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Topological Well-Composedness and Glamorous Glue: A Digital
Gluing Algorithm for Topologically Constrained Front

Propagation
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C. Gee

Abstract— We propose a new approach to front propagation algorithms
based on a topological variant of well-composedness which contrasts
with previous methods based on simple point detection. This provides
for a theoretical justification, based on the digital Jordan separation
theorem, for digitally “gluing” evolved well-composed objects separated
by well-composed curves or surfaces. Additionally, our framework can be
extended to more relaxed topologically constrained algorithms based on
multisimple points. For both methods this framework has the additional
benefit of obviating the requirement for both a user-specified connectiv-
ity and a topologically-consistent marching cubes/squares algorithm in
meshing the resulting segmentation.

Index Terms— digital Jordan separation theorem, front propagation,
marching cubes, simple point, topological well-composedness

I. INTRODUCTION

The exploration of topological concepts for digital image analysis
algorithms dates back to the pioneering work of the late Azriel Rosen-
feld who coined the phrase digital topology. Given the digitization of
structures of interest via the imaging process whose continuous topol-
ogy is known a priori, digital topological considerations for image
segmentation algorithms continue to be of significant research inter-
est. Although general variational approaches to topology constrained
front propagation include the work of [1], [2], [3], [4] in this work, we
focus on those methods based on the fundamental digital topology
concept of simple points [5] which characterizes the local digital
topology of a specified voxel based on the foreground/background
identity of the immediate voxel neighborhood given a user-specified
connectivity relation. Exemplary methods include those of [6], [7].

We propose an extension to the digital concept of well-
composedness [8], [9], [10], which we denote as topological well-
composedness, for strictly maintaining the topology of the evolving
digital fronts similar to the simple point approach of Han et al. [6].
However, since our topology constraint employs well-composedness,
we can utilize the digital Jordan separation theorem (DJST) [10] to
‘glue’ digital objects separated by well-composed curves or surfaces.
The well-composed hypersurface forming the boundaries between
objects, i.e. the digital gluing layer, has the potential to provide further
interesting shape-based analysis of such boundaries. This framework
can also be extended to more relaxed topology constrained methods
such as that of [7]. Regardless of topology constraint, this framework
does not require the user to specify a connectivity relation nor
the use of connectivity consistent marching cubes/squares (CCMC)
algorithms (e.g. [11], [6], [12]) to handle ambiguous tiling cases. As
a practical contribution, we have integrated our method in the fast
marching image filter of the Insight Toolkit of the National Institutes
of Health ( based on the algorithm given in [13]) which we plan to
provide to the open source community.

II. DIGITAL TOPOLOGY FOR CONSTRAINING FRONT

PROPAGATION

The following core digital topological concepts are briefly reviewed
to better contextualize our contribution:

• simple points [14], [5], [15],
• multisimple points [7],
• well-composedness [8], [9], and
• topological well-composedness.

Fig. 1: Illustration of simple and non-simple (i.e. critical) points for
a 2-D binary image. Note that X is represented by the grey squares
and X̄ by the white squares. x1, x2, and x3 are not simple points
whereas x4 is a simple point. Changing x1 or x2 to background would
create a hole or eliminate a handle, respectively, while changing x3

to foreground would fill a hole. However, changing only x4 does not
violate digital topology.

Each of these concepts is based on sets represented by binary images.
A binary image, I , is composed of foreground and background
components, represented respectively by X and X̄ . Given arbitrary I ,
a connectivity relation is specified to avoid topological ambiguities.
These connectivity relations are denoted as (6, 18), (6, 26), (18, 6),
or (26, 6) in 3-D or (4, 8) and (8, 4) in 2-D where the first and
second numbers specify the adjacency relation of points in X and
X̄ , respectively [14].

In addition, definitions concerning local neighborhood relation-
ships are necessary for further discussion of certain concepts. Given
a voxel x ∈ X , the n-neighborhood of x is denoted as Nn(x) and
N∗

n(x) = Nn(x)\{x}. Related is the concept of the n-geodesic
neighborhood of x ([5], [6]):

Definition The n-geodesic neighborhood of x with respect to X
of order k (denoted by Nk

n(x,X)) is defined recursively as fol-
lows: Nk

n(x,X) = ∪
{
Nn(y) ∩N∗

M (x) ∩X, y ∈ Nk−1
n (x,X)

}
with N1

n(x,X) = N∗
n(x) ∩X where M = 8 in 2-D and M = 26

in 3-D.

We also denote the number of n-connected components of X as
Cn(X) and the number of n-connected components of X\{x} which
exhibit n-adjacency to x as Cn(X,x).

A. Simple Points

A simple point in I can be informally defined as a voxel which
can switch from background to foreground or vice versa without
altering the existing topology of I [5], [15] (see Fig. 1). This con-
cept is important for defining topology preserving transformations—
specifically for thinning and skeletonization algorithms [16], [14] and
front propagation [6], [17], [7].

Bertrand proposed the topological numbers Tn(x,X) and
Tn̄(x, X̄) to characterize the topology of the point x with respect
to X and X̄ given a specified adjacency relation (n, n̄) [18] which
can be defined in terms of the geodesic neighborhood of x:

Definition

T4(x,X) = #(C4(N2
4 (x,X)))

T8(x,X) = #(C8(N2
8 (x,X)))
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Fig. 2: Illustration of multisimple and non-multisimple points for a
2-D binary image. Note that X is represented by the grey squares
and X̄ by the white squares. Whereas x1 is a multisimple point
(T+

n = Tn = 2), x2 is not (T+
n = 1 6= Tn = 2).

in 2-D where ‘#’ denotes the cardinality of a set and

T6(x,X) = #(C6(N2
6 (x,X)))

T6+(x,X) = #(C6(N3
6 (x,X)))

T18(x,X) = #(C18(N2
18(x,X)))

T26(x,X) = #(C26(N1
26(x,X)))

in 3-D where ‘6+’ is used for (6, 18) connectivity and ‘6’ is used
for (6, 26) connectivity.

These topological numbers are useful for identifying isolated, interior,
and junction points in addition to simple points [5], the latter being
characterized by the necessary and sufficient condition Tn(x,X) =
Tn̄(x, X̄) = 1.

B. Multisimple Points

Ségonne extended the concept of topological numbers to charac-
terize multisimple points [7]:

Definition A point in I is multisimple if it can be added or removed
without changing the number of handles of X and X̄ .

Multisimple points are similarly characterized by their extended
topological numbers T+

n (x,X) and T+
n̄ (x, X̄). These numbers are

determined by the set of connected components with respect to both
X and X̄ , denoted by Cn(x,X) and Cn̄(x, X̄), respectively, such
that

T+
n (x,X) = |Cn(x,X)| and T+

n̄ (x, X̄) = |Cn̄(x, X̄)|. (1)

Multisimple points can then be defined formally as those points
satisfying the following relations:

T+
n (x,X) = Tn(x,X) and T+

n̄ (x, X̄) = Tn̄(x, X̄). (2)

A sample 2-D binary image is given in Fig. 2 which illustrates the
difference between multisimple points and non-multisimple points.
By restricting evolution of the dynamic front to multisimple points,
as opposed to simple points, Ségonne’s method allows objects to
merge and split without creating handles.

C. Well-Composedness

For n = {2, 3}, an n-D binary digital image, I , is said to
be well-composed [8], [9] if and only if the continuous analog
of the digital boundary between X and X̄ in I is a (n − 1)-
D manifold [10]. Informally, a well-composed image is one with
only face connectedness between points in both X and X̄ , i.e.
adjacency relations for X and X̄ are (6, 6) for 3-D sets and
(4, 4) for 2-D sets such that I is absent of any so-called critical
configurations, ξ, illustrated for 2-D and 3-D images in Fig. 3. Thus,

(a) (b)

(c)

Fig. 3: Critical configurations characterizing non well-composed
images in both 2-D and 3-D in local 2D neighborhoods. (a) The
2-D critical configuration is due to an 8-adjacency relation. In 3-D
(b) the critical configuration ξ1 is due to an 18-adjacency relation
and (c) the critical configuration ξ2 is due to a 26-adjacency relation.
The repairing algorithms of [10], [19] eliminate these local critical
configurations (and their rotational and reflection variants) to make
an image well-composed.

well-composedness obviates the requirement of specifying one of the
standard connectivity relations of (6, 18), (6, 26), (18, 6), and (26, 6)
in 3-D or connectivities of (4, 8) and (8, 4) in 2-D for establishing
the topology of I . Well-composedness implies important topological
and geometrical properties which simplifies many algorithms such
as marching cubes/squares [20], various thinning algorithms, and
Euler characteristic computation. The “repairing” algorithms given
in [10], [19], [21] are used to make 2-D and 3-D binary images
well-composed by optimally eliminating such critical configurations.

D. Topological Well-Composedness

As described previously, the simple point criterion can be used
to constrain the topology of an evolving digital front. In contrast,
the well-composedness criteria, as initially defined, is insufficient
for such a task. Towards this end, we extend the concept of well-
composedness to its topological variant by incorporating the 2-D
and 3-D topological critical configurations illustrated in Fig. 4 where
only the center voxel and its immediate face-connected neighbors are
considered. Note that 8-connected neighbors in 2-D and 18- and 26-
connected neighbors in 3-D are handled by the well-composedness
criteria given in Fig. 3. Those voxels which satisfy both the well-
composedness and corresponding topological criteria are designated
topologically well-composed points.

III. TOPOLOGICALLY CONSTRAINED WELL-COMPOSED FRONT

PROPAGATION

A. Strict Topology Preservation

Constraining the evolution of the digital front to either simple
or topologically well-composed points, one can strictly preserve
the initial topological configuration during the transformation. Vi-
sual comparison of our method with the strict preserving topology
approach of Han et al. [6] is given in Fig. 5 where detection
of simple points along the dynamic front maintains the topology
of the original level set configuration. Starting with seven well-
composed seed objects placed in the center of the seven canine
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(a) (b)

Fig. 5: Strict topology preserving fast marching segmentation of the seven canine lobes. (a) The results of the topology preserving level
set method of Han et al. [6] using a (4, 8) adjacency relationship. These results can be compared with (b) our approach using topological
well-composedness for constraining level set evolution which results in a binary sets exhibiting (4, 4) adjacency.

lobes, the dynamic front evolves while strictly maintaining the initial
topological configuration. Fig. 5(a) shows the resulting configuration
where we have labeled the different connected components with
different color labels. We have also zoomed in on two interfaces
to illustrate the characteristic separation demonstrating the (4, 8)
adjacency relation. For comparison, we provide the results using our
approach in Fig. 5(b) where the resulting well-composed binary set
exhibits (4, 4) adjacency.

B. Digitally Gluing Genus Zero Well-Composed Binary Sets

1) Glamorous Glue and the Digital Jordan Separation Theorem:
Following evolution using strict topology preservation of the initial
configuration via topological well-composedness, neighboring well-
composed genus zero seed objects can be digitally “glued” along
the well-composed hypersurface interface to create a single, well-
composed genus zero object. This gluing operation creates a well-
composed manifold that, for certain applications, can be construed
as having anatomical meaning for further shape analysis (e.g. the
fissures separating the lobes of the lungs). This is possible since the
DJST applies to well-composed sets [10].

The Jordan curve theorem, originally formalized for simple closed
curves in the R2 plane, also extends to curves on a sphere. The
Jordan separation theorem (JST) on the sphere says that a surface
homeomorphic to a sphere, i.e. surface with genus zero, may be
separated into two objects by a simple, continuous, closed curve
(a Jordan curve) drawn along the surface [22]. Note that the two
separated objects are topologically equivalent—they both have the
topology of a plane. Similarly, any two genus zero objects are
topologically equivalent. That is, there exists a homeomorphism
between them. The JST for the continuous world has a digital analog
[10] where the spherical object is represented as a dense volume of
voxels which are hole- and loop-free. Latecki has also shown that the
DJST holds true for well-composed objects [10]. These results enable
a concrete application of this theorem to the case of well-composed
genus zero digital objects.

A corollary of this theorem is that we can glue two distinct
genus zero surfaces, XA and XB , by a simple set of operations,
to create a new genus zero surface. The crux of the argument is that
a Jordan curve separates a genus zero object into two components
with identical planar topology which can then be homeomorphically
mapped to the boundaries of other similarly separated components,
also with identical planar topology, derived from application of the
Jordan curve theorem. Fig. 6 shows the JST applied to two genus

zero objects. To show this corollary more clearly, we describe the
proof by construction which is closely connected to the Glamorous
Glue algorithm itself which is given in Algorithm 1.

Corollary 3.1: (Gluing Corollary for the JST) Two distinct genus
zero objects may be glued along a Jordan curve to form a new genus
zero object.

Proof: First, we perform a separation along each surface by
drawing a Jordan curve, i.e. we draw JA on XA and JB on XB .
Note that each J forms the boundary of a well-composed manifold
such that each J has an “interior” and an “exterior”. Arbitrarily, we
take the interior to be the smallest area component after separation.
Second, we replace the interior of JA with the exterior of JB by
gluing these pieces along JA (without loss of generality). Note that
as each of these objects are topologically equivalent, JB may be
homeomorphically mapped to JA or vice versa. Then, due to identical
planar topology of the interior and exterior components of both JA
and JB , the resulting surface is genus zero.

2) Quantitative Comparison: Although the techniques discussed
in previous sections are generally applicable, much of the motivation
for this work and related work (e.g. [23], [6], [17], [24]) has been
towards retrospective correction of brain segmentation to ensure
correct topology of the final segmentation. Since with strict topology
preservation the initial topological configuration is equal to the final
topological configuration, only initialization with a single initializa-
tion seed object is possible. However, using the GG algorithm one
can initialize the topological correction with anatomically meaningful
well-composed genus zero objects (e.g. the brain lobes). These lobes
can then be glued together to create a single genus zero object.
Thus, one obtains the results yielded by earlier strategies while also
maintaining potentially anatomically meaningful subdivisions.

Image data (NA0) from the Non-Rigid Image Registration Evalu-
ation Project (NIREP) consisting of 16 labeled human brain volumes
were used for quantitative comparison.1 In Step 1 of Algorithm 1, we
assumed an initialization was given. However, in general, determining
an optimal initialization for finding the globally optimal fit of a genus
zero segmentation to an arbitrary topology target segmentation is an
unsolved problem. Since different strategies for initialization have
the potential of finding different local minima, specific strategies are
needed for specific applications.

Based on brain anatomy and in order to motivate the GG algorithm,

1http://www.nirep.org
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(a) (b)

(c)

(d) (e)

Fig. 4: (a)–(e) Additional critical configurations (and their rotational
invariants) for topological well-composedness for a specific voxel in
X̄ and its immediate face-connected voxel neighborhood. Changing
the voxel’s membership from X̄ to X would change the topology of
I . Note that the membership (in X or X̄) of the neighborhood voxels
identified by a corner or edge connectivity is unimportant as these
cases are handled by the identification of the well-composedness
critical configurations illustrated in Fig. 3.

we opted to initialize the GG algorithm with four initialization seed
objects corresponding to the four major lobes in each of the 16 NIREP
image data: frontal, temporal, parietal, and occipital. These four lobar
seed objects are found by extracting the largest possible cube-like
set of voxels accommodated within each lobe. This initialization
approach is illustrated in Fig. 7(a) where we have rendered the
translucent white matter of the right hemisphere of one of the NA0
data sets along with the four seed objects. Each of the four seed
objects has been rendered with a different color label (red → frontal
lobe, green → parietal lobe, blue → temporal lobe, and purple
→ occipital lobe). These four seed objects evolve as described in
Algorithm 1 followed by construction of the gluing layer seen in
Fig. 7(d).

For comparison, we initialize with a single object (similar to [6])
in the occipital lobe since it is the most convoluted and gives the
best overall comparative performance. We denote this strategy as
‘Simple.’ The voxel-wise difference and error percentages between
the actual segmentation and our two retrospective corrections are
given in Fig. 8. Both initialization strategies produce a final genus
zero object representing the white matter for each of the 16 data.
However, not only does our approach maintain anatomically meaning-
ful subdivisions, but the inherent split-and-merge approach minimizes
the segmentation error for all lobes collectively and for all but the
parietal lobe individually over all 16 NIREP data.

(a) (b)

(d)(c)

Fig. 6: Illustration of the continuous Jordan separation theorem. (a)
A genus zero object, XA, is shown with a Jordan curve, JA, drawn
along the surface in red. The interior of the JA is painted yellow
and has planar topology by construction. (b) The separation of the
interior of JA results in two planar objects. (c) A similar operation is
performed on a second genus zero object, XB , with its corresponding
Jordan curve, JB resulting in two planar objects. (d) The gluing
corollary of the Jordan separation theorem indicates that we may
replace the original interior of JA with the topologically equivalent
exterior of JB resulting in a single genus zero object with a different
shape from the original.

(a) (b)

(c) (d)

Fig. 7: Glamorous Glue applied to brain segmentation results. (a)
Initialization begins with four well-composed, genus zero objects,
each with a distinct label (red → frontal lobe, green → parietal
lobe, blue → temporal lobe, purple → occipital lobe). (b) After
deformation, the four lobes are separated by a digital planar interface
such that the original topology is maintained. (c) Applying the gluing
step produces a single segmentation with the correct topology. (d) The
final gluing layer is shown in isolation with the original initialization
objects.
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Algorithm 1 Glamorous Glue
1: Place multiple, well-composed, genus zero seed objects within

the target segmentation.
2: Create the initial front using a signed distance transform on the

seed objects.
3: Evolve the dynamic fronts according to the governing region

growing/shrinking propagation equations while strictly preserv-
ing the topology of the initial configuration. Note that evolution
of each seed object must be carried out until propagation halts
due to topology preserving constraints.

4: while there exists > 1 genus zero object do
5: Determine the connected components of all the unlabeled

interfaces between the evolved, well-composed, genus zero
objects.

6: Isolate the largest unlabeled interface. This interface is defined
by the local 8- (2-D) or 26- (3-D) neighborhood containing
only points xA ∈ XA and xB ∈ XB where XA and XB are
the two genus zero objects on either side of the interface.

7: Locate a legal gluing position at one voxel along the interface.
A legal gluing position is a point x ∈ X̄ on the interface
between XA and XB that conforms locally to the JST and
does not violate well-composedness. Quantitative criterion for
selecting among candidate legal positions may be used, such
as selecting the legal gluing position that is maximally far from
the image background.

8: Evolve the seed object within the interface between XA

and XB using the TWC strict topology preserving level set
method. The advancing front terminates at either an illegal
gluing position or at a position y where N(y) ∩ XA = ∅
or N(y) ∩ XB = ∅ or N(y) ∩ XC 6= ∅ where Xc is a
possible third genus zero well-composed object within the
target segmentation. The boundary of the resulting grown
region constitutes the digital Jordan curve along which we have
the final gluing of XA and XB .

9: end while

C. ‘No Handles’ Topology Constraint

Not only does our framework accommodate strict topology preser-
vation but one can also adopt the multisimple point, multiple ob-
ject initialization [7] for a more relaxed topology constraint where
fronts can split and merge but not form handles. This is done by
relaxing the topological well-composed criteria illustrated in Fig. 4
to allow merging separate connected component objects or splitting
a single connected object which we denote relaxed topological
well-composedness. All that is required is maintaining a connected
component label map and consulting the map during evolution.

In addition, one benefit with our approach is that CCMC algorithms
are not required to produce a topologically consistent meshing from
the segmentation results. We compare both 1) the relaxed topological
well-composed approach with the analogous approach of [7] and 2)
the topologically consistent meshing of the resulting segmentation by
both methods to segmentation of the white matter of the BrainWeb 20
image database [25] of the right hemisphere. After extracting the right
hemisphere of the white matter for all 20 subjects, ∼2400 initializa-
tion points are randomly placed in the white matter common to all
20 subjects. For each method we calculate the average and standard
deviation of the resulting genus as determined by a publicly available,
well-vetted, standard marching cubes implementation2 Although for
typical surfaces the genus is restricted to positive integer values, non-
orientable surfaces (which can result from application of the original

2http://www.vtk.org/doc/nightly/html/classvtkMarchingCubes.html
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Fig. 8: Comparative performance assessment of GG (red bars) and
Simple approach (yellow bars) averaged over all 16 data sets with
error bars showing one standard deviation. The top panel shows the
average voxel-wise difference between the target segmentation and
the segmentation produced by the two algorithms for the 16 NIREP
image data. The bottom panel illustrates the difference as the error
percentage. Corresponding p-values are pAll = 0.0018, pFrontal =
0.047, pParietal = 0.116, pTemporal = 0.0132, and pOccipital =
0.026.

TABLE I: ‘No Handles’ Topology Method Comparison
Method Genus Voxel Difference

No Topology Constraint 508± 210 0.9999± 0.0002
MP(6,18) 10.8± 4.1 0.994± 0.002
MP(18,6) 19.6± 6.5 0.992± 0.003
MP(6,26) −188.6± 203.2 0.993± 0.002
MP(26,6) 23.8± 9.85 0.991± 0.003

RTWC 0± 0 0.990± 0.002

MP = Multisimple Point
RTWC = Relaxed Topological Well-Composedness
(·, ·) denotes connectivity

marching cubes algorithm) result in negative genus values.
Consistent with expectations, only our method yielded the correct

genus for all 20 BrainWeb subjects with the standard marching cubes
algorithm (results given in Table I). Although our method yields a
topologically consistent solution, it will also be noted that voxel
difference ratio is least for our method. This is readily explained
when one considers that relaxed topological well-composedness, by
permitting only face-connectedness, yields the most conservative
solution.

IV. CONCLUSIONS

In conclusion, we presented a novel framework for topology con-
strained front propagation methods which relies on a substitution of
a criterion of topological well-composedness for the related criterion
of simple and multisimple points which theoretically justifies our
Glamorous Glue algorithm. This justification stems from application
of the digital Jordan separation theorem which allows for digitally
gluing independent genus zero objects to form new, unified genus
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zero objects. An additional advantage is the elimination of CCMC
algorithmic requirements for meshing the resulting segmentation.
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