5º Encontro Regional de Matemática Aplicada e Computacional

20 a 22-Novembro-2008

Universidade Federal do Rio Grande do Norte - Natal/RN

Caracterização de Matróides binárias 3-conexas com circunferência 6

Ademakson S. Araújo

Depto. Química e Exatas, UESB 45.206-190, Jequié, BA E-mail: ademakson@gmail.com.

Manoel Lemos

Depto. de Matemática, CCEN, UFPE. 50.670-901, Recife, PE E-mail: manoel@dmat.ufpe.br.

Resumo

Neste trabalho caracterizamos as matróides 3-conexas binárias com circunferência seis e posto menor ou igual a sete. O trabalho conta com programas escritos em Linguagem C capazes de gerar e classificar as matróides por isomorfismo.

Palayras-chave

Matróides. Circunferência. Conexidade.

Introdução

A teoria de matróides foi introduzida em 1935 por Whitney na tentativa de analisar a essência abstrata da teoria de dependência. Quando da definição de matróides Whitney tentou capturar as propriedades fundamentais que são comuns em grafos e matrizes, essa definição acabou por abraçar uma diversidade

maior de estruturas combinatórias. Matróides aparecem naturalmente em Otimização Combinatória pois sob elas trabalham o algoritmo

ambicioso.

Entre os problemas de maior interesse nas pesquisas em matróides estão os problemas relacionados com conectividade. Os circuitos desem-penham papel importante no grau de conectivi-dade de uma matróide, assim é de fundamental importância seu estudo pormenorizado.

Em sua tese de doutorado, Bráulio Maia Junior sob a orientação de Manoel Lemos deu início ao estudo que tem como objetivo conhecer todas as matróides com respeito a sua circunferência, ou seja, seu circuito de comprimento máximo. Esta tese rendeu dois artigos: Matroids Having Small Circumference, Combinatorics, Probability and Compunting [2] e Connected matroids with a small circumference, [3]. Nestes artigos, eles descreveram analiticamente todas as matróides com circunferência menor igual a 5. Recentemente, Manoel Lemos, 3-conexas de circunferência 6 e 7, mas apenas para (E,\mathcal{I}) é uma matróide.

posto maior ou igual a 8. Notamos que existia uma lacuna nas matróides de circunferência 6 e posto menor que 8, isto é, posto 5, 6, e 7. Este fato se deve ao grande número de exemplos encontrados para tais matróides, tornando muito difícil descrevê-

las analiticamente de maneira satisfatória.
Com o objetivo de conhecer e classificar estas matróides, desenvolvemos dois algoritmos em linguagem C, capazes de gerar e classificar via isomorfismo todas as matróides binárias 3-conexas. Esses algoritmos tornaram possível cobrir uma significante etapa do processo de caracterização de circuitos em matróides.

Preliminares 1

Uma matróide M é um par ordenado (E, \mathcal{I}) consistindo de um conjunto finito E e uma coleção \mathcal{I} de subconjuntos de E satisfazendo as seguintes três condições:

- (I1) $\emptyset \in \mathcal{I}$.
- (I2) Se $I \in \mathcal{I}$ e $I' \subseteq I$, então $I' \in \mathcal{I}$.
- (I3) Se I_1 e I_2 estão em \mathcal{I} e $|I_1| < |I_2|$, então existe um elemento $e \in I_2 I_1$ tal que $I_1 \cup e \in \mathcal{I}$.

Se M é uma matróide (E, \mathcal{I}) , então M é chamada uma matróide em E. Os membros de $\mathcal I$ são chamados de conjuntos independentes. Um membro maximal de \mathcal{I} é chamado uma base de M. Um subconjunto que não está em $\mathcal{I}(M)$ é um conjunto dependente. Um conjunto dependente minimal de Mserá chamado um circuito de M e denotaremos o conjunto dos circuitos de M por $\mathcal{C}(M)$. Também chamaremos de circunferência e denotaremos por circ(M) ao comprimento máximo de um circuito $C \in \mathcal{C}(M)$.

Teorema 1 Seja E o conjunto dos rótulos das colunas de uma $m \times n$ matriz A sobre um corpo \mathbb{F} , e seja menor igual a 5. Recentemente, Manoel Lemos, \mathcal{I} coleção de subconjuntos I de E para o qual o con-Bráulio Junior e Raul Cordovil [1] caracterizaram, junto das colunas rotuladas por I é linearmente intambém analiticamente, todas as matróides binárias dependente sobre o espaço vetorial $V(m, \mathbb{F})$. Então

5º Encontro Regional de Matemática Aplicada e Computacional

20 a 22-Novembro-2008

Universidade Federal do Rio Grande do Norte - Natal/RN

Duas Matróides M_1 e M_2 são isomorfas, denotamos por $M_1 \cong M_2$, se existe uma bijeção φ de $E(M_1)$ para $E(M_2)$ tal que, para todo $X \subseteq E(M_1)$, $\varphi(X)$ é independente em M_2 se e somente se X é independente em M_1 . A matróide obtida da matriz A como no Teorema 1 será denotada por M[A]. Esta matróide é chamada de matróide vetorial de A. Uma matróide M que é isomorfa a uma matróide vetorial M[A] para alguma matriz A sobre um corpo \mathbb{F} é dita \mathbb{F} -representável, e Aé chamada uma $\mathbb{\bar{F}}\text{-representação de }M.$ Uma matróide que é \mathbb{Z}_2 -representável é chamada simplesmente de matróide binária. Neste trabalho consideraremos apenas matróides binárias.

Seja M uma matróide e $\{X,Y\}$ uma partição de E(M). Seja k um inteiro positivo. Dizemos que (X,Y) é uma k-separação para M se

$$\min\{|X|,|Y|\} \ge k$$

e

$$r(X) + r(Y) - r(M) + 1 \le k.$$

 Uma matróide M é dita ser n-conexa se e somente M não possui uma k-separação para todo inteiro positivo k < n.

Agora suponha que l, m e n são inteiros tais que $0 \le l \le 3 \le n$ e $0 \le m \le n$. Seja $\{U, V\}$ uma partição dos vértices do grafo bipartido completo $K_{3,n}$ tal que U e V são conjuntos estáveis, |U|=3 e |V|=n, digamos $V=\{v_1,v_2,\ldots,v_n\}$. Seja $K_{3,n}^{(l)}$ o grafo simples obtido de $K_{3,n}$ pela adição de l arestas unindo dois vértices de U. Definimos $M_{n,m,l}$ como a matróide binária obtida de $M(K_{3,n}^{(l)})$ completandose as tríades $st(v_1), st(v_2), \ldots, st(v_m)$ para circuitococircuitos com 4 elementos. A figura 1 dá uma idéia geométrica da matróide $M_{n,m,3}$.

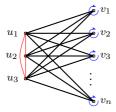


Figura 1: $M_{n,m,3}$

A partir de agora e durante todo o trabalho nos referiremos a M como uma matróide binária 3-conexa com circunferência 6. Se $r(M) \leq 5$, então Junior e Lemos [3] mostraram que:

 $r(M) \le 5$, $ent\~ao \ circ(M) = r(M) + 1 \ exceto \ quando$ M for isomorfa a $U_{1,1}$, F_7^* , AG(3,2), J_9 ou J_{10} .

Como consequência deste resultado temos que:

Corolário 1 Seja M uma matróide 3-conexa. Se $r(M) \leq 5$, então as seguintes afirmações são equivalentes:

- (i) circ(M) = 6;
- (ii) r(M) = 5 e M não é isomorfa a J_9 ou J_{10} .

Portanto, necessitamos caracterizar apenas as matróides 3-conexas possuindo circunferência 6 com posto pelo menos 6. Mas Cordovil, Junior e Lemos em [1] construíram todas as matróides binárias 3conexas com circunferência 6 e posto pelo menos 8, a saber:

Teorema 3 Seja M uma matróide 3-conexa binária tal que $r(M) \ge 8$. Então, circ(M) = 6 se e somente se M é isomorfa a $M_{n,m,l}$, para alguns inteiros l, m e n tal que $0 \le l \le 3$, $6 \le m \le n$.

Algumas definições encontradas no texto que não foram explicitadas nesta seção podem ser encontradas em [5].

Resultados Principais $\mathbf{2}$

Os resultados obtidos até agora deixam apenas uma lacuna na construção das matróides binárias 3-conexas com circunferência 6: aquelas com posto 6 ou 7. Portanto devemos caracterizar as matróides binárias 3-conexas, com circunferência 6 e posto 6 ou 7. Construiremos estas matróides em 2 seções: Na primeira seção caracterizamos as matróides com posto 7 e na seção seguinte caracterizamos as matróides com posto 6.

2.1Matróides de Posto 7

O próximo resultado nos fornece uma primeira caracterização de matróides binárias 3-conexas possuindo circunferência 6.

Proposição 2.1 Suponha que M é uma matróide binária 3-conexa tal que circ(M) = 6. Então:

- (i) $M \in isomorfa \ a \ Z_{11}, \ Y_{12}, \ Z_{12} \ ou \ Z_{13}; \ ou$
- (ii) Toda componente conexa de M/C possui posto 0 ou 1, para todo circuito máximo C de M.

Para efeito de comparação, enunciamos um resultado similar obtido por Cordovil, Junior e Lemos

Teorema 2 Se M é uma matróide 3-conexa tal que Proposição 2.2 Suponha que M é uma matróide binária 3-conexa tal que $circ(M) \in \{6,7\}$ e $r(M) \ge$ circ(M) + 2. Se C é um circuito de comprimento $m\acute{a}xim\acute{o}$ de M, então o posto de toda componente conexa de M/C é no máximo um.

5º Encontro Regional de Matemática Aplicada e Computacional

20 a 22-Novembro-2008

Universidade Federal do Rio Grande do Norte - Natal/RN

O Teorema a seguir caracteriza todas as matróides binárias, 3-conexas de circunferência 6 e posto 7 tal que toda componente conexa de M/C tem posto no máximo um, para algum circuito C de comprimento máximo de M.

Teorema 4 Seja M uma matróide binária 3- Figura 4: A matriz A_3 e uma representação conexa de posto 7. Suponha que M não é iso- geométrica para $(L_3)^*$. morfa às matróides Z_{11}, Y_{12}, Z_{12} ou Z_{13} . Então circ(M) = 6 se e somente se M é isomorfo à matroide $M_{5,m,l}$, com $0 \le l \le 3$ e $0 \le m \le 5$.

2.2Matróides de posto 6

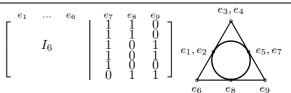
Nesta seção caracterizaremos todas as matróides 3conexas, binárias que possui circunferência e posto 6. Devido ao grande número de exemplos encontrados para tais matróides, tornando muito difícil descrevê-las analiticamente de maneira satisfatória, desenvolvemos dois algoritmos em linguagem C que deram origem a dois programas, que chamaremos aqui de programa 1 e programa 2, capazes de gerar classificar via isomorfismo todas as matróides inárias 3-conexas. Antes, definiremos algumas e classificat via binárias 3-conexas. matróides que serão utilizadas ao longo da seção.

Sejam $L_1 = M[A_1]$ e $L_2 = M[A_2]$ as matróides representadas pelas matrizes binárias A_1 e A_2 , respectivamente, cuja co-simplificação é isomorfa a F_7 . As matrizes A_1 e A_2 e as representações geométricas para as matróides $(M[\hat{A_1}])^*$ e $(M[A_2])^*$, são mostradas nas figuras 2 e 3, respectivamente.

Figura 2: A matriz A_1 e uma representação geométrica para $(L_1)^*$.

Figura 3: A matriz A_2 e uma representação geométrica para $(L_2)^*$.

Observe que L_1 e L_2 não são isomorfas, pois L_1 possui 1 classe em série contendo 3 elementos e 6 classes em série triviais e L_2 possui 2 classes em série contendo 2 elementos e 5 classes em série triviais. Seja $L_3=M[A_3]$ a matróide representada pela matriz binária A_3 , cuja co-simplificação é isomorfo a $M(K_4)$. A figura 4 mostra a matriz A_3 e uma representação geométrica para a matróide $(L_3)^*$.



Seja M uma matróide 3-conexa binária de posto e circunferência 6 e ${\cal C}$ um circuito de comprimento máximo de M. Seja H uma componente conexa de M/C de posto não nulo. Pela Proposição 2.1, $r_{M/C}(H) = r(M/C) = 1$ e H é única com essa característica. O próximo Lema mostra que o posto de H em M é pelo menos 3.

Lema 1 Seja M uma matróide 3-conexa de posto e circunferência 6 e C é um circuito de comprimento máximo de M. Se H é uma componente conexa de M/C de posto não nulo, então $r_M(H) \geq 3$.

Para facilitar nossa caracterização iremos classificar as matróides binárias 3-conexas de posto e circunferência 6 quanto ao número de elementos independentes de \bar{H} em M, isto é $r_M(H)$. A partir de agora e durante todo o capítulo nos referimos a Ccomo um circuito de comprimento máximo de M, H uma componente conexa de posto não nulo de M/C e I um subconjunto independente maximal de H. Note que todo 3-subconjunto $Z \subseteq H$ é uma estrela com respeito a C. Assim a simplificação de $M|(C \cup Z)$ é isomorfa a $M(K_4)$ ou F_{7*} , ou seja, $M|(C \cup Z)$ é isomorfa à uma das matróides: L_1, L_2 ou L_3 .

Proposição 2.3 Seja M uma matróide 3-conexa binária de posto e circunferência 6. Se Z é um 3subconjunto de I, então $M|(C \cup Z)$, é isomorfo a L_1 , L_2 ou L_3 .

Com base na Proposição 2.3, o programa 1 gera a partir de uma matriz representante inicial, A_1 , A_2 ou A_3 , todas as extensões binárias dessa matróide acrescentando-se novas colunas a essa matriz assegurando-se limites a sua circunferência e $r_M(H)$. Este programa gera também a matriz de circuitos de cada extensão binária assim obtida. O segundo programa classifica as matróides obtidas no programa 1 segundo sua classe de isomorfismo.

Começaremos caracterizando as matróides com r(H) = 3. Iniciaremos descrevendo as matróide 3conexas binárias cuja restrição a $C \cup I$ é isomorfa à matróide L_1 , L_2 ou L_3 .

Teorema 5 Seja M uma matróide binária 3conexa de posto e circunferência 6. Então $r_M(H) =$ $3 \ e \ M | (C \cup I) \ \acute{e} \ isomorfa \ L_1, \ se \ e \ somente \ se \ M \ \acute{e}$ isomorfa à matróide $A_{n,q}$, onde n e q são inteiros positivos tais que $0 \le q \le k$ e $(n,k) \in \{(11,2),$

5º Encontro Regional de Matemática Aplicada e Computacional

20 a 22-Novembro-2008

Universidade Federal do Rio Grande do Norte - Natal/RN

(12,6), (13,12), (14,14), (15,11), (16,9), (17,5),(18,3), (19,2), (20,0).

Teorema 6 Seja M uma matróide binária 3conexa de posto e circunferência 6. Então $r_M(H) =$ $3 \ e \ M | (C \cup I) \ \acute{e} \ isomorfa \ L_2, \ se \ e \ somente \ se \ M \ \acute{e}$ isomorfa às matróides L_{12} , L_{11} , N_{11} ou L_{10} .

Teorema 7 Seja M uma matróide binária 3conexa de posto e circunferência 6. Então $M|(C \cup I)$ \acute{e} isomorfa a L_3 e $r_M(H)=3$, se e somente se Mé isomorfa a $M_{4,m,l}$ ou $N_{4,m,q}$, onde m,l e q são inteiros tais que $0 \le m \le 4, \ 0 \le l \le 3$ e $1 \le q \le 4$.

Agora caracterizaremos todas as matróides que possuem r(H) = 4. As restrições dessas matróides a $C \cup I$ são necessariamente extensões binárias das matróides $L_1,\ L_2$ ou L_3 obtidas acrescentando-se um novo elemento a H de modo que |I| = 4.

Construímos cada extensão $M|(C \cup I)$ de L_i , $i \in \{1,2,3\}$, acrescentando um novo elemento e_{10} de maneira que $r(H \cup e_{10}) = 4$, onde e_{10} é gerado pelos elementos da base $B = \{e_1, e_2, e_3, e_4, e_5, e_6\}$ de L_i e $3 \leq |D| \leq 6$, para todo circuito $D \in \mathcal{C}(M)$. Para simplificar e reduzir o número de cálculos, e_{10} foi gerado de modo a não pertencer ao fecho de C. Denotamos as extensões binárias de cada L_i obtida, acrescentando-se o elemento e_{10} , por $L_{i,X}$, onde $i \in \{1, 2, 3\}$ e X representa a seqüência dos rótulos na matriz A_i dos elementos da base que geraram e_{10} . Rodando os programas 1 e 2, verificamos que as possíveis extensões binárias de L_1 para $M|(C \cup I)$, a menos de isomorfismo, são $L_{1,146}$, $L_{1,246}$ e $L_{1,1456}$; da mesma forma verificamos que existem, a menos de isomorfismo, 2 extensões binárias de L_2 para $M|(C \cup I)$, a saber: $L_{2,136}$ e $L_{2,1346}$ e semelhantemente mostramos que a menos de isomorfismo, existe somente uma extensão binária da matróide L_3 para $M|(C \cup I)$, a matróide denotada por $L_{3.136}$.

Como a matróide $L_{1,246}$ é isomorfa à matróide $L_{3.136} \text{ com } \varphi(12345678910) = (1 \ 3 \ 2 \ 4 \ 5 \ 6 \ 7 \ 10 \ 8 \ 9) \text{ e}$ a matróide $L_{1.1456}$ é isomorfa à matróide $L_{2.136}$ com $\varphi(12345678910) = (1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 10\ 9)$, temos que a menos de isomorfismo, existem apenas 4 matróides binárias para $M|(C \cup I)$ de posto e circunferência 6 tal que $r_M(H) = 4$, as matróides: $L_{1,146}$, $L_{1,246}$, $L_{1,1456}$ e $L_{2,1346}$.

Teorema 8 Seja M uma matróide binária 3conexa de posto e circunferência 6. Se $M|(C \cup I)$ é isomorfa à matróide $L_{1,146}$ ou a $L_{1,246}$, então M é isomorfa à matróide $AZ_{n,q}$, onde n e q são inteiros positivos.

Teorema 9 Seja M uma matróide binária 3conexa de posto e circunferência 6. Se $M|(C \cup I)$ é H_{12} ou H_{11} .

Teorema 10 Seja M uma matróide binária 3conexa de posto e circunferência 6. Se $M|(C \cup I)$ é isomorfa à matróide L_{2,1346}, então M é isomorfa à DB_{11} , DB_{10} ou DV_{11} .

Agora caracterizaremos as matróides binárias 3conexas de posto e circunferência 6 com r(H) = 5. De forma análoga a construção das matróides com r(H) = 4, construímos as matróides $M|(C \cup I)$ com $r_M(H) = 5$ acrescentando um novo elemento e_{11} às matróides $L_{1,146}$, $L_{1,246}$, $L_{1,1456}$ e $L_{2,1346}$ de forma que o elemento e_{11} seja linearmente independente com os elementos de I e $3 \le |D| \le 6$, para todo circuito $D \in \mathcal{C}(M)$. Semelhantemente, denotamos cada matróide assim construída por $L_{i,X,Y}$, onde $i \in \{1,2\}, X \in \{146, 246, 1456, 1346\}$ e Y representa a següência dos rótulos dos elementos da base que geraram e_{11} . Novamente rodando os programas para as matrizes de $L_{1,146}$, $L_{1,246}$, $L_{1,1456}$ e $L_{2,1346}$ encontramos a menos de isomorfismo, que as matróides de posto e circunferência 6 com r(H) = 5para $M|(C \cup I)$ são: $L_{1,146,156}$, $L_{1,146,256}$, $L_{1,146,2346}$, $L_{1,246,356}$ e $L_{1,1456,2346}$.

A matróide $L_{1,146,256}$ é isomorfa à matróide $L_{1,246,156}$ com $\varphi(1234567891011) = (1 2 3 5 4 6 7 8 9)$ 11 10), a matróide $L_{1,146,2346}$ é isomorfa à matróide $L_{1,1456,23456}$ com $\varphi(1234567891011) = (1 2 3 7 4 6)$ 5 8 9 11 10) e a matróide $L_{1,1456,2346}$ é isomorfa à matróide $L_{2,1346,246}$ com $\varphi(1234567891011)$ =(1 2 4 3 7 8 5 6 11 9 10). Como procuramos por extensões dessas matróides obtidas, acrescentando o fechos de C e de I que sejam 3-conexas, temos que a menos de isomorfismo, existem 4 matróides para $M|(C \cup I)$ cuja extensão é 3-conexa, pois a matróide $L_{1,146,2346}$ não possui extensão 3-conexa, conforme mostramos no próximo resultado. Assim, são matróides 3-conexas, as matróides $L_{1.146,156}$, $L_{1,146,256}$, $L_{1,246,356}$, $L_{1,1456,2346}$ e suas extensões.

então M não é 3-conexa.

Teorema 12 Seja M uma matróide binária 3conexa de posto e circunferência 6. Se $M|(C \cup I)$ é isomorfa à uma das matróides $L_{1,146,156}$, $L_{1,146,256}$ ou $L_{1,246,356}$, então M é isomorfa a todo menor de AT_{32} que contenha uma das matróides $L_{1,146,156}$, $L_{1,146,256}$ ou $L_{1,246,356}$ como menor.

Teorema 13 Seja M uma matr'oide bin'aria 3conexa de posto e circunferência 6. Se $M|(C \cup I)$ é isomorfa à $L_{1,1456,2346}$, então M é isomorfa à DN_{12} ou DN_{11} .

Finalmente, acrescentando a cada matróide $M = L_{1,146,156}, L_{1,146,256}, L_{1,146,2346}, L_{1,246,356}$ ou isomorfa à matróide $L_{1,1456}$, então M é isomorfa a $L_{1,1456,2346}$ um novo elemento e_{12} de forma que a extensão binária M' assim obtida tenha $r_{M'}(H) =$

5º Encontro Regional de Matemática Aplicada e Computacional

20a 22-Novembro-2008

Universidade Federal do Rio Grande do Norte - Natal/RN

6, posto e circunferência iguais a 6 e $|D| \geq 3$, para todo circuito $D \in \mathcal{C}(M')$, encontramos a matróide 3-conexa $L_{1,1456,2346,2356}$, extensão binária da matróide $L_{1,1456,2346}$ obtida acrescentando-se o elemento e_{12} gerado pelos elementos e_2, e_3, e_5 e e_6 .

Teorema 14 Seja M uma matróide binária 3-conexa de posto e circunferência 6. Se $r_M(H) = 6$ para alguma componente conexa H de M/C, onde C é um circuito de comprimento máximo, então M é isomorfa à matróide JL.

Agradecimentos

O primeiro autor agradece o apoio financeiro da UESB, UFPE e FAPESB.

Referências

- [1] R.Cordovil, B. M. Junior and M. Lemos, *The 3-connected binary matroids with circumference 6 or 7*. European Journal of Combinatorics (a ser publicado)
- [2] B. M. Junior, Connected matroids with a small circumference, Discret Math. 259 (2002), 147-161.
- [3] B. M. Junior and M. Lemos, *Matroids having small circumference*, Combin. Probab. Compunt. 10 (2001), 349-360.
- [4] M. Lemos and J. Oxley, On size, circumference and circuit removal in 3-connected matroids, Discret Math. 220 (2000), 145-157.
- [5] J. G. Oxley, *Matroid Theory*, Oxford University Press, New York, 1992.
- [6] P.D. Seymour, Decomposition of regular matroids, J. Combin. Theory Ser. B 28 (1980), 305-359.
- [7] P. Wu, On large circuits and matroids, Graphs and Combinatorics (2001) 17, 365-388.