c

(c | s |= Skip ; A) τ−→ (c | s |= A)

Proof (c | s |= Skip ; A) τ−→ (c | s |= A)

= [Theorem B.2.2]
(c | s |= A) τ−→ (c | s |= A)

= [Theorem 2]
true 2

B.3. PROOF OF SOUNDNESS FOR RULES 66

B.3.5 Internal Choice*

Attached Rule 9.

Internal Choice Left*:

(c | s |= A1 u A2) τ−→ (c | s |= A1)

Proof
(c | s |= A1 u A2) τ−→ (c | s |= A1)
= [Definition of Silent Transition B.25]
∀ w . c ∧ c⇒ Lift (s) ; (A1 u A2) v Lift (s) ; A1

= [w is universally quantified, so we abstract it]
c ∧ c⇒ Lift (s) ; (A1 u A2) v Lift (s) ; A1

= [Refinement of Non-Determinism B.2.25]
c ∧ c⇒ Lift (s) ; A1 v Lift (s) ; A1

= [Refinement Equal sides 1]
c ∧ c⇒ true
= [Predicate Calculus]
= true 2

Attached Rule 10.

Internal Choice Right:
(c | s |= A1 u A2) τ−→ (c | s |= A2)

Proof
(c | s |= A1 u A2) τ−→ (c | s |= A2)
= Definition of Silent Transition B.25
∀ w . c ∧ c⇒ Lift (s) ; (A1 u A2) v Lift (s) ; A2

= [w is universally quantified, so we abstract it]
c ∧ c⇒ Lift (s) ; (A1 u A2) v Lift (s) ; A2

= [Refinement Non-Determinism B.2.25]
c ∧ c⇒ Lift (s) ; A1 v Lift (s) ; A2

= [Refinement Equal sides 1]
c ∧ c⇒ true
= [Predicate Calculus]
= true 2

B.3. PROOF OF SOUNDNESS FOR RULES 67

B.3.6 Guard

Attached Rule 11.

Guard:

c (s ; g)

(c | s |= g & A) τ−→ (c ∧ (s ; g) | s |= A)

Proof
[Case 1: g is true]
(c | s |= g & A) τ−→ (c ∧ (s ; g) | s |= A)
= [Definition of Silent Transition B.25]
∀ w . c ∧ c ∧ s ; g⇒ (Lift (s) ; g & A) v (Lift (s) ; A)
= [w is universally quantified, so we abstract it]
c ∧ c ∧ s ; g⇒ (Lift (s) ; g & A) v (Lift (s) ; A)
= [Assumptions c and s ; g]
(true ∧ true ∧ true)⇒ (Lift (s) ; g & A) v (Lift (s) ; A)
= [Predicate Calculus]
(Lift (s) ; g & A) v (Lift (s) ; A)
[True guard B.2.4]
(Lift (s) ; A) v (Lift (s) ; A)
= [Refinement Equal Sides 1]
true
[Case 2: g is false]
(c | s |= g & A) τ−→ (c ∧ (s ; g) | s |= A)
= [Definition of Silent Transition B.25]
∀ w . c ∧ c ∧ s ; g⇒ (Lift (s) ; g & A) v (Lift (s) ; A)
= [w is universally quantified, so we abstract it]
c ∧ c ∧ s ; g⇒ (Lift (s) ; g & A) v (Lift (s) ; A)
= [Case 2: g is false (replacing g by false)]
c ∧ c ∧ s ; false⇒ (Lift (s) ; false & A) v (Lift (s) ; A)
= [S Sequence False Equals False 5]
c ∧ c ∧ false⇒ (Lift (s) ; false & A) v (Lift (s) ; A)
= [Predicate Calculus]
false⇒ (Lift (s) ; false & A) v (Lift (s) ; A)
= [Predicate Calculus]
true
2

B.3. PROOF OF SOUNDNESS FOR RULES 68

B.3.7 External Choice*

Attached Rule 12.

External Choice Begin*:

(c | s |= A1 2 A2) τ−→ (c | s |= (loc s • A1) � (loc s • A2))

Proof
∀ w . c ∧ c⇒ (Lift (s) ; A1 2 A2 v (loc s • A1) � (loc s • A2))
= [Definition of Extra Choice B.30]
∀ w . c ∧ c⇒ (Lift (s) ; A1 2 A2 v (loc s • A1) 2 (loc s • A2))
= [w is universally quantified, so we abstract it]
c ∧ c⇒ (Lift (s) ; A1 2 A2 v (loc s • A1) 2 (loc s • A2))
= [Definition of loc B.29]
c ∧ c⇒ (Lift (s) ; A1 2 A2 v (Lift (s) ; A1) 2 (Lift (s) ; A2))
= [Lift External Choice B.2.28]
c ∧ c⇒ (Lift (s) ; A1 2 A2 v (Lift (s) ; Lift (s) ; A1 2 A2))
= [Lift Left Unit B.2.29]
c ∧ c⇒ (Lift (s) ; A1 2 A2 v (Lift (s) ; (A1 2 A2)))
= [Parenthesis]
c ∧ c⇒ (Lift (s) ; (A1 2 A2) v (Lift (s) ; (A1 2 A2)))
= [Refinement Equal Sides 1]
c ∧ c⇒ true
= [(P⇒ true) = true]
true
2

Attached Rule 13.

External Choice Skip*:

(c | s |= loc s1 • Skip � loc s2 • A) τ−→ (c | s |= Skip)

Proof (c | s |= loc s1 • Skip � loc s2 • A) τ−→ (c | s1 |= Skip)
= [Definition of Silent Transition B.25]
∀ w . c⇒ Lift (s1) ; (loc s1 • Skip � loc s2 • A) v Lift (s1) ; Skip
= [w is universally quantified, so we abstract it]
c⇒ Lift (s1) ; (loc s1 • Skip � loc s2 • A) v Lift (s1) ; Skip
= [Definition of Loc B.29]

B.3. PROOF OF SOUNDNESS FOR RULES 69

c⇒ Lift (s1) ; (Lift (s1) ; Skip � Lift (s2) ; A) v Lift (s1) ; Skip
= [Lift is CSP4 B.2.26]
c⇒ Lift (s1) ; (Lift (s1) � Lift (s2) ; A) v Lift (s1) ; Skip
= [Extra Choice Definition B.30]
c⇒ Lift (s1) ; (Lift (s1) 2 Lift (s2) ; A) v Lift (s1) ; Skip
= [External Choice Assignment]
c⇒ Lift (s1) ; Lift (s1) v Lift (s1) ; Skip
= [Lift is CSP4 B.2.26]
c⇒ Lift (s1) ; Lift (s1) v Lift (s1)
= [Lift Left Unit B.2.29]
c⇒ Lift (s1) v Lift (s1)
= [Refinement Equal Sides 1]
c⇒ true
= [Predicate Calculus]
= true
2

Attached Rule 14.

External Choice End*:

(c1 | s1 |= A1) l−→ (c3 | s3 |= A3)

(c | s |= loc s1 • A1 � loc s2 • A2) l−→ (c3 | s3 |= A3)

Proof
(c | s |= loc s1 • A1 � loc s2 • A2) l−→ (c3 | s3 |= A3)
= [Definition of labelled transition B.26]
∀ w . c ∧ c3⇒ Lift (s) ; ((loc s1 • A1) � (loc s2 • A2)) v (Lift (s3) ; l→ A3) 2 (Lift (s) ;
((loc s1 • A1) � (loc s2 • A2)))
= [w is universally quantified, so we abstract it]
c ∧ c3⇒ Lift (s) ; ((loc s1 • A1) � (loc s2 • A2)) v (Lift (s3) ; l→ A3) 2 (Lift (s) ; ((loc
s1 • A1) � (loc s2 • A2)))
= [Definition of Extra Choice B.30]
c ∧ c3⇒ Lift (s) ; ((loc s1 • A1) 2 (loc s2 • A2)) v (Lift (s3) ; l→ A3) 2 (Lift (s) ; ((loc
s1 • A1) 2 (loc s2 • A2)))
= [Definition of Loc B.29]
c ∧ c3⇒ Lift (s) ; ((loc s1 • A1) 2 (loc s2 • A2)) v (Lift (s3) ; l→ A3) 2 (Lift (s) ; ((Lift
(s1) ; A1) 2 (Lift (s2) ; A2)))

B.3. PROOF OF SOUNDNESS FOR RULES 70

= [Lift External Choice B.2.28]
c ∧ c3⇒ Lift (s) ; ((loc s1 • A1) 2 (loc s2 • A2)) v (Lift (s3) ; l→ A3) 2 (Lift (s) ; Lift
(s1) ; A1) 2 (Lift (s) ; Lift (s2) ; A2)))
= [Lift Left Unit B.2.29]
c ∧ c3⇒ Lift (s) ; ((loc s1 • A1) 2 (loc s2 • A2)) v (Lift (s3) ; l→ A3) 2 (Lift (s1) ; A1)
2 (Lift (s2) ; A2)))
= [Assumption]
c ∧ c3⇒ Lift (s) ; ((loc s1 • A1) 2 (loc s2 • A2)) v (Lift (s1) ; A1) 2 (Lift (s2) ; A2)))
= [Lift Left Unit B.2.29]
c ∧ c3⇒ Lift (s) ; ((loc s1 • A1) 2 (loc s2 • A2)) v (Lift (s) ; Lift (s1) ; A1) 2 (Lift (s) ;
Lift (s2) ; A2)))
= [Lift External Choice B.2.28]
c ∧ c3⇒ Lift (s) ; ((loc s1 • A1) 2 (loc s2 • A2)) v (Lift (s) ; (Lift (s1) ; A1) 2 Lift (s2) ;
A2)
= [Definition of Loc B.29]
c ∧ c3⇒ Lift (s) ; ((loc s1 • A1) 2 (loc s2 • A2)) v (Lift (s) ; (loc s1 • A1) 2 loc s2 • A2)
= [Definition of Extra Choice B.30]
c ∧ c3⇒ Lift (s) ; ((loc s1 • A1) 2 (loc s2 • A2)) v (Lift (s) ; (loc s1 • A1) � loc s2 • A2)
= [Refinement Equal Sides 1]
c ∧ c3⇒ true
= [Predicate Calculus]
= true
2

Attached Rule 15.

External Choice Silent Left:
(c1 | s1 |= A1) τ−→ (c3 | s3 |= A3)

(c | s |= loc s1 • A1 � loc s2 • A2) τ−→ (c | s |= loc s3 • A3 � loc s2 • A2)

(c1 | s |= (loc s1 • A1) � (loc s2 • A2))
τ−→

(c2 | s |= (loc s3 • A3) � (loc s2 • A2))
= [loc definition B.29]
(c1 | s |= (Lift (s1); A1) � (Lift (s2); A2))
τ−→

(c2 | s |= (Lift (s3); A3) � (Lift (s2); A2))

B.3. PROOF OF SOUNDNESS FOR RULES 71

= [Extra choice definition B.30]
(c1 | s |= (Lift (s1); A1) 2 (Lift (s2); A2))
τ−→

(c2 | s |= (Lift (s3); A3) 2 (Lift (s2); A2))
= [Definition of Silent Transition B.25]
∀w . c1 ∧ c2⇒ (Lift (s1); A1) 2 (Lift (s2); A2)) v (Lift (s3); A3) 2 (Lift (s2); A2)
= [w is universally quantified, so we abstract it]
c1 ∧ c2⇒ (Lift (s1); A1) 2 (Lift (s2); A2)) v (Lift (s3); A3) 2 (Lift (s2); A2)
[Assumpt. (Lift (s1) ; A1 v Lift (s3) ; A3) + Ref.Eq.Sides (1)]
c1 ∧ c2⇒ true
= [Predicate Calculus]
true

Attached Rule 16.

External Choice Silent Right:
(c2 | s2 |= A2) τ−→ (c3 | s3 |= A3)

(c | s |= loc s1 • A1 � loc s2 • A2) τ−→ (c | s |= loc s1 • A1 � loc s3 • A3)

(c1 | s |= (loc s1 • A1) � (loc s2 • A2))
τ−→

(c2 | s |= (loc s1 • A1) � (loc s3 • A3))
= [loc definition B.29]
(c1 | s |= (Lift (s1); A1) � (Lift (s2); A2))
τ−→

(c2 | s |= (Lift (s1); A1) � (Lift (s3); A3))
= [Extra choice definition B.30]
(c1 | s |= (Lift (s1); A1) 2 (Lift (s2); A2))
τ−→

(c2 | s |= (Lift (s1); A1) 2 (Lift (s3); A3))
= [Definition of Silent Transition B.25]
∀w . c2 ∧ c2⇒ (Lift (s1); A1) 2 (Lift (s2); A2)) v (Lift (s1); A1) 2 (Lift (s3); A3)
= [w is universally quantified, so we abstract it]
c2 ∧ c2⇒ (Lift (s1); A1) 2 (Lift (s2); A2)) v (Lift (s1); A1) 2 (Lift (s3); A3)
= [Lift (s2) ; A2 v Lift (s3) ; A3 (this is the assumption) + Refinement Equal Sides 1]
c1 ∧ c2⇒ true

B.3. PROOF OF SOUNDNESS FOR RULES 72

= [Predicate Calculus]
true

B.3. PROOF OF SOUNDNESS FOR RULES 73

B.3.8 Parallelism*

Attached Rule 17.

Parallel Begin*:

(c | s |= A1 |[s1 | cs | s2]| A2)
τ−→

(c | s |= (loc (s | x1)+x2 • A1) |[x1 | cs | x2]| (loc (s | x2)+x1 • A2))

Proof
(c | s |= A1 |[s1 | cs | s2]| A2)
τ−→

(c | s |= (loc (s | x1)+x2 • A1) |[x1 | cs | x2]| (loc (s | x2)+x1 • A2))
= [Definition of Silent Transition B.25]
∀ w . c⇒ Lift (s) ; A1 |[s1 | cs | s2]| A2 v Lift (s) ; (loc (s | x1)+x2 • A1) |[x1 | cs | x2]|
(loc (s | x2)+x1 • A2

The proof from now on will consist on proving that the RHS of the refinement is
equal to the LHS.
RHS =
Lift (s) ; (loc (s | x1)+x2 • A1) |[x1 | cs | x2]| (loc (s | x2)+x1 • A2

= [Definition of Loc B.29]
Lift (s) ; (Lift (s | x1)+x2 ; A1) |[x1 | cs | x2]| (Lift (s | x2)+x1 ; A2

= [Parallel Distributivity B.2.37]
Lift (s) ; (Lift (s | x1)+x2 ; A1) |[x1 | cs | x2]| Lift (s) ; (Lift (s | x2)+x1 ; A2

= [Lift Composition (twice)B.2.27]
Lift (s; (s | x1)+x2 ; A1) |[x1 | cs | x2]| Lift (s ; (s | x2)+x1 ; A2

= [Lift Semi Idempotence B.2.38]
Lift (s) ; A1) |[x1 | cs | x2]| Lift (s2) ; A2

= [Lift Parallel Distributivity B.2.37]
Lift (s) ; A1 |[x1 | cs | x2]| A2

= LHS 2

Attached Rule 18.

Parallel End*:

(c | s |= (loc s1 • Skip) |[x1 | cs | x2]| (loc s2 • Skip)) τ−→ (c | (s1 | x1) ∧ (s2 | x2) |= Skip)

Proof
(c | s |= (loc s1 • Skip) |[x1 | cs | x2]| (loc s2 • Skip)) τ−→ (c | (s1 | x1) ∧ (s2 | x2) |= Skip)

B.3. PROOF OF SOUNDNESS FOR RULES 74

= [Definition of Silent Transiton B.25]

∀w . c⇒

(
Lift (s) ; locs1 • Skip |[cs]| locs2 • Skip

v Lift (s) ; (loc(s | x1)+x2 • Skip) |[x1 | cs | x2]| (loc(s | x2)+x1 • Skip)

)
The proof from now on will consist on proving that the RHS of the refinement is
equal to the LHS.
LHS
= Lift (s) ; (loc s1 • Skip) |[x1 | cs | x2]| (loc s2 • Skip)
= [Definition of Loc B.29]
Lift (s) ; (Lift (s1) ; Skip) |[x1 | cs | x2]| (Lift (s2) ; Skip)
= [Parallel Distributivity B.2.37]
(Lift (s) ; Lift(s1) ; Skip) |[x1 | cs | x2]| (Lift (s) ; Lift(s2) ; Skip)
= [Lift Left Unit B.2.29 twice]
(Lift (s1) ; Skip) |[x1 | cs | x2]| (Lift (s2) ; Skip)
= [Lift CSP4 B.2.26 twice]
Lift (s1) |[x1 | cs | x2]| Lift (s2)
= [Lift Merge B.2.39]
Lift (s1 | x1 ∧ s2 | x2) ; Skip
=
RHS 2

Attached Rule 19.

Parallel Independent Left:
(c1 | s1 |= A1) l−→ (c3 | s3 |= A3) ((l = τ) ∨ chan(l) /∈ cs)

(c | s |= loc s1 • A1 |[x1 | CS | x2]| loc s2 • A2)
l−→ (c | s |= loc s3 • A3 |[x1 | CS | x2]| loc s2 • A2)

Recapitulating the assumptions given on rule 19, they are:

• (c1 | s1 |= A1) l−→ (c3 | s3 |= A3)
• ((l = τ) ∨ chan(l) /∈ cs)

Beyond the previous two assumptions, we also provide the following assumptions (in order
to apply Parallel Prefixed Loc 8 rule):

• Lift (s1) ; A1 v Lift (s3) ; l→ A3 2 Lift (s1) ; A1 [Assumption 3]
• initials (Lift (s2) ; A2) ⊆ CS [Assumption 4]
• CS ∩ usedC (Lift (s3); A3) = /0 [Assumption 5]
• wrtV (Lift (s3); A3) ∩ usedV (Lift (s2) ; A2) = /0 [Assumption 6]

B.3. PROOF OF SOUNDNESS FOR RULES 75

• Lift (s2) ; A2 is divergence free [Assumption 7]
• ok = ok’ [Assumption 8]

From assumptions (c | s1 |= A1) l−→ (c3 | s3 |= A3) and (l 6= τ)

we apply Labelled Transition Definition and find

∀ w . c ∧ c3⇒ Lift (s1) ; A1 v Lift (s3) ; A3

Then we consider both c and c3 being true and we find

∀ w . true ∧ true⇒ Lift (s1) ; A1 v Lift (s3) ; A3

then we apply Predicate Calculus twice and find

Lift (s1) ; A1 v Lift (s3) ; A3

For the case where c or c3 is false, we have a false assumption and then it makes the
expression directly true ((false⇒ Rule) = true).

Proof
As there is an ∨ operator between factor l = τ and factor chan (l) /∈ CS, the proof must be
done to both cases:

For l = τ:

(c | s |= loc s1 • A1 |[x1 | CS | x2]| loc s2 • A2)
l−→ (c3 | s |= loc s3 • A3 |[x1 | CS | x2]| loc s2 • A2)

= [Definition of Silent Transition B.25 (as l = τ, the transition is silent)]
∀ w . c ∧ c3⇒
Lift (s) ; (loc s1 • A1) |[x1 {| CS |} x2]| (loc s2 • A2)
v Lift (s) ; (loc s3 • A3) |[x1 | CS | x2]| (loc s2 • A2)
= [w is universally quantified, so we abstract it throughout the proof]
c ∧ c3⇒
Lift (s) ; (loc s1 • A1) |[x1 {| CS |} x2]| (loc s2 • A2)
v Lift (s) ; (loc s3 • A3) |[x1 | CS | x2]| (loc s2 • A2)

B.3. PROOF OF SOUNDNESS FOR RULES 76

= [Par.Ind.Ref.9 (providing Assumpt.1 from the rule)+Ref.Eq.Sides 1+Ref.Mon.6]
true

For chan (l) /∈ CS , l 6= τ and c and c3 are true
(when at least some of them is false the whole expression is true):

(c | s |= loc s1 • A1 |[x1 | CS | x2]| loc s2 • A2)
l−→ (c3 | s |= loc s3 • A3 |[x1 | CS | x2]| loc s2 • A2)

= [Definition of Labelled Transition B.26 (as l 6= τ, the transition is labelled)]
∀ w . c ∧ c3⇒

Lift(s); locs1 •A1 |[x1 | CS | x2]| locs2 •A2

v(
Lift(s); l→ locs3 •A3 |[x1 | CS | x2]| locs2 •A2

2 Lift(s); locs1 •A1 |[x1 | CS | x2]| locs2 •A2

)


= [w is universally quantified, so we abstract it]
c ∧ c3⇒

Lift(s); locs1 •A1 |[x1 | CS | x2]| locs2 •A2

v(
Lift(s); l→ locs3 •A3 |[x1 | CS | x2]| locs2 •A2

2 Lift(s); locs1 •A1 |[x1 | CS | x2]| locs2 •A2

)


= [c and c3]
true⇒

Lift(s); locs1 •A1 |[x1 | CS | x2]| locs2 •A2

v(
Lift(s); l→ locs3 •A3 |[x1 | CS | x2]| locs2 •A2

2 Lift(s); locs1 •A1 |[x1 | CS | x2]| locs2 •A2

)


= [Predicate Calculus]
Lift(s); locs1 •A1 |[x1 | CS | x2]| locs2 •A2

v(
Lift(s); l→ locs3 •A3 |[x1 | CS | x2]| locs2 •A2

2 Lift(s); locs1 •A1 |[x1 | CS | x2]| locs2 •A2

)


= [External Choice Refinement Implication 15]
Lift(s); locs1 •A1 |[x1 | CS | x2]| locs2 •A2

v(
Lift(s); l→ locs3 •A3 |[x1 | CS | x2]| locs2 •A2

)


= [Parallel Prefixed Loc 8 (having assumptions 3 to 8) with Monotonicity of Refine-
ment 6]

B.3. PROOF OF SOUNDNESS FOR RULES 77

true
2

Attached Rule 20.

Parallel Independent Right:
(c2 | s2 |= A2) l−→ (c3 | s3 |= A3) ((l = τ) ∨ chan(l) /∈ cs)

(c | s |= loc s1 • A1 |[x1 | CS | x2]| loc s2 • A2)
l−→ (c | s |= loc s1 • A1 |[x1 | CS | x2]| loc s3 • A3)

Recapitulating the previous assumptions:

• (c2 | s2 |= A2) l−→ (c3 | s3 |= A3) [Assumption 1]
• (l = τ) ∨ chan(l) /∈ cs [Assumption 2]

Beyond the previous two assumptions, we also provide the following assumptions (in order
to apply Parallel Prefixed Loc 8 rule):

• Lift (s2) ; A2 v Lift (s3) ; l→ A3 2 Lift (s2) ; A2 [Assumption 3]
• initials (Lift (s1) ; A1) ⊆ CS [Assumption 4]
• CS ∩ usedC (Lift (s3); A3) = /0 [Assumption 5]
• wrtV (Lift (s3); A3) ∩ usedV (Lift (s1) ; A1) = /0 [Assumption 6]
• Lift (s1) ; A1 is divergence free [Assumption 7]
• ok = ok’ [Assumption 8]

Proof
(c | s |= loc s1 • A1 |[x1 | CS | x2]| loc s2 • A2)
l−→ (c | s |= loc s1 • A1 |[x1 | CS | x2]| loc s3 • A3)

= [Compound Actions Commutative B.2.6]
(c | s |= loc s2 • A2 |[x2 | CS | x1]| loc s1 • A1)
l−→ (c | s |= loc s1 • A1 |[x1 | CS | x2]| loc s3 • A3)

= [Compound Actions Commutative B.2.6]
(c | s |= loc s2 • A2 |[x2 | CS | x1]| loc s1 • A1)
l−→ (c | s |= loc s3 • A3 |[x3 | CS | x1]| loc s1 • A1)

= [Parallel Independent Left 19 (having assumptions 2-12)]
true 2

B.3. PROOF OF SOUNDNESS FOR RULES 78

Attached Rule 21.

Parallel Synchronised:

d ∈ cs c1 c2 c3 c4 (w1 = w2)

(∗,�) ∈ (?, !), (!, ?), (!, !), (., .), (?, ?)

(c1 | s1 |= A1)
d∗w1−−−→ (c3 | s3 |= A3)

(c2 | s2 |= A2)
d�w2−−−→ (c4 | s4 |= A4)

(c1 ∧ c2 | s |= (c1 | loc s1 • A1) |[x1 | cs | x2]| (c2 | loc s2 • A2))
d|w2−−→

c3 ∧ c4 ∧ w1 = w2 | s |= (c3 ∧ (w1 = w2) | locs3 •A3)

|[x1 | cs | x2]|
(c4 ∧ (w1 = w2) | locs4 •A4)




Recapitulating the previous assumptions:

• d ∈ cs, c1, c2, c3, c4 [Assumptions 1, 2, 3, 4 and 5]
• w1 = w2 [Assumption 6]
• (∗,�) ∈ (?, !), (!, ?), (!, !), (., .), (?, ?) [Assumption 7]
• (c1 | s1 |= A1)

d∗w1−−−→ (c3 | s3 |= A3) [Assumption 8]
• (c2 | s2 |= A2)

d�w2−−−→ (c4 | s4 |= A4) [Assumption 9]

We also provide the following assumption in order to allow the proof using Lift Shift 7:

• 3.ok = 3.ok’ and 4.ok = 4.ok’ [Assumption 10]
(3 and 4 are labels for some branches of the parallelism, such that i is the label for
branch Lift (si) ; d→ Ai);

And now we derive other assumptions from Assumption 8 and Assumption 9, called
compldw1 and compldw2:
[Assumption 8]
= [Labelled Transition Implication B.17]
∀ w. c1 ∧ c3⇒ (Lift (s1); A1) v (Lift (s3); d∗w1→ A3) [Assumption compldw1]
= w is unviversally quantified, so we abstract it]
c1 ∧ c3⇒ (Lift (s1); A1) v (Lift (s3); d∗w1→ A3) [Assumption compldw1]
[Assumption 9]
= [Labelled Transition Implication B.17]
c1 ∧ c3⇒ (Lift (s1); A1) v (Lift (s3); d∗w1→ A3) [Assumption compldw2]
Now we will start proving.

B.3. PROOF OF SOUNDNESS FOR RULES 79

Proof
(c1 ∧ c2 | s |= (c1 | loc s1 • A1) |[x1 | cs | x2]| (c2 | loc s2 • A2))
d|w2−−→

(c3 ∧ c4 ∧ w1 = w2 | s |= ((loc s3 • A3) |[x1 | cs | x2]| (loc s4 • A4)))
= [Definition of Labelled Transition]
∀ w . c1 ∧ c2 ∧ c3 ∧ c4 ∧ w1 = w2⇒

(Lift(s); (locs1 •A1) |[x1 | cs | x2]| (c2 | locs2 •A2))

v (Lift(s); d | w2→ ((locs3 •A3) |[x1 | cs | x2]| (locs4 •A4)))

2

(Lift(s); (locs1 •A1) |[x1 | cs | x2]| (c2 | locs2 •A2))




= [w is universally quantified, so we abstract it]
c1 ∧ c2 ∧ c3 ∧ c4 ∧ w1 = w2⇒

(Lift(s); (locs1 •A1) |[x1 | cs | x2]| (c2 | locs2 •A2))

v (Lift(s); d | w2→ ((locs3 •A3) |[x1 | cs | x2]| (locs4 •A4)))

2

(Lift(s); (locs1 •A1) |[x1 | cs | x2]| (c2 | locs2 •A2))




= [Communication Parallelism Distribution B.2.7 (having that {d} ∈ CS, as it is Par.
Synchronised)]
c1 ∧ c2 ∧ c3 ∧ c4 ∧ w1 = w2⇒

(Lift(s); (locs1 •A1) |[x1 | cs | x2]| (c2 | locs2 •A2))

v (Lift(s); (d | w2→ (locs3 •A3) |[x1 | cs | x2]|d | w2→ (locs4 •A4)))

2

(Lift(s); (locs1 •A1) |[x1 | cs | x2]| (c2 | locs2 •A2))




= [Definition of Loc B.29 6x]
c1 ∧ c2 ∧ c3 ∧ c4 ∧ w1 = w2⇒

(Lift(s); (Lift(s1); A1) |[x1 | cs | x2]| (c2 | Lift(s2); A2))

v (Lift(s); (d | w2→ (Lift(s3); A3) |[x1 | cs | x2]|d | w2→ (Lift(s4); A4)))

2

(Lift(s); (Lift(s1); A1) |[x1 | cs | x2]| (c2 | Lift(s2); A2))




= [Lift Shift 7 (having assumption 10)]
c1 ∧ c2 ∧ c3 ∧ c4 ∧ w1 = w2⇒

B.3. PROOF OF SOUNDNESS FOR RULES 80


(Lift(s); (Lift(s1); A1) |[x1 | cs | x2]| (c2 | Lift(s2); A2))

v (Lift(s); ((Lift(s3); d | w2→ A3) |[x1 | cs | x2]| (Lift(s4); d | w2→ A4)))

2

(Lift(s); (Lift(s1); A1) |[x1 | cs | x2]| (c2 | Lift(s2); A2))




= [If w1 6= w2, the antecedent is false, thus the whole expression is true. If w1 = w2 is
true, w2 can be replaced by w1]
c1 ∧ c2 ∧ c3 ∧ c4 ∧ w1 = w2⇒

(Lift(s); (Lift(s1); A1) |[x1 | cs | x2]| (c2 | Lift(s2); A2))

v (Lift(s); ((Lift(s3); d | w1→ A3) |[x1 | cs | x2]| (Lift(s4); d | w2→ A4)))

2

(Lift(s); (Lift(s1); A1) |[x1 | cs | x2]| (c2 | Lift(s2); A2))




= [External Choice Refinement Implication 15]
c1 ∧ c2 ∧ c3 ∧ c4 ∧ w1 = w2⇒

(Lift(s); (Lift(s1); A1) |[x1 | cs | x2]| (c2 | Lift(s2); A2))

v(
(Lift(s); ((Lift(s3); d | w1→ A3) |[x1 | cs | x2]| (Lift(s4); d | w2→ A4)))

)


= [Assumptions complw1 and complw2 with Monotonicity of Refinement for Paral-
lelism B.2.21]
c1 ∧ c2 ∧ c3 ∧ c4 ∧ w1 = w2⇒ true
= [Predicate Calculus]
true
2

B.3. PROOF OF SOUNDNESS FOR RULES 81

B.3.9 Hiding

Attached Rule 22.

Hiding Internal:
(c1 | s1 |= A) l−→ (c2 | s2 |= B) l ∈ S

(c1 | s1 |= A \ S) τ−→ (c2 | s2 |= B \ S)

For proving the above rule, we will also assume that (A \ S) and (B \ S) are divergence-free
(ok and ok’), and we will call this assumption as [Assumption Div].

On the rule, as it has a labelled transition from program text A to program text B, then A =
l→ B [We will call it Assumption 3].

[Assumption 1]
(c1 | s1 |= A) l−→ (c2 | s2 |= B)
= [Definition of Labelled Transition B.26]
∀w . c1 ∧ c2⇒ Lift (s1) ; A v (Lift (s2) ; l→ B) 2 Lift (s1) ; A
= [w is universally quantified, so we abstract it]
c1 ∧ c2⇒ Lift (s1) ; A v (Lift (s2) ; l→ B) 2 Lift (s1) ; A
= [External Choice Refinement Implication 15]
c1 ∧ c2⇒ Lift (s1) ; A v (Lift (s2) ; l→ B)
= [For c1 and c2 being true, we have as follows (if either c1 or c2 is false, the an-
tecedent is false, thus the whole expression is true)]
true⇒ Lift (s1) ; A v (Lift (s2) ; l→ B)
= [Predicate Calculus]
Lift (s1) ; A v (Lift (s2) ; l→ B)
= [Assumption 3]
Lift (s1) ; l→ B v (Lift (s2) ; l→ B)
⇒ [Hiding Monotonic B.2.9]
(Lift (s1) ; l→ B) \ S v (Lift (s2) ; l→ B) \ S
= [Sequence Skip B.2.2]
(Lift (s1) ; l→ Skip ; B) \ S v (Lift (s2) ; l→ Skip ; B) \ S
= [Hidden Event Sequenced By Skip 16 (having ok and ok’ from Assumption Div)]
(Lift (s1) ; Skip ; B) \ S v (Lift (s2) ; Skip ; B) \ S
= [Sequence Skip B.2.2]
(Lift (s1) ; B) \ S v (Lift (s2) ; B) \ S [Assumption 4]

B.3. PROOF OF SOUNDNESS FOR RULES 82

Expression to be proved:

∀w . c1 ∧ c2⇒ Lift (s1) ; A \ S v Lift (s2) ; B \ S

Proof
(c1 | s1 |= A \ S) τ−→ (c2 | s2 |= B \ S)
= [Definition of Silent Transition B.25]
∀w . c1 ∧ c2⇒ Lift (s1) ; A \ S v Lift (s2) ; B \ S
= [w is universally quantified, so we abstract it]
c1 ∧ c2⇒ Lift (s1) ; A \ S v Lift (s2) ; B \ S
= [By Assumption 3]
c1 ∧ c2⇒ (Lift (s1) ; (l→ B)) \ S v (Lift (s2) ; B) \ S
= [Hiding Sequence Distributive B.2.12]
c1 ∧ c2⇒ (Lift (s1) ; (l→ B)) \ S v (Lift (s2) ; B) \ S
= [Skip A Equals A B.2.2]
c1 ∧ c2⇒ (Lift (s1) ; (l→ Skip ; B)) \ S v (Lift (s2) ; B) \ S
= [Hiding Sequence Distributive B.2.12]
c1 ∧ c2⇒ (Lift (s1) ; ((l→ Skip) \ S ; B \ S)) v (Lift (s2) ; B) \ S
= [Hidden Event Sequenced by Skip 16]
c1 ∧ c2⇒ (Lift (s1) ; (Skip ; B \ S)) v (Lift (s2) ; B) \ S
= [Skip A Equals A B.2.2]
c1 ∧ c2⇒ (Lift (s1) ; (B \ S)) v (Lift (s2) ; B) \ S
= [Hiding Identity B.2.8 (as Lift (s1) is a sequence of assignments, it does not contain
any channel)]
c1 ∧ c2⇒ (Lift (s1) \ S ; (B \ S)) v (Lift (s2) ; B) \ S
= [Assume c1 ∧ c2 from now on (when c1 ∧ c2 is false, then the whole expression is
true)]
(Lift (s1) \ S ; (B \ S)) v (Lift (s2) ; B) \ S
= [Hiding Sequence Distributive B.2.12]
(Lift (s1) ; B) \ S v (Lift (s2) ; B) \ S
= [Assumption 4]
true
2

Attached Rule 23.

B.3. PROOF OF SOUNDNESS FOR RULES 83

Hiding Visible:

(c1 | s1 |= A) l−→ (c2 | s2 |= B) l /∈ S

(c1 | s1 |= A \ S) l−→ (c2 | s2 |= B \ S)

Expression to be proved:

∀w. c1∧c2⇒ Lift (s1); A\S v (Lift (s2); c.w1→ B\S) 2 Lift (s1); A\S
Proof
∀w . c1 ∧ c2⇒
Lift (s1) ; A \ S v (Lift (s2) ; c.w1→ B \ S) 2 Lift (s1) ; A \ S
= [w is universally quantified, so we abstract it]
c1 ∧ c2⇒
Lift (s1) ; A \ S v (Lift (s2) ; c.w1→ B \ S) 2 Lift (s1) ; A \ S
= [No channels are used on Lift (s), so Lift (s) = Lift (s) \ S]
c1 ∧ c2⇒
Lift (s1) \ S ; A \ S v (Lift (s2) \ S ; c.w1→ B \ S) 2 Lift (s1) \ S ; A \ S
= [Hiding Sequence Distributive B.2.12]
c1 ∧ c2⇒
(Lift (s1) ; A) \ S v ((Lift (s2) ; c.w1→ B) \ S) 2 (Lift (s1) ; A) \ S
= [Hiding External Choice Distributive B.2.10]
c1 ∧ c2⇒
(Lift (s1) ; A) \ S v ((Lift (s2) ; c.w1→ B) 2 (Lift (s1) ; A)) \ S
= [Assumption and Hiding Monotonic B.2.9]
c1 ∧ c2⇒ true
= [Predicate Calculus]
true 2

Attached Rule 24.

Hiding Skip:

(c | s |= Skip \ S) τ−→ (c | s |= Skip)

Proof We start this proof by infering an assumption from function UsedC (B.12):
(UsedC (Skip) = { })⇒ (New Assumption) (S ∩ UsedC (Skip) = { })
Now we will continue the proof:
(c | s |= Skip \ S) τ−→ (c | s |= Skip)
= [From New Assumption and Law B.2.8]

B.3. PROOF OF SOUNDNESS FOR RULES 84

(c | s |= Skip) τ−→ (c | s |= Skip)
= [Silent Transition between Equivalent nodes 2]
true 2

B.3. PROOF OF SOUNDNESS FOR RULES 85

B.3.10 Recursion

Attached Rule 25.

Recursion:

(c | s |= A) τ−→ (c | s |= B) N = A

(c | s |= N) τ−→ (c | s |= B)

Proof The proof for Recursion is straightforward. We only apply the assumption N = A
and then the other assumption to prove:
(c | s |= N) τ−→ (c | s |= B)
= [Assumption N = A]
(c | s |= A) τ−→ (c | s |= B)
= [Assumption (c | s |= A) τ−→ (c | s |= B)]
true 2

B.3.11 Call

Attached Rule 26.

Call:
CALL = Content (CALL)

(c | s |= CALL) τ−→ (c | s |= Content (CALL))

Proof (c | s |= CALL) τ−→ (c | s |= Content (CALL))
= [Assumption CALL = Content (CALL)]
(c | s |= Content (CALL)) τ−→ (c | s |= Content (CALL))
= [Silent Transition Between Equivalent Nodes 2]
true 2

B.3.12 Iterated Actions

Attached Rule 27.

Iterated Actions:

(c | s |= OP Decl • A) τ−→ (c | s |= IteratedExpansion (A, Decl, ITOPFLAG))

IteratedExpansion is defined on B.3. ITOPFLAG, as indicated on B.3, is a flag that indi-

cates the operator that is being iterated.

B.3. PROOF OF SOUNDNESS FOR RULES 86

Proof. (c | s |= OP Decl • A) τ−→ (c | s |= IteratedExpansion (A, Decl, ITOPFLAG))
= [Definition of Iterated Operator B.3]
(c | s |= IteratedExpansion (A, Decl, ITOPFLAG)) τ−→ (c | s |= IteratedExpansion (A, Decl,
ITOPFLAG))
= [Silent Transition Equal Sides 2]
true

B.3. PROOF OF SOUNDNESS FOR RULES 87

B.3.13 If-Guarded Command

Attached Rule 28.

If-Guarded Command:

Be

IGC =̂ if (pred1)→ A1 [] (pred2)→ A2 [] ... [] (predn)→ An fi, then

(c | s |= IGC) τ−→ (c ∧ pred1 | s |= A1) T1

(c | s |= IGC) τ−→ (c ∧ pred2 | s |= A2) T2

...

(c | s |= IGC) τ−→ (c ∧ predn | s |= An) Tn

(c | s |= IGC)
τ−→

(c ∧ (¬ pred1) ∧ (¬ pred2) ∧ ... ∧ (¬ predn−1) ∧ (¬ predn) | s |= Chaos) TChaos

Proof
Proof of T1

Among rules Ti, we will prove only law T1. The other laws can be proved using similar
reasoning.

(c | s |= IGC) τ−→ (c ∧ pred1 | s |= A1)
= [Definition of Silent Transition B.25]
∀ w . c ∧ c ∧ pred1⇒ (Lift (s) ; IGC v Lift (s) ; A1)
= [w is universally quantified, so we abstract it]
c ∧ c ∧ pred1⇒ (Lift (s) ; IGC v Lift (s) ; A1)
= [Monotonicity of Refinement 6: if Lift (s) v Lift (s) and IGC v A1 (by B.12 and
(assms) pred1 (pred1 is true because it appears on the left side of the implication))]
c ∧ c ∧ pred1⇒ true
= [Predicate Calculus]
true

Now we will prove TChaos rule.

Proof of <TChaos> rule:

B.3. PROOF OF SOUNDNESS FOR RULES 88

(c | s |= IGC) τ−→ (c ∧ (¬ pred1) ∧ ... ∧ (¬ predn) | s |= Chaos)
=
∀ w . (c ∧ c ∧ (¬ pred1) ∧ ... ∧ (¬ predn))⇒ (Lift (s) ; IGC v Lift (s) ; Chaos)
= [w is universally quantified, so we abstract it]
(c ∧ c ∧ (¬ pred1) ∧ ... ∧ (¬ predn))⇒ (Lift (s) ; IGC v Lift (s) ; Chaos)
= [c is true]
((¬ pred1) ∧ ... ∧ (¬ predn))⇒ (Lift (s) ; IGC v Lift (s) ; Chaos)
= [(¬ pred1) ∧ ... ∧ (¬ predn)⇒ (IGC = Chaos)]
((¬ pred1) ∧ ... ∧ (¬ predn))⇒ (Lift (s) ; Chaos v Lift (s) ; Chaos)
= [E v E]
((¬ pred1) ∧ ... ∧ (¬ predn))⇒ true
=
true
2

B.3.14 Z Schema

Attached Rule 29.

Z Schema:

c ∧ (s ; pre Op)

(c | s |= Op) τ−→ (c ∧ (s ; Op [w0/v’]) | s; v := w0 |= Skip)

The pre operator is defined on B.2.

Proof
∀ w . c ∧ c ∧ (s ; Op [w0/v’])⇒ ((Lift (s) ; Op) v (Lift (s; v := w0) ; Skip))

The proof is divided in two steps: we firstly prove the expression for Op = true,
and then prove it for Op = false

For Op = true:
∀ w . c ∧ c ∧ (s ; true [w0/v’])⇒ ((Lift (s) ; true) v (Lift (s; v := w0) ; Skip))
= [w is universally quantified, so we abstract it]
c ∧ c ∧ (s ; true [w0/v’])⇒ ((Lift (s) ; true) v (Lift (s; v := w0) ; Skip))
= [Lift Composition B.2.27]
c ∧ c ∧ (s ; true [w0/v’])⇒ ((Lift (s) ; true) v (Lift (s); Lift (v := w0) ; Skip))

B.3. PROOF OF SOUNDNESS FOR RULES 89

= [By lemma B.11, (true v Lift (v := w0) ; Skip). By Ref.Eq.Sides 1, (Lift (s) v Lift
(s)). By both B.11 and 1 and by Monotonicity of refinement, the refinement expres-
sion on the right side of the implication is true]
c ∧ c ∧ (s ; true [w0/v’])⇒ true
= [Predicate Calculus]
true

For Op = false:
∀ w . c ∧ c ∧ (s ; false [w0/v’])⇒ ((Lift (s) ; false) v (Lift (s; v := w0) ; Skip))
= [w is universally quantified, so we abstract it]
c ∧ c ∧ (s ; false [w0/v’])⇒ ((Lift (s) ; false) v (Lift (s; v := w0) ; Skip))
= [false [w/x] = false]
c ∧ c ∧ (s ; false)⇒ ((Lift (s) ; false) v (Lift (s; v := w0) ; Skip))
= [S Sequence False 5]
c ∧ c ∧ false⇒ ((Lift (s) ; false) v (Lift (s; v := w0) ; Skip))
= [Predicate Calculus]
false⇒ ((Lift (s) ; false) v (Lift (s; v := w0) ; Skip))
= [Predicate Calculus]
true
2

B.3.15 Specification Statements

Attached Rule 30.

Specification Statements (Rule 1):
(c | s |= V : [Pre, Post]) τ−→ (c ∧ Pre | s |= V [:] [Pre, Post])

The Extra Statement ([:]) operator B.31 has the role of representing the Specification
Statement in an intermediate state where its pre-condition is holded but its post-condition
was not processed yet. The role of the Extra-statement operator is the same as the let B.28
operator on the rules of Variable Block.
Proof
(c | s |= V : [Pre, Post]) τ−→ (c ∧ Pre | s |= V [:] [Pre, Post])
= [Extra statement (definition B.31)]
(c | s |= V : [Pre, Post]) τ−→ (c ∧ Pre | s |= V : [Pre, Post])
= [Silent Transition Equal Sides (lemma 2)]

B.3. PROOF OF SOUNDNESS FOR RULES 90

true 2

Attached Rule 31.

Specification Statements (Rule 2):
(c | s |= V : [Pre, Post]) τ−→ (c ∧ (¬ Pre) | s |= Skip)

Proof
(c | s |= V : [Pre, Post]) τ−→ (c ∧ (¬ Pre) | s |= Skip)
= [Skip V G True B.2.1]
∀ w . c ∧ c ∧ (¬ Pre)⇒ Lift (s) ; V : [Pre, Post] v Lift (s) ; V : [true, true]

From now on, the proof will be made for all 4 different situations of Pre and Post:

Pre = Post = true:

∀ w . c ∧ c ∧ (¬ true)⇒ Lift (s) ; V : [true, true] v Lift (s) ; V : [true, true]
= [w is universally quantified, so we abstract it]
c ∧ c ∧ (¬ true)⇒ Lift (s) ; V : [true, true] v Lift (s) ; V : [true, true]
= [Predicate Calculus]
false⇒ true
= [Predicate Calculus]
true

Pre = true, Post = false:

∀ w . c ∧ c ∧ (¬ true)⇒ Lift (s) ; V : [true, false] v Lift (s) ; V : [true, true]
= [w is universally quantified, so we abstract it]
c ∧ c ∧ (¬ true)⇒ (Lift (s) ; V : [true, false] v Lift (s) ; V : [true, true])
= false⇒ (Lift (s) ; V : [true, false] v Lift (s) ; V : [true, true])
= true

Pre = false, Post = true:

(c | s |= V : [false, true]) τ−→ (c ∧ (¬ false) | s |= Skip)
= [Definition of Silent Transition B.25]

B.3. PROOF OF SOUNDNESS FOR RULES 91

∀ w . c ∧ c ∧ (¬ false)⇒ Lift (s) ; V : [false, true] v Lift (s) ; V : [true, true]
= [w is universally quantified, so we abstract it]
c ∧ c ∧ (¬ false)⇒ Lift (s) ; V : [false, true] v Lift (s) ; V : [true, true]
= [Assume c = true]
Lift (s) ; V : [false, true] v Lift (s) ; V : [true, true]
= [As Lift (s) is refined by itself, so, from Monotonicity of Refinement, the proof from
now on will consist only on proving that V : [false, true] v V : [true, true]]
V : [false, true] v V : [true, true]
= [Specification Statement Denotational Definition A.6]
R (false ` true ∧ ¬ wait’ ∧ tr’ = tr ∧ u’ = u) v R(true ` true ∧ ¬ wait’ ∧ tr’ = tr ∧ u’ = u)
= [Predicate Calculus]
R ((false ∧ ok)
⇒
((true ∧ ¬ wait’ ∧ tr’ = tr ∧ u’ = u) ∧ ok’) v R((true ∧ ok)⇒ (true ∧ ¬ wait’ ∧ tr’ = tr ∧
u’ = u ∧ ok’))
= [Predicate Calculus]
R (true)
v R((true ∧ ok)⇒ (true ∧ ¬ wait’ ∧ tr’ = tr ∧ u’ = u ∧ ok’))
= [Predicate Calculus]
R (true)
v R((¬true ∨ ¬ok) ∨ (true ∧ ¬ wait’ ∧ tr’ = tr ∧ u’ = u ∧ ok’))
= [Predicate Calculus]
R (true)
v R((¬ok) ∨ (¬ wait’ ∧ tr’ = tr ∧ u’ = u ∧ ok’))
= [Be x = (¬ok) ∨ (¬ wait’ ∧ tr’ = tr ∧ u’ = u ∧ ok’)]
R (true) v R(x)
= [Healthy True Refinement B.6]
true
Pre = Post = false:

(c | s |= V : [Pre,Post]) τ−→(c ∧ (¬Pre) | s |= Skip)
= [Definition of Silent Transition B.25]
∀ w . c ∧ c ∧ (¬ false)⇒ Lift (s) ; V : [false, false] v Lift (s) ; V : [true, true]
= [w is universally quantified, so we abstract it]
c ∧ c ∧ (¬ false)⇒ Lift (s) ; V : [false, false] v Lift (s) ; V : [true, true]
= [Predicate Calculus]

B.3. PROOF OF SOUNDNESS FOR RULES 92

Lift (s) ; V : [false, false] v Lift (s) ; V : [true, true]
= [Monotonicity of Refinement 6]
V : [false, false] v V : [true, true]
= [Predicate Calculus]
R (false ` false ∧ ¬ wait’ ∧ tr’ = tr ∧ u’ = u)
v R(true ` true ∧ ¬ wait’ ∧ tr’ = tr ∧ u’ = u)
= [Predicate Calculus]
R (false ` false) v R(true ` ¬ wait’ ∧ tr’ = tr ∧ u’ = u)
= [Predicate Calculus]
R (false ∧ ok⇒ false ∧ ok’) v R(true ` ¬ wait’ ∧ tr’ = tr ∧ u’ = u)
= [Predicate Calculus]
R (false⇒ false) v R(true ` ¬ wait’ ∧ tr’ = tr ∧ u’ = u)
= [Predicate Calculus]
R (true) v R(true ` ¬ wait’ ∧ tr’ = tr ∧ u’ = u)
= [Healthy True Refinement B.6]
true
2

Attached Rule 32.

Specification Statements (Rule 3):
(c ∧ Pre | s |= V [:] [Pre, Post])
τ−→

(c ∧ Pre ∧ Post ∧ (α(P) - V)’ = (α(P) - V)) | s |= Skip)

Proof

(c ∧ Pre | s |= V [:] [Pre, Post])
τ−→

(c ∧ Pre ∧ (Post ∧ (α(P) - V)’ = (α(P) - V)) | s |= Skip)
= [Definition of Silent Transition B.25]
∀ w . (c ∧ Pre ∧ c ∧ Pre ∧ Post ∧ (α(P) - V)’ = (α(P) - V))
⇒ Lift (s) ; V [:] [Pre, Post] v Lift (s) ; Skip

We will prove the above expression checking the following complementary situations:
(Pre = false ∨ Post = false) and (Pre = true ∧ Post = true)

Pre = false ∨ Post = false

B.3. PROOF OF SOUNDNESS FOR RULES 93

In this case, the antecedent of the implication is false:

∀ w . (c ∧ false ∧ c ∧ Pre ∧ Post ∧ (α(P) - V)’ = (α(P) - V))
⇒ Lift (s) ; V [:] [Pre, Post] v Lift (s) ; Skip
= [w is universally quantified, so we abstract it]
(c ∧ false ∧ c ∧ Pre ∧ Post ∧ (α(P) - V)’ = (α(P) - V))
⇒ Lift (s) ; V [:] [Pre, Post] v Lift (s) ; Skip
= [Predicate Calculus]
(false⇒ Lift (s) ; V [:] [Pre, Post] v Lift (s) ; Skip
= [Predicate Calculus]
true

Pre = true ∧ Post = true
∀ w . (c ∧ true ∧ c ∧ true ∧ true ∧ (α(P) - V)’ = (α(P) - V))
⇒ Lift (s) ; V [:] [true, true] v Lift (s) ; Skip
= [w is universally quantified, so we abstract it]
(c ∧ true ∧ c ∧ true ∧ true ∧ (α(P) - V)’ = (α(P) - V))
⇒ Lift (s) ; V [:] [true, true] v Lift (s) ; Skip
= [Predicate Calculus]
(c ∧ true ∧ c ∧ true ∧ true ∧ (α(P) - V)’ = (α(P) - V))
⇒ Lift (s) ; V [:] [true, true] v Lift (s) ; V : [true, true]
= [Predicate Calculus]
(c ∧ true ∧ c ∧ true ∧ true ∧ (α(P) - V)’ = (α(P) - V))
⇒ Lift (s) ; V : [true, true] v Lift (s) ; V : [true, true]
= [Refinement Equal Sides 1]
(c ∧ true ∧ c ∧ true ∧ true ∧ (α(P) - V)’ = (α(P) - V))
⇒ true
= [Predicate Calculus]
= true
2

B.3. PROOF OF SOUNDNESS FOR RULES 94

B.3.16 Basic Process

Attached Rule 33.

Basic Process Begin:

(c1 | s1 |= A1)
lp−→ (c2 | s2 |= A2)

(c1 | s1 | begin state [Vars-decl | inv] • A1 end)
lp−→ (c2 | s2 | begin state [Vars-decl | inv] • A2 end)

Assumption:
(c1 | s1 |= A1)

lp−→ (c2 | s2 |= A2)
= [Definition of Labelled Transition B.26]
∀w . c1 ∧ c2⇒(

Lift (s1) ; A1
v Lift (s2) ; lp → A1 2 Lift (s1) ; A1

)
= [Labelled Transition Implication B.17]
∀ w . (Lift (s1); A1) v ∀ w . (Lift (s3); lp→ A3) [Assumption 2]

Proof
(c1 | s1 | begin state [Vars-decl | inv] • A1 end)
lp−→ (c2 | s2 | begin state [Vars-decl | inv] • A2 end)
= [Definition of Labelled Transition B.26]
∀w.c1 ∧ c2⇒
Lift(s1); (begin state[Vars−decl | inv]•A1end)
v(

Lift(s2); lp→ begin state[Vars−decl | inv]•A1 end
2 Lift(s1); begin state[Vars−decl | inv]•A1 end

)
= [Basic Process Denotational Meaning B.2.15]
∀w.c1 ∧ c2⇒
Lift(s1); Vars−Decl•A1
v(

Lift(s2); lp→ Vars−Decl•A1
2 Lift(s1); Vars−Decl•A1

)
= [w is universally quantified, so we abstract it]
c1 ∧ c2⇒
Lift(s1); Vars−Decl•A1
v

B.3. PROOF OF SOUNDNESS FOR RULES 95

(
Lift(s2); lp→ Vars−Decl•A1
2 Lift(s1); Vars−Decl•A1

)
= [External Choice Idempotence B.2.24]
c1 ∧ c2⇒
(Lift(s1); Vars−Decl•A1)2 (Lift(s1); Vars−Decl•A1)
v(

Lift(s2); lp→ Vars−Decl•A1
2 Lift(s1); Vars−Decl•A1

)
= [Assumption 2 + External Choice Monotonic 14]
c1 ∧ c2⇒ true

= [Predicate Calculus]
true 2

Attached Rule 34.

Basic Process Reduction:

Based on B.2.16 and B.2.17 from the refinement calculus of Circus:

c α(STA) ∩ α(STB) = /0

(c |= (begin state STA PARS-A • A end) OP (begin state STB PARS-B • B end))

(c | s |= begin state (STA ∧ STB) (PARS-A ∧Ξ STB) (PARS-B ∧Ξ STA) • A OP B end)

Where OP ∈ { u, 2, ; , |||, |[CS]|, |[α(A) | CS | α(B)]| }

As Basic Process Reduction is an abstract rule applied for a set of binary operators
that appear as processes and as actions (Internal Choice, External Choice, Parallelism,
Sequence, Interleaving), the proof involves the application of different refinement laws,
depending on the operator. But the sequence of proof sub-goals is the same. As the proof
is based on the application of rules B.2.16 and B.2.17. Be

B = (beginstateSTAPARS−A • Aend)OP(beginstateSTBPARS−B • Bend), and

P = beginstate(STA ∧ STB)(PARS−A ∧Ξ STB)(PARS−B ∧Ξ STA) • AOPBend)

Proof (c |= (beginstateSTAPARS−A • Aend)OP(beginstateSTBPARS−B • Bend))

(c | s |= beginstate(STA ∧ STB)(PARS−A ∧Ξ STB)(PARS−B ∧Ξ STA) • AOPBend)



B.3. PROOF OF SOUNDNESS FOR RULES 96

= [Sigma Equal Basic Process (having, from def.B.2.16 and B.2.17, that B=P]
true
2

B.3. PROOF OF SOUNDNESS FOR RULES 97

B.3.17 Compound Process

Attached Rule 35.

Compound Process Left:
(c1 |= P1) (c2 |= P3)

(c1 |= P1 OP P2) (c2 |= P3 OP P2)

Where OP ∈ { u,2,; ,|||,|[CS]| }

The proof will be divided on the following steps:

• Derivation of the assumption on other minor assumptions;
• Creation of a Lemma to synthesize the proof (the lemmas are referenced on the

tactics and have their proofs made on appendix B.2.2);
• Division of the rule on a Sub-rule for each operator OP (OP ∈ { u,2,; ,|||,|[CS]| }),

and proof for each Sub-rule;

To reduce verbose, we create the abbreviation gA(s) such that
gA(s) = getAssignments(s)

Assumptions B.19. .

[Assumption 1]
(c1 |= P1) (c2 |= P3) =

[Definition of Syntactic Transition having w universally quantified B.27]
c1 ∧ c2⇒
((Lift (gA (P1)) ; P1 v Lift (gA (P3)) ; P3)) ∧ Lift (gA (P1)) = Lift (gA (P3))

((Lift (gA (P1)) ; P1 v Lift (gA (P3)) ; P3)) ∧ Lift (gA (P1)) = Lift (gA (P3))⇒
[Assumption 2] Lift (gA (P1)) = Lift (gA (P3))

((Lift (gA (P1)) ; P1 v Lift (gA (P3)) ; P3)) ∧ Lift (gA (P1)) = Lift (gA (P3))⇒
[Assumption 3] Lift (gA (P1)) ; P1 v Lift (gA (P3)) ; P3)

As [Assumption 2] and [Assumption 3]
then

[Assumption 4] Lift (gA (P3)) ; P1 v Lift (gA (P3)) ; P3

As [Assumption 2] and [Assumption 4]
[Assumption 5] P1 v P3

Sub-Rule 1.

B.3. PROOF OF SOUNDNESS FOR RULES 98

Internal Choice Compound Process Left:
(c1 |= P1) (c2 |= P3) OP = u
(c1 |= P1 OP P2) (c2 |= P3 OP P2)

Proof
(c1 |= P1 OP P2) (c2 |= P3 OP P2)
= [Lemma Compound Process B.9]
c1 ∧ c2⇒
(Lift (gA (P1)) ∧ Lift (gA (P2)) ; P1 OP P2 v (Lift (gA (P1)) ∧ Lift (gA (P2)) ; P3 OP P2))
= [Be L = (Lift (gA (P1)) ∧ Lift (gA (P2))]
c1 ∧ c2⇒
L ; P1 OP P2 v L ; P3 OP P2

= [Assumption OP = u]
c1 ∧ c2⇒
L ; P1 u P2 v (L ; P3 u P2)
= [P1 v P3 (Assumption 5) ∧ P2 v P2, so P1 u P2 v P3 u P2 (B.2.20). L v L ∧ P1 u
P2 v P3 u P2, then (Monotonicity of Refinement 6) L ; P1 u P2 v L ; P3 u P2]
c1 ∧ c2⇒ true
= [Predicate Calculus: (P⇒ true) = true]
true
= true 2

Sub-Rule 2.

External Choice Compound Process Left:
(c1 |= P1) (c2 |= P3) OP = 2

(c1 |= P1 OP P2) (c2 |= P3 OP P2)

Proof
(c1 |= P1 OP P2) (c2 |= P3 OP P2)
= [Lemma Compound Process B.9]
c1 ∧ c2⇒
(Lift (gA (P1)) ∧ Lift (gA (P2)) ; P1 OP P2 v (Lift (gA (P1)) ∧ Lift (gA (P2)) ; P3 OP P2))
= [Be L = (Lift (gA (P1)) ∧ Lift (gA (P2))]
c1 ∧ c2⇒
L ; P1 OP P2 v L ; P3 OP P2

= [Assumption OP = 2]
c1 ∧ c2⇒

B.3. PROOF OF SOUNDNESS FOR RULES 99

L ; P1 2 P2 v (L ; P3 2 P2)
= [P1 v P3 (Assumption 5) ∧ P2 v P2, so P1 2 P2 v P3 2 P2 (B.2.22). L v L ∧ P1 2

P2 v P3 2 P2, then (Monotonicity of Refinement 6) L ; P1 2 P2 v L ; P3 2 P2]
c1 ∧ c2⇒ true
= (P⇒ true) = true
true
= true 2

Sub-Rule 3.

Sequence Compound Process Left:
(c1 |= P1) (c2 |= P3) OP = ;
(c1 |= P1 OP P2) (c2 |= P3 OP P2)

Proof
(c1 |= P1 OP P2) (c2 |= P3 OP P2)
= [Lemma Compound Process B.9]
c1 ∧ c2⇒
(Lift (gA (P1)) ∧ Lift (gA (P2)) ; P1 OP P2 v (Lift (gA (P1)) ∧ Lift (gA (P2)) ; P3 OP P2))
= [Be L = (Lift (gA (P1)) ∧ Lift (gA (P2))]
c1 ∧ c2⇒
L ; P1 OP P2 v L ; P3 OP P2

= [Assumption OP = ;]
c1 ∧ c2⇒
L ; P1 ; P2 v (L ; P3 ; P2)
= [P1 v P3 (Assumption 5) ∧ P2 v P2, so P1 ; P2 v P3 ; P2 (6)]. L v L ∧ P1 ; P2 v
P3 ; P2, then (Monotonicity of Refinement 6) L ; P1 ; P2 v L ; P3 ; P2]
c1 ∧ c2⇒ true
= (P⇒ true) = true
true
= true 2

Sub-Rule 4.

Parallelism Compound Process Left:
(c1 |= P1) (c2 |= P3) OP = |[CS]|
(c1 |= P1 OP P2) (c2 |= P3 OP P2)

Proof
(c1 |= P1 OP P2) (c2 |= P3 OP P2)

B.3. PROOF OF SOUNDNESS FOR RULES 100

= [Lemma Compound Process B.9]
c1 ∧ c2⇒
(Lift (gA (P1)) ∧ Lift (gA (P2)) ; P1 OP P2 v (Lift (gA (P1)) ∧ Lift (gA (P2)) ; P3 OP P2))
= [Be L = (Lift (gA (P1)) ∧ Lift (gA (P2))]
c1 ∧ c2⇒
L ; P1 OP P2 v L ; P3 OP P2

= [Assumption OP = |[CS]|]
c1 ∧ c2⇒
L ; P1 |[CS]| P2 v (L ; P3 |[CS]| P2)
= [P1 v P3 (Assumption 5) ∧ P2 v P2, so P1 |[CS]| P2 v P3 |[CS]| P2 (B.2.21). L v L
∧ P1 |[CS]| P2 v P3 |[CS]| P2, then (Monotonicity of Refinement 6) L ; P1 |[CS]| P2

v L ; P3 |[CS]| P2]
c1 ∧ c2⇒ true
= (P⇒ true) = true
true
= true 2

Sub-Rule 5.

Interleave Compound Process Left:
(c1 |= P1) (c2 |= P3) OP = |||
(c1 |= P1 OP P2) (c2 |= P3 OP P2)

Proof
(c1 |= P1) (c2 |= P3) OP = |||
(c1 |= P1 OP P2) (c2 |= P3 OP P2)
= [Interleaving is equivalent to Parallelism with an empty channel set]
(c1 |= P1) (c2 |= P3) OP = |[{ }]|
(c1 |= P1 OP P2) (c2 |= P3 OP P2)
= Parallelism Compound Process Left [4]
true 2

Attached Rule 36.

Compound Process Right (for OP ∈ { 2, u, |[CS]|, ||| }):
(c1 |= P1) (c2 |= P3) OP ∈ { 2, u, |[CS]|, ||| }
(c1 |= P1 OP P2) (c2 |= P1 OP P3)

As, except for Sequence, all compound operators are commutative, the proof for at-
tached rule 36 will be done re-using attached rule 35 as a theorem. The proof for Sequence

B.3. PROOF OF SOUNDNESS FOR RULES 101

will be done on sub-rule 6.

Proof
(c1 |= P1) (c2 |= P3) OP ∈ { 2, u, |[CS]|, ||| }
(c1 |= P1 OP P2) (c2 |= P1 OP P3)
= [Except for Sequence, all compound operators are commutative (2, u, |[CS]|, |||)]
(c1 |= P1) (c2 |= P3) OP ∈ { 2, u, |[CS]|, ||| }
(c1 |= P2 OP P1) (c2 |= P3 OP P1)
= [Compound Process Left 35]
true 2

Sub-Rule 6.

Sequence Compound Process Right:
(c1 |= P1) (c2 |= P3) OP = ;
(c1 |= P1 OP P2) (c2 |= P1 OP P3)

In order to facilitate the proof, we will create and prove lemma B.10 and then prove
sub-rule 6.

Proof
(c1 |= P1 OP P2) (c2 |= P1 OP P3)
= [Lemma Compound Process B.10]
c1 ∧ c2⇒ (Lift (gA (P1)) ∧ Lift (gA (P2)) ; P1 OP P2 v (Lift (gA (P1)) ∧ Lift (gA (P2)) ;
P1 OP P3))
= [Be L = (Lift (gA (P1)) ∧ Lift (gA (P2))]
c1 ∧ c2⇒ L ; P1 OP P2 v L ; P1 OP P3

= [Assumption OP = ;]
c1 ∧ c2⇒ L ; P1 ; P2 v (L ; P1 ; P3)
= [P1 v P3 (Assumption 5) ∧ P2 v P2, so P1 ; P2 v P1 ; P3 (6)]
c1 ∧ c2⇒ L ; P1 ; P2 v L ; P1 ; P3 [having P1 ; P2 v P1 ; P3]
= [L v L ∧ P1 ; P2 v P1 ; P3, then (Monotonicity of Refinement 6) L ; P1 ; P2 v L
; P1 ; P3]
c1 ∧ c2⇒ true
= (P⇒ true) = true
true
= true 2

B.3. PROOF OF SOUNDNESS FOR RULES 102

B.3.18 Hide Process

Attached Rule 37.

Hiding Advance:

(c1 |= P1) (c2 |= P2)

(c1 |= P1 \ S) (c2 |= P2 \ S)

From Assumptions B.19:

[Assumption 1]: (c1 |= P1) (c2 |= P2)
[Assumption 2]: Lift (getAssignments (P1)) = Lift (getAssignments (P2))
[Assumption 3]: Lift (getAssignments (P1)) ; P1 v Lift (getAssignments (P2)) ; P2)
[Assumption 4]: Lift (getAssignments (P2)) ; P1 Lift (getAssignments (P2)) ; P2

[Assumption 5]: P1 v P2

Proof
(c1 |= P1 \ S) (c2 |= P2 \ S)
= [Definition of Syntactic Transition B.27]
∀ w . c1 ∧ c2⇒
((Lift (getAssignments (P1 \ S)) ; P1 \ S v Lift (getAssignments (P2 \ S)) ; P2 \ S))
∧ Lift (getAssignments (P1 \ S)) = Lift (getAssignments (P2 \ S))
= [w is universally quantified, so we abstract it]
c1 ∧ c2⇒
((Lift (getAssignments (P1 \ S)) ; P1 \ S v Lift (getAssignments (P2 \ S)) ; P2 \ S))
∧ Lift (getAssignments (P1 \ S)) = Lift (getAssignments (P2 \ S))
= [Definition of getAssignments (P \ CS) B.1]
c1 ∧ c2⇒
((Lift (getAssignments (P1)) ; P1 \ S v Lift (getAssignments (P2)) ; P2 \ S))
∧ Lift (getAssignments (P1)) = Lift (getAssignments (P2))
= [Assumption 2]
c1 ∧ c2⇒
((Lift (getAssignments (P1)) ; P1 \ S v Lift (getAssignments (P2)) ; P2 \ S))
∧ true
= [P ∧ true = P]
c1 ∧ c2⇒
((Lift (getAssignments (P1)) ; P1 \ S v Lift (getAssignments (P2)) ; P2 \ S))
= [Assumption 2 again]

B.3. PROOF OF SOUNDNESS FOR RULES 103

c1 ∧ c2⇒
((Lift (getAssignments (P1)) ; P1 \ S v Lift (getAssignments (P1)) ; P2 \ S))
= [Assumption 5 and Hiding Monotonic B.2.9⇒ P1 \ S v P2 \ S. That with General
Monotonicity of Refinement⇒ L ; P v L ; Q]
c1 ∧ c2⇒ true
= [Predicate Calculus: P⇒ true = true]
∀ w . true
=
true 2

Attached Rule 38.

Hiding Basic Process:

(c |= (begin state ST PARS • A end) \ S)

(c | s |= begin state ST PARS • (A \ S) end)

Be HP = (begin state ST PARS • A end) \ S

and

HB = begin state ST PARS • (A \ S) end
Proof (c |= (beginstateST PARS • Aend)\S)

(c | s |= beginstateST PARS • (A\S)end)


= [Sigma Equal Basic Process 4 (having, from law B.2.19, that HP = HB]
true 2

B.3. PROOF OF SOUNDNESS FOR RULES 104

B.3.19 Rename Process

Attached Rule 39.

Rename Advance:

(c1 |= P1) (c2 |= P2)

(c1 |= P1 [a1, a2, ... = b1, b2, ...]) (c2 |= P2 [a1, a2, ... = b1, b2, ...])

From Assumptions B.19:

[Assumption 1]: (c1 |= P1) (c2 |= P2)
[Assumption 2]: Lift (gA (P1)) = Lift (gA (P2))
[Assumption 3]: Lift (gA (P1)) ; P1 v Lift (gA (P2)) ; P2)
[Assumption 4]: Lift (gA (P2)) ; P1 Lift (gA (P2)) ; P2

[Assumption 5]: P1 v P2

Proof
(c1 |= P1 [a1, a2, ... = b1, b2, ...]) (c2 |= P2 [a1, a2, ... = b1, b2, ...])
= [Definition of Syntactic Transition B.27]
∀ w .c1 ∧ c2 ⇒
(

(Lift (gA(P1 [a1, a2, ... = b1, b2, ...])) ; P1 [a1, a2, ... = b1, b2, ...])

v (Lift (gA(P2 [a1, a2, ... = b1, b2, ...])) ; P2 [a1, a2, ... = b1, b2, ...])

)
∧ Lift (gA(P1 [a1, a2, ... = b1, b2, ...])) = Lift (gA(P2 [a1, a2, ... = b1, b2, ...]))


= [w is universally quantified, so we abstract it]
c1 ∧ c2 ⇒
(

(Lift (gA(P1 [a1, a2, ... = b1, b2, ...])) ; P1 [a1, a2, ... = b1, b2, ...])

v (Lift (gA(P2 [a1, a2, ... = b1, b2, ...])) ; P2 [a1, a2, ... = b1, b2, ...])

)
∧ Lift (gA(P1 [a1, a2, ... = b1, b2, ...])) = Lift (gA(P2 [a1, a2, ... = b1, b2, ...]))


= [Definition of gA (P [a1, a2, ... = b1, b2, ...]) B.1]
c1 ∧ c2 ⇒
 (Lift (gA(P1)) ; P1 [a1, a2, ... = b1, b2, ...])

v (Lift (gA(P2)) ; P2 [a1, a2, ... = b1, b2, ...])


∧ Lift (gA(P1)) = Lift (gA(P2))


= [Assumption 2]
c1 ∧ c2 ⇒(

((Lift (gA(P1)) ; P1 [a1, a2, ... = b1, b2, ...]) v (Lift (gA(P2)) ; P2 [a1, a2, ... = b1, b2, ...]))

∧ true

)
= [Predicate Calculus: P ∧ true = P]

B.3. PROOF OF SOUNDNESS FOR RULES 105

c1 ∧ c2 ⇒
((Lift (gA(P1)) ; P1 [a1, a2, ... = b1, b2, ...] v Lift (gA(P2)) ; P2 [a1, a2, ... = b1, b2, ...]))

= [Assumption 2 again]
c1 ∧ c2 ⇒
((Lift (gA(P1)) ; P1 [a1, a2, ... = b1, b2, ...] v Lift (gA(P1)) ; P2 [a1, a2, ... = b1, b2, ...]))

= [Assumption 5 and Rename Monotonic⇒ P1 [a1, a2, ... = b1, b2, ...]v P2 [a1, a2, ... = b1, b2, ...].
That with General Monotonicity of Refinement⇒ L ; P v L ; Q]
c1 ∧ c2 ⇒ true

= [Predicate Calculus: P⇒ true = true]
true 2

Attached Rule 40.

Rename Basic Process:

(c |= (begin state ST PARS • A end) [a1, a2, ... = b1, b2, ...])

(c | s |= begin state ST PARS • A [a1, a2, ... = b1, b2, ...] end)

Proof

Be

RP = (begin state ST PARS • A end) [a1, a2, ... = b1, b2, ...]

and

RB = begin state ST PARS • A [a1, a2, ... = b1, b2, ...] end (c |= (beginstateST PARS • Aend) [a1, a2, ... = b1, b2, ...])

(c | s |= beginstateST PARS • (A [a1, a2, ... = b1, b2, ...])end)


= [Sigma Equal Basic Process 4 (having, from law B.2.18, that RP = RB]

true 2

B.3. PROOF OF SOUNDNESS FOR RULES 106

B.3.20 Call Process

Attached Rule 41.

Parameterless Call Process:

(c |= P) (c |= Content (P))

Proof (c |= P) (c |= Content (P))
= [Definition B.8]
(c |= Content (P)) (c |= Content (P))
= [Sigma Equal Sides 3]
true 2

Attached Rule 42.

Call Process with normal parameters:

(c | s |= P (N+)) (c |= ParamContent (P, [N+]))

Proof
(c |= P) (c |= Content (P, [N+]))
= [Definition B.9]
(c |= ParamContent (P, [N+])) (c |= ParamContent (P, [N+]))
true 2

Attached Rule 43.

Call Process with indexed parameters:

(c |= P b N+ c) (c |= IndexedContent (P, [N+]))

Proof
(c |= P b N+ c) (c |= IndexedContent (P, [N+]))
= [Definition B.10]
(c |= IndexedContent (P, [N+])) (c |= IndexedContent (P, [N+]))
= [Sigma Equal Sides 3]
true 2

Attached Rule 44.

Call Process with generic parameters:

(c |= P [N+]) (c |= GenericContent (P, [N+]))

Proof
(c |= P [N+]) (c |= GenericContent (P, [N+]))

B.3. PROOF OF SOUNDNESS FOR RULES 107

= [Definition B.11]
(c |= GenericContent (P, [N+])) (c |= GenericContent (P, [N+]))
= [Sigma Equal Sides 3]
true 2

B.3.21 Iterated Process

Attached Rule 45.

Iterated Processes:

(c |= OP Decl • P) (c |= IteratedExpansion (P, Decl, ITOPFLAG))

IteratedExpansion is defined on B.3.

Proof (c |= OP Decl • P) (c |= IteratedExpansion (P, Decl, ITOPFLAG))
= [Definition of Iterated Operator B.3]
(c |= IteratedExpansion (P, Decl, ITOPFLAG)) (c |= IteratedExpansion (P, Decl,
ITOPFLAG))
= [Silent Transition Equal Sides 3]
true 2

Bibliography

[1] Ana Cavalcanti and Marie-Claude Gaudel. Testing for refinement in Circus. Acta Inf.,
48(2):97–147, 2011.

[2] Ana Cavalcanti and Jim Woodcock. A tutorial introduction to csp in unifying theories
of programming. Refinement techniques in software engineering, pages 220–268,
2006.

[3] Ana Cavalcanti and Jim Woodcock. CML Definition 2 - Operational Semantics
(Deliverable Number: D23.3-4, Version 0.2). Technical report, University of York,
2013.

[4] C. A. R. Hoare and He Jifeng. Unifying Theories of Programming. Prentice-Hall,
1998.

[5] M Oliveira, A Sampaio, PRG Antonino, RT Ramos, A Cavalcanti, and J Woodcock.
Compositional analysis and design of cml models. COMPASS Deliverable D, 24,
2013.

[6] M. V. M. Oliveira. Formal Derivation of State-Rich Reactive Programs using Circus.
PhD thesis, Department of Computer Science, University of York, 2006. Oliveira.

[7] M. V. M. Oliveira. Formal Derivation of State-Rich Reactive Programs using Circus -

Extended Version. PhD thesis, Department of Computer Science, University of York,
2006. Oliveira.

[8] J. C. P. Woodcock and A. L. C. Cavalcanti. A Tutorial Introduction to Designs in
Unifying Theories of Programming. In E. A. Boiten, J. Derrick, and G. Smith, editors,
IFM 2004: Integrated Formal Methods, volume 2999 of Lecture Notes in Computer

Science, pages 40–66. Springer-Verlag, 2004. Invited tutorial.

[9] J. C. P. Woodcock and J. Davies. Using Z—Specification, Refinement, and Proof.
Prentice-Hall, 1996.

108

	Contents
	Circus Denotational Semantics
	Proofs of rules of the Operational Semantics of Circus
	Proving the Soundness of a rule
	Auxiliary Definitions, Lemmas, Theorems and Laws
	Auxiliary Definitions
	Auxiliary Lemmas
	Auxiliary Theorems
	Auxiliary Laws
	Refinement Laws
	Cavalcanti and Woodcock's Laws
	Other Laws

	Proof of Soundness for rules
	Assignment
	Prefixing*
	Variable Block
	Sequence
	Internal Choice*
	Guard
	External Choice*
	Parallelism*
	Hiding
	Recursion
	Call
	Iterated Actions
	If-Guarded Command
	Z Schema
	Specification Statements
	Basic Process
	Compound Process
	Hide Process
	Rename Process
	Call Process
	Iterated Process

	Bibliography

