716 DISTRIBUTED COORDINATION-BASED SYSTEMS CHAP. 12

12.3 JINI

Our next example of a coordination-based system is Jini from Sun Microsys-
tems. Referring to Jini as a coordination-based system is primarily based on its
support for generative communication in the form a Lindalike service caled
JavaSpaces, which forms the focus of our discussion of Jini. In addition, it pro-
vides support for letting clients easily discover services when they become avail-
able, as well as a distributed event and notification system. There are also many
other services and provisions that make Jini more than just a coordination-based
system. However, the services just mentioned justify its treatment as a case study
in coordination-based distributed systems. The specification of Jini is available
from Sun Microsystems, and is described in (Sun Microsystems, 2000b; and
Waldo, 2000). Keith (2000) gives a good introduction to the core facilities of Jini.

12.3.1 Overview of Jini

Jini is a distributed system that consists of a mixture of different but related
elements. It is strongly related to the Java programming language, although many
of its principles can be implemented equally well in other languages. An impor-
tant part of the system is formed by a coordination model for generative commun-
ication. We first discuss this model before giving the overal architecture of atyp-
ical Jini system.

Coordination Model

Jini provides temporal and referential uncoupling of processes through a
Linda-like coordination system called JavaSpaces (Freeman et a., 1999; Sun
Microsystems, 2000a). A JavaSpace is a shared dataspace that stores tuples
representing a typed set of references to Java objects. Multiple JavaSpaces may
coexist inasingle Jini system.

Tuples are stored in serialized form. In other words, whenever a process
wants to store a tuple, that tuple is first marshaled, implying that al its fields are
marshaled as well. As a consequence, when a tuple contains two different fields
that refer to the same object, the tuple as stored in a JavaSpace implementation
will hold two marshaled copies of that object.

A tuple is put into a JavaSpace by means of a write operation, which first
marshals the tuple before storing it. Each time the write operation is called on a
tuple, another marshaled copy of that tuple is stored in the JavaSpace, as shown in
Fig. 12-2. We will refer to each marshaled copy as atuple instance.

The interesting aspect of generative communication in Jini is the way that
tuple instances are read from a JavaSpace. To read atuple instance, a process pro-
vides another tuple that it uses as a template for matching tuple instances as
stored in a JavaSpace. Like any other tuple, a template tuple is a typed set of

SEC. 123 JINI 717

Write A E Write B Read T

Look for

Insert a Insert a tuple that
copy of A copy of B matches T

Return C
(and optionally
remove it)

\
I
I
|
I
I
|
I
I
I

’

Tuple instance :___9__'

A JavaSpace

Figure 12-2. The general organization of a JavaSpacein Jini.

object references. Only tuple instances of the same type as the template can be
read from a JavaSpace. A field in the template tuple either contains a reference to
an actual object or contains the value NULL.

To match atuple instance in a JavaSpace against a template tuple, the latter is
marshaled as usual, including its NULL fields. For each tuple instance of the same
type as the template, afield-by-field comparison is made with the marshaled tem-
plate tuple. Two fields match if they both have a copy of the same reference or if
the field in the template tuple is NULL. A tuple instance matches a template tuple
if there is a pairwise matching of their respective fields.

When a tuple instance is found that matches the template tuple provided as
part of a read operation, that tuple instance is unmarshaled and returned to the
reading process. There is al'so a take operation that additionally removes the tuple
instance from the JavaSpace. Both operations block the caller until a matching
tuple instance is found. It is possible to specify a maximum blocking time. In
addition, there are variants that ssimply return immediately if no matching tuple
existed.

Compared to the publish/subscribe model adopted by TIB/Rendezvous,
processes that make use of JavaSpaces need not coexist at the same time. In fact,
if aJavaSpace isimplemented using persistent storage, a complete Jini system can
be brought down and later restarted without losing a single tuple instance. Unfor-
tunately, there is also a price to be paid when adopting generative communication.
As it turns out, developing highly efficient implementations of a JavaSpace, or
any Linda-like system for that matter, is not easy. Generative communication will,
in general, impose scalability problems when the model needs to be implemented
in awide-area network. We return to this problem below.

718 DISTRIBUTED COORDINATION-BASED SYSTEMS CHAP. 12
Architecture

JavaSpaces form only part of a Jini system. Like TIB/Rendezvous, Jini is
aimed at providing a small, useful set of facilities and services that will alow the
construction of distributed applications. A distributed application using Jini is
often described as a loose federation of devices, processes, and services. All com-
munication in current Jini systemsis based on Java RMI.

The architecture of a Jini system can be viewed in terms of three layers, as
shown in Fig. 12-3. The lowest layer is formed by the Jini infrastructure. This
layer provides the core facilities of Jini, notably those that enable communication
through Java RMI. An important aspect within Jini’s model is that clients can
easily find services. Services can be provided by regular processes, but may also
be provided by hardware devices that cannot run the Jini software, notably the
Java virtual machine. Registering and finding services therefore also belong to the
Jini infrastructure.

i Securit .) .
Transaction | JavaSpace | , o o y Jini user-defined services
manager server server
T_ransactlon Ev_e_nts_& eoe _Leasmg Extra facilities
interfaces notification interfaces
Look_up Java RMI Othe_(core Jini infrastructure
service facilities

Figure 12-3. The layered architecture of a Jini system.

The second layer is formed by a collection of genera-purpose facilities that
extend the basic infrastructure, and which can be used to implement various ser-
vices more effectively. The facilities currently consist of an event and notification
subsystem, facilities for associating leases with resources, and the specification of
standard interfaces to enable transactions.

The highest layer consists of clients and services. In contrast to the other two
layers, Jini does not dictate what should be contained in this layer. At present, it
provides a number of services, among which are a JavaSpace server and a transac-
tion manager implementing the Jini transaction interfaces. Programs at the highest
layer will generally make direct use also of facilities provided by the Jini infras-
tructure.

In the following sections we take a closer look at Jini by considering each of
the seven principles underlying distributed systems that have been discussed in
the first part of this book. In doing so, we concentrate on how these principles
relate to Jini as a coordination-based system in which JavaSpaces play a key role.

SEC. 12.3 JINI 719
12.3.2 Communication

As we mentioned, the core communication facilities in Jini are al based on
Java RMI. We discussed RMI in Chap. 2, so we will not repeat that here. Besides
the generative communication inherent to the JavaSpace model as we discussed
above, Jini provides a simple event and notification subsystem as part of its com-
munication facilities, which we consider next.

Events

Jini’s event model is relatively simple. If an object has events that may be of
interest to clients, a client can register itself with that object. Registering for an
event achieves the effect that when the event occurs, the registered client will be
notified by the object. Alternatively, the client can tell the object to pass the notif-
ication to another process. In either case, the object is passed a remote reference
to alistener object that can be called back when the event occurs. The callback
takes place by means of a Java RMI.

Registration is always subject to a lease. When that lease expires, no more
notifications are sent to the registered client (or the process to which the notifica-
tions were sent on behaf of the client). Using leases prevents registrations from
lasting forever, for example, because the registering client has crashed. Leases are
discussed below.

Notification of an event takes place through a remote call by the object to the
listener object that was registered for that event. The listener object is invoked
again on the next occurrence of the event. Because Jini by itself provides no
guarantees that notifications are delivered in the order that events occur, a notifi-
cation will often carry a sequence number to indicate to the listener object the
relative order of the events.

Events can aso be used in a JavaSpace. In particular, a client can request to
be notified when a specific tuple instance is written to the JavaSpace. In that case,
a client calls the notify operation that is implemented by each JavaSpace. This
operation takes a template tuple as input that is used to match against stored tuple
instances, just like its use in the case of aread or take operation. Using events in
combination with JavaSpaces is illustrated in Fig. 12-4. Note that by the time a
client is notified of a tuple instance and attempts to read that instance, another
process may have aready read and removed the tuple instance from the
JavaSpace. Such race conditions often happen with generative communication,
and are generally hard to avoid.

720 DISTRIBUTED COORDINATION-BASED SYSTEMS CHAP. 12

1. Request

. notification
T
Write C for T -

4. Look for
tuple that
matches T

3. Notify when
2. Inserta Cis inserted

copy of C ittt

5. Return C
(and optionally
remove it)

Figure 12-4. Using events in combination with a JavaSpace.
12.3.3 Processes

There is nothing really special about the processes used in a Jini system.
However, the implementation of a JavaSpace server often requires special atten-
tion. Let us briefly take a look at some of the implementation issues. We concen-
trate on possible distributed implementations of a JavaSpace server, that is, an
implementation by which the collection of tuple instances may be distributed
across several machines. A recent overview of implementation techniques for
tuple-based runtime systems is given by Rowstron (2001).

An efficient distributed implementation of a JavaSpace has to solve two prob-
lems:

1. How to simulate associative addressing without massive searching.

2. How to distribute tuples instances among machines and locate them
later.

The key to both problems is to abserve that each tuple is a typed data structure.
Splitting the tuple space into subspaces, each of whose tuples is of the same type
simplifies programming and makes certain optimizations possible. For example,
because tuples are typed, it becomes possible to determine at compile time which
subspace a call to a write, read, or take operates on. This partitioning means that
only afraction of the set of tuple instances has to be searched.

In addition, each subspace can be organized as a hash table using (part of) its
ith tuple field as the hash key. Recall that every field in a tuple instance is a
marshaled reference to an object. Jini does not prescribe how marshaling should

SEC. 123 JINI 721

be done. Therefore, an implementation may decide to marshal a reference in such
away that the first few bytes are used as an identifier of the type of the object that
is being marshaled. A call to awrite, read, or take operation can then be executed
by computing the hash function of the ith field to find the position in the table
where the tuple instance belongs. Knowing the subspace and table position elim-
inates all searching. Of course, if the ith field of aread or take operation is NULL,
hashing is not possible, so a complete search of the subspace is generally needed.
By carefully choosing the field to hash on, however, searching can often be
avoided.

Additional optimizations are also used. For example, the hashing scheme
described above distributes the tuples of a given subspace into bins to restrict
searching to a single bin. It is possible to place different bins on different
machines, both to spread the load more widely and to take advantage of locality.
If the hashing function is the type identifier modulo the number of machines, the
number of bins scales linearly with the system size (see aso Bjornson, 1993).

Now let us briefly examine various implementation techniques for different
kinds of hardware. On a multiprocessor, the tuple subspaces can be implemented
as hash tables in global memory, one for each subspace. When a JavaSpace
operation is performed, the corresponding subspace is locked, the tuple instance is
entered or removed, and the subspace unlocked.

On a multicomputer, the best choice depends on the communication architec-
ture. If reliable broadcasting is available, a serious candidate is to replicate all the
subspaces in full on al machines, as shown in Fig. 12-5. When a write is done,
the new tuple instance is broadcast and entered into the appropriate subspace on
each machine. To do a read or take operation, the local subspace is searched.
However, since successful completion of a take requires removing the tuple
instance from the JavaSpace, a delete protocol is required to remove it from all
machines. To prevent race conditions and deadlocks, a two-phase commit proto-
col can be used.

This design is straightforward, but may not scale well as the system grows in
the number of tuple instances and the size of the network. For example, imple-
menting this scheme across a wide-area network is prohibitively expensive.

The inverse design is to do WRITEs locally, storing the tuple instance only on
the machine that generated it, as shown in Fig. 12-6. To do aread or take, a pro-
cess must broadcast the template tuple. Each recipient then checks to see if it has
amatch, sending back areply if it does.

If the tuple instance is not present, or if the broadcast is not received at the
machine holding the tuple, the requesting machine retransmits the broadcast
request ad infinitum, increasing the interval between broadcasts until a suitable
tuple instance materializes and the request can be satisfied. If two or more tuple
instances are sent, they are treated like local writes and the instances are effec-
tively moved from the machines that had them to the one doing the request. In
fact, the runtime system can even move tuples around on its own to balance the

722 DISTRIBUTED COORDINATION-BASED SYSTEMS CHAP. 12

Process doing

Tuple broadcast a write broadcasts

Network

@

Process doing a take

examines local JavaSpace Tuple delete Subspaces
Network

(b)

Figure 12-5. A JavaSpace can be replicated on al machines. The dotted lines
show the partitioning of the JavaSpace into subspaces. (&) Tuples are broadcast
on WRITE. (b) READs are local, but the removing an instance when calling
TAKE must be broadcast.

load. Carriero and Gelernter (1986) used this method for implementing the Linda
tuple space on a LAN.

These two methods can be combined to produce a system with partial replica
tion. As a simple example, imagine that all the machines logically form a rec-
tangular grid, as shown in Fig. 12-7. When a process on a machine A wants to do
a write, it broadcasts (or sends by point-to-point message) the tuple to all
machines in its row of the grid. When a process on a machine B wants to read or
take a tuple instance, it broadcasts the template tuple to all machines in its
column. Due to the geometry, there will always be exactly one machine that sees
both the tuple instance and the template tuple (C in this example), and that
machine makes the match and sends the tuple instance to the process requesting
for it. This approach is similar to using quorum-based replication as we discussed
in Chap. 6. It has been used to implement Linda (Ahuja et a., 1988), but aso to
implement tuple spaces on a cluster (Tolksdorf, 1995)

The implementations discussed so far have serious scalability problems
caused by the fact that multicasting is needed either to insert a tuple into a tuple
space, or to remove one. Wide-area implementations of tuple spaces do not exist.
At best, severa different tuple spaces can coexist in a single system, where each
tuple space itself is implemented on a single server or on a local-area network.
This approach is used, for example, in PageSpaces (Ciancarini et al., 1998) and

SEC. 123

JINI

Process doing a write

inserts tuple into local JavaSpace

Network

Process doing a read
broadcasts template

@

Template broadcast

N

) J

Network

Figure 12-6. Unreplicated JavaSpace. (&) A WRITE is done localy. (b) A
READ or TAKE requires the template tuple to be broadcast in order to find a tu-

ple instance.

O
O

OO0
OO0

O0000ooo
O0o000ooo
ooggoo
@00 ‘

(b)

O

A broadcasts

|:| D- tuple to these

machines

B broadcasts template

to these machines

Figure 12-7. Partia broadcasting of tuples and template tuples.

723

724 DISTRIBUTED COORDINATION-BASED SYSTEMS CHAP. 12

WCL (Rowstron and Wray, 1998). In WCL, each tuple-space server is responsi-
ble for an entire tuple space. In other words, a process will aways be directed to
exactly one server. However, it is possible to migrate a tuple space to a different
server to enhance performance. How to develop an efficient wide-area implemen-
tation of tuple spacesis still an open question.

12.3.4 Naming

Jini does not provide a traditional naming service like those found in object-
based distributed systems or distributed file systems. Such a naming service can
easily be implemented as part of the service layer within the Jini architecture, but
as such does not form part of Jini’s core. However, Jini does provide a service that
allows clients to look up registered services using an attribute-based search facil-
ity. This lookup service is described next.

The Jini Lookup Service

As we mentioned, one of the design goals of Jini is to provide a system that
easily alows clients to look up new services as they come available. In principle,
a JavaSpace can implement such a service. Whenever a service is added to an
existing system, it inserts a tuple instance into a JavaSpace describing itself.
Clients that are looking for specific services request the JavaSpace to be notified
when a service inserts a tuple that matches what the client islooking for.

Instead of using a JavaSpace, Jini provides a separate, specialized lookup ser-
vice as part of its lowest-level infrastructure layer, as shown in Fig. 12-3. A ser-
vice registers itself by providing a set of (attribute, value)-pairs that describe, for
instance, what the service has to offer, and where it can be contacted. A client can
look for a service by providing a template to the lookup service, similar to the
template tuples in a JavaSpace. The lookup service returns information on match-
ing services. Let us briefly examine what a lookup service looks like.

Each service has an associated service identifier, which is a globally unique
128-hit value generated by the lookup service. A service uses this identifier to
register a service item at the lookup service. A service item can be viewed as a
record with three fields as shown in Fig. 12-8.

Field Description
ServicelD The identifier of the service associated with this item.
Service A (possibly remote) reference to the object implementing the service.
AttributeSets | A set of tuples describing the service.

Figure 12-8. The organization of a service item.

The ServicelD field contains the service identifier assigned to the service by

SEC. 123 JINI 725

the lookup service. The identifier operates as a unique key in the lookup service.
There will thus never be two service items stored in the lookup service having the
same identifier.

The Service field contains a reference to an object. In many cases, it will be a
reference to a remote object, implying that the client obtaining this reference from
the lookup service can immediately invoke that object using Java's RMI. Recall
from Chap. 2 that a remote reference in Java is often implemented as a marshaled
proxy that merely needs to be unmarshaled to allow its holder to invoke the
object.

The AttributeSets field is a set of tuples, similar to those used in a JavaSpace.
Each tuple essentially corresponds to a Java object with each field in the tuple
describing an (attribute, value)-pair of that object. Using the same technique asin
JavaSpaces, a client can provide a template tuple when looking for specific tuple
instances. The lookup service will select only those tuples that match the tem-
plate.

As in the case of JavaSpaces, aclient can request the lookup service to send a
notification when a service item is inserted that matches the client’s template
tuple.

To assist in setting up a Jini system, there are a number of predefined tuples
that can be used to register services, as shown in Fig. 12-9. For these tuples, all
atributes are represented as character strings, but other representations are al-
lowed, thus providing as much flexibility as needed.

Tuple type Attributes

Servicelnfo | Name, manufacturer, vendor, version, model, serial number
Location Floor, room, building

Address Street, organization, organizational unit, locality, state or

province, postal code, country

Figure 12-9. Examples of predefined tuples for service items.

We have implicitly assumed that there is only a single lookup service. How-
ever, Jini allows several lookup services to coexist. Each service may be responsi-
ble for a group of services. In thisway, the load on a single lookup service can be
distributed across different machines.

In our description thus far, there is one important issue missing, namely how
is alookup service looked up? A standard approach in many distributed systemsis
to configure a lookup server with a well-known address. Jini takes a different
approach, and lets a client multicast a message requesting lookup services to tell
where they are located. Without taking special measures, this approach works
efficiently only for local-area networks.

In addition, lookup services will regularly announce their presence also using
multicasting. A client can then register the location of a lookup service for the

726 DISTRIBUTED COORDINATION-BASED SYSTEMS CHAP. 12

next time it wants to search for a specific service. The exact details of the associ-
ated protocols are described in (Waldo, 2000), which also contains exact specifi-
cations on interfaces to lookup services.

Leasing

Related to naming issues is the management of references to objects. As we
explained in Chap. 4 an approach to managing references is to let a referenced
object keep track of who isreferring to it, leading to what are known as reference
lists. To keep the list short but also to handle situations in which a referring
processes crashes, it is convenient to make use of leases. When a lease expires, a
reference becomes invalid and is removed from the object’s reference list. When
that list becomes empty, the object can safely destroy itself.

Jini makes extensive use of leases to ensure that objects are cleaned up when
they are no longer referred to. For example, whenever a process writes atuple to a
JavaSpace, it is returned a lease specifying how long that tuple will be stored until
it is destroyed. In this case, the write operation alows the caler to specify a
required lease period.

Leases are never handed out with ironclad guarantees. Instead, when a pro-
cess hands out a lease, it effectively promises to do its best to keep the object
associated with the lease for at least the time specified. A process holding a lease
can aways request the lease to be renewed. However, it is up to the leaser to
decide whether arenewal is granted or not.

Interfaces for leases have been standardized. Whenever alease is used in Jini,
it follows the same specification everywhere. Details on these interfaces can be
found in (Waldo, 2000).

12.3.5 Synchronization

Jini provides a few synchronization mechanisms. One important class of
mechanisms is implemented as part of a JavaSpace, namely the blocking opera-
tions read and take. These operations can be used to express many different syn-
chronization patterns as illustrated for paralel programs in (Carriero and
Gelernter, 1989). In addition to synchronization through these two operations,
Jini provides a notion of transactions as well, which we discuss next.

Transactions

To assist in carrying out a series of operations on multiple objects, Jini sup-
ports transactions that use a two-phase commit protocol. This support is essen-
tially given only in the form of a set of interfaces; their actual implementation is
|eft to others. However, Jini can be configured with a default transaction manager.

This approach has an important implication, namely that the ACID properties

SEC. 123 JINI 727

of a transaction are not provided by Jini itself. Instead, it is assumed that these
properties are jointly implemented by the various processes that take part in a
transaction. However, the interaction between the processes adheres to the pattern
in transactions using two-phase commit.

The overal model of atransaction in Jini is shown in Fig. 12-10. A client can
start a transaction by issuing a request to a transaction manager, which will return
a transaction identifier. As in many other occasions, the client is required to
specify how long it will take before the transaction aborts or commits. Addition-
aly, the manager will hand out alease for the newly created transaction, and in all
cases abort the transaction when the lease expires.

BEGIN_TRANSACTION

Client

Transaction [«
<€

manager
END_TRANSACTION

JOIN JOIN
2PC protocol

Participant Participant

Operations as part
of the transaction

Figure 12-10. The general organization of a transaction in Jini. Thick lines
show communication as required by Jini’s transaction protocol.

The client can instruct other processes to join the transaction. These processes
are required to implement a predefined interface that will alow the transaction
manager to further control the transaction. This interface contains operations such
as commit and abort that are invoked by the transaction manager to tell a partici-
pant what to do. It is up to the participant to correctly implement these methods.

Assuming that a transaction can be finished before its associated lease
expires, the client will tell the transaction manager that it should commit or abort
the transaction. From there on, the transaction manager executes the two-phase
commit protocol and reports the result to the client. The actual protocol has been
covered in detail in Chap. 7 and will not be repeated here.

Jini also supports nested transactions. In that case, a transaction manager is
requested to start a transaction as part of an existing transaction. Again, the client
isin control of organizing the transaction, that is, it determines which processes
should join a transaction. In the case of nested transactions, processes are
reguested to join specific subtransactions.

A JavaSpace can participate in a transaction as well. A transaction, in turn,
may span multiple JavaSpaces. Whenever a process issues a JavaSpace operation,
it can pass along a transaction identifier. If the JavaSpace had not yet joined the
indicated transaction, it will do that first. The JavaSpace servers along with the

728 DISTRIBUTED COORDINATION-BASED SYSTEMS CHAP. 12

transaction manager jointly ensure that the ACID properties are preserved. In
addition, the Jini implementation of JavaSpaces, in combination with the default
transaction manager provided as part of Jini, apply strict two-phase locking to
avoid cascaded aborts. We explained two-phase locking in Chap. 5.

12.3.6 Caching and Replication

As in TIB/Rendezvous no special measures are provided by Jini for caching
or replication. These matters are entirely left to the applications that are built as
part of a Jini-based system. The only place where Jini assumes that services may
be replicated for fault tolerance is with respect to its lookup services.

12.3.7 Fault Tolerance

Jini by itself does not provide additional support for fault tolerance except for
a transaction manager that implements the transaction protocol described above.
Jini expects that components that use Jini as a basis implement their own fault-
tolerance measures as needed.

Much research has been done on incorporating fault tolerance in the original
Linda tuple spaces (which form the basis for JavaSpaces). For example, Bakken
and Schlichting (1995) describe an approach based on active replication of tuple
spaces. In addition, they extend the programming model to group multiple opera-
tionsinto a single atomic unit. An approach more in line with that of Jini in which
tuple space operations are grouped into transactions is described in (Shasha and
Jeong, 1994).

With respect to communication, note that virtually all communication is done
by means of Java RMI, which itself is generally implemented using a reliable,
lower-level communication protocol such asHTTP or TCP.

12.3.8 Security

Security in Jini relies entirely on the security provided by Java RMI. Many of
the issues in Java RMI have already been discussed in Chap. 8, notably with
respect to protecting against dynamically downloaded code by means of stack
introspection. Recall that an important property of stack introspection was the
possibility to attach access privileges to classes. These privileges can be checked
at runtime using the Java security manager.

What has been added to Jini is a separate service called the Java Authentica-
tion and Authorization Service (JAAS) that handles user authentication and
authorization in Java-based systems such as Jini. Following an approach similar to
other distributed systems, JAAS separates the interface it offers to users for
authentication and access control from the actual implementation of those ser-
vices. This separation is achieved through PAM, the Pluggable Authentication

SEC. 123 JINI 729

Module (Samar and Lai, 1996). PAM essentially provides an intermediate layer
between applications and security services, providing a standard interface to both
groups, as shown in Fig. 12-11. JAAS s aJavaimplementation of PAM.

Application Application Application

Y
Pluggable Authentication Module

/ \

UNIX
authentication
service

Kerberos
authentication

Figure 12-11. The position of PAM with respect to security services.

What JAAS adds to Java's existing access control mechanisms is the facility
to perform access control with respect to previously authenticated users. Recall
that Java as explained in Chap. 8, provides facilities to do class-based access con-
trol by which privileges are associated to classes. JAAS can also handle users. In
effect, JAAS provides necessary support for enabling a Jini-based distributed sys-
tem to support multiple users.

As JAAS is similar to the authentication and authorization services we have
discussed so far, we will not go into further details. More information can be
foundin (La et d., 1999).

