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Motivation

Theorem. Every bridgeless cubic graph has a 1-factor.

Our goal is to prove the following theorem (by Petersen):

This theorem ensures that the dual graph of a 4-8 surface
mesh, which is a bridgeless cubic graph, admits a perfect
matching .
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Basic Definitions

From now on, we let G = (V, E) (or simply G) denote a
simple graph with vertex set V = V(G) and edge set E =
E(G).

Let G = (V, E) and G� = (V�, E�) be two graphs. If V� ⊆ V
and E� ⊆ E then G� is a subgraph of G (and G is a super-
graph of G�), written as G� ⊆ G. Less formally, we say G
contains G�.
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Basic Definitions

If G� ⊆ G and G� contains all edges xy ∈ E with x, y ∈
V�, then G� is a vertex-induced subgraph of G. We say
that V� induces or spans G� in G, and write G� = G[V�].
In general, for any U ⊆ V, G[U] denotes the graph on U
whose edges are precisely the edges of G with both ends
in U.

Let E� be a non-empty subset of E. Then, the subgraph
G� = (V�, E�), where V� ⊆ V is exactly the set of end ver-
tices of the edges in E�, is a called edge-induced subgraph
of G. We denote the subgraph G� induced by the set E� by
G[E�].
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Basic Definitions

If H is a subgraph of G (induced or not), we denote H by
G[H].

If G� ⊆ G, then G� is a spanning subgraph of G if V� spans
all of G, i.e., if V� = V (note that G� does not have to be
induced).
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Basic Definitions

A path is a non-empty graph P = (V, E) of the form

V = {x0, x1, . . . , xk} and E = {x0x1, x1x2, . . . , xk−1xk} ,

where the xi are all distinct. The vertices x0 and xk
are linked by P and are called its ends; the vertices
x1, . . . , xk−1 are the inner vertices of P. The number of
edges of a path is its length. We often refer to a path by
the natural sequence of its vertices, say P = x0x1 · · · xk,
and call P a path from x0 to xk (as well as between x0 and
xk).
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Basic Definitions

If P = x0x1 · · · xk−1 is a path and k ≥ 3, then the graph C =
P + xk−1x0 is called a cycle. As with paths, we often denote
a cycle by its cyclic sequence of vertices (for instance, the
above cycle C can be written as the sequence x0 · · · xk−1x0).

The length of a cycle is its number of edges (or vertices).

The cycle of length k is called a k-cycle.
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A subset M of E is called a matching if no two edges of
M are adjacent, i.e., if no two edges of M have a vertex in
common.

Basic Definitions
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Basic Definitions
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Basic Definitions
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Basic Definitions
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Basic Definitions

M = {{v5, v6}, {v0, v7}, {v2, v3}}
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Basic Definitions

The two ends of an edge in M are said to be matched un-
der M.

v0

v1

v2v3

v4

v5

v6

v7

G

M = {{v5, v6}, {v0, v7}}

Vertices v0 and v7 are matched under M.
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Basic Definitions

v0
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G

M = {{v5, v6}, {v0, v7}}

A matching M saturates a vertex v, and v is said to be M-
saturated, if some edge of M is incident with v; otherwise,
v is M-unsaturated.

Vertex v0 is M-saturated.

Vertex v1 is M-unsaturated.
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Basic Definitions

If every vertex is M-saturated, the matching is perfect.

A perfect matching



Basic Definitions

M is a maximum matching if G has no matching M� with
|M�| > |M|.

A maximum matching

Clearly, every perfect matching is a maximum matching.
17
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Maximum Matchings

Let M be a matching in G. Then, an M-alternating path in
G is a path whose edges are alternately in the sets E− M
and M.

M = {{v5, v6}, {v0, v7}, {v2, v3}}

v0

v1

v2v3

v4

v5

v6

v7

G

v4v7v0v6v5 is an M-alternating path.



19

Maximum Matchings

An M-augmenting path in G is an M-alternating path in
G whose origin and terminus vertices are M-unsaturated.

v0

v1

v2

v3

v4

v5

v6

v7

G

v8

v9

M = {{v1, v2}, {v4, v9}, {v5, v8}}

v0v1v2v9v4v5v8v7 is an M-augmenting path.
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Maximum Matchings

Let M1 and M2 be two matchings in a graph G, and let H be the
subgraph of G induced by the set of edges

M1 � M2 = (M1 − M2) ∪ (M2 − M1) ,

Then each connected component of H is of one of the following
two types:

(1) a cycle of even length whose edges are alternately in M1
and M2,

(2) a path whose edges are alternately in M1 and M2 and
whose end vertices are unsaturated in one of the two
matchings.

Lemma 1
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Maximum Matchings

Example:

G

v0 v1 v2

v3 v4 v5

v6

M1 = {{v1, v2}, {v4, v5}, {v3, v6}} and M2 = {{v0, v1}, {v3, v4}, {v5, v6}}

M1 �M2 = {{v1, v2}, {v4, v5}, {v3, v6}, {v0, v1}, {v3, v4}, {v5, v6}}
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Maximum Matchings

v0 v1 v2

v3 v4 v5

v6

The subgraph H:
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Maximum Matchings

The subgraph H:

v3 v4 v5

v6

A cycle of even length whose edges are alternately in M1 and M2.
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Maximum Matchings

The subgraph H:

v0 v1 v2

a path whose edges are alternately in M1 and M2 and whose
end vertices are unsaturated in one of the two matchings (in
this example, vertex v0 is M1-unsaturated and vertex v2 is M2-
unsaturated).
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Maximum Matchings

Proof:

Let v be any vertex of H. Then either

(a) v is an end vertex of an edge in M1−M2 and also of an edge in M2−M1,
or

(b) v is an end vertex of an edge in one of M1 − M2 and M2 − M1 but not
both.

In case (a), vertex v has degree 2 in H.

In case (b), vertex v has degree 1 in H.

So, every vertex of H has either degree 1 or 2.

Why?
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Maximum Matchings
Key observation:

Since no two adjacent edges of H can belong to the same matching (otherwise,
it would not be a matching), the edges of every cycle or path in H alternate in
M1 and M2.

Consequently, cycles must have even length.

If G is a connected graph in which every vertex has degree either 1 or 2 then G

is either a path or a cycle. So, every component of H is either a path or a cycle.

proof?

If v is the end of a path in H, then v has degree 1 in H. So, there is exactly one
edge, say e, in M1 � M2 whose one end vertex is v. Without loss of generality,
assume that e ∈ M1. Since e ∈ M1 � M2, we know that e �∈ M2. Furthermore,
there is no edge e

� ∈ M2, with e
� �= e, such that v is an end of e

�. This is because
e
� �∈ M1 (as M1 is a matching). But, this means that e

� ∈ M1 � M2, and thus
vertex v would have degree 2, which contradicts the fact that v is the end of a
path in H.
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Maximum Matchings

A matching M in a graph G is a maximum matching if and
only if G contains no M-augmenting path.

Theorem 1 [Claude Berge, 1957]



28

Maximum Matchings

Example:

M = {{v5, v6}, {v0, v7}, {v2, v3}}
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Maximum Matchings
The transfer along the augmenting path strategy

Let M be any matching in the graph G.

Refer to the edges in M as dark edges and the edges in E−M as light edges.

Let P be an M-alternating path in G.

So, the path P alternates dark and light edges.

If we further assume that path P is M-augmenting, i.e., the origin and termi-
nus of P are not M-saturated, then the first and last edge of P must be light
edges.
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Maximum Matchings
So, the sequence of edges of P is of the form

light, dark, light, . . . , dark, light

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9

{v0, v1}, {v1, v2}, {v2, v9}, {v9, v4}, {v4, v5}, {v5, v8}, {v8, v7}

light

dark
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Maximum Matchings

So, P has an odd number of edges, say 2m + 1, m of which are dark and m + 1
are light.

By assumption, the origin and terminus of P are M-unsaturated.

All other vertices of P are M-saturated (by the dark edges).

So, any edge of M that is not in P is not incident to any vertex of P.

Let M� be the set of all dark edges of M not in P and also all light edges of P.
We have that M� is a new matching in G with one more edge than matching
M.
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Maximum Matchings
The transfer along the augmenting path strategy
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Maximum Matchings

Proof:

(Only if)

Let M be a maximum matching in G.

If there is an M-augmenting path P in G, then we can transfer along P to
produce a new matching M� in G which has one more edge then M has. But,
this is impossible since M is maximum. So, graph G has no M-augmenting
path.
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Maximum Matchings
(If)

Suppose that M is a matching in G such that there is no M-augmenting path
in G.

We wish to show that M is a maximum matching.

Let H be the subgraph induced by the set of edges

M� M
� = (M− M

�) ∪ (M
� − M) .

Let M� be any maximum matching of G. Then, we wish to show that

|M| = |M�| .
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Maximum Matchings

By Lemma 1, the connected components of H are either

(a) cycles of even length whose edges are alternately in M and M
�, or

(b) paths whose edges are alternately in M and M
� and whose end vertices

are unsaturated in one of the two matchings.

Since all cycles of H have even length, each such a cycle has the same number
of edges from M and M

�. The same can be said of each path in H of even
length.

So, let us consider a path in H with odd length.

Since the length of the path is odd, the origin and terminus of the path are
both M-unsaturated or both M�-unsaturated, as the first and last edges of the
path must belong to the same matching. So, the path is either M-augmenting
or M�-augmenting.
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Maximum Matchings
But, by assumption, matching M has no augmenting path.

Likewise, matching M� has no augmenting path either, as M� is maximum.

So, no component of H can have a path of odd length, which implies that all
paths and cycles in H have even length. As a result, we must have |M− M

�| =
|M� − M|.

But,

|M| = |M − M�| + |M ∩ M�| and |M�| = |M� − M| + |M� ∩ M| .

So,
|M| = |M�| .
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Perfect Matchings

We now turn our attention to perfect matchings.

Recall that a non-empty graph G is called connected if any
two of its vertices are linked by a path in G. If U ⊆ V(G)
and G[U] is connected, we also say that U is connected (in
G).

A maximal connected subgraph of G is called a compo-
nent of G.

A component, being connected, is always non-empty.
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Perfect Matchings

Let G be a graph. Then, if all the vertices of G have the
same degree k, then G is said to be k-regular or simply
regular.

A 3-regular graph is called cubic.

A k-regular spanning subgraph is called a k-factor.

From the above definition of k-factor, we note that a sub-
graph H ⊆ G is a 1-factor if and only if E(H) is a matching
of V.
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Perfect Matchings

If A, B ⊆ V e X ⊆ V ∪ E are such that every A− B path in
G (i.e., a path from a vertex in A to a vertex in B) contains a
vertex or an edge from X, we say that X separates the sets
A and B in G.

e
A B

X = {e}
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Perfect Matchings

More generally, we say that X separates G, and call X a
separating set in G, if X separates two vertices of G−X in
G.

A vertex which separates two other vertices of the same
component is a cutvertex, and an edge separating its ends
is a bridge.

bridge

e

x yv

cutvertex
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Perfect Matchings

Theorem 2 [Petersen, 1891]

Every bridgeless cubic graph has a 1-factor.

This theorem can be proved as corollary of a theorem by
Tutte:

Theorem 3 [Tutte, 1947]

A graph G has a 1-factor if and only if q(G − S) ≤ |S|,
for all S ⊂ V(G), where q(G − S) denotes the number of
components of the graph G − S with an odd number of
vertices.
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Perfect Matchings

Proof (of Petersen’s theorem):

We show that any bridgeless cubic graph G satisfies Tutte’s condition.

Let S be any subset of V(G).

If G has no component with an odd number of vertices, then q(G − S) = 0,
and hence q(G− S) ≤ |S|, for all S ⊆ V. So, Tutte’s theorem tells that G has a
1-factor.

So, let us assume that G− S has at least one odd component.

Let C be any odd component of G− S.
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Perfect Matchings

Since G is cubic, the degrees (in G) of the vertices in C sum to an odd number,
i.e.,

∑
v∈V(C)

d(v) = 3 · |V(C)|

is odd, as |V(C)| is odd. Because C is a component of G − S, every edge
incident to a vertex in C is either an edge with both ends in V(C) or with
an end in V(C) and the other one in S. So, the above sum also satisfies the
following:

∑
v∈V(C)

d(v) = mSC + 2 · mC ,

where mSC is the number of edges with an end in V(C) and another in S, and
mC is the number of edges with both ends in V(C). This means that mSC is
also odd.
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Perfect Matchings

The previous remark implies that there is an odd number of edges with an
end in S and another end in V(C). Actually, there are at least 3 edges, as G is
bridgeless!

So, the total number of edges with an end in S and another end in G− S is at
least 3 · q(G − S). But, because G is cubic, this number is also no larger than
3 · |S|. So,

q(G− S) ≤ |S| ,

as required.

We have achieved our goal of proving Petersen’s theorem using Tutte’s the-
orem. But, for the sake of completeness, let us go over the proof of Tutte’s
theorem (this is actually my excuse to show a beautiful proof given by Lovasz in
1973).
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Perfect Matchings

Theorem 3 [Tutte, 1947]

A graph G has a 1-factor if and only if q(G − S) ≤ |S|,
for all S ⊂ V(G), where q(G − S) denotes the number of
components of the graph G − S with an odd number of
vertices.
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Perfect Matchings

Before we go over the proof, we note that if G has a 1-factor
then

• G must have an even number of vertices.

• G cannot have an isolated vertex (i.e., with degree 0).

In addtion, if G is a complete graph then G has a 1-factor
whenever G has an even number of vertices, and a maxi-
mum matching of size |V| − 1 if its number of vertices is
odd.

Why?
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Perfect Matchings

Proof:

(Only if)

Suppose that G has a 1-factor.

We wish to show that q(G− S) ≤ |S|, for every S ⊆ V.

Let C be an odd component of G− S.

Since G has a 1-factor and since C has an odd number of components, any
1-factor of G will have exactly one edge connecting a vertex of C to a vertex of
S.

Let eC be such an edge.



48

Perfect Matchings

S

eC

C

factor edge:
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Perfect Matchings

Since eC belongs to a 1-factor, there is no other edge (of the same 1-factor) that
shares a vertex with eC. So, the |S| is no smaller than the number of factor
edges with an end vertex in S and the other end vertex in an odd component
of G− S.

But, we just noted that each odd component, C, of G− S has exactly one factor
edge with an end vertex in S and the other end vertex in C. So, we must have

q(G− S) ≤ |S| .
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Perfect Matchings

Proof:

(If)

Now, suppose that q(G− S) ≤ |S|, for every S ⊆ V.

We must show that G has a 1-factor.

For that, we will use an argument given by the brilliant Hungarian mathe-

matician László Lovász, in May 1973. This argument is quite elaborated, but

beautiful!

The main ingredient of Lovász’s proof is the notion of saturated graphs.
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Perfect Matchings

This is because q(G− S) ≤ |S|, for every S ⊆ V. So, if we take S = ∅, we have
that

q(G) = q(G− S) ≤ |S| = 0 .

So, G has no odd components. This means that every component of G has an
even number of vertices, which in turn implies that G has an even number of
vertices.

First, note that G must contain an even number of vertices.

To prove that G does possess a 1-factor, we proceed by contradiction.

So, assume that G does not possess a 1-factor.

So, G has an even number of vertices, but does not have a 1-factor.



52

Perfect Matchings

Let G� be a graph obtained from G by iteratively inserting edges in G (but no
vertex!) while the resulting graph does not possess a 1-factor. So, graph G�

is such that G� + xy has a 1-factor, for any two non-adjacent vertices x, y ∈
V(G�).

But, graph G� is not necessarily unique, and it is really immaterial which of
the possible edge-maximal graphs w.r.t. the property of not having a 1-factor
we get.

Note also that G� is edge-maximal with respect to the property of not having
a 1-factor.

Note that V(G�) = V(G). So, |V(G�)| is also even.
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Perfect Matchings

Finally, it is possible that G = G�; that is, G might be edge-maximal w.r.t to

the property of not having a 1-factor. Of course, we will show that this is

impossible.

We claim that q(G� − S) ≤ q(G− S), for all S ⊆ V(G).

If xy connects two odd components of G� − S then q(G� − S) goes down by
2, as an even component is formed. If xy connects an odd component and an
even component of G� − S then q(G� − S) remains unchanged. This is also true
if xy connects an even or an odd component of G� − S with S, or two vertices
of S.

To see why, let G� be a graph, S be any subset of V(G�), and x, y be any two
non-adjacent vertices of G�. Then, consider the insertion of the edge xy into
G�.
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Perfect Matchings

By hypothesis, q(G − S) ≤ |S|, for all S ⊆ V(G). So, q(G� − S) ≤ |S|, for all
S ⊆ V(G�).

Lovász showed that the condition q(G� − S) ≤ |S|, for all S ⊆ V(G�), implies
that G� has a 1-factor. But then graph G is the edge-maximal graph with no
1-factor.

Well, this is the same as saying that G� = G.

However, we know that q(G − S) ≤ |S|, for all S ⊆ V(G�), which means

that G must have a 1-factor for the same exact reason G�
does (using Lovász’s

proof).

So, everything goes down to prove that G� has a 1-factor.
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Perfect Matchings

Lovázs noticed (and then showed it) that every component of G� − S is com-
plete.

The fact that every component of G� − S is complete implies that the vertices
of each even component can be matched up completely with edges from the
component itself. The same is true for all but one vertex of each odd compo-
nent.

But, what does it have to do with the fact that G� has a 1-factor?

Let S denote the subset of V(G�) such that each vertex of S is joined to every
other vertex of G�. In particular, we might have S = ∅. Singling out this
particular subset for special consideration enables us to conclude that G� has
a 1-factor.
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Perfect Matchings

But the unmatched vertex of an odd component can be matched up with a
vertex of S, as every vertex of S is connected to every other vertex of G�, by
hypothesis.

Since q(G� − S) ≤ |S|, we can actually pair up each unmatched vertex (from
each odd component) with a distinct vertex of S. So, we are left with the
unmatched vertices of S, as all vertices of G� − S and their mates in S are now
paired up.

Now, we use the facts that V(G�) = V(G) is even and each vertex in S is
connected to every vertex in G� to conclude that there is an even number of
unpaired vertices in S, and that they can be paired up with independent edges
from S only.

So, we have that G� possesses a perfect matching, and thus a 1-factor.
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Perfect Matchings

S

Even components

Odd components
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Perfect Matchings

So, we are left with the task of proving that each component of G� − S is
complete.

Indeed, we must show that for every component C of the graph G� − S and
for every two vertices, x and y, in C, there exists an edge, xy, connecting x to
y.

Again, we proceed by contradiction.

Let C be a component of G� − S, and assume that C is not complete.

We claim that C has at least three vertices. Indeed, if C had less than three ver-
tices, then C would have only one or only two vertices (a component cannot
be empty), which would imply that C is complete, as C must be a connected
graph.
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Perfect Matchings

Since we picked the shortest path, we have that xy, yz ∈ E(G�) and xz �∈
E(G�).

Since C is not complete and C has at least three vertices, there are two vertices,
x and x�, in C such that there is no edge xx� in E(G�). But, because C is con-
nected, there must be a path between x and x� in C. So, we can pick the first
three vertices, say x, y, and z, in a shortest path from x to x� in C (of course,
x� �= y).

x

y

z

w

Since y �∈ S, there must be a vertex w ∈ (G� − S) such that yw �∈ E(G�).

Recall that each vertex in S is connected to every vertex in V(G�).
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Perfect Matchings

Since G� is edge-maximal and contains no 1-factor, G� + e has a 1-factor, for
all e �∈ G�.

This is the first time we use the edge-maximality of G� in this proof!

So, consider the perfect matchings M1 and M2 in G� + xz and G� + yw, re-
spectively.

Denote by H the subgraph of G
� ∪ {xz, yw} induced by M1 � M2.

What can we say about H?

Do you remember Lemma 1?
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Perfect Matchings

Let M1 and M2 be two matchings in a graph G, and let H be the subgraph of
G induced by the set of edges

M1 � M2 = (M1 − M2) ∪ (M2 − M1) ,

Then each connected component of H is of one of the following two types:

(1) a cycle of even length whose edges are alternately in M1 and M2,

(2) a path whose edges are alternately in M1 and M2 and whose end vertices
are unsaturated in one of the two matchings.

Lemma 1
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Perfect Matchings

Since M1 and M2 are perfect matchings, no component of H can be a path
whose end points are unsaturated vertices in one of the matchings. So, they
are all cycles.

Since each cycle (component of H) alternates edges from M1 and M2, the
length of such a cycle is always even, and hence H is a disjoint union of even
cycles.
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Perfect Matchings

We distinguish two cases:

1) xz and yw are in distinct cycles of H.

2) xz and yw are in the same cycle of H.

x

y

z

w

Case 1

x

y

z

w

Case 2
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Perfect Matchings

x

y

z

w

x

y

z

w

Consider case 1. If w is in the cycle B of H, the edges of M1 in B, together
with the edges of M2 not in B, constitute a perfect matching of G

�. So, G
� has a

1-factor.
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Perfect Matchings

Consider case 2. By symmetry of x and z, we may assume that the vertices
x, y, w, and z occur in that order on C. Then the edges of M1 in the section
yw . . . z of C, together with the edge yz and the edges of M2 not in the section
yw . . . z of C, constitute a perfect matching in G�. So, we can conclude that G�

has a 1-factor.

x

y

z

w

x

y

z

w
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Perfect Matchings

In either case, we get that G� has a 1-factor, which contradicts our assump-
tion. So, each component of G� − S is complete, which ends Lovász’s proof of
Tutte’s theorem.
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Concluding Remarks

We showed a fundamental result from Graph Theory,
which seems to be closely related to the problem of con-
verting a triangle surface mesh into a quadrilateral surface
mesh.

Our next lecture will give an overview of some algorithms

for maximum matchings in general graphs. After that,

we will turn our attention to the problem of finding max-

imum weighted matching in general graphs and related

algorithms.
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Questions?


